CN105914273B - A kind of reddish yellow light-emitting diode epitaxial wafer and preparation method thereof - Google Patents
A kind of reddish yellow light-emitting diode epitaxial wafer and preparation method thereof Download PDFInfo
- Publication number
- CN105914273B CN105914273B CN201610301831.1A CN201610301831A CN105914273B CN 105914273 B CN105914273 B CN 105914273B CN 201610301831 A CN201610301831 A CN 201610301831A CN 105914273 B CN105914273 B CN 105914273B
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- alinp
- emitting diode
- epitaxial wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 230000000903 blocking effect Effects 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 230000007480 spreading Effects 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims description 24
- 239000011777 magnesium Substances 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 8
- 230000006798 recombination Effects 0.000 abstract description 12
- 238000005215 recombination Methods 0.000 abstract description 12
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 230000001934 delay Effects 0.000 abstract 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 14
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种红黄光发光二极管外延片及其制备方法,属于半导体技术领域。外延片包括N型衬底、N型缓冲层、N型反射层、N型限制层、电子阻挡层、多量子阱层、空穴调整层、P型限制层、P型电流扩展层、P型欧姆接触层,电子阻挡层包括AlGaInP层和AlInP层,空穴调整层包括第一子层和至少两层第二子层,第一子层为非掺杂的AlInP层,第二子层包括P型掺杂的AlInP层和非掺杂的AlInP层,P型掺杂的AlInP层的掺杂浓度小于P型限制层的掺杂浓度。本发明通过电子阻挡层延缓电子达到多量子阱层,空穴调整层使得空穴均匀分布在临近多量子阱层的区域,增加电子和空穴的复合几率,提高发光二极管的发光效率。
The invention discloses a red-yellow light-emitting diode epitaxial wafer and a preparation method thereof, belonging to the technical field of semiconductors. The epitaxial wafer includes N-type substrate, N-type buffer layer, N-type reflective layer, N-type confinement layer, electron blocking layer, multiple quantum well layer, hole adjustment layer, P-type confinement layer, P-type current spreading layer, P-type Ohmic contact layer, the electron blocking layer includes an AlGaInP layer and an AlInP layer, the hole adjustment layer includes a first sublayer and at least two second sublayers, the first sublayer is an undoped AlInP layer, and the second sublayer includes P Type-doped AlInP layer and non-doped AlInP layer, the doping concentration of the P-type doped AlInP layer is smaller than the doping concentration of the P-type confinement layer. The invention delays electrons from reaching the multi-quantum well layer through the electron blocking layer, and the hole adjustment layer makes the holes evenly distributed in the area adjacent to the multi-quantum well layer, increases the recombination probability of electrons and holes, and improves the luminous efficiency of the light-emitting diode.
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种红黄光发光二极管外延片及其制备方法。The invention relates to the technical field of semiconductors, in particular to a red-yellow light-emitting diode epitaxial wafer and a preparation method thereof.
背景技术Background technique
红黄光的高亮度AlGaInP系的发光二极管(Light Emitting Diode,简称LED)具有体积小、寿命长、功耗低等优点,在白色光源、全色显示、交通信号灯和城市亮化工程等领域具有广阔的应用前景。Red and yellow high-brightness AlGaInP-based light-emitting diodes (Light Emitting Diode, referred to as LEDs) have the advantages of small size, long life, and low power consumption. Broad application prospects.
AlGaInP LED外延片自下而上包括N型衬底、N型缓冲层、N型反射层、N型限制层、多量子阱层、P型限制层、P型电流扩展层、P型欧姆接触层。AlGaInP LED epitaxial wafer includes N-type substrate, N-type buffer layer, N-type reflective layer, N-type confinement layer, multiple quantum well layer, P-type confinement layer, P-type current spreading layer, P-type ohmic contact layer from bottom to top .
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the present invention, the inventor finds that there are at least the following problems in the prior art:
电子的体积和质量均小于空穴,因此电子的迁移率和迁移速率均优于空穴,电子和空穴的复合大部分发生在邻近P型限制层的区域,发光效率较低。The volume and mass of electrons are smaller than holes, so the mobility and mobility of electrons are better than holes. Most of the recombination of electrons and holes occurs in the area adjacent to the P-type confinement layer, and the luminous efficiency is low.
发明内容Contents of the invention
为了解决现有技术发光效率较低的问题,本发明实施例提供了一种红黄光发光二极管外延片及其制备方法。所述技术方案如下:In order to solve the problem of low luminous efficiency in the prior art, an embodiment of the present invention provides a red-yellow light-emitting diode epitaxial wafer and a preparation method thereof. Described technical scheme is as follows:
第一方面,本发明实施例提供了一种红黄光发光二极管外延片,所述红黄光发光二极管外延片包括N型衬底、以及依次层叠在所述N型衬底上的N型缓冲层、N型反射层、N型限制层、多量子阱层、P型限制层、P型电流扩展层、P型欧姆接触层,所述红黄光发光二极管外延片还包括层叠在所述N型限制层和所述多量子阱层之间的电子阻挡层、以及层叠在所述多量子阱层和所述P型限制层之间的空穴调整层,所述电子阻挡层包括AlGaInP层和AlInP层,所述空穴调整层包括第一子层和至少两层第二子层,所述第一子层设置在所述多量子阱层上,所述第一子层为非掺杂的AlInP层,所述第二子层包括P型掺杂的AlInP层和非掺杂的AlInP层,所述P型掺杂的AlInP层的掺杂浓度小于所述P型限制层的掺杂浓度。In the first aspect, an embodiment of the present invention provides a red-yellow light-emitting diode epitaxial wafer. The red-yellow light-emitting diode epitaxial wafer includes an N-type substrate and an N-type buffer stacked sequentially on the N-type substrate. layer, N-type reflective layer, N-type confinement layer, multi-quantum well layer, P-type confinement layer, P-type current spreading layer, P-type ohmic contact layer, the red and yellow light emitting diode epitaxial wafer also includes layers stacked on the N An electron blocking layer between the multiple quantum well layer and the multiple quantum well layer, and a hole adjustment layer stacked between the multiple quantum well layer and the P type confinement layer, the electron blocking layer includes an AlGaInP layer and AlInP layer, the hole adjustment layer includes a first sublayer and at least two second sublayers, the first sublayer is arranged on the multi-quantum well layer, and the first sublayer is non-doped An AlInP layer, the second sublayer includes a P-type doped AlInP layer and a non-doped AlInP layer, and the doping concentration of the P-type doped AlInP layer is lower than that of the P-type confinement layer.
可选地,所述AlGaInP层的厚度为20~50nm。Optionally, the thickness of the AlGaInP layer is 20-50 nm.
可选地,所述电子阻挡层中的AlInP层的厚度为8~15nm。Optionally, the AlInP layer in the electron blocking layer has a thickness of 8-15 nm.
可选地,所述第一子层的厚度为90~220nm。Optionally, the thickness of the first sublayer is 90-220 nm.
可选地,所述第二子层的层数为2~9层。Optionally, the number of layers of the second sub-layer is 2-9 layers.
可选地,所述P型掺杂的AlInP层的厚度与所述非掺杂的AlInP层的厚度相同。Optionally, the thickness of the P-type doped AlInP layer is the same as that of the non-doped AlInP layer.
可选地,所述P型掺杂的AlInP层的厚度为10~20nm。Optionally, the thickness of the P-type doped AlInP layer is 10-20 nm.
可选地,所述非掺杂的AlInP层的厚度为10~20nm。Optionally, the thickness of the non-doped AlInP layer is 10-20 nm.
可选地,所述P型掺杂的AlInP层的掺杂杂质为镁元素,所述P型掺杂的AlInP层的掺杂浓度为10-17~5*10-17cm-3。Optionally, the doping impurity of the P-type doped AlInP layer is magnesium element, and the doping concentration of the P-type doped AlInP layer is 10 -17 ~5*10 -17 cm -3 .
第二方面,本发明实施例提供了一种如第一方面所述的红黄光发光二极管外延片的制备方法,所述制备方法包括:In the second aspect, the embodiment of the present invention provides a method for preparing the red-yellow light-emitting diode epitaxial wafer as described in the first aspect, the preparation method comprising:
在N型衬底上形成N型缓冲层;forming an N-type buffer layer on an N-type substrate;
在所述N型缓冲层上形成N型反射层;forming an N-type reflective layer on the N-type buffer layer;
在所述N型反射层上形成N型限制层;forming an N-type confinement layer on the N-type reflection layer;
在所述N型限制层上形成电子阻挡层,所述电子阻挡层包括AlGaInP层和AlInP层;forming an electron blocking layer on the N-type confinement layer, the electron blocking layer comprising an AlGaInP layer and an AlInP layer;
在所述电子阻挡层上形成多量子阱层;forming a multiple quantum well layer on the electron blocking layer;
在所述多量子阱层上形成空穴调整层,所述空穴调整层包括第一子层和至少两层第二子层,所述第一子层形成在所述多量子阱层上,所述第一子层为非掺杂的AlInP层,所述第二子层包括P型掺杂的AlInP层和非掺杂的AlInP层,所述P型掺杂的AlInP层的掺杂浓度小于所述P型限制层的掺杂浓度;A hole adjustment layer is formed on the multiple quantum well layer, the hole adjustment layer includes a first sublayer and at least two second sublayers, the first sublayer is formed on the multiple quantum well layer, The first sublayer is an undoped AlInP layer, the second sublayer includes a P-type doped AlInP layer and an undoped AlInP layer, and the doping concentration of the P-type doped AlInP layer is less than The doping concentration of the P-type confinement layer;
在所述空穴调整层上形成P型限制层;forming a P-type confinement layer on the hole adjustment layer;
在所述P型限制层上形成P型电流扩展层;forming a P-type current spreading layer on the P-type confinement layer;
在所述P型电流扩展层上形成P型欧姆接触层。A P-type ohmic contact layer is formed on the P-type current spreading layer.
本发明实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solution provided by the embodiments of the present invention are:
通过在N型限制层和多量子阱层之间层叠电子阻挡层,延缓电子达到多量子阱层,在多量子阱层和P型限制层之间层叠空穴调整层,使得空穴均匀分布在临近多量子阱层的区域,增加电子和空穴的复合几率,提高发光二极管的发光效率。同时,空穴调整层的掺杂浓度较低,可以有效避免掺杂杂质扩散到多量子阱层而增强非辐射复合的几率。By stacking an electron blocking layer between the N-type confinement layer and the multi-quantum well layer, the electrons are delayed from reaching the multi-quantum well layer, and a hole adjustment layer is stacked between the multi-quantum well layer and the P-type confinement layer, so that the holes are evenly distributed in the The region adjacent to the multi-quantum well layer increases the recombination probability of electrons and holes and improves the luminous efficiency of the light-emitting diode. At the same time, the doping concentration of the hole adjustment layer is relatively low, which can effectively prevent doping impurities from diffusing into the multi-quantum well layer and enhance the probability of non-radiative recombination.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1是本发明实施例一提供的一种红黄光发光二极管外延片的结构示意图;FIG. 1 is a schematic structural view of a red-yellow light-emitting diode epitaxial wafer provided in Embodiment 1 of the present invention;
图2a是本发明实施例一提供的N型限制层、电子阻挡层、多量子阱层、以及P型限制层的能带示意图;Figure 2a is a schematic diagram of the energy bands of the N-type confinement layer, the electron blocking layer, the multiple quantum well layer, and the P-type confinement layer provided by Embodiment 1 of the present invention;
图2b是本发明实施例一提供的空穴调整层和P型限制层掺杂浓度的分布示意图;Fig. 2b is a schematic diagram of the doping concentration distribution of the hole adjustment layer and the P-type confinement layer provided by Embodiment 1 of the present invention;
图3是本发明实施例二提供的一种红黄光发光二极管外延片的制备方法的流程图。FIG. 3 is a flow chart of a method for preparing a red-yellow light-emitting diode epitaxial wafer provided by Embodiment 2 of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
本发明实施例提供了一种红黄光发光二极管外延片,参见图1,该红黄光发光二极管外延片包括N型衬底1、以及依次层叠在N型衬底1上的N型缓冲层2、N型反射层3、N型限制层4、电子阻挡层5、多量子阱层6、空穴调整层7、P型限制层8、P型电流扩展层9、P型欧姆接触层10。An embodiment of the present invention provides a red-yellow light-emitting diode epitaxial wafer, as shown in FIG. 1 , the red-yellow light-emitting diode epitaxial wafer includes an N-type substrate 1 and an N-type buffer layer sequentially stacked on the N-type substrate 1 2. N-type reflection layer 3, N-type confinement layer 4, electron blocking layer 5, multiple quantum well layer 6, hole adjustment layer 7, P-type confinement layer 8, P-type current spreading layer 9, P-type ohmic contact layer 10 .
在本实施例中,N型衬底1为GaAs衬底;N型缓冲层2为GaAs层;N型反射层3包括交替层叠的AlAs层31和AlGaAs层32;N型限制层4为AlInP层;电子阻挡层5包括AlGaInP层51和AlInP层52;多量子阱层6包括交替层叠的量子阱层61和量子垒层62(量子阱层和量子垒层分别为Al组分不同的AlGaInP层);空穴调整层7包括第一子层71和至少两层第二子层72,第一子层71为非掺杂的AlInP层,第二子层包括P型掺杂的AlInP层72a和非掺杂的AlInP层72b,P型掺杂的AlInP层72a的掺杂浓度小于P型限制层8的掺杂浓度;P型限制层8为AlInP层;P型电流扩展层9为GaP层;P型欧姆接触层10为GaP层。In this embodiment, the N-type substrate 1 is a GaAs substrate; the N-type buffer layer 2 is a GaAs layer; the N-type reflective layer 3 includes alternately stacked AlAs layers 31 and AlGaAs layers 32; the N-type confinement layer 4 is an AlInP layer The electron blocking layer 5 includes AlGaInP layers 51 and AlInP layers 52; the multi-quantum well layer 6 includes alternately stacked quantum well layers 61 and quantum barrier layers 62 (the quantum well layers and the quantum barrier layers are respectively AlGaInP layers with different Al compositions) The hole adjustment layer 7 includes a first sublayer 71 and at least two second sublayers 72, the first sublayer 71 is a non-doped AlInP layer, and the second sublayer includes a P-type doped AlInP layer 72a and a non-doped AlInP layer Doped AlInP layer 72b, the doping concentration of the P-type doped AlInP layer 72a is less than the doping concentration of the P-type confinement layer 8; the P-type confinement layer 8 is an AlInP layer; the P-type current spreading layer 9 is a GaP layer; P Type ohmic contact layer 10 is a GaP layer.
图2a为N型限制层4、电子阻挡层5、多量子阱层6、以及P型限制层8的能带示意图。如图2a所示,N型限制层4、AlInP层52、P型限制层8采用的材料AlInP的能带高于AlGaInP层51和多量子阱层6采用的材料AlGaInP的能带,因此部分电子可以被AlInP层52阻挡在AlGaInP层51内,延缓电子到达多量子阱层6。FIG. 2 a is a schematic diagram of the energy bands of the N-type confinement layer 4 , the electron blocking layer 5 , the multi-quantum well layer 6 , and the P-type confinement layer 8 . As shown in Figure 2a, the energy band of the material AlInP used in the N-type confinement layer 4, the AlInP layer 52, and the P-type confinement layer 8 is higher than the energy band of the material AlGaInP used in the AlGaInP layer 51 and the multi-quantum well layer 6, so some electrons It can be blocked in the AlGaInP layer 51 by the AlInP layer 52 to delay electrons from reaching the multi-quantum well layer 6 .
图2b为空穴调整层7和P型限制层8掺杂浓度的分布示意图。如图2b所示,非掺杂的AlInP层、低掺杂的AlInP层、高掺杂的AlInP层的掺杂浓度逐渐增高,P型掺杂的AlInP层72a的掺杂浓度小于P型限制层8的掺杂浓度,有利于空穴注入空穴调整层7;同时考虑到Mg的易扩散性,P型掺杂的AlInP层72a和非掺杂的AlInP层72b交替层叠,可以使空穴均匀分布在空穴调整层7内;另外临近多量子阱层6的第一层采用非掺杂的AlInP层,可以防止Mg扩散到多量子阱层6造成非辐射复合。FIG. 2 b is a schematic diagram of the doping concentration distribution of the hole adjustment layer 7 and the P-type confinement layer 8 . As shown in Figure 2b, the doping concentration of the undoped AlInP layer, low-doped AlInP layer, and highly doped AlInP layer gradually increases, and the doping concentration of the P-type doped AlInP layer 72a is lower than that of the P-type confinement layer The doping concentration of 8 is conducive to hole injection into the hole adjustment layer 7; at the same time, considering the easy diffusion of Mg, P-type doped AlInP layers 72a and non-doped AlInP layers 72b are alternately stacked, which can make the holes evenly Distributed in the hole adjustment layer 7; in addition, the first layer adjacent to the multi-quantum well layer 6 adopts a non-doped AlInP layer, which can prevent Mg from diffusing into the multi-quantum well layer 6 to cause non-radiative recombination.
具体地,N型衬底1可以为2或4寸的100面偏向《111》A+5°GaAs衬底。Specifically, the N-type substrate 1 may be a 2 or 4-inch 100-plane-offset <111>A+5° GaAs substrate.
可选地,N型衬底1的厚度可以为340~360μm。Optionally, the thickness of the N-type substrate 1 may be 340-360 μm.
可选地,N型衬底1的掺杂杂质可以为硅元素,N型衬底1的掺杂浓度可以为10-18~2*10-18cm-3。Optionally, the doping impurity of the N-type substrate 1 may be silicon element, and the doping concentration of the N-type substrate 1 may be 10 -18 ~ 2*10 -18 cm -3 .
可选地,N型缓冲层2的厚度可以为150~250nm。当N型缓冲层的厚度小于150nm时,无法掩盖N型衬底1的缺陷;当N型缓冲层的厚度大于250nm时,造成浪费。Optionally, the thickness of the N-type buffer layer 2 may be 150-250 nm. When the thickness of the N-type buffer layer is less than 150 nm, the defects of the N-type substrate 1 cannot be covered; when the thickness of the N-type buffer layer is greater than 250 nm, it will cause waste.
可选地,N型缓冲层2的掺杂杂质可以为硅元素,N型缓冲层2的掺杂浓度可以为10-18~2*10-18cm-3。Optionally, the doping impurity of the N-type buffer layer 2 may be silicon element, and the doping concentration of the N-type buffer layer 2 may be 10 -18 ~ 2*10 -18 cm -3 .
优选地,N型缓冲层2的掺杂浓度可以为10-18cm-3。Preferably, the doping concentration of the N-type buffer layer 2 may be 10 −18 cm −3 .
可选地,N型反射层3的掺杂杂质可以为硅元素,N型反射层3的掺杂浓度可以为2*10-18~8*10-18cm-3。当N型反射层3的掺杂浓度小于2*10-18cm-3时,正向电压较高;当N型反射层3的掺杂浓度大于8*10-18cm-3时,过多的杂质造成量子阱发出光子散射,影响芯片亮度。Optionally, the doping impurity of the N-type reflective layer 3 may be silicon element, and the doping concentration of the N-type reflective layer 3 may be 2*10 -18 ~8*10 -18 cm -3 . When the doping concentration of the N-type reflective layer 3 is less than 2*10 -18 cm -3 , the forward voltage is higher; when the doping concentration of the N-type reflective layer 3 is greater than 8*10 -18 cm -3 , too much Impurities in the quantum well cause photons to scatter, which affects the brightness of the chip.
在实际应用中,AlAs层31和AlGaAs层32注入相同量的掺杂物,掺杂浓度不同,AlAs层31的掺杂浓度低于AlGaAs层32的掺杂浓度。具体地,AlAs层31的掺杂浓度为2*10-18~4.5*10-18cm-3,AlGaAs层32的掺杂浓度为4.5*10-18~8*10-18cm-3。In practical applications, the AlAs layer 31 and the AlGaAs layer 32 are implanted with the same amount of dopants but with different doping concentrations, and the doping concentration of the AlAs layer 31 is lower than that of the AlGaAs layer 32 . Specifically, the doping concentration of the AlAs layer 31 is 2*10 -18 ~ 4.5*10 -18 cm -3 , and the doping concentration of the AlGaAs layer 32 is 4.5*10 -18 ~ 8*10 -18 cm -3 .
可选地,AlAs层31和AlGaAs层32的层数之和可以为30~60。Optionally, the sum of the numbers of the AlAs layer 31 and the AlGaAs layer 32 may be 30-60.
可以理解地,AlAs层31和AlGaAs层32的层数之和主要影响芯片亮度。当AlAs层31和AlGaAs层32的层数达到60时,出射光的反射率基本为100%,再增加AlAs层31和AlGaAs层32的层数之和已经没有多大效果,而且还会影响芯片电压。在实际应用中,AlAs层31和AlGaAs层32的层数之和可以根据产品要求确定。It can be understood that the sum of the numbers of the AlAs layer 31 and the AlGaAs layer 32 mainly affects the brightness of the chip. When the number of layers of the AlAs layer 31 and the AlGaAs layer 32 reaches 60, the reflectivity of the outgoing light is basically 100%, and increasing the sum of the layers of the AlAs layer 31 and the AlGaAs layer 32 has little effect, and it will also affect the chip voltage . In practical applications, the sum of the layers of the AlAs layer 31 and the AlGaAs layer 32 can be determined according to product requirements.
可选地,AlAs层31的厚度可以为42~55nm。Optionally, the thickness of the AlAs layer 31 may be 42-55 nm.
可选地,AlGaAs层32的厚度可以为40~50nm。Optionally, the thickness of the AlGaAs layer 32 may be 40-50 nm.
需要说明的是,AlAs层31和AlGaAs层32的厚度范围是根据反射谱确定的,超过上述范围起不到反射效果。在实际应用中,具体厚度可以根据生产产品的波长确定,不同的波长需要不同的厚度。It should be noted that the thickness ranges of the AlAs layer 31 and the AlGaAs layer 32 are determined according to the reflection spectrum, and the reflection effect cannot be obtained beyond the above range. In practical applications, the specific thickness can be determined according to the wavelength of the product produced, and different wavelengths require different thicknesses.
可选地,N型限制层4的掺杂杂质可以为硅元素,N型限制层4的掺杂浓度可以为7*10-17~2*10-18cm-3。Optionally, the doping impurity of the N-type confinement layer 4 may be silicon element, and the doping concentration of the N-type confinement layer 4 may be 7*10 -17 to 2*10 -18 cm -3 .
可选地,N型限制层4的厚度可以为200~500nm。Optionally, the thickness of the N-type confinement layer 4 may be 200-500 nm.
可选地,AlGaInP层51的厚度可以为20~50nm。当AlGaInP层的厚度小于20nm时,无法有效容纳足够多电子;当AlGaInP层的厚度大于50nm时,造成复合发光的电子较少。Optionally, the thickness of the AlGaInP layer 51 may be 20-50 nm. When the thickness of the AlGaInP layer is less than 20nm, it cannot effectively accommodate enough electrons; when the thickness of the AlGaInP layer is greater than 50nm, there are fewer electrons that cause recombination and light emission.
优选地,AlGaInP层51的厚度可以为35nm。Preferably, the thickness of the AlGaInP layer 51 may be 35 nm.
可选地,AlInP层52的厚度可以为8~15nm。当AlInP层的厚度小于8nm时,无法有效阻挡电子注入多量子阱层;当AlInP层的厚度大于15nm时,隧穿的电子较少,造成复合发光的电子少。Optionally, the thickness of the AlInP layer 52 may be 8-15 nm. When the thickness of the AlInP layer is less than 8nm, it cannot effectively prevent electrons from being injected into the MQW layer; when the thickness of the AlInP layer is greater than 15nm, there are fewer electrons tunneling, resulting in fewer electrons recombined to emit light.
优选地,AlInP层52的厚度可以为12nm。Preferably, the thickness of the AlInP layer 52 may be 12 nm.
可选地,量子阱层61的厚度可以为3~5nm。Optionally, the thickness of the quantum well layer 61 may be 3-5 nm.
可选地,量子垒层62的厚度可以为5~7nm。Optionally, the thickness of the quantum barrier layer 62 may be 5-7 nm.
可选地,第一子层71的厚度可以为90~220nm。当第一子层的厚度小于90nm时,掺杂杂质可能会扩散的多量子阱,造成非辐射复合,影响空穴注入;当第一子层的厚度大于220nm时,注入多量子阱层的空穴较少。Optionally, the thickness of the first sub-layer 71 may be 90-220 nm. When the thickness of the first sublayer is less than 90nm, doping impurities may diffuse into the multiple quantum wells, causing non-radiative recombination and affecting hole injection; when the thickness of the first sublayer is greater than 220nm, the holes injected into the multiple quantum well layer There are fewer holes.
优选地,第一子层71的厚度可以为140nm。Preferably, the thickness of the first sub-layer 71 may be 140 nm.
在实际应用中,第一子层的厚度可以根据第二子层72的层数和掺杂浓度确定。In practical applications, the thickness of the first sublayer can be determined according to the number of layers and the doping concentration of the second sublayer 72 .
可选地,第二子层72的层数可以为2~9层。当第二子层72的层数小于2层,无法有效调整空穴的分布;当第二子层72的层数大于9层,P型限制层注入到多量子阱层的空穴较少。Optionally, the number of layers of the second sub-layer 72 may be 2-9 layers. When the number of layers of the second sublayer 72 is less than 2 layers, the distribution of holes cannot be effectively adjusted; when the number of layers of the second sublayer 72 is greater than 9 layers, the number of holes injected into the MQW layer by the P-type confinement layer is less.
优选地,第二子层72的层数可以为5~6层。Preferably, the number of layers of the second sub-layer 72 may be 5-6 layers.
可选地,P型掺杂的AlInP层72a的厚度与非掺杂的AlInP层72b的厚度可以相同,有利于空穴均匀分布。Optionally, the thickness of the P-type doped AlInP layer 72a and the thickness of the non-doped AlInP layer 72b may be the same, which is beneficial to the uniform distribution of holes.
可选地,P型掺杂的AlInP层72a的厚度可以为10~20nm。当P型掺杂的AlInP层的厚度小于10nm时,无法有效调整空穴的分布;当空穴调整层厚度大于20nm时,影响空穴的注入。Optionally, the thickness of the P-type doped AlInP layer 72a may be 10-20 nm. When the thickness of the P-type doped AlInP layer is less than 10 nm, the distribution of holes cannot be effectively adjusted; when the thickness of the hole adjustment layer is greater than 20 nm, the injection of holes is affected.
优选地,P型掺杂的AlInP层72a的厚度可以为14nm。Preferably, the thickness of the P-type doped AlInP layer 72a may be 14nm.
可选地,非掺杂的AlInP层72b的厚度可以为10~20nm。当非掺杂的AlInP层的厚度小于10nm时,无法有效调整空穴的分布;当非掺杂的AlInP层的厚度大于20nm时,影响空穴的注入。Optionally, the thickness of the non-doped AlInP layer 72b may be 10-20 nm. When the thickness of the non-doped AlInP layer is less than 10 nm, the distribution of holes cannot be effectively adjusted; when the thickness of the non-doped AlInP layer is greater than 20 nm, the injection of holes is affected.
优选地,非掺杂的AlInP层72b的厚度可以为14nm。Preferably, the thickness of the non-doped AlInP layer 72b may be 14nm.
可选地,P型掺杂的AlInP层72a的掺杂杂质可以为镁元素,P型掺杂的AlInP层72a的掺杂浓度可以为10-17~5*10-17cm-3。当P型掺杂的AlInP层的掺杂浓度小于10-17cm-3时,无法有效调整空穴的分布;当P型掺杂的AlInP层的掺杂浓度大于5*10-17cm-3时,造成掺杂杂质扩散到多量子阱层而增强非辐射复合的几率。Optionally, the doping impurity of the P-type doped AlInP layer 72a may be magnesium element, and the doping concentration of the P-type doped AlInP layer 72a may be 10 −17 ~5*10 −17 cm −3 . When the doping concentration of the P-type doped AlInP layer is less than 10 -17 cm -3 , the distribution of holes cannot be effectively adjusted; when the doping concentration of the P-type doped AlInP layer is greater than 5*10 -17 cm -3 When , it causes doping impurities to diffuse into the multi-quantum well layer and enhance the probability of non-radiative recombination.
优选地,P型掺杂的AlInP层的掺杂浓度可以为3*10-17cm-3。Preferably, the doping concentration of the P-type doped AlInP layer may be 3*10 −17 cm −3 .
可选地,P型限制层8的掺杂杂质可以为镁元素,P型限制层8的掺杂浓度可以为7*10-17~10-18cm-3。Optionally, the doping impurity of the P-type confinement layer 8 may be magnesium element, and the doping concentration of the P-type confinement layer 8 may be 7*10 -17 ~10 -18 cm -3 .
可选地,P型限制层8的厚度可以为400~600nm。Optionally, the thickness of the P-type confinement layer 8 may be 400-600 nm.
可选地,P型电流扩展层9的掺杂杂质可以为镁元素,P型电流扩展层9的掺杂浓度可以为2*10-18~8*10-18cm-3。当P型电流扩展层的掺杂浓度小于2*10-18时,影响电压;当P型电流扩展层的掺杂浓度大于8*10-18cm-3时,晶格质量差,影响发光亮度。Optionally, the doping impurity of the P-type current spreading layer 9 may be magnesium element, and the doping concentration of the P-type current spreading layer 9 may be 2*10 -18 ~8*10 -18 cm -3 . When the doping concentration of the P-type current spreading layer is less than 2*10 -18 , the voltage is affected; when the doping concentration of the P-type current spreading layer is greater than 8*10 -18 cm -3 , the lattice quality is poor, which affects the luminous brightness .
可选地,P型电流扩展层9的厚度可以为8~10μm。当P型电流扩展层的厚度小于8μm时,影响电流扩展;当P型电流扩展层的厚度大于10μm时,会造成外延片翘曲度增加,导致如飞片等不良后果。Optionally, the thickness of the P-type current spreading layer 9 may be 8-10 μm. When the thickness of the P-type current spreading layer is less than 8 μm, the current spread is affected; when the thickness of the P-type current spreading layer is greater than 10 μm, the warpage of the epitaxial wafer will increase, resulting in adverse consequences such as flying pieces.
可选地,P型欧姆接触层10的掺杂杂质可以为碳元素,以实现较高的掺杂浓度和适应较低的生长温度,P型欧姆接触层10的掺杂浓度可以为3*10-19~10-20cm-3。当P型欧姆接触层的掺杂浓度小于3*10-19cm-3时,欧姆接触不良导致电压偏高;当P型欧姆接触层的掺杂浓度大于10-20cm-3时,晶格质量变差。Optionally, the doping impurity of the P-type ohmic contact layer 10 may be carbon element to achieve a higher doping concentration and adapt to a lower growth temperature, and the doping concentration of the P-type ohmic contact layer 10 may be 3*10 -19 ~ 10 -20 cm -3 . When the doping concentration of the P-type ohmic contact layer is less than 3*10 -19 cm -3 , poor ohmic contact leads to high voltage; when the doping concentration of the P-type ohmic contact layer is greater than 10 -20 cm -3 , the lattice The quality deteriorates.
可选地,P型欧姆接触层10的厚度可以为30~100nm。当P型欧姆接触层的厚度小于30nm时,电压难控制;当P型欧姆接触层的厚度大于100nm时,影响亮度。Optionally, the thickness of the P-type ohmic contact layer 10 may be 30-100 nm. When the thickness of the P-type ohmic contact layer is less than 30nm, the voltage is difficult to control; when the thickness of the P-type ohmic contact layer is greater than 100nm, the brightness is affected.
本发明实施例通过在N型限制层和多量子阱层之间层叠电子阻挡层,延缓电子达到多量子阱层,在多量子阱层和P型限制层之间层叠空穴调整层,使得空穴均匀分布在临近多量子阱层的区域,增加电子和空穴的复合几率,提高发光二极管的发光效率。同时,空穴调整层的掺杂浓度较低,可以有效避免掺杂杂质扩散到多量子阱层而增强非辐射复合的几率。In the embodiment of the present invention, an electron blocking layer is stacked between the N-type confinement layer and the multi-quantum well layer to delay electrons from reaching the multi-quantum well layer, and a hole adjustment layer is stacked between the multi-quantum well layer and the P-type confinement layer, so that the holes The holes are evenly distributed in the area adjacent to the multi-quantum well layer, which increases the recombination probability of electrons and holes and improves the luminous efficiency of the light-emitting diode. At the same time, the doping concentration of the hole adjustment layer is relatively low, which can effectively prevent doping impurities from diffusing into the multi-quantum well layer and enhance the probability of non-radiative recombination.
实施例二Embodiment two
本发明实施例提供了一种红黄光发光二极管外延片的制备方法,适用于制备实施例一提供的红黄光发光二极管外延片,参见图3,该制备方法包括:An embodiment of the present invention provides a method for preparing a red-yellow light-emitting diode epitaxial wafer, which is suitable for preparing the red-yellow light-emitting diode epitaxial wafer provided in Example 1, see FIG. 3 , the preparation method includes:
步骤201:在N型衬底上形成N型缓冲层。Step 201: forming an N-type buffer layer on an N-type substrate.
在本实施例中,N型衬底为GaAs衬底;N型缓冲层为GaAs层。In this embodiment, the N-type substrate is a GaAs substrate; the N-type buffer layer is a GaAs layer.
具体地,N型衬底可以为2或4寸的100面偏向《111》A+5°GaAs衬底。Specifically, the N-type substrate can be a 2 or 4-inch 100-plane-offset <111>A+5° GaAs substrate.
可选地,N型衬底的厚度可以为340~360μm。Optionally, the thickness of the N-type substrate may be 340-360 μm.
可选地,N型衬底的掺杂杂质可以为硅元素,N型衬底1的掺杂浓度可以为10-18~2*10-18cm-3。Optionally, the doping impurity of the N-type substrate may be silicon element, and the doping concentration of the N-type substrate 1 may be 10 -18 ~ 2*10 -18 cm -3 .
具体地,N型缓冲层的生长条件可以为:生长温度为640~660℃,TMGa(三甲基镓)流量为80~100sccm,AsH3(砷化氢)流量为400~450sccm,掺杂杂质为硅元素,掺杂浓度为10-18~2*10-18cm-3,厚度为150~250nm。Specifically, the growth conditions of the N-type buffer layer may be as follows: the growth temperature is 640-660° C., the flow rate of TMGa (trimethylgallium) is 80-100 sccm, the flow rate of AsH 3 (arsine hydrogen) is 400-450 sccm, and the impurity It is silicon element, the doping concentration is 10 -18 ~ 2*10 -18 cm -3 , and the thickness is 150 ~ 250nm.
步骤202:在N型缓冲层上形成N型反射层。Step 202: forming an N-type reflective layer on the N-type buffer layer.
在本实施例中,N型反射层包括交替层叠的AlAs层和AlGaAs层。In this embodiment, the N-type reflective layer includes alternately stacked AlAs layers and AlGaAs layers.
具体地,N型反射层的生长条件可以为:生长温度为640~660℃,TMGa流量为80~120sccm,TMAl(三甲基铝)流量为180~320sccm,AsH3流量为400~500sccm,AlAs层的厚度为42~55nm,AlGaAs层的厚度为40~50nm,AlAs层和AlGaAs层的层数之和为30~60,掺杂杂质为硅元素,掺杂浓度为2*10-18~8*10-18cm-3。Specifically, the growth conditions of the N-type reflective layer may be as follows: the growth temperature is 640-660° C., the flow rate of TMGa is 80-120 sccm, the flow rate of TMAl (trimethylaluminum) is 180-320 sccm, the flow rate of AsH 3 is 400-500 sccm, AlAs The thickness of the layer is 42-55nm, the thickness of the AlGaAs layer is 40-50nm, the sum of the layers of the AlAs layer and the AlGaAs layer is 30-60, the doping impurity is silicon element, and the doping concentration is 2* 10-18-8 * 10-18 cm -3 .
步骤203:在N型反射层上形成N型限制层。Step 203: forming an N-type confinement layer on the N-type reflection layer.
在本实施例中,N型限制层为AlInP层。In this embodiment, the N-type confinement layer is an AlInP layer.
具体地,N型限制层的生长条件可以为:生长温度为660~680℃,TMAl流量为100~120sccm,TMIn(三甲基铟)流量为800~850sccm,PH3流量为900~1100sccm,掺杂杂质为硅元素,掺杂浓度为7*10-17~2*10-18cm-3,厚度为200~500nm。Specifically, the growth conditions of the N-type confinement layer may be as follows: the growth temperature is 660-680° C., the flow rate of TMAl is 100-120 sccm, the flow rate of TMIn (trimethyl indium) is 800-850 sccm, the flow rate of PH 3 is 900-1100 sccm, and the flow rate of doped The impurity is silicon element, the doping concentration is 7*10 -17 ~ 2*10 -18 cm -3 , and the thickness is 200 ~ 500nm.
步骤204:在N型限制层上形成电子阻挡层。Step 204: forming an electron blocking layer on the N-type confinement layer.
在本实施例中,电子阻挡层包括AlGaInP层和AlInP层。In this embodiment, the electron blocking layer includes an AlGaInP layer and an AlInP layer.
具体地,电子阻挡层的生长条件可以为:生长温度为660~680℃,TMIn流量为800~850sccm,PH3流量为900~1100sccm;AlGaInP层的TMAl流量为6~35sccm,TMGa流量为26~40sccm;AlInP层的TMAl流量为100~120sccm;AlGaInP层的厚度为20~50nm,AlInP层的厚度为8~15nm。Specifically, the growth conditions of the electron blocking layer may be as follows: the growth temperature is 660-680° C., the TMIn flow rate is 800-850 sccm, and the pH 3 flow rate is 900-1100 sccm; the TMAl flow rate of the AlGaInP layer is 6-35 sccm, and the TMGa flow rate is 26-26 sccm. 40 sccm; the TMAl flow rate of the AlInP layer is 100-120 sccm; the thickness of the AlGaInP layer is 20-50 nm, and the thickness of the AlInP layer is 8-15 nm.
步骤205:在电子阻挡层上形成多量子阱层。Step 205: forming a multi-quantum well layer on the electron blocking layer.
在本实施例中,多量子阱层包括交替层叠的量子阱层和量子垒层(量子阱层和量子垒层分别为Al组分不同的AlGaInP层)。In this embodiment, the multi-quantum well layer includes alternately stacked quantum well layers and quantum barrier layers (the quantum well layers and the quantum barrier layers are respectively AlGaInP layers with different Al compositions).
具体地,量子阱层的生长条件可以为:生长温度为660~680℃,TMGa流量为26~40sccm,TMAl流量为6~35sccm,TMIn流量为800~850sccm,PH3流量为900~1100sccm,厚度为3~5nm。Specifically, the growth conditions of the quantum well layer may be as follows: the growth temperature is 660-680° C., the flow rate of TMGa is 26-40 sccm, the flow rate of TMAl is 6-35 sccm, the flow rate of TMIn is 800-850 sccm, the flow rate of PH 3 is 900-1100 sccm, the thickness It is 3~5nm.
量子垒层的生长条件可以为:生长温度为660~680℃,TMGa流量为5~18sccm,TMAl流量为70~100sccm,TMIn流量为800~850sccm,PH3流量为900~1100sccm,厚度为5~7nm。The growth conditions of the quantum barrier layer can be as follows: the growth temperature is 660-680 ℃, the flow rate of TMGa is 5-18 sccm, the flow rate of TMAl is 70-100 sccm, the flow rate of TMIn is 800-850 sccm, the flow rate of PH 3 is 900-1100 sccm, and the thickness is 5-100 sccm. 7nm.
步骤206:在多量子阱层上形成空穴调整层。Step 206: forming a hole adjustment layer on the multiple quantum well layer.
在本实施例中,空穴调整层包括第一子层和至少两层第二子层,第一子层为非掺杂的AlInP层,第二子层包括P型掺杂的AlInP层和非掺杂的AlInP层,P型掺杂的AlInP层的掺杂浓度小于P型限制层的掺杂浓度。In this embodiment, the hole adjustment layer includes a first sublayer and at least two second sublayers, the first sublayer is a non-doped AlInP layer, and the second sublayer includes a P-type doped AlInP layer and a non-doped AlInP layer. For the doped AlInP layer, the doping concentration of the P-type doped AlInP layer is lower than the doping concentration of the P-type confinement layer.
具体地,空穴调整层的生长条件可以为:生长温度为660~680℃,TMAl流量为100~120sccm,TMIn流量为800~850sccm,PH3流量为900~1100sccm,第一子层的厚度为90~220nm,第二子层的层数为2~9层,P型掺杂的AlInP层的厚度为10~20nm,非掺杂的AlInP层的厚度为10~20nm,P型掺杂的AlInP层的掺杂杂质为镁元素,P型掺杂的AlInP层的掺杂浓度为10-17~5*10-17cm-3。Specifically, the growth conditions of the hole adjustment layer may be as follows: the growth temperature is 660-680° C., the flow rate of TMAl is 100-120 sccm, the flow rate of TMIn is 800-850 sccm, the flow rate of PH 3 is 900-1100 sccm, and the thickness of the first sublayer is 90-220nm, the number of layers of the second sub-layer is 2-9 layers, the thickness of the P-type doped AlInP layer is 10-20nm, the thickness of the non-doped AlInP layer is 10-20nm, the P-type doped AlInP layer The doping impurity of the layer is magnesium element, and the doping concentration of the P-type doped AlInP layer is 10 -17 ~ 5*10 -17 cm -3 .
步骤207:在空穴调整层上形成P型限制层。Step 207: forming a P-type confinement layer on the hole adjustment layer.
在本实施例中,P型限制层为AlInP层。In this embodiment, the P-type confinement layer is an AlInP layer.
具体地,P型限制层的生长条件可以为:生长温度为660~680℃,TMAl流量为100~120sccm,TMIn流量为800~850sccm,PH3流量为900~1100sccm,掺杂杂质为镁元素,掺杂浓度为7*10-17~10-18cm-3,厚度为400~600nm。Specifically, the growth conditions of the P-type confinement layer may be as follows: the growth temperature is 660-680° C., the flow rate of TMAl is 100-120 sccm, the flow rate of TMIn is 800-850 sccm, the flow rate of PH 3 is 900-1100 sccm, and the doping impurity is magnesium element. The doping concentration is 7*10 -17 to 10 -18 cm -3 , and the thickness is 400 to 600 nm.
步骤208:在P型限制层上形成P型电流扩展层。Step 208: forming a P-type current spreading layer on the P-type confinement layer.
在本实施例中,P型电流扩展层为GaP层。In this embodiment, the P-type current spreading layer is a GaP layer.
具体地,P型电流扩展层的生长条件可以为:生长温度为690~710℃,TMGa流量为400~600sccm,PH3流量为200~500sccm,掺杂杂质为镁元素,掺杂浓度为2*10-18~8*10- 18cm-3,厚度为8~10μm。Specifically, the growth conditions of the P-type current spreading layer may be as follows: the growth temperature is 690-710° C., the flow rate of TMGa is 400-600 sccm, the flow rate of PH 3 is 200-500 sccm, the doping impurity is magnesium element, and the doping concentration is 2* 10 -18 to 8*10 - 18 cm -3 , with a thickness of 8 to 10 μm.
步骤209:在P型电流扩展层上形成P型欧姆接触层。Step 209: forming a P-type ohmic contact layer on the P-type current spreading layer.
在本实施例中,P型欧姆接触层为GaP层。In this embodiment, the P-type ohmic contact layer is a GaP layer.
具体地,P型欧姆接触层的生长条件可以为:生长温度为630~650℃,TMGa流量为400~600sccm,PH3流量为200~500sccm,掺杂杂质为碳元素,掺杂浓度为3*10-19~10-20cm-3,厚度为30~100nm。Specifically, the growth conditions of the P-type ohmic contact layer can be as follows: the growth temperature is 630-650° C., the flow rate of TMGa is 400-600 sccm, the flow rate of PH 3 is 200-500 sccm, the doping impurity is carbon element, and the doping concentration is 3* 10 -19 to 10 -20 cm -3 , with a thickness of 30 to 100 nm.
本发明实施例通过在N型限制层和多量子阱层之间层叠电子阻挡层,延缓电子达到多量子阱层,在多量子阱层和P型限制层之间层叠空穴调整层,使得空穴均匀分布在临近多量子阱层的区域,增加电子和空穴的复合几率,提高发光二极管的发光效率。同时,空穴调整层的掺杂浓度较低,可以有效避免掺杂杂质扩散到多量子阱层而增强非辐射复合的几率。In the embodiment of the present invention, an electron blocking layer is stacked between the N-type confinement layer and the multi-quantum well layer to delay electrons from reaching the multi-quantum well layer, and a hole adjustment layer is stacked between the multi-quantum well layer and the P-type confinement layer, so that the holes The holes are evenly distributed in the area adjacent to the multi-quantum well layer, which increases the recombination probability of electrons and holes and improves the luminous efficiency of the light-emitting diode. At the same time, the doping concentration of the hole adjustment layer is relatively low, which can effectively prevent doping impurities from diffusing into the multi-quantum well layer and enhance the probability of non-radiative recombination.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610301831.1A CN105914273B (en) | 2016-05-09 | 2016-05-09 | A kind of reddish yellow light-emitting diode epitaxial wafer and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610301831.1A CN105914273B (en) | 2016-05-09 | 2016-05-09 | A kind of reddish yellow light-emitting diode epitaxial wafer and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105914273A CN105914273A (en) | 2016-08-31 |
CN105914273B true CN105914273B (en) | 2018-07-31 |
Family
ID=56748548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610301831.1A Active CN105914273B (en) | 2016-05-09 | 2016-05-09 | A kind of reddish yellow light-emitting diode epitaxial wafer and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105914273B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107331746A (en) * | 2017-05-12 | 2017-11-07 | 华灿光电(浙江)有限公司 | Epitaxial wafer of light emitting diode and preparation method |
CN108091736B (en) * | 2017-10-20 | 2019-07-02 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and manufacturing method thereof |
CN108831975B (en) * | 2018-04-28 | 2020-04-07 | 华灿光电(苏州)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN109346583B (en) * | 2018-08-31 | 2021-04-27 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN111554782B (en) * | 2020-03-04 | 2021-08-17 | 江苏第三代半导体研究院有限公司 | Light-emitting diode and method of making the same |
CN115763657A (en) * | 2020-07-27 | 2023-03-07 | 中国科学院半导体研究所 | GaN-based LED epitaxial structure for visible light communication and its preparation method |
CN113161454B (en) * | 2021-03-23 | 2022-09-06 | 北京创盈光电医疗科技有限公司 | Epitaxial structure of red and yellow light chip for phototherapy and preparation method |
WO2023279241A1 (en) * | 2021-07-05 | 2023-01-12 | 重庆康佳光电技术研究院有限公司 | Led chip, led array and electronic device |
CN114530530B (en) * | 2022-02-21 | 2024-07-19 | 江西兆驰半导体有限公司 | Epitaxial structure of red-yellow GaAs diode and preparation method thereof |
CN114284409B (en) * | 2022-03-08 | 2022-05-24 | 江西兆驰半导体有限公司 | Light emitting diode and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236480A (en) * | 2013-04-28 | 2013-08-07 | 华灿光电股份有限公司 | LED (light emitting diode) epitaxial wafer and manufacture method thereof |
CN103474539A (en) * | 2013-09-25 | 2013-12-25 | 湘能华磊光电股份有限公司 | Method for epitaxial growth of LED structure containing superlattice layers and LED structure |
CN104576855A (en) * | 2013-10-28 | 2015-04-29 | 首尔伟傲世有限公司 | Near ultraviolet light emitting device |
CN205004348U (en) * | 2014-07-29 | 2016-01-27 | 首尔伟傲世有限公司 | Ultraviolet ray emitting diode |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100868530B1 (en) * | 2006-12-04 | 2008-11-13 | 한국전자통신연구원 | Nitride Semiconductors Based Light Emitting Devices |
KR102086547B1 (en) * | 2013-02-13 | 2020-05-28 | 삼성디스플레이 주식회사 | Organic light emitting diode comprising the same |
-
2016
- 2016-05-09 CN CN201610301831.1A patent/CN105914273B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236480A (en) * | 2013-04-28 | 2013-08-07 | 华灿光电股份有限公司 | LED (light emitting diode) epitaxial wafer and manufacture method thereof |
CN103474539A (en) * | 2013-09-25 | 2013-12-25 | 湘能华磊光电股份有限公司 | Method for epitaxial growth of LED structure containing superlattice layers and LED structure |
CN104576855A (en) * | 2013-10-28 | 2015-04-29 | 首尔伟傲世有限公司 | Near ultraviolet light emitting device |
CN205004348U (en) * | 2014-07-29 | 2016-01-27 | 首尔伟傲世有限公司 | Ultraviolet ray emitting diode |
Also Published As
Publication number | Publication date |
---|---|
CN105914273A (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105914273B (en) | A kind of reddish yellow light-emitting diode epitaxial wafer and preparation method thereof | |
Wang et al. | Temperature-dependent electroluminescence efficiency in blue InGaN–GaN light-emitting diodes with different well widths | |
CN108091736A (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
TW201421734A (en) | Nitride semiconductor structure and semiconductor light emitting device | |
CN106057997B (en) | A kind of epitaxial wafer and preparation method of yellowish green light-emitting diode | |
CN107195746A (en) | A kind of light emitting diode with resonant tunneling structure electronic barrier layer | |
US20140103290A1 (en) | Light-emitting device | |
CN107068822A (en) | A kind of smooth extraction efficiency high LED epitaxial structure and its growing method | |
CN104362237B (en) | A kind of growth method of light-emitting diode and light-emitting diode | |
CN105609601B (en) | LED epitaxial slice with new Quantum Well and preparation method thereof | |
CN109004074A (en) | LED epitaxial structure and preparation method thereof | |
CN108305922B (en) | Nitride semiconductor structure and semiconductor light emitting element | |
CN106025023A (en) | Yellow-green-light light emitting diode and preparation method therefor | |
CN105932126A (en) | Epitaxial growth method for improving brightness of light-emitting diode based on active layer | |
CN105977349B (en) | A kind of multiple-active-region light emitting diode with p-i-n tunnel knots | |
CN108550670A (en) | Nitride semiconductor structure and semiconductor light-emitting elements | |
CN105762236B (en) | Nitride super-radiance light emitting diode and preparation method thereof | |
CN108075019B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN114388670A (en) | Invisible light emitting diode | |
CN103594573B (en) | A kind of multi-quantum pit structure of high brightness LED | |
CN105514233A (en) | High-luminous efficiency light emitting diode epitaxial slice and preparation method thereof | |
CN111430520A (en) | L ED epitaxial structure with N-type electron blocking layer, preparation method of structure and L ED device | |
CN114220894B (en) | Invisible light emitting diode and preparation method thereof | |
CN116845160A (en) | A deep ultraviolet light emitting diode | |
CN104810446B (en) | A kind of GaN base light emitting epitaxial wafer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |