[go: up one dir, main page]

CN105791811B - A kind of three-dimensional test mark version and its design and forming method - Google Patents

A kind of three-dimensional test mark version and its design and forming method Download PDF

Info

Publication number
CN105791811B
CN105791811B CN201410783740.7A CN201410783740A CN105791811B CN 105791811 B CN105791811 B CN 105791811B CN 201410783740 A CN201410783740 A CN 201410783740A CN 105791811 B CN105791811 B CN 105791811B
Authority
CN
China
Prior art keywords
test
layer
parameter
standard plate
test standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410783740.7A
Other languages
Chinese (zh)
Other versions
CN105791811A (en
Inventor
张宝忠
王明珠
刘春梅
汪凯伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Sunny Opotech Co Ltd
Original Assignee
Ningbo Sunny Opotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Sunny Opotech Co Ltd filed Critical Ningbo Sunny Opotech Co Ltd
Priority to PCT/CN2015/091014 priority Critical patent/WO2016050195A1/en
Priority to US14/872,014 priority patent/US10432927B2/en
Publication of CN105791811A publication Critical patent/CN105791811A/en
Application granted granted Critical
Publication of CN105791811B publication Critical patent/CN105791811B/en
Priority to US16/536,290 priority patent/US10917635B2/en
Priority to US17/129,754 priority patent/US11575883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Studio Devices (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种立体测试标版及其设计和形成方法,其中所述立体测试标版包括沿着深度方向设置的多个测试标版层,每所述测试标版层分别具有至少一测试图案,并且任意一个所述测试标版层的所述测试图案与其他所述测试标版层的所述测试图案沿着所述深度方向不重叠地设置。

A three-dimensional test standard and its design and forming method, wherein the three-dimensional test standard includes a plurality of test standard layers arranged along the depth direction, each of the test standard layers has at least one test pattern, and any The test patterns of one test reticle layer and the test patterns of other test reticle layers are arranged along the depth direction without overlapping.

Description

一种立体测试标版及其设计和形成方法A three-dimensional test standard plate and its design and forming method

技术领域technical field

本发明涉及一种光学系统测试领域,特别涉及一种立体测试标版及其方法,其中通过所述立体测试标版在不同深度提供的测试图案,使待测试摄像装置最少仅需要移动一步或甚至不动,就可以获得具有不同深度信息的图像,以实现对所述摄像装置进行快速的测试和调整。The present invention relates to the field of optical system testing, in particular to a three-dimensional test standard plate and its method, wherein the test pattern provided by the three-dimensional test standard plate at different depths allows the camera device to be tested to move at least one step or even Without moving, images with different depth information can be obtained, so as to realize rapid testing and adjustment of the camera device.

背景技术Background technique

伴随着技术的突飞猛进,以电子、通讯等智能电子设备为代表的高科技产业正在快速的崛起,并占据了电子设备的大部分的中高端市场。在智能电子设备中,摄像装置作为一种人类视觉器官的延伸的载体,成为了核心器件并进一步获得了广泛的应用,例如,在智能手机、个人数字助理、平板电脑、笔记本电脑、PC终端、交通工具、医疗器械以及监控设备等产品中,都配置了至少一颗摄像装置,这些产品的快速发展,也同时成就了蓬勃发展的摄像装置行业。With the rapid development of technology, the high-tech industry represented by smart electronic equipment such as electronics and communication is rapidly rising, and occupies most of the high-end market of electronic equipment. In intelligent electronic equipment, the camera device, as an extended carrier of human visual organs, has become a core device and has been widely used, for example, in smart phones, personal digital assistants, tablet computers, notebook computers, PC terminals, Products such as vehicles, medical equipment, and monitoring equipment are all equipped with at least one camera device. The rapid development of these products has also created a booming camera device industry.

智能电子设备的进一步的演化和消费者需求的改变,也引导着摄像装置开始朝向小型化、微型化以及高成像质量方面发展,因此,在摄像装置的体积被不断压缩的同时,又能够具有高质量的成像品质成为了技术研究的方向。Further evolution of smart electronic devices and changes in consumer demand have also led to the development of camera devices towards miniaturization, miniaturization and high imaging quality. Quality imaging quality has become the direction of technical research.

摄像装置本身是一个非常精密而又复杂的器件,其主要包括摄像模块部分和图像传感器、以及用于调整摄像模块部分和图像传感器的位置关系的马达,例如音圈马达。在摄像装置的制造工序中,最重要的工序就是将摄像模块部分与图像传感器以匹配的方式依赖于诸如镜座等支撑元件安装在一起,从而,使得摄像模块部分与图像传感器之间具有相对稳定的位置关系。然而,在将摄像模块部分与图像传感器封装的过程中,由于摄像模块部分本身成像时存在像面倾斜,同时摄像装置的各元件之间存在着倾斜公差,并且由于受到封装工艺的精度的限制,最终使得图像传感器所接受的记载有图像信息的光线与图像传感器本身有一定范围但不固定的倾斜和偏移,最终使得包括摄像装置在内的整个光学系统的成像品质受到严重的衰减。The camera device itself is a very precise and complex device, which mainly includes a camera module part, an image sensor, and a motor for adjusting the positional relationship between the camera module part and the image sensor, such as a voice coil motor. In the manufacturing process of the camera device, the most important process is to install the camera module part and the image sensor in a matching manner relying on support elements such as mirror holders, so that there is a relatively stable relationship between the camera module part and the image sensor. location relationship. However, in the process of packaging the camera module part and the image sensor, due to the tilt of the image plane when the camera module part itself is imaged, there is a tilt tolerance between the components of the camera device, and due to the limitation of the accuracy of the packaging process, In the end, the light that records the image information received by the image sensor has a certain range of but not fixed inclination and offset with the image sensor itself, and finally causes the imaging quality of the entire optical system including the camera device to be seriously attenuated.

所以,在将摄像模块部分与图像传感器等元件进行封装之前,对摄像模块部分的像面与图像传感器的接受面的倾斜度进行测试和调整时必要的,这个过程主要分为测试和调整两个工序。传统的对光学系统进行测试的方式包括正投影(标板使用透射式和反射式)和逆投影(标板使用透射式),这两种方式的测试原理均是靠移动摄像模块或标板来改变被测摄像模块部分与标板或图像传感器的相对位置,从而,获得成像质量与离焦曲线的函数关系,再通过计算各目标位置的焦点位置和倾斜矢量,来测试摄像模块部分与标板或图像传感器的相对倾斜度,并依据该相对倾斜度进行调整。然而,现有的依据上述原理对光学系统进行测试的装置存在着很大的技术缺陷,以至于严重地影响了对摄像装置进行测试和调整的效率。具体地说,传统的用于测试摄像装置的设备需要逐步移动部件来描绘出完整的成像质量与离焦曲线的函数关系,需要话费较长的时间;在对摄像装置进行测试的过程中,如果摄像模块部分的像面倾斜角度较大,为了采集到目标像更高的焦点位置,需要更大距离地移动摄像模块部分,在摄像模块部分朝向图像传感器移动的过程中有可能撞到传统的设备的机构件或脱胶等情况的出现,以至于导致测试和矫正失败;传统的设备的体积大,需要占用较多的空间,以至于使得对摄像装置进行测试所花费的成本大。Therefore, before packaging the camera module part with the image sensor and other components, it is necessary to test and adjust the inclination between the image surface of the camera module part and the receiving surface of the image sensor. This process is mainly divided into two parts: testing and adjustment. process. The traditional methods of testing optical systems include front projection (the target uses transmission and reflection) and back projection (the target uses transmission). Change the relative position of the tested camera module part and the target board or image sensor, thereby obtaining the functional relationship between the imaging quality and the defocus curve, and then test the camera module part and the target board by calculating the focus position and tilt vector of each target position Or the relative inclination of the image sensor, and adjust according to the relative inclination. However, the existing devices for testing the optical system based on the above principles have great technical defects, so that the efficiency of testing and adjusting the camera device is seriously affected. Specifically, traditional equipment for testing camera devices needs to move parts step by step to describe the functional relationship between the complete imaging quality and the defocus curve, which takes a long time; in the process of testing the camera device, if The image plane of the camera module part has a large inclination angle. In order to collect a higher focus position of the target image, the camera module part needs to be moved for a greater distance. When the camera module part moves towards the image sensor, it may hit the traditional equipment The occurrence of mechanical parts or degumming, etc., leads to the failure of testing and correction; the traditional equipment is large in size and needs to occupy more space, so that the cost of testing the camera device is high.

因此,传统的设备必然无法被大范围的应用。从而,如果能够在减少传统的设备的体积和成本的基础上,有效地对摄像装置进行测试和调整,并大幅度提高成像质量,成为业界亟需解决的问题。Therefore, traditional equipment must not be widely used. Therefore, if it is possible to effectively test and adjust the camera device and greatly improve the image quality on the basis of reducing the volume and cost of traditional equipment, it becomes an urgent problem to be solved in the industry.

发明内容Contents of the invention

本发明的一个目的在于提供一种立体测试标版及其方法,其中通过所述立体测试标版在不同深度提供的测试图案,使待测试摄像装置最少仅需要移动一步或甚至不动,就可以获得具有不同深度信息的图像,以实现对所述摄像装置进行快速的测试和调整。An object of the present invention is to provide a stereoscopic test standard plate and its method, wherein the test pattern provided by the stereoscopic test standard plate at different depths allows the camera device to be tested to move at least one step or even not to move. Images with different depth information are obtained to realize rapid testing and adjustment of the camera device.

本发明的一个目的在于提供一种立体测试标版及其方法,其中所述立体测试标版在对所述摄像装置进行测试时,仅需要最少移动一次所述摄像装置,就能够获得所述摄像装置的成像质量以及相关数据参数的函数关系,并在后续基于所述函数关系对所述摄像装置的摄像模块和图像传感器的相对位置及倾斜度进行调整,从而,减少工序。An object of the present invention is to provide a stereoscopic test standard plate and its method, wherein when the stereoscopic test standard plate tests the imaging device, it only needs to move the imaging device at least once to obtain the The imaging quality of the device and the functional relationship of related data parameters, and then adjust the relative position and inclination of the camera module and image sensor of the camera device based on the functional relationship, thereby reducing the number of steps.

本发明的一个目的在于提供一种立体测试标版及其方法,其中所述立体测试标版允许仅拍摄一张图像,以及能够同时对所述摄像装置的焦距与像面倾斜进行分析,从而,得出相应的数据用于支撑后续的调整。An object of the present invention is to provide a stereoscopic test standard plate and its method, wherein the stereoscopic test standard plate allows only one image to be taken, and can simultaneously analyze the focal length and image plane inclination of the imaging device, thereby, The corresponding data are obtained to support subsequent adjustments.

本发明的一个目的在于提供一种立体测试标版及其方法,其中所述立体测试标版能够提供不同的景物深度,相对于传统的测试设备来说,所述立体测试标版能够使得测试设备的体积可以被设计成足够小,从而,节省了由于需要预留所述摄像装置的动作空间而带来的设计余量,以尽可能地减少测试设备的体积。An object of the present invention is to provide a stereoscopic test standard and its method, wherein the stereoscopic test standard can provide different depth of scene, compared with the traditional test equipment, the stereoscopic test standard can make the test equipment The volume of the camera can be designed to be small enough, thereby saving the design margin due to the need to reserve the action space of the camera device, so as to reduce the volume of the test equipment as much as possible.

本发明的一个目的在于提供一种立体测试标版及其方法,其中所述立体测试标版能够符合所述摄像装置日益小型化和微型化的趋势,并在同时解决了在调整所述摄像装置的与图像传感器的相对位置时,导致其碰触到测试设备的底部机构间所带来的传统的工艺瓶颈的问题。An object of the present invention is to provide a stereoscopic test standard plate and its method, wherein the stereoscopic test standard plate can meet the trend of miniaturization and miniaturization of the camera device, and at the same time solve the problem of adjusting the camera device The relative position of the image sensor and the image sensor causes it to touch the traditional process bottleneck problem caused by the bottom mechanism of the test equipment.

本发明的一个目的在于提供一种立体测试标版及其方法,其中所述立体测试标版能够在不同的平面以及同一平面的不同位置形成至少一个所述测试图案,从而,所述摄像装置可以在静态的状态下采集到处于所述立体测试标版的不同深度的所述测试图案,以在后续对所述摄像装置进行解像力分析。One object of the present invention is to provide a kind of three-dimensional test standard plate and its method, wherein said three-dimensional test standard plate can form at least one said test pattern on different planes and different positions on the same plane, thus, said imaging device can The test patterns at different depths of the three-dimensional test standard plate are collected in a static state, so as to analyze the resolution of the camera device subsequently.

本发明的一个目的在于提供一种立体测试标版及其方法,所述立体测试标版可以根据不同的测试需要来被更换,并且所述立体测试标版的规格还可以被调整,从而,方便使用。An object of the present invention is to provide a stereoscopic test standard plate and its method, the stereoscopic test standard plate can be replaced according to different testing needs, and the specifications of the stereoscopic test standard plate can also be adjusted, thereby, convenient use.

本发明的一个目的在于提供一种立体测试标版及其方法,其中所述立体测试标版包含诸如透射式、反射式、投影式、变焦式等任何可以实现深度信息并保证图像对比度的方式。An object of the present invention is to provide a three-dimensional test standard and its method, wherein the three-dimensional test standard includes any method that can realize depth information and ensure image contrast, such as transmission type, reflection type, projection type, and zoom type.

本发明的一个目的在于提供一种立体测试标版及其方法,其中所述立体测试标版的所述测试图案可以包括诸如三角形、圆形、椭圆形、黑白线对、十字形或星形等单一或者组合后的任何可以计算所述摄像装置的成像质量的图案,从而,方便所述立体测试标版被选择和制备。An object of the present invention is to provide a three-dimensional test standard plate and its method, wherein the test pattern of the three-dimensional test standard plate can include triangles, circles, ellipses, black and white line pairs, crosses or stars, etc. Any single or combined pattern can calculate the imaging quality of the imaging device, thereby facilitating the selection and preparation of the three-dimensional test standard plate.

本发明的一个目的在于提供一种立体测试标版及其方法,所述测试图案在辅助进行所述摄像装置的测试并对其进行解像力分析时,不会产生更多的噪音,从而,确保测试的准确度。An object of the present invention is to provide a three-dimensional test standard plate and its method. When the test pattern assists in the test of the camera device and analyzes its resolution, no more noise will be generated, thereby ensuring the accuracy of the test. the accuracy.

本发明的一个目的在于提供一种立体测试标版及其方法,通过组合所述测试图案之后形成的所述立体测试标版,可以得到更多反映所述摄像装置的解像力的数据,以在后续确保对所述摄像装置进行调整的顺利进行。One object of the present invention is to provide a kind of three-dimensional test standard plate and its method, by combining the described three-dimensional test standard plate formed after the test patterns, more data reflecting the resolution of the imaging device can be obtained for subsequent use To ensure the smooth progress of the adjustment of the camera device.

本发明的一个目的在于提供一种立体测试标版及其方法,在同一个视场范围内,各层的所述测试图案被所述摄像装置的摄像模块捕获时,在所述摄像装置的摄像模块的像面不会出现相互干涉的现象,从而,确保测试结果的可靠性和测试的精度。An object of the present invention is to provide a stereoscopic test standard plate and its method. In the same field of view, when the test pattern of each layer is captured by the camera module of the camera device, the The image plane of the module will not interfere with each other, thus ensuring the reliability of the test results and the accuracy of the test.

本发明的一个目的在于提供一种立体测试标版及其方法,所述立体测试标版的结构简单、成本低,适合于大规模的生产应用。An object of the present invention is to provide a three-dimensional test standard and its method. The three-dimensional test standard has a simple structure and low cost, and is suitable for large-scale production applications.

为了达到上述目的,本发明提供一种立体测试标版,所述立体测试标版包括沿着深度方向设置的多个测试标版层,所述测试标版层分别具有至少一测试图案,并且任意一个所述测试标版层的所述测试图案与其他所述测试标版层的所述测试图案沿着所述深度方向不重叠地设置。In order to achieve the above object, the present invention provides a three-dimensional test standard plate, the three-dimensional test standard plate includes a plurality of test standard plate layers arranged along the depth direction, each of the test standard plate layers has at least one test pattern, and any The test patterns of one test reticle layer and the test patterns of other test reticle layers are arranged along the depth direction without overlapping.

根据本发明的一实例,设定待测试一摄像装置的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试标版层的位置参数为hj,所述测试标版层的层数参数为j;其中,所述立体测试标版的位置满足函数表达式:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)))。According to an example of the present invention, it is set that the back focus fitting accuracy parameter of an imaging device to be tested is a, the focal length parameter is EFL, the position parameter of setting the described three-dimensional test target plate is h, and the test target of any layer The position parameter of the plate layer is h j , and the layer number parameter of the test target plate layer is j; wherein, the position of the three-dimensional test target plate satisfies the functional expression: a=-(EFL*(-h j )/( EFL-h j )-(EFL*(-h)/(EFL-h))).

根据本发明的一实例,设定所述测试标版层的层数参数为n,设定所述摄像装置的公差参数为t,移动步数参数为s;其中,所述测试标版层的层数满足函数表达式:n=f(t,a,s)。According to an example of the present invention, the layer number parameter of the test standard plate layer is set as n, the tolerance parameter of the camera device is set as t, and the moving step parameter is s; wherein, the test standard plate layer The number of layers satisfies the function expression: n=f(t, a, s).

根据本发明的一实例,设定所述测试图案的布局参数为d,任一层所述测试标版层的任一所述测试图案到该层所述测试标版层的中心距离为dij,设定所述摄像装置的测试视场参数为F;其中,所述测试图案的布局满足函数表达式:dij=f’(F,hij,EFL)。According to an example of the present invention, the layout parameter of setting described test pattern is d, any one described test pattern of any layer described test standard plate layer to the center distance of this layer described test standard plate layer is d ij , setting the test field of view parameter of the camera device as F; wherein, the layout of the test pattern satisfies the functional expression: d ij =f'(F, h ij , EFL).

根据本发明的一实例,设定所述测试图案的尺寸参数为L,任一个所述测试图案的尺寸参数为Lij,所述立体测试标版的参数公差为t’,介质折射率参数为n’,软件计算所允许的弥散斑参数为s’,设定所述摄像装置的测试视场容许范围参数为△F;其中,所述测试图案的尺寸满足函数表达式:Lij=f”(dij,△F,t’,n’,s’)。According to an example of the present invention, the size parameter of the test pattern is set as L, the size parameter of any one of the test patterns is L ij , the parameter tolerance of the three-dimensional test standard plate is t′, and the medium refractive index parameter is n', the permissible speckle parameter of the software calculation is s', and the allowable range parameter of the test field of view of the camera device is set as △F; wherein, the size of the test pattern satisfies the functional expression: L ij =f" (d ij , ΔF, t', n', s').

根据本发明的一实例,所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字形、黑白线对、星形中的一种或者多种的组合。According to an example of the present invention, the shape of the test pattern is selected from one or more combinations of square, triangle, circle, ellipse, cross, black and white line pairs, and star.

根据本发明的一实例,所述立体测试标版具有2-100层所述测试标版层,各层所述测试标版层具有1-1000个所述测试图案。本领域技术人员应理解的是,这里的层数和测试图案个数的具体数值只作为举例而不用于限制本发明。According to an example of the present invention, the three-dimensional test target plate has 2-100 layers of the test target plate, and each layer of the test target plate has 1-1000 test patterns. It should be understood by those skilled in the art that the specific numerical values of the number of layers and the number of test patterns here are only for example and not intended to limit the present invention.

根据本发明的一实例,所述立体测试标版选自透射式、反射式、投影式或者变焦成像式中的一种形成。According to an example of the present invention, the three-dimensional test standard plate is formed by one selected from a transmission type, a reflection type, a projection type, or a zoom imaging type.

根据本发明的一实例,所述立体测试标版还包括至少一承载元件,所述承载元件叠合且间隔地设置;其中,所述承载元件分别形成所述测试标版层,所述测试图案选择性地设置或形成于所述测试标版层。According to an example of the present invention, the three-dimensional test standard plate further includes at least one carrying element, and the carrying elements are stacked and arranged at intervals; wherein, the carrying elements respectively form the test standard plate layer, and the test pattern selectively disposed or formed on the test target layer.

根据本发明的一实例,所述承载元件由透明材料制成。According to an example of the present invention, the carrying element is made of transparent material.

本发明还提供一种立体测试标版,其中所述立体测试标版具有沿着深度方向布置并且不重叠的多层测试图案,相邻两层所述测试图案互相间隔地排列,从而形成所述立体测试标版。The present invention also provides a three-dimensional test standard plate, wherein the three-dimensional test standard plate has non-overlapping multi-layer test patterns arranged along the depth direction, and the test patterns on two adjacent layers are arranged at intervals from each other, thereby forming the Stereo test standard.

根据本发明的一实例,所述立体测试标版还包括至少一承载元件,所述承载元件叠合且间隔地设置;其中,所述承载元件分别形成一测试标版层,所述测试图案位于所述测试标版层。According to an example of the present invention, the three-dimensional test standard plate further includes at least one bearing element, and the bearing elements are superimposed and arranged at intervals; wherein, the bearing elements respectively form a test standard plate layer, and the test pattern is located at The test target layer.

根据本发明的一实例,所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字形、黑白线对、星形中的一种或者多种的组合。According to an example of the present invention, the shape of the test pattern is selected from one or more combinations of square, triangle, circle, ellipse, cross, black and white line pairs, and star.

根据本发明的一实例,其中所述立体测试标版具有2-100层所述测试标版层,各层所述测试标版层具有1-1000个所述测试图案。本领域技术人员应理解的是,这里的层数和测试图案个数的具体数值只作为举例而不用于限制本发明。According to an example of the present invention, wherein the three-dimensional test target plate has 2-100 layers of the test target plate, and each layer of the test target plate has 1-1000 test patterns. It should be understood by those skilled in the art that the specific numerical values of the number of layers and the number of test patterns here are only for example and not intended to limit the present invention.

本发明还提供一种立体测试标版的设计方法,其特征在于,所述方法包括步骤:The present invention also provides a method for designing a three-dimensional test standard plate, characterized in that the method comprises the steps of:

(A)通过统计被测试摄像装置的参数,确定所述立体测试标版的位置;以及(A) determine the position of the three-dimensional test standard plate by counting the parameters of the tested camera device; and

(B)根据所述摄像装置的精度要求,确定所述立体测试标版层的层数、和设计所述测试标版层的测试图案的布局。(B) Determining the number of layers of the three-dimensional test target plate layer and designing the layout of the test pattern of the test target plate layer according to the accuracy requirements of the camera device.

根据本发明的一实例,在所述步骤(B)中,进一步包括步骤:确定所述测试图案的尺寸。According to an example of the present invention, in the step (B), it further includes a step of: determining the size of the test pattern.

根据本发明的一实例,在所述步骤(A)中,设定待测试一摄像装置的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试标版层的位置参数为hj,所述测试标版层的层数参数为j;其中,所述立体测试标版的位置满足函数表达式:According to an example of the present invention, in described step (A), set the back focus fitting precision parameter of a camera device to be tested as a, the focal length parameter is EFL, the position parameter of setting described stereoscopic test standard plate is h, the position parameter of any layer of the test standard plate is h j , the layer number parameter of the test standard plate layer is j; wherein, the position of the three-dimensional test standard plate satisfies the functional expression:

a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)));其中,根据计算得出的h的值,确定所述立体测试标版的位置。a=-(EFL*(-h j )/(EFL-h j )-(EFL*(-h)/(EFL-h))); wherein, according to the calculated value of h, the stereo The location of the test mark.

根据本发明的一实例,在所述步骤(A)中,设定所述测试标版层的层数参数为n,设定所述摄像装置的公差参数为t,移动步数参数为s;其中,所述测试标版层的层数满足函数表达式:n=f(t,a,s);以及设定所述测试图案的布局参数为d,任一层所述测试标版层的任一所述测试图案到该层所述测试标版层的中心距离为dij,设定所述摄像装置的测试视场参数为F;其中,所述测试图案的布局满足函数表达式:dij=f’(F,hij,EFL);其中,根据计算得出的n和dij的值,确定所述测试标版层的层数和所述测试图案的布局。According to an example of the present invention, in the step (A), the layer number parameter of the test target plate layer is set as n, the tolerance parameter of the camera device is set as t, and the moving step parameter is s; Wherein, the number of layers of the test standard plate layer satisfies the functional expression: n=f(t, a, s); and the layout parameter of the test pattern is set as d, and the test standard plate layer of any layer The distance from any one of the test patterns to the center of the test plate layer of this layer is d ij , and the test field of view parameter of the camera is set as F; wherein, the layout of the test pattern satisfies the functional expression: d ij =f'(F, h ij , EFL); wherein, according to the calculated values of n and d ij , the number of layers of the test target plate layer and the layout of the test pattern are determined.

根据本发明的一实例,设定所述测试图案的尺寸参数为L,任一个所述测试图案的尺寸参数为Lij,所述立体测试标版的参数公差为t’,介质折射率参数为n’,软件计算所允许的弥散斑参数为s’,设定所述摄像装置的测试视场容许范围参数为△F;其中,所述测试图案的尺寸满足函数表达式:Lij=f”(dij,△F,t’,n’,s’);其中,根据计算得出的Lij的值,确定所述测试图案的尺寸。According to an example of the present invention, the size parameter of the test pattern is set as L, the size parameter of any one of the test patterns is L ij , the parameter tolerance of the three-dimensional test standard plate is t′, and the medium refractive index parameter is n', the permissible speckle parameter of the software calculation is s', and the allowable range parameter of the test field of view of the camera device is set as △F; wherein, the size of the test pattern satisfies the functional expression: L ij =f" (d ij , ΔF, t', n', s'); wherein, the size of the test pattern is determined according to the calculated value of L ij .

根据本发明的一实例,所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字形、黑白线对、星形中的一种或者多种的组合。According to an example of the present invention, the shape of the test pattern is selected from one or more combinations of square, triangle, circle, ellipse, cross, black and white line pairs, and star.

本发明还提供一种立体测试标版的形成方法,其中所述方法包括步骤:The present invention also provides a method for forming a three-dimensional test standard plate, wherein the method includes the steps of:

(a)确定至少一预设区域于一测试标版层,在所述预设区域分别设置至少一测试图案;以及(a) determining at least one predetermined area on a test target plate layer, and setting at least one test pattern in the predetermined area respectively; and

(b)将多个测试标版层叠合地设置,并使得所述测试标版层的所述测试图案与其他所述测试标版层的所述测试图案错位地布置,以形成所述立体测试标版。(b) a plurality of test standard layers are stacked, and the test pattern of the test standard layer is arranged in a dislocation manner with the test patterns of the other test standard layers, so as to form the three-dimensional test standard version.

根据本发明的一实例,在所述步骤(b)中,藉由光线依次经过所述测试标版层辐射,以增强所述测试图案与该层所述测试标版层的对比度。According to an example of the present invention, in the step (b), the contrast between the test pattern and the test target layer is enhanced by irradiating light through the test target layer sequentially.

根据本发明的一实例,在上述方法中,将一光源设置于所述立体测试标版的上部,以使得所述光源产生的光线依次经过所述测试标版层从上向下辐射。According to an example of the present invention, in the above method, a light source is arranged on the upper part of the three-dimensional test target plate, so that the light generated by the light source sequentially passes through the test target plate layer and radiates from top to bottom.

根据本发明的一实例,在上述方法中,将至少一光源设置于所述立体测试标版的下部,以使得所述光源产生的光线依次经过所述测试标版层从下向上辐射。According to an example of the present invention, in the above method, at least one light source is arranged at the lower part of the three-dimensional test target plate, so that the light generated by the light source sequentially passes through the test target plate layer and radiates from bottom to top.

根据本发明的一实例,经过所述测试标版层的光线为均匀光线。According to an example of the present invention, the light passing through the test target plate layer is uniform light.

本发明提供一种立体测试标版的形成方法,其中所述方法包括步骤:将一投影源设置于一光源的光线辐射路径,其中当所述光源产生光线时,所述投影源得以在一预设空间内沿着深度方向形成不重叠的多层测试图案,并且相邻两层所述测试图案互相间隔地排列,以形成所述立体测试标版。The present invention provides a method for forming a three-dimensional test standard plate, wherein the method includes the steps of: arranging a projection source on a light radiation path of a light source, wherein when the light source generates light, the projection source can be It is assumed that non-overlapping multi-layer test patterns are formed along the depth direction in the space, and the test patterns on two adjacent layers are arranged at intervals to form the three-dimensional test standard plate.

根据本发明的一实例,所述投影源设置于所述光源与所述预设空间之间。According to an example of the present invention, the projection source is disposed between the light source and the predetermined space.

根据本发明的一实例,所述投影源包括一平面标版以及一变焦透镜组,其中所述平面标版设置于所述光源与所述变焦透镜组之间,以使得所述光源产生的光线,得以将所述平面标版的信息透过所述变焦透镜组辐射至所述预设空间。According to an example of the present invention, the projection source includes a plane standard plate and a zoom lens group, wherein the plane standard plate is arranged between the light source and the zoom lens group, so that the light generated by the light source , so that the information of the planar mark can be radiated to the preset space through the zoom lens group.

根据本发明的一实例,所述平面标版还具有至少一测试目标,其中所述测试目标得以经过所述变焦透镜组投影至所述预设空间,以形成所述测试图案。According to an example of the present invention, the planar standard plate further has at least one test target, wherein the test target is projected into the predetermined space through the zoom lens group to form the test pattern.

根据本发明的一实例,所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字形、黑白线对、星形中的一种或者多种的组合。According to an example of the present invention, the shape of the test pattern is selected from one or more combinations of square, triangle, circle, ellipse, cross, black and white line pairs, and star.

附图说明Description of drawings

图1是摄像装置的摄像模块与图像传感器的关系示意图。FIG. 1 is a schematic diagram of the relationship between a camera module and an image sensor of a camera device.

图2是根据本发明的立体测试标版的参数确定过程的流程示意图。Fig. 2 is a schematic flowchart of the parameter determination process of the three-dimensional test standard plate according to the present invention.

图3是根据本发明的任一层测试标版层的测试图案的布局示意图。Fig. 3 is a schematic layout diagram of a test pattern of any layer of the test standard layer according to the present invention.

图4至图6分别是根据本发明的立体测试标版的第一个优选实施例的示意图。4 to 6 are schematic diagrams of the first preferred embodiment of the three-dimensional test standard according to the present invention.

图7至图10分别是根据本发明的立体测试标版的第二个优选实施例的示意图。7 to 10 are respectively schematic diagrams of the second preferred embodiment of the stereoscopic test standard according to the present invention.

图11至图14分别是根据本发明的立体测试标版的第三个优选实施例的示意图。11 to 14 are schematic views of the third preferred embodiment of the three-dimensional test standard according to the present invention.

图15至图17分别是根据本发明的立体测试标版的第四个优选实施例的示意图。15 to 17 are schematic diagrams of the fourth preferred embodiment of the three-dimensional test standard according to the present invention.

图18是根据本发明的立体测试标版的设计方法流程示意图。Fig. 18 is a schematic flowchart of a design method of a three-dimensional test standard plate according to the present invention.

图19是根据本发明的立体测试标版的形成方式流程示意图。Fig. 19 is a schematic flow chart of the formation method of the three-dimensional test standard plate according to the present invention.

具体实施方式Detailed ways

以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。The following description serves to disclose the present invention to enable those skilled in the art to carry out the present invention. The preferred embodiments described below are only examples, and those skilled in the art can devise other obvious variations. The basic principles of the present invention defined in the following description can be applied to other embodiments, variations, improvements, equivalents and other technical solutions without departing from the spirit and scope of the present invention.

在本发明的优选实施例中,一摄像模块11、一图像传感器12以及其他必要的构件藉由诸如镜座等构件形成一摄像装置10,在对所述摄像模块11与所述图像传感器12进行封装时,由于所述摄像模块11成像时存在像面倾斜,同时所述摄像装置10的其他构件之间存在着倾斜公差以及受到封装工艺的精度的限制,需要对所述摄像装置10的焦距以及所述摄像模块11与所述图像传感器12的像面倾斜进行测试,以获得相应的数据,并且在后续基于所述数据对其进行调整,从而,确保所述摄像装置10在被封装完成之后的成像品质。如图1,示出了未经调整的所述摄像模块11与所述图像传感器12之间不匹配的一种情况,在这个示例中,由于所述摄像模块11与所述图像传感器12之间存在着些许的倾斜,导致藉由所述摄像模块11捕获的物体的光线不能够被所述图像传感器12精确地接受,从而,导致成像模糊。本技术领域的技术人员应当理解,所述摄像模块11与所述图像传感器12还具有除图1示出的的示例之外的其他不匹配的情况,例如,所述摄像模块11本身的像面倾斜等。In a preferred embodiment of the present invention, a camera module 11, an image sensor 12 and other necessary components form a camera device 10 through components such as a mirror base, and the camera module 11 and the image sensor 12 are During packaging, due to the image plane inclination of the camera module 11 when imaging, and the inclination tolerance between other components of the camera device 10 and the limitation of the accuracy of the packaging process, it is necessary to adjust the focal length of the camera device 10 and The image plane inclination of the camera module 11 and the image sensor 12 is tested to obtain corresponding data, and it is subsequently adjusted based on the data, thereby ensuring the camera device 10 after being packaged. Image quality. As shown in FIG. 1 , a situation of unadjusted mismatch between the camera module 11 and the image sensor 12 is shown. In this example, due to the mismatch between the camera module 11 and the image sensor 12 There is a slight inclination, so that the light of the object captured by the camera module 11 cannot be accurately received by the image sensor 12 , thus resulting in blurred imaging. Those skilled in the art should understand that the camera module 11 and the image sensor 12 also have other mismatches other than the example shown in FIG. 1 , for example, the image plane of the camera module 11 itself Tilt etc.

如图3至图16所示,本发明旨在提供一种立体测试标版,以用于辅助对所述摄像装置10进行测试,其中所述立体测试标版包括沿着深度方向设置的多个测试标版层20,所述测试标版层20分别具有至少一测试图案21,从而,使得所述测试图案21形成不同深度的景物信息。在对所述摄像装置10进行测试的过程中,藉由所述摄像模块11捕获不同深度的记载有所述测试图案21信息的光线,然后被所述图像传感器12接收并进行进一步的光电转化,从而,在后台生成承载有所述摄像模块11与所述图像传感器12之间的关系的一讯号,并在后续基于所述讯号对其进行调整。As shown in Fig. 3 to Fig. 16, the present invention aims to provide a stereoscopic test target plate to assist in testing the camera device 10, wherein the stereoscopic test target plate includes a plurality of The test target plate layer 20 has at least one test pattern 21 respectively, so that the test pattern 21 forms scene information of different depths. In the process of testing the camera device 10, the camera module 11 captures the light rays recorded with the information of the test pattern 21 at different depths, and is then received by the image sensor 12 for further photoelectric conversion, Thus, a signal carrying the relationship between the camera module 11 and the image sensor 12 is generated in the background and subsequently adjusted based on the signal.

值得一提的是,所述立体测试标版的相关参数需要基于所述摄像装置10的类型进行设定,例如所述立体测试标版的所述测试标版层20的层数、间距、以及所述立体测试标版的位置、所述测试图案21的形状、尺寸、位置、密度等等。It is worth mentioning that the relevant parameters of the stereoscopic test pattern need to be set based on the type of the imaging device 10, such as the number of layers of the test pattern layer 20 of the stereoscopic test pattern, the spacing, and The position of the three-dimensional test standard plate, the shape, size, position, density and so on of the test pattern 21 .

如图2所示是所述立体测试标版的设计流程图,具体地说,当待测试的所述摄像装置10的类型被确定之后,需要先对所述摄像装置10的相关测试参数进行测定,包括所述摄像装置10的测试视场、焦距、测试距离、后焦拟合精度需求等参数。为了方便对所述摄像装置10与所述立体测试标版的参数之间的关系进行描述,设定所述摄像装置10的测试视场参数为F,相应地,焦距参数为EFL,后焦拟合精度参数为a,其中后焦拟合精度a由拟合需求决定,并且拟合需求取决于软件处理的需求。进一步设定所述立体测试标版的测试距离为Z,其中Zj表示第j层所述测试标版层20的测试距离,并且j的取值范围为j>=2,例如,Z1表示第一层所述测试标版层20的测试距离,其中第一层是指所述立体测试标版最为远离所述摄像模块11的所述测试标版层20,并且Z1由所述摄像装置10的类型初始确定时决定,也就是说,当待测试的所述摄像装置10的类型被确定之后,第一层所述测试标版层20的测试距离被同步确定。进一步地,当所述摄像装置10的相关参数被测定之后,基于所述参数,可以对所述立体测试标版的位置以及所述测试标版层20的层数进行计算。具体地说,设定所述立体测试标版的位置参数为h,则本技术领域的技术人员应当理解,任一层所述测试标版层20的位置参数为hj,例如,hj表示第j层所述测试标版层20的位置,并且j的取值范围为j>=2;其中,所述测试标版的位置的函数表达式满足:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)))。基于上述函数表达式,可以通过计算h的值,来确定所述立体测试标版的所述测试标版层20的位置。As shown in Figure 2, it is the design flow chart of the stereoscopic test standard plate, specifically, after the type of the imaging device 10 to be tested is determined, it is necessary to measure the relevant test parameters of the imaging device 10 , including parameters such as the test field of view, focal length, test distance, back focus fitting accuracy requirements of the imaging device 10 . In order to describe the relationship between the camera device 10 and the parameters of the three-dimensional test standard for convenience, the test field of view parameter of the camera device 10 is set as F, and the focal length parameter is EFL, and the back focus is simulated The fitting precision parameter is a, where the back focus fitting precision a is determined by the fitting requirement, and the fitting requirement depends on the requirement of software processing. Further set the test distance of the three-dimensional test standard plate as Z, wherein Z j represents the test distance of the jth layer of the test standard plate layer 20, and the value range of j is j>=2, for example, Z 1 represents The testing distance of the test standard plate layer 20 of the first layer, wherein the first layer refers to the test standard plate layer 20 that the stereo test standard plate is farthest away from the camera module 11 , and Z1 is determined by the camera device The type of the camera device 10 is initially determined, that is, after the type of the camera device 10 to be tested is determined, the test distance of the first layer of the test target layer 20 is determined synchronously. Further, after the relevant parameters of the camera 10 are measured, based on the parameters, the position of the three-dimensional test standard and the number of layers of the test standard layer 20 can be calculated. Specifically, if the position parameter of the three-dimensional test standard plate is set as h, those skilled in the art should understand that the position parameter of any layer of the test standard plate layer 20 is h j , for example, h j represents The position of the test standard plate layer 20 in the jth layer, and the value range of j is j>=2; wherein, the functional expression of the position of the test standard plate satisfies: a=-(EFL*(-h j )/(EFL-h j )-(EFL*(-h)/(EFL-h))). Based on the above function expression, the position of the test reticle layer 20 of the three-dimensional test reticle can be determined by calculating the value of h.

更进一步地,设定所述测试标版层20的层数参数为n,所述摄像装置10公差参数为t,其中所述摄像装置10公差t由制程决定,其包含但不限于被测所述摄像装置10的高度、倾斜、偏移等公差;进一步设定所述摄像装置10的移动步数参数为s,值得一提的是,被测所述摄像装置10的移动步数s>=1,也就是说,在利用所述立体测试标版对所述摄像装置10进行测试的过程中,最少仅需要移动一次所述摄像装置10,就可以获得相应的参数数据;其中所述测试标版层20的层数的函数表达式满足:n=f(t,a,s)。基于上述函数表达式,可以通过计算n的值,来确定所述测试标版层20的层数。Furthermore, set the number of layers parameter of the test standard layer 20 as n, and the tolerance parameter of the imaging device 10 as t, wherein the tolerance t of the imaging device 10 is determined by the manufacturing process, which includes but is not limited to the tested Tolerances such as the height, inclination, and offset of the imaging device 10; further setting the moving steps parameter of the imaging device 10 as s, it is worth mentioning that the measured moving steps of the imaging device 10 s>= 1, that is to say, in the process of testing the imaging device 10 by using the stereoscopic test standard plate, the corresponding parameter data can be obtained by moving the imaging device 10 at least once; wherein the test standard The functional expression of the layer number of the plate layer 20 satisfies: n=f(t, a, s). Based on the above function expression, the number of layers of the test target plate layer 20 can be determined by calculating the value of n.

相应地,在确定所述立体测试标版的位置与所述测试标版层20的层数之后,可以继续确定所述测试图案21的形状、位置和尺寸。在本发明的一些实施例中,所述测试图案21的形状不受限制,其可以选自方形、三角形、圆形、椭圆形、十字形、黑白线对、星形图形中的一种或者多种的组合。值得一提的是,所述测试图案21的形状还可以是其他任何能够用来计算所述摄像装置10的成像质量的图标,包括实体图标以及通过色彩来区分的图标。Correspondingly, after determining the position of the three-dimensional test target plate and the layer number of the test target plate layer 20 , the shape, position and size of the test pattern 21 can be continuously determined. In some embodiments of the present invention, the shape of the test pattern 21 is not limited, and it can be selected from one or more of square, triangle, circle, ellipse, cross, black and white line pairs, and star graphics. combination of species. It is worth mentioning that the shape of the test pattern 21 can also be any other icon that can be used to calculate the imaging quality of the camera 10 , including physical icons and icons distinguished by color.

作为示例,如图3所示,设定所述立体测试标版的所述测试图案21的布局参数为d,其中所述测试图案21的布局参数d代表所述测试图案21的密度,因此,任一所述测试标版层20的任一所述测试图案21到该层所述测试标版层20的中心距离被设定为参数dij,其中i表示所述测试图案21在该层所述测试标版层20上的位置,j表示该层所述测试标版层20的层数,例如,dij表示第j层所述测试标版层20的第i个所述测试图案21的布局;其中所述测试图案21的布局的函数表达式满足:dij=f’(F,hij,EFL),值得一提的是,测试视场F由待测的所述摄像装置10决定,hij可以通过所述立体测试标版的位置的函数表达式来计算获得。基于上述函数表达式,可以通过计算dij的值,来确定所述测试图案21的布局。即是说,基于上述函数表达式,可以确定所述测试标版层20的所述测试图案21的布局密度,值得一提的是,在一些实施例中,所述测试标版层20的所述测试图案21的密度可以一致,也可以不一致。As an example, as shown in Figure 3, the layout parameter of the test pattern 21 of the three-dimensional test standard plate is set as d, wherein the layout parameter d of the test pattern 21 represents the density of the test pattern 21, therefore, The distance from any one of the test patterns 21 of any of the test standard layers 20 to the center of the test standard layer 20 of this layer is set as a parameter d ij , wherein i represents that the test pattern 21 is located in the layer. The position on the test standard plate layer 20, j represents the number of layers of the test standard plate layer 20 in this layer, for example, d ij represents the ith test pattern 21 of the test standard plate layer 20 in the jth layer Layout; wherein the functional expression of the layout of the test pattern 21 satisfies: d ij =f'(F, h ij , EFL), it is worth mentioning that the test field of view F is determined by the imaging device 10 to be tested , h ij can be calculated and obtained through the functional expression of the position of the stereoscopic test plate. Based on the above functional expression, the layout of the test pattern 21 can be determined by calculating the value of dij . That is to say, based on the above functional expression, the layout density of the test pattern 21 of the test reticle layer 20 can be determined. It is worth mentioning that, in some embodiments, all of the test reticle layer 20 The density of the test pattern 21 may be consistent or not.

进一步地,如图3所示,设定所述测试图案21的尺寸参数为L,相应地,任一所述测试图案21的尺寸参数为Lij,其中对应地Lij代表这个所述测试图案21到该层所述测试标版层20的中心点的距离为dij,例如,Lij表示第j层所述测试标版层20的第i个所述测试图案21的尺寸。进一步设定测试视场跨度容许范围参数为△F,所述立体测试标版的制作参数公差为t’,所述立体测试标版的介质折射率参数为n’,软件计算所允许的弥散斑参数为s’,其中所述测试图案21的尺寸的函数表达式满足:Lij=f”(dij,△F,t’,n’,s’)。基于上述函数表达式,可以通过计算Lij的值,来确定所述测试图案21的尺寸。Further, as shown in FIG. 3 , the size parameter of the test pattern 21 is set as L, correspondingly, the size parameter of any of the test patterns 21 is L ij , wherein correspondingly L ij represents the test pattern The distance from 21 to the central point of the test standard layer 20 in this layer is d ij , for example, L ij represents the size of the i-th test pattern 21 in the j-th layer of the test standard layer 20 . Further set the allowable range parameter of the test field of view span as △F, the production parameter tolerance of the three-dimensional test standard plate is t', the medium refractive index parameter of the three-dimensional test standard plate is n', and the software calculates the allowable diffuse spot The parameter is s', wherein the functional expression of the size of the test pattern 21 satisfies: L ij =f"(d ij , ΔF, t', n', s'). Based on the above functional expression, it can be calculated by The value of L ij is used to determine the size of the test pattern 21.

值得一提的是,计算所述测试图案21的尺寸Lij的过程为所述立体测试标版的各项参数与其制作公差进行平衡的过程,并且在当所述测试图案21的尺寸Lij的值确定之后,所述立体测试标版的制作公差同步确定。还值得一提的是,当所述立体测试标版的各项参数确定之后,可以基于这些参数,制作所示立体测试标版。It is worth mentioning that the process of calculating the size L ij of the test pattern 21 is a process of balancing the parameters of the three-dimensional test standard plate and its manufacturing tolerances, and when the size L ij of the test pattern 21 After the value is determined, the production tolerance of the three-dimensional test standard plate is simultaneously determined. It is also worth mentioning that, after the various parameters of the three-dimensional test template are determined, the three-dimensional test template shown can be made based on these parameters.

相应地,如图18所示,本发明提供一种立体测试标版的设计方法,其中所述方法包括步骤:Correspondingly, as shown in FIG. 18, the present invention provides a method for designing a three-dimensional test standard plate, wherein the method includes the steps of:

(A)通过统计被测试摄像装置10的参数,确定所述立体测试标版的位置;以及(A) by counting the parameters of the camera device 10 under test, determine the position of the three-dimensional test standard plate; and

(B)根据所述摄像装置10的精度要求,确定所述立体测试标版的测试标版层的层数、和设计所述测试标版层的测试图案的布局。(B) According to the accuracy requirements of the camera device 10, determine the number of layers of the test target layer of the three-dimensional test target plate, and design the layout of the test pattern of the test target plate layer.

具体地说,在所述步骤(A)中,当待测试的所述摄像装置10的类型被确定之后,首先需要对所述摄像装置10的相关参数进行统计,其中包括所述摄像装置10的测试视场、焦距、后焦拟合精度等参数,本技术领域的技术人员应当理解,根据不同的使用需要,还可以进一步对待测试的所述摄像装置10的其他参数进行统计,以获得所述摄像装置10的综合参数数据,从而,设定出更佳的所述立体测试标版的方案。Specifically, in the step (A), after the type of the camera 10 to be tested is determined, it is first necessary to make statistics on the relevant parameters of the camera 10, including the Test field of view, focal length, back focus fitting accuracy and other parameters, those skilled in the art should understand that, according to different usage needs, other parameters of the camera 10 to be tested can also be further counted to obtain the The comprehensive parameter data of the camera device 10 is used to set up a better scheme of the stereoscopic test target plate.

进一步地,在所述步骤(B)中,进一步包括步骤:确定所述测试图案21的尺寸。Further, in the step (B), it further includes the step of: determining the size of the test pattern 21 .

优选地,在所述步骤(A)中,设定待测试所述摄像装置10的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试标版层20的位置参数为hj;其中,所述立体测试标版的位置满足函数表达式:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)));其中,根据计算得出的h的值,确定所述立体测试标版的位置。Preferably, in the step (A), the back focus fitting accuracy parameter of the imaging device 10 to be tested is set as a, the focal length parameter is EFL, and the position parameter of the stereoscopic test target plate is set as h, The position parameter of any layer of the test standard plate layer 20 is h j ; wherein, the position of the three-dimensional test standard plate satisfies the functional expression: a=-(EFL*(-h j )/(EFL-h j ) -(EFL*(-h)/(EFL-h))); Wherein, according to the calculated value of h, the position of the three-dimensional test target plate is determined.

优选地,在所述步骤(A)中,设定所述测试标版层20的层数参数为n,设定所述摄像装置10的公差参数为t,移动步数参数为s;其中,所述测试标版层20的层数满足函数表达式:n=f(t,a,s);以及设定所述测试图案21的布局参数为d,任一层所述测试标版层20的任一所述测试图案21到该层所述测试标版层20的中心距离为dij,设定所述摄像装置10的测试视场参数为F;其中,所述测试图案21的布局满足函数表达式:dij=f’(F,hij,EFL);其中,根据计算得出的n和dij的值,确定所述测试标版层20的层数和所述测试图案21的布局。Preferably, in the step (A), the number of layers parameter of the test standard layer 20 is set as n, the tolerance parameter of the imaging device 10 is set as t, and the number of moving steps is set as s; wherein, The number of layers of the test template layer 20 satisfies the functional expression: n=f(t, a, s); and the layout parameter of the test pattern 21 is set as d, and the test template layer 20 of any layer The distance from any one of the test patterns 21 to the center of the test plate layer 20 of this layer is d ij , and the test field of view parameter of the imaging device 10 is set as F; wherein, the layout of the test pattern 21 satisfies Functional expression: d ij =f'(F, h ij , EFL); wherein, according to the calculated values of n and d ij , the number of layers of the test template layer 20 and the number of layers of the test pattern 21 are determined layout.

优选地,设定所述测试图案21的尺寸参数为L,任一个所述测试图案21的尺寸参数为Lij,所述立体测试标版的参数公差为t’,介质折射率参数为n’,软件计算所允许的弥散斑参数为s’,设定所述摄像装置100的测试视场容许范围参数为△F;其中,所述测试图案21的尺寸满足函数表达式:Lij=f”(dij,△F,t’,n’,s’);其中,根据计算得出的Lij的值,确定所述测试图案21的尺寸。Preferably, the size parameter of the test pattern 21 is set as L, the size parameter of any one of the test patterns 21 is L ij , the parameter tolerance of the three-dimensional test standard plate is t', and the medium refractive index parameter is n' , the allowable speckle parameter for software calculation is s', and the allowable range parameter of the test field of view of the imaging device 100 is set as ΔF; wherein, the size of the test pattern 21 satisfies the functional expression: L ij =f" (d ij , ΔF, t′, n′, s′); wherein, the size of the test pattern 21 is determined according to the calculated value of L ij .

相应地,任意一层所述测试标版层20的所述测试图案21与其他层所述测试标版层20的所述测试图案21沿着所述深度方向不重叠地设置,这样,当所述摄像模块11捕获所述测试图案21时,靠近所述摄像模块11的所述测试图案21不会遮挡远离所述摄像模块11的所述测试图案21所传递的光线。例如,在本发明的一些特定的实施例中,所述测试标版层20的所述测试图案21呈倒梯形设置,也就是说,越是靠近所述摄像模块11的所述测试图案21距该层所述测试标版层20的中心的距离、越小于远离所述摄像模块11的所述测试图案21距该层所述测试标版层20的中心的距离,并且通过这样的方式,所述测试标版层20的所述测试图案21都能够被所述摄像模块11捕获,并形成具有深度信息的图像。Correspondingly, the test patterns 21 of any one layer of the test standard layer 20 and the test patterns 21 of the other layers of the test standard layer 20 are arranged in a non-overlapping manner along the depth direction, so that when the When the camera module 11 captures the test pattern 21 , the test pattern 21 close to the camera module 11 will not block the light transmitted by the test pattern 21 away from the camera module 11 . For example, in some specific embodiments of the present invention, the test pattern 21 of the test standard layer 20 is arranged in an inverted trapezoidal shape, that is, the closer the test pattern 21 is to the camera module 11 The distance from the center of the test standard layer 20 in this layer is smaller than the distance from the center of the test pattern 21 away from the camera module 11 to the center of the test standard layer 20 in this layer, and in this way, The test pattern 21 of the test target layer 20 can be captured by the camera module 11 to form an image with depth information.

即是说,所述立体测试标版具有沿着深度方向布置并不重叠的多层所述测试图案21,相邻所述测试图案21互相间隔地排列,从而,形成所述立体测试标版。也就是说,在本发明的一些特定的实施例中,所述测试标版层21需要由载体来承载所述测试图案21形成;而在本发明的另外一些实施例中,所述测试图案21还可以通过投影的方式形成。That is to say, the three-dimensional test standard plate has multiple layers of the test patterns 21 arranged along the depth direction without overlapping, and the adjacent test patterns 21 are arranged at intervals from each other, thereby forming the three-dimensional test standard plate. That is to say, in some specific embodiments of the present invention, the test pattern layer 21 needs to be formed by a carrier carrying the test pattern 21; and in some other embodiments of the present invention, the test pattern 21 It can also be formed by projection.

如图4、图5和图6所示是根据本发明第一优选实施例的立体测试标版及其应用过程示意图。所述立体测试标版包括沿着深度方向设置的所述测试标版层20,其中所述测试标版层20分别具有至少一个所述测试图案21,并且任意一个所述测试标版层20的所述测试图案21与其他所述测试标版层20的所述测试图案21沿着所述深度方向不重叠地设置。进一步地,所述测试图案21与所述测试标版层20具有不同的物理特性,以使得所述测试图案21能够容易被所述摄像模块11识别并捕获,例如,所述测试图案21与所述测试标版层20可以具有不同的对比度。Fig. 4, Fig. 5 and Fig. 6 are schematic diagrams of the three-dimensional test standard plate and its application process according to the first preferred embodiment of the present invention. The three-dimensional test standard plate includes the test standard plate layer 20 arranged along the depth direction, wherein the test standard plate layer 20 has at least one test pattern 21 respectively, and any one of the test standard plate layers 20 The test pattern 21 and the test pattern 21 of the other test target layer 20 are arranged along the depth direction without overlapping. Further, the test pattern 21 and the test target plate layer 20 have different physical characteristics, so that the test pattern 21 can be easily recognized and captured by the camera module 11, for example, the test pattern 21 and the test pattern 21 have different physical characteristics. The test reticle layer 20 may have different contrasts.

作为优选,所述测试标版层20由透明的材料形成,这样,可以尽可能地减少所述测试标版层20的介质折射率,从而,任意一层所述测试标版层20的所述测试图案21都可以无差别地被所述摄像模块11识别和捕获。也就是说,任意一层所述测试标版层20的所述测试图案21都可以无耗损地穿过其他的所述测试标版层20被所述摄像模块11捕获,从而,使得所述摄像装置10能够获得具有深度信息的所述立体测试标版的图像。As preferably, described test standard plate layer 20 is formed by transparent material, like this, can reduce the medium refractive index of described test standard plate layer 20 as far as possible, thereby, the described test standard plate layer 20 of any layer All test patterns 21 can be identified and captured by the camera module 11 without distinction. That is to say, the test patterns 21 of any one layer of the test standard layer 20 can be captured by the camera module 11 through other test standard layers 20 without loss, so that the camera The device 10 is capable of obtaining an image of said stereoscopic test reticle with depth information.

如图4所示,所述立体测试标版采用透射式的原理来对所述摄像装置10进行测试,具体地说,在所述立体测试标版的上部设置一光源40,也就是说,在对所述摄像装置10进行测试时,所述立体测试标版位于所述光源40与所述摄像模块10之间,这样,所述光源40产生的均匀的光线能够依次穿过所述测试标版层20,并进而被所述摄像模块11捕获。在这个过程中,所述光源40在穿过所述测试标版层20时,都能够同比例地增加所述测试标版层20与该层所述测试标版层20的所述测试图案21之间的对比度,从而,使得所述测试图案21能够更容易被所述摄像模块11识别和捕获。As shown in Figure 4, the three-dimensional test standard plate adopts the principle of transmission to test the camera device 10, specifically, a light source 40 is arranged on the top of the three-dimensional test standard plate, that is to say, in When testing the imaging device 10, the stereoscopic test standard plate is located between the light source 40 and the camera module 10, so that the uniform light generated by the light source 40 can pass through the test standard plate sequentially. Layer 20, and then captured by the camera module 11. In this process, when the light source 40 passes through the test standard layer 20, the test pattern 21 of the test standard layer 20 and the layer of the test standard layer 20 can be increased in the same proportion. Therefore, the test pattern 21 can be recognized and captured by the camera module 11 more easily.

如图5和图6分别是所述立体测试标版的俯视图和侧视图,通过这两个视图,本技术领域的技术人员能够很容易地理解所述测试标版层20的所述测试图案21之间的诸如位置等布局关系。Figure 5 and Figure 6 are respectively the top view and the side view of the three-dimensional test standard plate, through these two views, those skilled in the art can easily understand the test pattern 21 of the test standard plate layer 20 Layout relationships such as position between.

相应地,在藉由这种方式的测试过程中,首先让所述光源40产生均匀的光线,这些均匀的光线会依次穿过所述测试标版层20,并用于增强所述测试图案21与所述测试标版层20之间的对比度。值得一提的是,当所述光源40产生的光线穿过所述测试标版层20时,其起到的作用一致,即无差别地增强所述测试标版层20与该层所述测试标版层20的所述测试图案21之间的对比度。这样,当藉由所述摄像模块11捕获该光线时,承载有所述测试图案21信息的光线能够被所述图像传感器12所接受,并进行进一步的光电转化。Correspondingly, in the testing process in this way, the light source 40 is first allowed to generate uniform light, and these uniform light will pass through the test standard plate layer 20 in turn, and are used to enhance the test patterns 21 and The contrast between the test reticle layers 20. It is worth mentioning that when the light generated by the light source 40 passes through the test target plate layer 20, it plays the same role, that is, indiscriminately enhances the test target plate layer 20 and the test plate layer 20 of this layer. The contrast between the test patterns 21 of the standard layer 20. In this way, when the light is captured by the camera module 11 , the light carrying the information of the test pattern 21 can be accepted by the image sensor 12 for further photoelectric conversion.

相应地,如图7至图10所示是根据本发明第二优选实施例的立体测试标版及其应用过程示意图。所述立体测试标版包括沿着深度方向设置的所述测试标版层20A,其中所述测试标版层20A的所述测试图案21A与其他所述测试标版层20A的所述测试图案21A沿着所述深度方向不重叠地设置。进一步地,所述测试图案21A与所述测试标版层20A具有不同的物理特性,以使得所述测试图案21A能够容易被所述摄像模块11识别并捕获,例如,所述测试图案21A与所述测试标版层20A可以具有不同的对比度。Correspondingly, FIG. 7 to FIG. 10 are schematic diagrams of the three-dimensional test standard plate and its application process according to the second preferred embodiment of the present invention. The three-dimensional test standard plate includes the test standard plate layer 20A arranged along the depth direction, wherein the test pattern 21A of the test standard plate layer 20A is different from the test pattern 21A of the other test standard plate layer 20A They are arranged without overlapping along the depth direction. Further, the test pattern 21A has different physical characteristics from the test target plate layer 20A, so that the test pattern 21A can be easily recognized and captured by the camera module 11, for example, the test pattern 21A is different from the test pattern layer 20A. The test reticle layer 20A may have different contrasts.

进一步地,如图7所示,所述立体测试标版采用反射式的原理对所述摄像装置10进行测试,具体地说,在所述立体测试标版的下部设置至少一光源40A,例如,在本发明的一些特定的实施例中,所述光源40A可以设置两处或者更多,以使得所述光源40A产生的光线能够均匀地穿过所述测试标版层20A。可以理解的是,在对所述摄像装置10进行测试时,所述立体测试标版位于所述光源40A与所述摄像模块11上方,而所述光源40A环绕所述摄像模块11设置,本技术领域的似乎人员应当理解,所述光源40A与所述摄像模块11之间的距离和位置关系,可以基于不同的测试需要来被调整,其并不会限制本发明的内容和范围。Further, as shown in FIG. 7 , the three-dimensional test standard plate adopts the principle of reflection to test the camera device 10, specifically, at least one light source 40A is arranged at the lower part of the three-dimensional test standard plate, for example, In some specific embodiments of the present invention, the light source 40A can be provided at two or more locations, so that the light generated by the light source 40A can pass through the test standard plate layer 20A evenly. It can be understood that, when testing the camera device 10, the stereoscopic test target plate is located above the light source 40A and the camera module 11, and the light source 40A is arranged around the camera module 11. Those in the field should understand that the distance and positional relationship between the light source 40A and the camera module 11 can be adjusted based on different test requirements, which will not limit the content and scope of the present invention.

所述光源40A产生的光线可以均匀地依次穿过所述测试标版层20A,以增强所述测试标版层20A与该层所述测试标版层20A的所述测试图案21之间的对比度,从而,使得所述测试图案21A能够更容易被所述摄像模块11识别和捕获。The light generated by the light source 40A can pass through the test target plate layer 20A uniformly and sequentially, so as to enhance the contrast between the test target plate layer 20A and the test pattern 21 of the test target plate layer 20A of this layer , so that the test pattern 21A can be more easily identified and captured by the camera module 11 .

如图8和图9分别是所述立体测试标版的俯视图和侧视图,通过这两个视图,本技术领域的技术人员能够很容易地理解所述测试标版层20A的所述测试图案21A之间的诸如位置等布局关系。Figure 8 and Figure 9 are respectively the top view and the side view of the three-dimensional test standard plate, through these two views, those skilled in the art can easily understand the test pattern 21A of the test standard plate layer 20A Layout relationships such as position between.

值得一提的是,图7所示的本发明的这个具体的实施例与图4所示的本发明的实施例的区别在于:在图4所示的实施例中,所述光源40产生的光线自所述立体测试标版的上部依次辐射至下部,最终被所述摄像模块11捕获;而在图7所示的实施例中,所述光源40A产生的光线自所述立体测试标版的下部依次辐射至上部,用来增强所述测试标版层20A与所述测试图案21A之间的对比度。It is worth mentioning that the difference between this specific embodiment of the present invention shown in FIG. 7 and the embodiment of the present invention shown in FIG. 4 is that in the embodiment shown in FIG. 4 , the light source 40 produces The light rays are radiated from the upper part of the stereoscopic test standard plate to the lower part sequentially, and finally captured by the camera module 11; and in the embodiment shown in FIG. The lower part is sequentially irradiated to the upper part to enhance the contrast between the test target layer 20A and the test pattern 21A.

在本发明的一些实施例中,所述测试标版层20A可以由实体材料制成,也可以通过投影的方式在空间内形成,例如,在图10所提供的实施例中,所述立体测试标版还可以包括至少一承载元件30A,所述承载元件30A叠合且间隔地设置,并且所述承载元件30A分别形成所述测试标版层20A。值得一提的是,所述承载元件30A的间距决定了所述测试标版层20A之间的间距,而且所述承载元件30A的材料和厚度直接影响了所述立体测试标版的介质折射率,因此,在选择所述承载元件30A的材料和厚度时,需要考虑到所述立体测试标版的介质折射率对所述立体测试标版本身的影响。更值得一提的是,所述承载元件30A由透明的材料制成,这样,无论是采用透射式还是反射式的方式来使用所述立体测试标版时,所述测试标版层20A的所述测试图案21A都可以无差别地被所述摄像模块11识别和捕获,从而,确保测试结果的精确性。In some embodiments of the present invention, the test standard layer 20A can be made of solid material, and can also be formed in space by projection. For example, in the embodiment provided in FIG. 10, the three-dimensional test The standard plate may further include at least one bearing element 30A, the bearing elements 30A are superimposed and arranged at intervals, and the bearing elements 30A respectively form the test target plate layer 20A. It is worth mentioning that the distance between the bearing elements 30A determines the distance between the test standard plate layers 20A, and the material and thickness of the bearing elements 30A directly affect the medium refractive index of the three-dimensional test standard plate Therefore, when selecting the material and thickness of the bearing element 30A, it is necessary to consider the influence of the medium refractive index of the three-dimensional test standard on the three-dimensional test standard itself. What is more worth mentioning is that the carrying element 30A is made of a transparent material, so that when the three-dimensional test standard is used in a transmissive or reflective manner, all the test standard layer 20A All of the test patterns 21A can be identified and captured by the camera module 11 without distinction, thereby ensuring the accuracy of test results.

进一步地,所述测试图案21A可以设置或者形成于所述承载元件30A,以分别在所述测试标版层20A上布置深度方向不重叠的所述测试图案21A。具体地说,在一些实施例中,所述测试图案21A可以被设置于所述承载元件30A的至少一预设区域,并且所述预设区域的数量、尺寸和形状等参数根据上述计算所述测试图案21A的参数的函数表达式可以通过计算获得,这样,可以使得所述测试图案21A的特性于所述承载元件30A的特性具有明显的区别,以方便所述测试图案21A在后续被所述摄像模块11识别和捕获。Further, the test patterns 21A may be arranged or formed on the bearing member 30A, so that the test patterns 21A that do not overlap in the depth direction are respectively arranged on the test target plate layer 20A. Specifically, in some embodiments, the test pattern 21A can be set on at least one preset area of the bearing element 30A, and the parameters such as the number, size and shape of the preset area are calculated according to the above-mentioned The functional expressions of the parameters of the test pattern 21A can be obtained by calculation, so that the characteristics of the test pattern 21A can be clearly distinguished from the characteristics of the bearing element 30A, so that the test pattern 21A can be described later. Camera module 11 identifies and captures.

在本发明的另外一些实施例中,可以首先在所述承载元件30A上通过上述方式确定所述预设位置,然后通过诸如物理或化学等处理手段来改变所述承载元件30A在所述预设位置的物理特性,从而,使得所述承载元件30A的所述预设区域的物理特性于其他区域的物理特性具有明显的区别,从而,在所述预设位置形成所述测试图案21A。当然,本技术领域的技术人员应当理解,还可以有其他的多种方式在所述承载元件30A形成的所述测试标版层20A上形成所述测试图案21A。In some other embodiments of the present invention, the preset position can be firstly determined on the bearing element 30A in the above-mentioned manner, and then the preset position of the bearing element 30A can be changed by means of physical or chemical treatment. The physical characteristics of the position, so that the physical characteristics of the predetermined area of the bearing element 30A are obviously different from those of other areas, so that the test pattern 21A is formed at the predetermined position. Certainly, those skilled in the art should understand that there may be other ways to form the test pattern 21A on the test standard layer 20A formed by the bearing element 30A.

相应地,如图19所示,本发明还提供一种立体测试标版的形成方法,所述方法包括步骤:Correspondingly, as shown in FIG. 19, the present invention also provides a method for forming a three-dimensional test standard plate, the method comprising the steps of:

(a)确定至少一预设区域于一测试标版层20,在所述预设区域分别设置至少一测试图案21;以及(a) determining at least one predetermined area on a test target plate layer 20, and setting at least one test pattern 21 respectively in the predetermined area; and

(b)将多个所述测试标版层20叠合地设置,并使得所述测试标版层20的所述测试图案21与其他测试标版层20的所述测试图案21错位地布置,以形成所述立体测试版。(b) setting a plurality of said test standard plate layers 20 superimposedly, and making said test pattern 21 of said test standard plate layer 20 and said test patterns 21 of other test standard plate layers 20 arranged in a dislocation manner, to form the stereo test plate.

优选地,在所述步骤(b)中,藉由光线依次经过所述测试标版层20辐射,以增强所述测试图案21与该层所述测试标版层20的对比度。Preferably, in the step (b), the contrast between the test pattern 21 and the test target layer 20 is enhanced by irradiating light through the test target layer 20 in sequence.

进一步地,在上述方法中,将一光源50设置于所述立体测试标版的上部,以使得所述光源50产生的光线依次经过所述测试标版层20从上向下辐射。Further, in the above method, a light source 50 is arranged on the upper part of the three-dimensional test standard plate, so that the light generated by the light source 50 sequentially passes through the test standard plate layer 20 and radiates from top to bottom.

进一步地,在上述方法中,将至少一光源50设置于所述立体测试标版的下部,以使得所述光源50产生的光线依次经过所述测试标版层20从下向上辐射。值得一提的是,经过所述测试标版层20的光线为均匀光线。更值得一提的是,所述预设区域的的数量、尺寸和形状等参数可以根据上述计算所述测试图案21的参数的函数表达式通过计算获得。Further, in the above method, at least one light source 50 is arranged at the lower part of the three-dimensional test standard, so that the light generated by the light source 50 sequentially passes through the test standard layer 20 and radiates from bottom to top. It is worth mentioning that the light passing through the test target plate layer 20 is uniform light. What is more worth mentioning is that the parameters such as the number, size and shape of the preset area can be obtained through calculation according to the above-mentioned function expression for calculating the parameters of the test pattern 21 .

如图11至图14所示,本发明采用投影式的原理来形成所述立体测试标版,相对于图4和图7所阐述的本发明的具体实施方式来说,本发明的这个具体的实施例采用投影的方式来形成,其以空气为介质分别形成所述测试标版层20与所述测试图案21,也就是说,在这个实施例中,所述立体测试标版可以不需要所述承载元件30来承载所述测试图案21。As shown in Figures 11 to 14, the present invention adopts the principle of projection to form the three-dimensional test standard plate. Compared with the specific implementation of the present invention illustrated in Figure 4 and Figure 7, this specific embodiment of the present invention The embodiment is formed by projection, which uses air as the medium to form the test standard layer 20 and the test pattern 21 respectively, that is to say, in this embodiment, the three-dimensional test standard plate may not need all The bearing element 30 is used to bear the test pattern 21 .

作为示例,如图11所示,所述立体测试标版包括一光源40B以及一投影源50B,其中所述投影源50B设在所述光源40B辐射的路径上,也就是说,所述光源40B所产生的光线得以经由所述投影源50B辐射,从而,在预设空间可以产生具有深度信息的图像,以用于后续的所述摄像装置10B的测试。As an example, as shown in FIG. 11 , the three-dimensional test standard plate includes a light source 40B and a projection source 50B, wherein the projection source 50B is set on the radiation path of the light source 40B, that is, the light source 40B The generated light is irradiated by the projection source 50B, so that an image with depth information can be generated in a preset space for subsequent testing of the camera device 10B.

相应地,本发明还可以提供一种立体测试标版的形成方法,所述方法包括步骤:将所述投影源50B设置于所述光源40B产生的光线所辐射的路径,其中当所述光源40B产生光线时,所述投影源50B得以在所述预设空间投影出沿着深度方向布置并不重叠的多层测试图案21B,相邻两层所述测试图案21B互相间隔地排列,从而,形成所述测试标版。如图12所示,所述光源40B与所述投影源50B被分别设置于用于形成所述立体测试标版的所述预设空间的侧部,并且所述投影源50B位于所述光源40B与所述预设空间之间,以使得所述光源40B辐射的光线能够将所述投影源50B的信息投影至所述预设空间内形成具有多层所述测试标版层20B的所述立体测试标版。Correspondingly, the present invention can also provide a method for forming a three-dimensional test standard plate, the method includes the step of: setting the projection source 50B on the path radiated by the light generated by the light source 40B, wherein when the light source 40B When light is generated, the projection source 50B can project in the predetermined space a multi-layer test pattern 21B arranged along the depth direction and not overlapping, and the test patterns 21B on two adjacent layers are arranged at intervals from each other, thereby forming The test standard. As shown in FIG. 12 , the light source 40B and the projection source 50B are respectively arranged on the sides of the preset space for forming the three-dimensional test standard plate, and the projection source 50B is located at the light source 40B and the preset space, so that the light radiated by the light source 40B can project the information of the projection source 50B into the preset space to form the three-dimensional with multiple layers of the test standard plate layer 20B Test standard.

在这个实施例中,在利用测试设备对所述摄像装置10进行测试时,所述立体测试标版的所述测试图案21B形成于所述预设空间内,其以空气作为介质层,因此,尽可能地减少介质层的折射率对测试结果的影响,从而确保测试精度,并且采用投影式的方式形成所述立体测试标版所带来的另一个有益成果是所述立体测试标版的体积能够被进一步地缩小。In this embodiment, when the camera device 10 is tested by testing equipment, the test pattern 21B of the three-dimensional test standard plate is formed in the preset space, which uses air as a medium layer, therefore, Reduce the influence of the refractive index of the medium layer on the test results as much as possible, so as to ensure the test accuracy, and another beneficial result brought about by forming the three-dimensional test standard in a projection mode is the volume of the three-dimensional test standard can be further reduced.

如图13和图14分别是投影形成的所述立体测试标版的俯视图和侧视图,通过这两个视图,本技术领域的技术人员能够很容易地理解所述测试图案21的诸如位置等布局关系。Figure 13 and Figure 14 are the top view and the side view of the three-dimensional test standard plate formed by projection respectively, through these two views, those skilled in the art can easily understand the layout of the test pattern 21 such as the position relation.

如图15、图16和图17所示是采用变焦式原理来对所述摄像装置10进行测试,在本发明的这个实施例中,所述立体测试标版包括一光源40C以及一投影源50C,其中所述投影源50C设在所述光源40C辐射的路径上,也就是说,所述光源40C所产生的光线得以经由所述投影源50C辐射,从而,在预设空间可以产生具有深度信息的图像,以用于后续的所述摄像装置10的测试。As shown in Fig. 15, Fig. 16 and Fig. 17, the imaging device 10 is tested using the principle of zooming. In this embodiment of the present invention, the stereoscopic test standard plate includes a light source 40C and a projection source 50C , wherein the projection source 50C is set on the radiation path of the light source 40C, that is to say, the light generated by the light source 40C can be radiated through the projection source 50C, thus, in the preset space, it is possible to generate images for subsequent testing of the imaging device 10 .

作为示例,如图15所示,所述光源40C与所述投影源50C被分别设置于用于形成所述立体测试标版的所述预设空间的上部,并且所述投影源50C位于所述光源40C与所述预留空间之间,以使得所述光源40C辐射的光线能够将所述投影源50C的信息投影至所述预留空间内形成具有多层所述测试标版层20C的所述立体测试标版。As an example, as shown in FIG. 15 , the light source 40C and the projection source 50C are respectively arranged on the upper part of the preset space for forming the stereoscopic test standard, and the projection source 50C is located in the Between the light source 40C and the reserved space, so that the light radiated by the light source 40C can project the information of the projection source 50C into the reserved space to form the test plate layer 20C having multiple layers. The three-dimensional test standard plate.

进一步地,所述投影源50C还包括一平面标版51C以及一变焦透镜组52C,其中所述平面标版51C设置于所述光源40C与所述变焦透镜组52C之间,并可所述平面标版51C进一步具有至少一测试目标511C,以使得所述光源40C辐射的光线能够将所述测试目标511C经过所述变焦透镜组52C在所述预留空间内形成所述立体测试标版。值得一提的是,所述测试目标511C的尺寸、位置和数量等参数得以基于所述立体测试标版的不同需求来进行设定。Further, the projection source 50C also includes a plane standard plate 51C and a zoom lens group 52C, wherein the plane standard plate 51C is arranged between the light source 40C and the zoom lens group 52C, and the plane standard plate 51C can The standard plate 51C further has at least one test target 511C, so that the light radiated by the light source 40C can pass the test target 511C through the zoom lens group 52C to form the three-dimensional test target plate in the reserved space. It is worth mentioning that the parameters such as the size, position and quantity of the test target 511C can be set based on the different requirements of the three-dimensional test standard.

如图16和图17分别是投影形成的所述立体测试标版的俯视图和侧视图,通过这两个视图,本技术领域的技术人员能够很容易地理解所述测试图案21C的诸如位置等布局关系。Figure 16 and Figure 17 are the top view and side view of the three-dimensional test standard formed by projection respectively, through these two views, those skilled in the art can easily understand the layout of the test pattern 21C such as the position relation.

值得一提的是,在通过所述立体测试标版对所述摄像装置10进行测试时,所述立体测试标版的成像质量的测试方式可以采用OTF(Optical Transfer Function,光学传递函数),MTF(Modulation Transfer Function,调制传递函数),SFR(Spatial FrequencyResponse,空间频率响应),或者CTF(Contrast Transfer Function,对比度转换函数)中的一种或几种等任何可以表征所述摄像装置10的解像力的评价方式来进行。当然,本技术领域的技术人员应当理解,在这个过程中,还可以通过其他的评价方式来对所述摄像装置10的成像质量进行评价和测试。It is worth mentioning that when the imaging device 10 is tested by the stereoscopic test standard plate, the imaging quality of the stereoscopic test standard plate can be tested by OTF (Optical Transfer Function, MTF). (Modulation Transfer Function, Modulation Transfer Function), SFR (Spatial Frequency Response, Spatial Frequency Response), or one or more of CTF (Contrast Transfer Function, Contrast Transfer Function), etc., can characterize the resolution of the imaging device 10 evaluation method. Of course, those skilled in the art should understand that in this process, the imaging quality of the camera 10 can also be evaluated and tested by other evaluation methods.

本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。It should be understood by those skilled in the art that the embodiments of the present invention shown in the foregoing description and drawings are only examples and do not limit the present invention. The objects of the present invention have been fully and effectively accomplished. The functions and structural principles of the present invention have been shown and described in the embodiments, and the embodiments of the present invention may have any deformation or modification without departing from the principles.

Claims (26)

1.一种立体测试标版,其特征在于,包括沿着深度方向设置的多个测试标版层,所述测试标版层分别具有至少一测试图案,并且任意一个所述测试标版层的所述测试图案与其他所述测试标版层的所述测试图案沿着所述深度方向不重叠地设置;1. a kind of three-dimensional test standard plate, it is characterized in that, comprise a plurality of test standard plate layers arranged along depth direction, described test standard plate layer has at least one test pattern respectively, and any one described test standard plate layer The test pattern and the test pattern of the other test target layer are arranged along the depth direction without overlapping; 其中设定待测试一摄像装置的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试标版层的位置参数为hj,所述测试标版层的层数参数为j;其中,所述立体测试标版的位置满足函数表达式:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)))。Wherein it is set that the back focus fitting accuracy parameter of a camera device to be tested is a, and the focal length parameter is EFL, and the position parameter of setting the stereoscopic test standard plate is h, and the position parameter of the test standard plate layer described in any layer is h j , the layer number parameter of the test target plate layer is j; wherein, the position of the three-dimensional test target plate satisfies the functional expression: a=-(EFL*(-h j )/(EFL-h j )- (EFL*(-h)/(EFL-h))). 2.如权利要求1所述的立体测试标版,其中设定所述测试标版层的层数参数为n,设定所述摄像装置的公差参数为t,移动步数参数为s;其中,所述测试标版层的层数满足函数表达式:n=f(t,a,s)。2. The three-dimensional test standard plate as claimed in claim 1, wherein setting the number of layers parameter of the test standard plate layer is n, setting the tolerance parameter of the camera is t, and the number of moving steps parameter is s; wherein , the number of layers of the test standard layer satisfies the function expression: n=f(t, a, s). 3.如权利要求2所述的立体测试标版,其中设定所述测试图案的布局参数为d,任一层所述测试标版层的任一所述测试图案到该层所述测试标版层的中心距离为dij,其中进一步设所述测试图案在该层所述测试标版层上的位置参数为i,该层所述测试标版层的层数参数为j,设定所述摄像装置的测试视场参数为F;其中,所述测试图案的布局满足函数表达式:dij=f’(F,hij,EFL)。3. three-dimensional test standard plate as claimed in claim 2, wherein the layout parameter of setting described test pattern is d, any described test pattern of any layer described test standard plate layer to this layer described test mark The center distance of the plate layer is d ij , wherein further setting the position parameter of the test pattern on the test standard layer of the layer is i, the layer number parameter of the test standard layer of the layer is j, and the set The test field of view parameter of the camera device is F; wherein, the layout of the test pattern satisfies the functional expression: d ij =f'(F, h ij , EFL). 4.如权利要求3所述的立体测试标版,其中设定所述测试图案的尺寸参数为L,任一个所述测试图案的尺寸参数为Lij,所述立体测试标版的参数公差为t’,介质折射率参数为n’,软件计算所允许的弥散斑参数为s’,设定所述摄像装置的测试视场容许范围参数为△F;其中,所述测试图案的尺寸满足函数表达式:Lij=f”(dij,△F,t’,n’,s’)。4. stereoscopic test standard plate as claimed in claim 3, wherein the size parameter of setting described test pattern is L, the size parameter of any one described test pattern is L ij , the parameter tolerance of described stereoscopic test standard plate is t', the refractive index parameter of the medium is n', the permissible speckle parameter for software calculation is s', and the allowable range parameter of the test field of view of the camera device is set as ΔF; wherein, the size of the test pattern satisfies the function Expression: L ij =f"(d ij , ΔF, t', n', s'). 5.如权利要求1至4中任一所述的立体测试标版,其中所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字线、黑白线对、星形中的一种或者多种的组合。5. The three-dimensional test standard plate as claimed in any one of claims 1 to 4, wherein the shape of the test pattern is selected from one of square, triangle, circle, ellipse, crosshairs, black and white line pairs, and star one or a combination of several. 6.如权利要求1至4中任一所述的立体测试标版,其中所述立体测试标版具有2-100层所述测试标版层,各层所述测试标版层具有1-1000个所述测试图案。6. The three-dimensional test standard plate as claimed in any one of claims 1 to 4, wherein the three-dimensional test standard plate has 2-100 layers of the test standard plate layer, and each layer of the test standard plate layer has a thickness of 1-1000 layers. the test pattern. 7.如权利要求1至4中任一所述的立体测试标版,其中所述立体测试标版选自透射式、反射式、投影式或者变焦成像式中的一种形成。7. The three-dimensional test standard according to any one of claims 1 to 4, wherein the three-dimensional test standard is formed in one of transmission, reflection, projection and zoom imaging. 8.如权利要求1至4中任一所述的立体测试标版,其中所述立体测试标版还包括至少一承载元件,所述承载元件叠合且间隔地设置;其中,所述承载元件分别形成所述测试标版层,所述测试图案选择性地设置或形成于所述测试标版层。8. The three-dimensional test standard plate as claimed in any one of claims 1 to 4, wherein the three-dimensional test standard plate further comprises at least one load-bearing element, and the load-bearing elements are overlapped and arranged at intervals; wherein the load-bearing element The test target plate layers are formed respectively, and the test patterns are selectively arranged or formed on the test target plate layers. 9.如权利要求8所述的立体测试标版,其中所述承载元件由透明材料制成。9. The stereoscopic test target of claim 8, wherein the carrier element is made of a transparent material. 10.一种立体测试标版,其特征在于,所述立体测试标版具有沿着深度方向布置并且不重叠的多层测试图案,相邻两层所述测试图案互相间隔地排列,从而形成所述立体测试标版;其中所述立体测试标版还包括至少一承载元件,所述承载元件叠合且间隔地设置;其中所述承载元件分别形成一测试标版层,所述测试图案位于所述测试标版层;其中设定待测试一摄像装置的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试标版层的位置参数为hj,所述测试标版层的层数参数为j;其中,所述立体测试标版的位置满足函数表达式:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)))。10. A three-dimensional test standard plate, characterized in that, the three-dimensional test standard plate has multilayer test patterns arranged along the depth direction and non-overlapping, and the test patterns of adjacent two layers are arranged at intervals from each other, thereby forming the The three-dimensional test standard plate; wherein the three-dimensional test standard plate also includes at least one bearing element, the bearing elements are stacked and arranged at intervals; wherein the bearing elements respectively form a test standard plate layer, and the test pattern is located at the The test standard plate layer is described; wherein the back focus fitting accuracy parameter of an imaging device to be tested is set as a, the focal length parameter is EFL, the position parameter of the three-dimensional test standard plate is set as h, and the test mark of any layer The position parameter of the plate layer is h j , and the layer number parameter of the test target plate layer is j; wherein, the position of the three-dimensional test target plate satisfies the functional expression: a=-(EFL*(-h j )/( EFL-h j )-(EFL*(-h)/(EFL-h))). 11.如权利要求10所述的立体测试标版,其中所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字线、黑白线对、星形中的一种或者多种的组合。11. The three-dimensional test standard plate as claimed in claim 10, wherein the shape of the test pattern is selected from one or more of square, triangle, circle, ellipse, crosshairs, black and white line pairs, and star combination. 12.如权利要求10所述的立体测试标版,其中所述立体测试标版具有2-100层所述测试标版层,各层所述测试标版层具有1-1000个所述测试图案。12. The three-dimensional test standard plate as claimed in claim 10, wherein the three-dimensional test standard plate has 2-100 layers of the test standard plate layer, and each layer of the test standard plate layer has 1-1000 described test patterns . 13.一种立体测试标版的设计方法,其特征在于,所述方法包括步骤:13. A design method for a three-dimensional test standard plate, characterized in that the method comprises the steps of: (A)通过统计被测试摄像装置的参数,确定所述立体测试标版的位置;以及(A) determine the position of the three-dimensional test standard plate by counting the parameters of the tested camera device; and (B)根据所述摄像装置的精度要求,确定所述立体测试标版的测试标版层的层数、和设计所述测试标版层的测试图案的布局;其中所述立体测试标版包括沿着深度方向设置的多个所述测试标版层,所述测试标版层分别具有至少一个所述测试图案,并且任意一个所述测试标版层的所述测试图案与其他的所述测试标版层的所述测试图案沿着所述深度方向不重叠地设置;(B) according to the accuracy requirements of the imaging device, determine the number of layers of the test target layer of the three-dimensional test target plate and design the layout of the test pattern of the test target plate layer; wherein the three-dimensional test target plate includes A plurality of the test standard layers arranged along the depth direction, the test standard layers respectively have at least one of the test patterns, and the test patterns of any one of the test standard layers are different from the other test patterns. The test patterns of the standard plate layer are arranged without overlapping along the depth direction; 其中在所述步骤(B)中,进一步包括步骤:确定所述测试图案的尺寸;Wherein in said step (B), further comprising the steps of: determining the size of said test pattern; 其中在所述步骤(A)中,设定待测试一摄像装置的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试标版层的位置参数为hj,所述测试标版层的层数参数为j;其中,所述立体测试标版的位置满足函数表达式:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)));Wherein in described step (A), setting the back focus fitting accuracy parameter of a camera device to be tested is a, and the focal length parameter is EFL, and the position parameter of setting described three-dimensional test target plate is h, and any layer The position parameter of the test standard plate layer is h j , and the layer number parameter of the test standard plate layer is j; wherein, the position of the three-dimensional test standard plate satisfies the function expression: a=-(EFL*(-h j )/(EFL-h j )-(EFL*(-h)/(EFL-h))); 其中,根据计算得出的h的值,确定所述立体测试标版的位置。Wherein, according to the calculated value of h, the position of the three-dimensional test target plate is determined. 14.如权利要求13所述的设计方法,其中在所述步骤(A)中,设定所述测试标版层的层数参数为n,设定所述摄像装置的公差参数为t,移动步数参数为s;其中,所述测试标版层的层数满足函数表达式:n=f(t,a,s);以及14. The design method as claimed in claim 13, wherein in said step (A), setting the number of layers parameter of said test plate layer is n, setting the tolerance parameter of said camera is t, moving The number of steps parameter is s; wherein, the number of layers of the test standard layer satisfies the function expression: n=f(t, a, s); and 设定所述测试图案的布局参数为d,任一层所述测试标版层的任一所述测试图案到该层所述测试标版层的中心距离为dij,其中进一步设所述测试图案在该层所述测试标版层上的位置参数为i,该层所述测试标版层的层数参数为j,设定所述摄像装置的测试视场参数为F;其中,所述测试图案的布局满足函数表达式:dij=f’(F,hij,EFL);The layout parameter of the test pattern is set as d, and the distance from any one of the test patterns of any layer of the test standard layer to the center of the test standard layer of this layer is d ij , wherein the test pattern is further set The positional parameter of pattern on the described test standard plate layer of this layer is i, and the layer number parameter of the described test standard plate layer of this layer is j, and the test field of view parameter of setting described imaging device is F; Wherein, described The layout of the test pattern satisfies the function expression: d ij =f'(F, h ij , EFL); 其中,根据计算得出的n和dij的值,确定所述测试标版层的层数和所述测试图案的布局。Wherein, according to the calculated values of n and d ij , the number of layers of the test standard layer and the layout of the test pattern are determined. 15.如权利要求14所述的设计方法,其中设定所述测试图案的尺寸参数为L,任一个所述测试图案的尺寸参数为Lij,所述立体测试标版的参数公差为t’,介质折射率参数为n’,软件计算所允许的弥散斑参数为s’,设定所述摄像装置的测试视场容许范围参数为△F;其中,所述测试图案的尺寸满足函数表达式:Lij=f”(dij,△F,t’,n’,s’);15. design method as claimed in claim 14, wherein the size parameter of setting described test pattern is L, the size parameter of any one described test pattern is L ij , the parameter tolerance of described three-dimensional test standard plate is t' , the refractive index parameter of the medium is n', the permissible speckle parameter for software calculation is s', and the permissible range parameter of the test field of view of the camera device is set as ΔF; wherein, the size of the test pattern satisfies the function expression : L ij =f”(d ij , △F, t', n', s'); 其中,根据计算得出的Lij的值,确定所述测试图案的尺寸。Wherein, the size of the test pattern is determined according to the calculated value of L ij . 16.如权利要求15所述的设计方法,其中所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字线、黑白线对、星形中的一种或者多种的组合。16. The design method according to claim 15, wherein the shape of the test pattern is selected from one or a combination of squares, triangles, circles, ellipses, crosshairs, pairs of black and white lines, and stars. 17.一种立体测试标版的形成方法,其特征在于,所述方法包括步骤:17. A method for forming a three-dimensional test standard plate, characterized in that, the method comprises the steps of: (a)确定至少一预设区域于一测试标版层,在所述预设区域分别设置至少一测试图案;以及(a) determining at least one predetermined area on a test target plate layer, and setting at least one test pattern in the predetermined area respectively; and (b)将多个所述测试标版层叠合地设置,并使得所述测试标版层的所述测试图案与其他所述测试标版层的所述测试图案错位地布置,以形成所述立体测试标版,并且所述立体测试标版的任意一个所述测试标版层的所述测试图案与其他的所述测试标版层的所述测试图案沿着深度方向不重叠;(b) a plurality of said test standard layers are stacked, and the test pattern of said test standard layer is arranged in a dislocation manner with said test patterns of other said test standard layers, so as to form said A three-dimensional test standard plate, and the test patterns of any one of the test standard plate layers of the three-dimensional test standard plate do not overlap with the test patterns of other test standard plate layers along the depth direction; 其中设定待测试一摄像装置的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试标版层的位置参数为hj,所述测试标版层的层数参数为j;其中,所述立体测试标版的位置满足函数表达式:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)))。Wherein it is set that the back focus fitting accuracy parameter of a camera device to be tested is a, and the focal length parameter is EFL, and the position parameter of setting the stereoscopic test standard plate is h, and the position parameter of the test standard plate layer described in any layer is h j , the layer number parameter of the test target plate layer is j; wherein, the position of the three-dimensional test target plate satisfies the functional expression: a=-(EFL*(-h j )/(EFL-h j )- (EFL*(-h)/(EFL-h))). 18.如权利要求17所述的方法,其中在所述步骤(b)中,藉由光线依次经过所述测试标版层辐射,以增强所述测试图案与该层所述测试标版层的对比度。18. The method as claimed in claim 17, wherein in the step (b), the light is sequentially irradiated through the test target plate layer to enhance the relationship between the test pattern and the test target plate layer of the layer. contrast. 19.如权利要求18所述的方法,在上述方法中,将一光源设置于所述立体测试标版的上部,以使得所述光源产生的光线依次经过所述测试标版层从上向下辐射。19. The method as claimed in claim 18, in said method, a light source is arranged on the top of said three-dimensional test standard plate, so that the light produced by said light source passes through said test standard plate layer from top to bottom radiation. 20.如权利要求18所述的方法,在上述方法中,将至少一光源设置于所述立体测试标版的下部,以使得所述光源产生的光线依次经过所述测试标版层从下向上辐射。20. The method as claimed in claim 18, in said method, at least one light source is arranged on the bottom of said three-dimensional test standard plate, so that the light produced by said light source passes through said test standard plate layer from bottom to top radiation. 21.如权利要求18至20中任一所述的方法,其中经过所述测试标版层的光线为均匀光线。21. The method of any one of claims 18 to 20, wherein the light passing through the test target layer is uniform light. 22.一种立体测试标版的形成方法,其特征在于,所述方法包括步骤:将一投影源设置于一光源的光线辐射路径,其中当所述光源产生光线时,所述投影源得以在一预设空间内沿着深度方向形成不重叠的多层测试图案,并且相邻两层所述测试图案互相间隔地排列,以形成所述立体测试标版;22. A method for forming a three-dimensional test standard plate, characterized in that the method comprises the steps of: arranging a projection source on a light radiation path of a light source, wherein when the light source generates light, the projection source can be Non-overlapping multi-layer test patterns are formed along the depth direction in a predetermined space, and the test patterns on two adjacent layers are arranged at intervals to form the three-dimensional test standard plate; 其中设定待测试一摄像装置的后焦拟合精度参数为a,焦距参数为EFL,设定所述立体测试标版的位置参数为h,任一层所述测试图案的位置参数为hj,所述测试标版层的层数参数为j;其中,所述立体测试标版的位置满足函数表达式:a=-(EFL*(-hj)/(EFL-hj)-(EFL*(-h)/(EFL-h)))。Wherein, the back focus fitting accuracy parameter of a camera device to be tested is set to be a, the focal length parameter is EFL, the position parameter of the three-dimensional test standard plate is set to be h, and the position parameter of any layer of the test pattern is h j , the layer number parameter of the test standard plate layer is j; wherein, the position of the three-dimensional test standard plate satisfies the function expression: a=-(EFL*(-h j )/(EFL-h j )-(EFL *(-h)/(EFL-h))). 23.如权利要求22所述的形成方法,其中所述投影源设置于所述光源与所述预设空间之间。23. The forming method according to claim 22, wherein the projection source is disposed between the light source and the predetermined space. 24.如权利要求22所述的形成方法,其中所述投影源包括一平面标版以及一变焦透镜组,其中所述平面标版设置于所述光源与所述变焦透镜组之间,以使得所述光源产生的光线,得以将所述平面标版的信息透过所述变焦透镜组辐射至所述预设空间。24. The forming method as claimed in claim 22, wherein the projection source comprises a flat target plate and a zoom lens group, wherein the flat target plate is arranged between the light source and the zoom lens group, so that The light generated by the light source can radiate the information of the planar standard plate to the preset space through the zoom lens group. 25.如权利要求24所述的形成方法,其中所述平面标版还具有至少一测试目标,其中所述测试目标得以经过所述变焦透镜组投影至所述预设空间,以形成所述测试图案。25. The forming method according to claim 24, wherein the planar standard plate further has at least one test target, wherein the test target is projected to the preset space through the zoom lens group to form the test target pattern. 26.如权利要求22所述的形成方法,其中所述测试图案的形状选自方形、三角形、圆形、椭圆形、十字线、黑白线对、星形中的一种或者多种的组合。26. The forming method according to claim 22, wherein the shape of the test pattern is selected from one or a combination of squares, triangles, circles, ellipses, crosshairs, pairs of black and white lines, and stars.
CN201410783740.7A 2014-09-30 2014-12-16 A kind of three-dimensional test mark version and its design and forming method Expired - Fee Related CN105791811B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/091014 WO2016050195A1 (en) 2014-09-30 2015-09-29 Light box, stereo test chart, and adjustment device and application thereof
US14/872,014 US10432927B2 (en) 2014-09-30 2015-09-30 3D test chart, adjusting arrangement, forming method and adjusting method thereof
US16/536,290 US10917635B2 (en) 2014-09-30 2019-08-08 3D test chart, adjusting arrangement, forming method and adjusting method thereof
US17/129,754 US11575883B2 (en) 2014-09-30 2020-12-21 3D test chart, adjusting arrangement, forming method and adjusting method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410524278 2014-09-30
CN2014105242789 2014-09-30

Publications (2)

Publication Number Publication Date
CN105791811A CN105791811A (en) 2016-07-20
CN105791811B true CN105791811B (en) 2018-11-27

Family

ID=56335675

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201410783740.7A Expired - Fee Related CN105791811B (en) 2014-09-30 2014-12-16 A kind of three-dimensional test mark version and its design and forming method
CN201410781236.3A Expired - Fee Related CN105763869B (en) 2014-09-30 2014-12-16 Test, method of adjustment and the adjusting apparatus of photographic device
CN201410781368.6A Expired - Fee Related CN105763870B (en) 2014-09-30 2014-12-16 A kind of cross DNA mitochondrial DNA test mark version and forming method thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201410781236.3A Expired - Fee Related CN105763869B (en) 2014-09-30 2014-12-16 Test, method of adjustment and the adjusting apparatus of photographic device
CN201410781368.6A Expired - Fee Related CN105763870B (en) 2014-09-30 2014-12-16 A kind of cross DNA mitochondrial DNA test mark version and forming method thereof

Country Status (1)

Country Link
CN (3) CN105791811B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656419B (en) * 2016-07-26 2023-06-23 宁波舜宇光电信息有限公司 Depth correction test equipment and test method thereof
CN109716747B (en) * 2016-07-29 2022-10-28 Lg伊诺特有限公司 Camera module
WO2018051949A1 (en) * 2016-09-14 2018-03-22 富士フイルム株式会社 Evaluation system and evaluation method
CN106851257B (en) * 2016-12-27 2018-12-14 歌尔股份有限公司 The assemble method of camera lens and image sensor to be assembled
CN108414196B (en) * 2018-01-24 2020-08-07 歌尔股份有限公司 Self-changing pattern folding drawing board device
CN109889823B (en) * 2019-04-08 2021-02-26 苏州莱测检测科技有限公司 Detection method for detecting performance of stereoscopic vision imaging equipment
CN110108450B (en) * 2019-04-11 2021-05-18 歌尔光学科技有限公司 Method for acquiring point cloud picture by TOF module, test assembly and test system
CN110446031A (en) * 2019-08-14 2019-11-12 昆山丘钛微电子科技有限公司 Camera module detection system
CN113092079B (en) * 2020-01-09 2023-09-08 舜宇光学(浙江)研究院有限公司 Definition detection target and method, system, electronic equipment and detection platform thereof
JP2023165051A (en) * 2020-10-05 2023-11-15 Cctech Japan株式会社 Test chart, camera manufacturing device, manufacturing method of camera, and focus detection program
CN116760974B (en) * 2023-08-22 2024-02-23 深圳市灿锐科技有限公司 Method for automatically evaluating lens definition and depth effect
CN117808356B (en) * 2023-12-29 2024-07-26 金华金匠混凝土有限公司 Concrete member quality control method and system based on visual monitoring

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684502A (en) * 2004-04-16 2005-10-19 信统科技股份有限公司 Image sensing module focus detection method and device
CN1862305A (en) * 2005-05-13 2006-11-15 信统科技股份有限公司 Image sensing module multi-point focus detection method and device
CN101413843B (en) * 2007-10-19 2011-03-30 鸿富锦精密工业(深圳)有限公司 Method and device for measuring modulation transfer function value
CN101458156B (en) * 2007-12-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 Measuring method of modulation transfer function value
CN101738305A (en) * 2008-11-24 2010-06-16 金大凤 Detection picture for detection device of camera module
CN101957553B (en) * 2009-07-17 2014-02-19 鸿富锦精密工业(深圳)有限公司 Method for measuring modulation transfer function value of measurement lens
JP5473493B2 (en) * 2009-08-31 2014-04-16 キヤノン株式会社 Imaging apparatus and control method thereof
CN203444234U (en) * 2013-06-29 2014-02-19 歌尔声学股份有限公司 Lens testing device

Also Published As

Publication number Publication date
CN105763869A (en) 2016-07-13
CN105763870B (en) 2018-01-16
CN105763869B (en) 2018-09-18
CN105763870A (en) 2016-07-13
CN105791811A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105791811B (en) A kind of three-dimensional test mark version and its design and forming method
US11575883B2 (en) 3D test chart, adjusting arrangement, forming method and adjusting method thereof
CN103308007B (en) The IC pin coplanarity measuring system of higher order reflection and grating image and method
CN1936496B (en) Pattern light irradiation device, three-dimensional shape measuring device, and method of pattern light irradiation
US9612687B2 (en) Auto-aligned illumination for interactive sensing in retro-reflective imaging applications
CN109891428B (en) Sheet and optical fingerprint scanner
CN104613930B (en) Method and device for measuring distance as well as mobile terminal
TWI244861B (en) Device and method for optical center detection
CN110213491B (en) A focusing method, device and storage medium
CN211152041U (en) Electronic equipment and camera assembly thereof
CN103713392A (en) Space image forming element, method of manufacturing the same, display device, and terminal
JP5686139B2 (en) Manufacturing method of glass substrate for liquid crystal display panel
Percoco et al. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view
CN106353971B (en) Exposure device, exposure method and device making method
CN102183206B (en) Line width measuring method for line on printed circuit board (PCB)
CN106772738B (en) Alignment method and grating structure
TW201121319A (en) Image acquiring device
KR20170052297A (en) Device and method for inspecting external appearance of display panel
WO2016050195A1 (en) Light box, stereo test chart, and adjustment device and application thereof
KR101810858B1 (en) Apparatus for Designing Large-scale Hologram and Method thereof
CN108303040A (en) A kind of three-dimension measuring system and application method based on plane compound eye and coaxial configuration light
JP3217243U (en) Non-contact surface contour scanning device
CN113532800A (en) Analysis method of light-transmitting area and related equipment and device
KR102137160B1 (en) Thickness measuring device
CN201508165U (en) Two-dimensional displacement test device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181127

CF01 Termination of patent right due to non-payment of annual fee