CN105861485A - 一种提高基因置换效率的方法 - Google Patents
一种提高基因置换效率的方法 Download PDFInfo
- Publication number
- CN105861485A CN105861485A CN201610248628.2A CN201610248628A CN105861485A CN 105861485 A CN105861485 A CN 105861485A CN 201610248628 A CN201610248628 A CN 201610248628A CN 105861485 A CN105861485 A CN 105861485A
- Authority
- CN
- China
- Prior art keywords
- cas9
- plasmid
- aptamer
- grna
- gene substitution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 19
- 108020004414 DNA Proteins 0.000 claims abstract description 27
- 108091033409 CRISPR Proteins 0.000 claims abstract description 21
- 108091023037 Aptamer Proteins 0.000 claims abstract description 20
- 239000013612 plasmid Substances 0.000 claims abstract description 18
- 102000053602 DNA Human genes 0.000 claims abstract description 17
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 108020005004 Guide RNA Proteins 0.000 claims abstract description 5
- 238000002360 preparation method Methods 0.000 claims abstract description 3
- 238000006467 substitution reaction Methods 0.000 claims description 21
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 239000012930 cell culture fluid Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000013326 plasmid cotransfection Methods 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- 230000006801 homologous recombination Effects 0.000 abstract description 7
- 238000002744 homologous recombination Methods 0.000 abstract description 7
- 101710163270 Nuclease Proteins 0.000 abstract description 4
- 108091008102 DNA aptamers Proteins 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- 230000035897 transcription Effects 0.000 abstract 1
- 238000013518 transcription Methods 0.000 abstract 1
- 238000007796 conventional method Methods 0.000 description 5
- 239000013613 expression plasmid Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明属于生物医学领域,涉及一种利用Cas9核酸酶的aptamer提高基因置换效率的方法,包括以下步骤:(1)双功能DNA单链的合成:合成具有Cas9特异结合能力的aptamer和DNA供体的序列;所述aptamer序列为:5′‑AGTCCATGGTAAACCCACCTTGGGGT‑GACT‑3′;(2)质粒的制备:构建Cas9‑gRNA质粒,使其能表达Cas9蛋白和转录靶位点附近的gRNA;(3)把所得双功能DNA单链与质粒共转染到要进行基因置换的细胞或组织。本发明采用高亲和度的特异DNA aptamer,不干扰Cas9‑gRNA复合物的形成与稳定,使同源性重组和基因修复的比例达到最高。
Description
技术领域
本发明属于生物医学领域,涉及一种基因置换方法,尤其涉及一种利用Cas9核酸酶的aptamer(适配体)提高基因置换效率的方法,可用于基因治疗。
背景技术
生物医学中的基因置换技术对基因功能研究、药物筛选和基因治疗有着不可估量的重要性。细胞内基因置换是通过同源性重组实现的,而同源性重组在绝大多数细胞中的效率极低,因此提高同源性重组效率是生物学家面临的巨大挑战。若能提高同源性重组的效率,基因置换和基因治疗的成功率就会极大地提高。
目前,现有基因置换技术主要存在以下问题:(1)同源性重组在绝大多数细胞中的效率极低。(2)Cas9-gRNA复合物只能定位到靶位点进行基因切断,不能完成基因置换。(3)基因治疗过程中的靶定向特异性低,置换、修复效率低。
发明内容
针对上述问题,发明人进行了大量试验,积累的研究表明,先切断某个基因片段会大大提高这个基因置换的频率(几个数量级),进而得到一种aptamer介导的提高基因置换效率的方法,采用高亲和度的特异DNA aptamer,不干扰Cas9-gRNA复合物的形成与稳定,使同源性重组和基因修复的比例达到最高。
为解决上述问题,本发明通过以下技术方案实现:
设计一种提高基因置换效率的方法,包括以下步骤:
(1)双功能DNA单链的合成:采用DNA合成仪经常规方法合成包含Cas9特异结合能力的aptamer和DNA供体的单链序列;所述aptamer序列为:5′-AGTCCATGGTAAACCCACCTTGGGGTGACT-3′;
(2)质粒的制备:常规方法构建Cas9-gRNA质粒,使其能表达Cas9蛋白和转录靶位点附近的gRNA;
(3)把所得双功能DNA单链与质粒共转染到要进行基因置换的细胞或组织。
优选的,将所述双功能DNA单链与质粒以摩尔比1:(15~25)共转染到要进行基因置换的细胞或组织。更优选的,将双功能DNA单链、Cas9-gRNA质粒以摩尔比1:20于Lipofectamine试剂盒中室温混合15~25min,再加入具有细胞培养液的6孔板中,培养两天后,筛选细胞株验证置换效果。所述细胞培养液浓度为60wt%。
本发明的优势表现在:
在本发明的技术方案中,将具有Cas9特异结合能力的单链DNAaptamer和单链DNA供体(donor)连在一块,被一个结合在靶位点的Cas9核酸酶富集到靶位点,来对被Cas9核酸酶切断后的靶位点进行基因置换;即利用Cas9-aptamer把aptamer-donor富集到靶位点。
(1)本发明采用高亲和度的特异DNA aptamer,不干扰Cas9-gRNA复合载体的形成与稳定。
(2)Cas9-gRNA质粒,以及aptamer-donor单链之间的摩尔比例得到优化,同源性重组和基因修复的比例可达到最高(>15%)。
附图说明
图1为Cas9-gRNA质粒的构建流程示意图;
图2为Cas9-gRNA质粒的剪切活性试验结果;
图3为aptamer与Cas9-gRNA结合能力关系图;
图4为aptamer与Cas9-gRNA剪切活性关系图;
图5为靶基因修复率验证效果图。
具体实施方式
以下结合具体实施例进一步阐述本发明。下述实施例中所涉及的试验方法或分析方法,如无特别说明,均为常规方法,所用试剂如无特别说明,均为市售。
本实施例以用野生型抗癌基因p53置换突变致病性p53(SEQ IDNo:3)为例,提供一种基因置换方法,具体分为以下几个步骤实施:
(1)合成双功能DNA单链:采用DNA合成仪用常规方法将Cas9aptamer(SEQ ID No:1)和野生型p53序列(SEQ ID No:2)连成一起的DNA单链(SEQ ID No:4)。
(2)合成Cas9-gRNA双功能-双表达质粒:常规方法构建Cas9-gRNA质粒,使其能表达Cas9蛋白和转录p53附近位点gRNA;具体构建方法见图1,首先合成寡核苷酸片段,用作PCR模板,其中含有定向到p53的gRNA2和gRNA1序列,被两个BbsI内切酶位点隔开,便于PCR后通过Gibson连接,加上gRNA1的转录启动子U6,再通过BbsI加入到表达Cas9的质粒上构成Cas9-gRNA双功能-双表达质粒。
完成构建后对Cas9-gRNA双功能-双表达质粒进行验证,结果见图2,其中,图2a是Cas9-gRNA双功能-双表达质粒中的gRNA2、gRNA1和Cas9编码序列的位置图;图2b表明Cas9在有gRNA1或gRNA2、gRNA1帮助下有剪切活性,而在只有gRNA2时不能定向到靶位点进行剪切;图2c和2d进一步证实了这一点。
从图3可以看出,在有无10nM(M=mol/L)aptamer存在的情况下,持续增加gRNA1的浓度,Cas9与gRNA1的结合都会增加,并不受这个Cas9特异性aptamer的影响,说明这个aptamer与gRNA1可同时与Cas9结合发挥各自的功能,aptamer并不干扰gRNA与Cas9结合。
从图4可以看出,在有无aptamer存在的情况下,并不影响Cas9的剪切活性。
(3)共转染:将双功能DNA单链、Cas9-gRNA质粒以摩尔比1:20于Lipofectamine试剂盒中,室温混合20min,再加到有细胞培养液的6孔板中,培养两天;
(4)筛选基因被置换的细胞株,基因组DNA提取后,对靶基因进行PCR扩增,扩增产物测序验证基因置换。将有p53突变的细胞株培养在48孔板上,Cas9-gRNA双功能-双表达质粒与p53-WT-Cy5(p53野生型片段、单链、Cy5荧光标记)或aptamer-p53-WT-Cy5共转染,数字荧光显微镜计数;几天后,收集细胞群落,分别提取DNA测序,得到统计数字,结果见图5,数据表明,有aptamer的供体DNA提高基因修复率十几倍。
SEQUENCE LISTING
<110> 上海伊丽萨生物科技有限公司
<120> 一种提高基因置换效率的方法
<130> /
<160> 4
<170> PatentIn
version 3.5
<210> 1
<211> 30
<212> DNA
<213> 人工序列
<400> 1
agtccatggt aaacccacct tggggtgact 30
<210> 2
<211> 112
<212> DNA
<213> 人工序列
<400> 2
cccagaatgc cagaggctgc tccccccgtg gcccctgcac cagcagctcc tacaccggcg 60
gcccctgcac cagccccctc ctggcccctg tcatcttctg tcccttccca ga 112
<210> 3
<211> 149
<212> DNA
<213> 人工序列
<400> 3
acaatggttc actgaagacc caggtccaga tgaagctccc agaatgccag aggctgctcc 60
ccgcgtggcc cctgcaccag cagctcctac accggcggcc cctgcaccag ccccctcctg 120
gcccctgtca tcttctgtcc cttcccaga 149
<210> 4
<211> 179
<212> DNA
<213> 人工序列
<400> 4
agtccatggt aaacccacct tggggtgact acaatggttc actgaagacc caggtccaga 60
tgaagctccc agaatgccag aggctgctcc ccccgtggcc cctgcaccag cagctcctac 120
accggcggcc cctgcaccag ccccctcctg gcccctgtca tcttctgtcc cttcccaga 179
Claims (5)
1.一种提高基因置换效率的方法,其特征在于,包括以下步骤:
(1)双功能DNA单链的合成:合成包含Cas9特异结合能力的aptamer和DNA供体的单链序列;
(2)质粒的制备:构建Cas9-gRNA质粒,使其能表达Cas9蛋白和转录靶位点附近的gRNA;
(3)把所得双功能DNA单链与质粒共转染到要进行基因置换的细胞或组织。
2.根据权利要求1所述提高基因置换效率的方法,其特征在于:所述aptamer序列为:5′-AGTCCATGGTAAACCCACCTTGGGGT-GACT-3′。
3.根据权利要求1所述提高基因置换效率的方法,其特征在于:步骤(3)中所述双功能DNA单链与质粒以摩尔比1:(15~25)共转染。
4.根据权利要求3所述提高基因置换效率的方法,其特征在于:步骤(3)中将双功能DNA单链、质粒以摩尔比1:20于Lipofectamine试剂盒中室温混合15~25min,再加入具有细胞培养液的6孔板中,培养两天后,筛选细胞株验证置换效果。
5.根据权利要求4所述提高基因置换效率的方法,其特征在于:所述细胞培养液浓度为60wt%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610248628.2A CN105861485B (zh) | 2016-04-20 | 2016-04-20 | 一种提高基因置换效率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610248628.2A CN105861485B (zh) | 2016-04-20 | 2016-04-20 | 一种提高基因置换效率的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105861485A true CN105861485A (zh) | 2016-08-17 |
CN105861485B CN105861485B (zh) | 2021-08-17 |
Family
ID=56633648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610248628.2A Expired - Fee Related CN105861485B (zh) | 2016-04-20 | 2016-04-20 | 一种提高基因置换效率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105861485B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210047375A1 (en) * | 2018-05-01 | 2021-02-18 | Wake Forest University Health Sciences | Lentiviral-based vectors and related systems and methods for eukaryotic gene editing |
CN114807240A (zh) * | 2021-01-21 | 2022-07-29 | 深圳市第二人民医院(深圳市转化医学研究院) | 一种连接有适配体的模板分子及其试剂盒 |
EP4117714A4 (en) * | 2020-03-13 | 2024-11-20 | The Regents of the University of California | Compositions and methods for modifying a target nucleic acid |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015077290A2 (en) * | 2013-11-19 | 2015-05-28 | President And Fellows Of Harvard College | Large gene excision and insertion |
CN105658796A (zh) * | 2012-12-12 | 2016-06-08 | 布罗德研究所有限公司 | 用于序列操纵的crispr-cas组分系统、方法以及组合物 |
-
2016
- 2016-04-20 CN CN201610248628.2A patent/CN105861485B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105658796A (zh) * | 2012-12-12 | 2016-06-08 | 布罗德研究所有限公司 | 用于序列操纵的crispr-cas组分系统、方法以及组合物 |
WO2015077290A2 (en) * | 2013-11-19 | 2015-05-28 | President And Fellows Of Harvard College | Large gene excision and insertion |
Non-Patent Citations (2)
Title |
---|
RUFF, P.等: "Aptamer-guided gene targeting in yeast and human cells.", 《NUCLEIC ACIDS RESEARCH》 * |
ZHAO,Y.P.等: "An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design.", 《SCIENTIFIC REPORTS》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210047375A1 (en) * | 2018-05-01 | 2021-02-18 | Wake Forest University Health Sciences | Lentiviral-based vectors and related systems and methods for eukaryotic gene editing |
EP4117714A4 (en) * | 2020-03-13 | 2024-11-20 | The Regents of the University of California | Compositions and methods for modifying a target nucleic acid |
CN114807240A (zh) * | 2021-01-21 | 2022-07-29 | 深圳市第二人民医院(深圳市转化医学研究院) | 一种连接有适配体的模板分子及其试剂盒 |
CN114807240B (zh) * | 2021-01-21 | 2024-02-06 | 深圳市第二人民医院(深圳市转化医学研究院) | 一种连接有适配体的模板分子及其试剂盒 |
Also Published As
Publication number | Publication date |
---|---|
CN105861485B (zh) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108753772B (zh) | 基于CRISPR/Cas技术敲除CAPNS1基因的人神经母细胞瘤细胞系的构建方法 | |
KR102595683B1 (ko) | 변형된 가이드 rna | |
US9879283B2 (en) | CRISPR oligonucleotides and gene editing | |
US9234213B2 (en) | Compositions and methods directed to CRISPR/Cas genomic engineering systems | |
CN113227367B (zh) | 用cas12a蛋白进行基因组工程的组合物和方法 | |
CN107988229A (zh) | 一种利用CRISPR-Cas修饰OsTAC1基因获得分蘖改变的水稻的方法 | |
CN105492609A (zh) | CRISPR-Cas9特异性敲除猪GGTA1基因的方法及用于特异性靶向GGTA1基因的sgRNA | |
CA2983364A1 (en) | Compositions and methods for the treatment of nucleotide repeat expansion disorders | |
CN104080462A (zh) | 用于修饰预定的靶核酸序列的组合物和方法 | |
CN105518135A (zh) | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA | |
CN106414740A (zh) | CRISPR‑Cas9特异性敲除猪SLA‑3基因的方法及用于特异性靶向SLA‑3基因的sgRNA | |
US20230416710A1 (en) | Engineered and chimeric nucleases | |
CN109136248A (zh) | 多靶点编辑载体及其构建方法和应用 | |
CN109880851A (zh) | 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法 | |
CN105861485A (zh) | 一种提高基因置换效率的方法 | |
CN111304172A (zh) | 一种基于CRISPR-Cas9编辑技术的敲除鸡EphA2基因的细胞系的构建方法 | |
CN105018523A (zh) | 一种zb转座子系统及其介导的基因转移方法 | |
CN105602972B (zh) | 基于CRISPR-Cas9体外改造腺病毒载体的方法 | |
US20230365992A1 (en) | Novel enhanced base editing or revising fusion protein and use thereof | |
JP2023544987A (ja) | 編集効率が向上したプライム編集ベースの遺伝子編集用組成物およびその用途 | |
Kujoth et al. | Gene editing in dimorphic fungi using CRISPR/Cas9 | |
EP4230737A1 (en) | Novel enhanced base editing or revising fusion protein and use thereof | |
JP7416745B2 (ja) | 改変細胞、調製方法、及び構築物 | |
KR102699756B1 (ko) | 편집 효율이 향상된 프라임 편집 기반 유전자 교정용 조성물 및 이의 용도 | |
CN113416730B (zh) | 一种降低细胞因基因编辑产生的大片段删除突变的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210817 |
|
CF01 | Termination of patent right due to non-payment of annual fee |