CN105776129B - A kind of manufacture method of the controllable flexible micro-nano post array of form - Google Patents
A kind of manufacture method of the controllable flexible micro-nano post array of form Download PDFInfo
- Publication number
- CN105776129B CN105776129B CN201610211929.8A CN201610211929A CN105776129B CN 105776129 B CN105776129 B CN 105776129B CN 201610211929 A CN201610211929 A CN 201610211929A CN 105776129 B CN105776129 B CN 105776129B
- Authority
- CN
- China
- Prior art keywords
- micro
- nano
- polymer
- post array
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 229920000642 polymer Polymers 0.000 claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 13
- 239000004793 Polystyrene Substances 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 6
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 6
- 229920002223 polystyrene Polymers 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- -1 polydimethylsiloxane Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims 8
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 235000013339 cereals Nutrition 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000010345 tape casting Methods 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 abstract description 41
- 239000002061 nanopillar Substances 0.000 abstract description 19
- 239000010410 layer Substances 0.000 abstract description 11
- 239000012790 adhesive layer Substances 0.000 abstract description 7
- 238000000206 photolithography Methods 0.000 abstract description 5
- 238000007790 scraping Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 238000003491 array Methods 0.000 description 9
- 238000000576 coating method Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 4
- 238000001523 electrospinning Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000813 microcontact printing Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0004—Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
Abstract
一种形态可控柔性微纳米柱阵列的制造方法,先在基底表面涂覆水溶胶粘附层,然后在水溶胶粘附层上通过光刻工艺获取微纳米图形化的光刻胶,再在光刻胶表面通过刮涂法得到微纳米颗粒图形化,去除光刻胶,得到微纳米颗粒的图形化模板;将聚合物涂覆在衬底表面,然后对衬底进行预加热;将图形化模板表面的微纳米颗粒接触并嵌入聚合物;再提拉图形化模板,使聚合物被拉伸为微纳米柱阵列,然后对衬底加热使微纳米柱阵列固化;再加热图形化模板,使微纳米颗粒脱离水溶胶粘附层,得到顶端带有微纳米颗粒的微纳米柱阵列;最后将微纳米柱阵列顶端的微纳米颗粒去除,获得聚合物微纳米柱阵列,本发明具有操作简单、成本低、周期短的优点。
A method for manufacturing a form-controllable flexible micro-nano pillar array. Firstly, a hydrosol adhesive layer is coated on the surface of the substrate, and then a micro-nano patterned photoresist is obtained on the hydrosol adhesive layer through a photolithography process. The surface of the resist is patterned with micro-nano particles by scraping, and the photoresist is removed to obtain a patterned template of micro-nano particles; the polymer is coated on the surface of the substrate, and then the substrate is preheated; the patterned template The micro-nano particles on the surface contact and embed the polymer; then pull the patterned template to make the polymer stretched into a micro-nano column array, and then heat the substrate to solidify the micro-nano column array; then heat the patterned template to make the micro-nano column array The nanoparticles are detached from the hydrosol adhesion layer to obtain a micro-nano column array with micro-nano particles on the top; finally, the micro-nano particles on the top of the micro-nano column array are removed to obtain a polymer micro-nano column array. The present invention has the advantages of simple operation, low cost Advantages of low cost and short cycle time.
Description
技术领域technical field
本发明属于微纳制造技术领域,具体涉及一种形态可控柔性微纳米柱阵列的制造方法。The invention belongs to the technical field of micro-nano manufacturing, and in particular relates to a method for manufacturing a shape-controllable flexible micro-nano column array.
背景技术Background technique
高深宽比聚合物微纳米柱阵列具有比表面积大和良好的电磁波调制能力,广泛应用于太阳能电池中电子的增强吸收、生物领域中的细胞检查和颗粒分离、功能涂层(超疏水和超疏油)、微流控芯片等领域。目前,高深宽比聚合物微纳米柱阵列的制备方法主要有:静电纺丝法、纳米压印法、电诱导成型法以及模具复型法。其中,静电纺丝法是指聚合物溶液(或熔体)在高压电场的作用下形成纤维的过程,其核心是使带电荷的高分子溶液或熔体在静电场中流动与变形,然后经溶剂蒸发或熔体冷却而固化,于是得到微纳米柱状物质;纳米压印法主要包括热压印、紫外纳米压印和微接触印刷,纳米压印法依赖于模具,通过微孔模具挤压聚合物,经过加热/紫外光处理,获得与模具图形结构互补的聚合物微柱结构;电诱导成型法是利用静电力实现对介电聚合物的流变驱动,实现微纳米柱子结构制备;模具复型法是把流动的聚合物浇注在微孔阵列的模具上,通过真空环境实现聚合物充分填充微孔,加热固化之后,脱模获得聚合物微纳米柱阵列。High-aspect-ratio polymer micro-nanopillar arrays have large specific surface area and good electromagnetic wave modulation ability, and are widely used in the enhanced absorption of electrons in solar cells, cell inspection and particle separation in the biological field, functional coatings (superhydrophobic and superoleophobic) ), microfluidic chips and other fields. At present, the preparation methods of high-aspect-ratio polymer micro-nano-column arrays mainly include: electrospinning, nanoimprinting, electrical induction molding, and mold replicating. Among them, the electrospinning method refers to the process in which a polymer solution (or melt) forms fibers under the action of a high-voltage electric field. Its core is to make the charged polymer solution or melt flow and deform in an electrostatic field, and then undergo The solvent evaporates or the melt cools and solidifies, so that micro-nano columnar substances are obtained; nano-imprinting methods mainly include thermal embossing, ultraviolet nano-imprinting and micro-contact printing. After heating/ultraviolet light treatment, a polymer micro-column structure complementary to the pattern structure of the mold is obtained; the electric induction molding method uses electrostatic force to realize the rheological drive of the dielectric polymer, and realizes the preparation of the micro-nano column structure; the mold complex The molding method is to pour the flowing polymer on the mold of the micro-hole array, and realize the polymer to fully fill the micro-holes through a vacuum environment. After heating and curing, the polymer micro-nano column array is obtained by demoulding.
现阶段高深宽比聚合物微纳米柱阵列的制造工艺存在以下问题:静电纺丝法制备的微纳米柱或纤维强度较低,另外难以得到彼此分离的纳米纤维长丝或短纤维,产量很低;纳米压印法引入的机械压力会引发纳米结构几何变形、变尺寸结构填充不均匀等问题;电诱导成型法以及模具复型法依赖于模板,模板一般通过干法刻蚀获得,其制造成本较高,此外模具复型法脱模过程中容易出现微米柱断裂的问题等。另外,现有工艺难以实现倾斜或者复杂的聚合物微纳米柱阵列的制造。这些问题严重制约了含有聚合物微纳米柱阵列的器件功能可靠性。At this stage, the manufacturing process of high aspect ratio polymer micro-nano column arrays has the following problems: the micro-nano column or fiber prepared by electrospinning method has low strength, and it is difficult to obtain nanofiber filaments or short fibers separated from each other, and the yield is very low ; The mechanical pressure introduced by the nanoimprint method will cause problems such as geometric deformation of the nanostructure and uneven filling of the variable-size structure; the electric induction molding method and the mold replica method rely on the template, which is generally obtained by dry etching, and its manufacturing cost In addition, the problem of micro-column breakage is prone to occur during the demoulding process of the mold replica method. In addition, the existing technology is difficult to realize the fabrication of inclined or complex polymer micro-nano column arrays. These issues severely restrict the functional reliability of devices containing polymeric micro-nanopillar arrays.
发明内容Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供一种形态可控柔性微纳米柱阵列的制造方法,实现低成本、快速的制造聚合物微纳米柱阵列,同时实现聚合物微纳米柱形态以及聚合物微纳米柱阵列图形化的调控,具有操作简单、成本低、周期短的优点。In order to overcome the shortcomings of the above-mentioned prior art, the purpose of the present invention is to provide a method for manufacturing a flexible micro-nano column array with controllable morphology, which can realize low-cost and rapid manufacturing of polymer micro-nano column arrays, and at the same time realize polymer micro-nano column arrays. The regulation of the morphology and the patterning of the polymer micro-nano pillar array has the advantages of simple operation, low cost and short cycle.
为了达到上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:
一种形态可控柔性微纳米柱阵列的制造方法,包括以下步骤:A method for manufacturing a shape-controllable flexible micro-nano pillar array, comprising the following steps:
1)先在基底表面涂覆水溶胶粘附层,然后在水溶胶粘附层上通过光刻工艺获取微纳米图形化的光刻胶;再在光刻胶表面通过刮涂法得到粒径D的微纳米颗粒图形化,然后去除光刻胶,得到微纳米颗粒的图形化模板;1) Coating a hydrosol adhesive layer on the surface of the substrate first, and then obtaining a micro-nano patterned photoresist on the hydrosol adhesive layer through a photolithography process; Micro-nanoparticles are patterned, and then the photoresist is removed to obtain a patterned template for micro-nanoparticles;
2)将聚合物涂覆在衬底表面,然后对衬底进行预加热,预加热参数:温度60-90℃,时间为2-10分钟;2) Coating the polymer on the surface of the substrate, and then preheating the substrate, the preheating parameters: the temperature is 60-90°C, and the time is 2-10 minutes;
3)将图形化模板表面的微纳米颗粒接触并嵌入聚合物中,嵌入深度T=1-500μm;3) Contacting and embedding the micro-nano particles on the surface of the patterned template into the polymer, the embedding depth is T=1-500 μm;
4)再提拉图形化模板,使聚合物被拉伸为微纳米柱阵列,提拉方向与水平方向夹角为α,0<α<180°,提拉速率为10-1000μm/s,时间为1-10s,然后对衬底加热使微纳米柱阵列固化,加热温度100-180℃,时间为10-30分钟;4) Pull the patterned template again, so that the polymer is stretched into an array of micro-nano pillars, the angle between the pulling direction and the horizontal direction is α, 0<α<180°, the pulling rate is 10-1000 μm/s, and the time for 1-10s, and then heat the substrate to solidify the micro-nano pillar array, the heating temperature is 100-180°C, and the time is 10-30 minutes;
5)再加热图形化模板,加热温度为100-200℃,时间为1-5分钟,使微纳米颗粒脱离水溶胶粘附层,得到顶端带有微纳米颗粒的微纳米柱阵列;5) reheating the patterned template at a heating temperature of 100-200° C. for 1-5 minutes, so that the micro-nano particles are separated from the hydrosol adhesion layer, and an array of micro-nano pillars with micro-nano particles on the top is obtained;
6)最后将微纳米柱阵列顶端的微纳米颗粒去除,获得聚合物的微纳米柱阵列。6) Finally, the micro-nano particles on the top of the micro-nano column array are removed to obtain the polymer micro-nano column array.
所述的步骤1)微纳米颗粒为球形聚苯乙烯、正方体三氧化二铟或柱状氯化钠。The step 1) micro-nano particles are spherical polystyrene, cubic indium trioxide or columnar sodium chloride.
所述的步骤2)中聚合物为PDMS(聚二甲基硅氧烷)、PS(聚苯乙烯)或PTT(聚氨酯)。The polymer in the step 2) is PDMS (polydimethylsiloxane), PS (polystyrene) or PTT (polyurethane).
所述的步骤3)中微纳米颗粒的粒径D与其嵌入聚合物嵌入深度T的关系为:D>T>0。The relationship between the particle size D of the micro-nano particles and the embedding depth T of the embedded polymer in the step 3) is: D>T>0.
所述的步骤6)使用甲苯、硝酸或去离子水去除微纳米颗粒。The step 6) uses toluene, nitric acid or deionized water to remove micro-nano particles.
本发明的优点在于:The advantages of the present invention are:
通过微纳米颗粒的图形化操控实现聚合物微纳米柱形态以及聚合物微纳米柱阵列图形化的调控;通过调控微纳米颗粒嵌入聚合物深度、预热温度、提拉速率和提拉时间,实现聚合物微纳米柱高深宽比的调控,具有可控性精确、操作性简易优点;同时,通过改变提拉方向与水平方向夹角α(0<α<180°),可以调控微纳米柱的倾斜角度;通过加热模板使水溶胶粘附层粘性降低,从而使得微纳米颗粒脱落,完成聚合物微纳米柱阵列与模板的分离,有效避免了传统脱模过程中微纳米柱容易断裂的问题。本发明具有操作简单、成本低、周期短的优点。Through the graphic manipulation of micro-nano particles, the morphology of polymer micro-nano column and the patterning of polymer micro-nano column array can be realized; The adjustment of the aspect ratio of the polymer micro-nano column has the advantages of precise controllability and simple operation; at the same time, by changing the angle α (0<α<180°) between the pulling direction and the horizontal direction, the micro-nano column can be regulated. Inclination angle; the viscosity of the hydrosol adhesive layer is reduced by heating the template, so that the micro-nano particles fall off, and the separation of the polymer micro-nano column array and the template is completed, which effectively avoids the problem that the micro-nano column is easy to break in the traditional demoulding process. The invention has the advantages of simple operation, low cost and short period.
附图说明Description of drawings
图1是实施例1制造微纳米颗粒图形化的模板示意图。FIG. 1 is a schematic diagram of a template for patterning micro-nanoparticles produced in Example 1. FIG.
图2是实施例1模板嵌入聚合物示意图。Fig. 2 is a schematic diagram of the template-embedded polymer in Example 1.
图3是实施例1提拉模板拉伸聚合物示意图。Fig. 3 is a schematic diagram of stretching the polymer in the pulling template of Example 1.
图4(a)是对模板加热使微纳米颗粒脱离粘附层示意图,图4(b)是微纳米颗粒脱离粘附层示意图。Fig. 4(a) is a schematic diagram of heating the template to separate the micro-nano particles from the adhesion layer, and Fig. 4(b) is a schematic diagram of the micro-nano particles from the adhesion layer.
图5去实施例1除微纳米颗粒获得聚合物微纳米柱阵列示意图。Fig. 5 is a schematic diagram of obtaining a polymer micro-nano pillar array by removing micro-nano particles in Example 1.
图6(a)是实施例2模板嵌入聚合物示意图,图6(b)是实施例2提拉模板拉伸聚合物示意图,图6(c)是实施例2去除微纳米颗粒获得聚合物微纳米柱阵列示意图。Figure 6(a) is a schematic diagram of the template-embedded polymer in Example 2, Figure 6(b) is a schematic diagram of the template-stretched polymer in Example 2, and Figure 6(c) is a schematic diagram of polymer microparticles obtained by removing micro-nano particles in Example 2. Schematic of the nanopillar array.
图7(a)是实施例3制造微纳米颗粒图形化的模板示意图,图7(b)是实施例3模板嵌入聚合物示意图,图7(c)是实施例3提拉模板拉伸聚合物示意图,图7(d)是实施例3去除微纳米颗粒获得聚合物微纳米柱阵列示意图。Figure 7(a) is a schematic diagram of the template for patterning micro-nanoparticles produced in Example 3, Figure 7(b) is a schematic diagram of the template embedded in the polymer in Example 3, and Figure 7(c) is a template drawing polymer in Example 3 Schematic diagram, FIG. 7( d ) is a schematic diagram of removing micro-nano particles to obtain a polymer micro-nano column array in Example 3.
具体实施方式detailed description
下面通过附图和实施例对本发明做进一步说明。The present invention will be further described below by means of the accompanying drawings and examples.
实施例1Example 1
一种形态可控柔性微纳米柱阵列的制造方法,包括以下步骤:A method for manufacturing a shape-controllable flexible micro-nano pillar array, comprising the following steps:
1)参照图1和图2,先在基底1表面涂覆水溶胶粘附层2,然后在水溶胶粘附层2上通过光刻工艺获取微纳米图形化的光刻胶;再在光刻胶表面通过刮涂法得到粒径D1=5μm的微纳米颗粒3的图形化,然后去除光刻胶,得到微纳米颗粒3的图形化模板,微纳米颗粒3为球形聚苯乙烯;1) With reference to Fig. 1 and Fig. 2, first coat the hydrosol adhesive layer 2 on the surface of the substrate 1, then obtain the micro-nano patterned photoresist on the hydrosol adhesive layer 2 by a photolithography process; The surface is patterned with micro-nanoparticles 3 with particle diameter D1=5 μm by scraping method, and then the photoresist is removed to obtain a patterned template of micro-nanoparticles 3, and the micro-nanoparticles 3 are spherical polystyrene;
2)参照图2,将聚合物4涂覆在衬底5表面,然后对衬底5进行预加热,预加热参数:温度为60℃,时间为10分钟,聚合物4为PDMS(聚二甲基硅氧烷);2) Referring to Fig. 2, the polymer 4 is coated on the surface of the substrate 5, and then the substrate 5 is preheated, the preheating parameters: the temperature is 60°C, the time is 10 minutes, and the polymer 4 is PDMS (Polydimethylene base siloxane);
3)参照图2,将图形化模板表面的微纳米颗粒3接触并嵌入聚合物4,嵌入深度T1=2μm;3) Referring to FIG. 2, the micro-nano particles 3 on the surface of the patterned template are contacted and embedded in the polymer 4, and the embedding depth is T1=2 μm;
4)参照图3,再提拉图形化模板,使聚合物4被拉伸为微纳米柱阵列6,提拉参数:提拉方向与水平方向夹角为α=90°,提拉速率为10μm/s,时间为10s;提拉的微纳米柱阵列6长度S1=100μm,然后对衬底5加热使微纳米柱阵列6固化,加热温度为100℃,保持30分钟;4) Referring to Figure 3, pull the patterned template again, so that the polymer 4 is stretched into a micro-nano column array 6, the pulling parameters: the angle between the pulling direction and the horizontal direction is α=90°, and the pulling rate is 10 μm /s, the time is 10s; the length of the pulled micro-nano column array 6 is S1=100 μm, and then the substrate 5 is heated to solidify the micro-nano column array 6, and the heating temperature is 100° C., and kept for 30 minutes;
5)参照图4(a),再加热图形化模板,加热温度为100℃,时间为5分钟,使微纳米颗粒3脱离水溶胶粘附层2,参照图4(b),得到顶端带有微纳米颗粒3的微纳米柱阵列6;5) Referring to Figure 4(a), reheat the patterned template at a heating temperature of 100°C for 5 minutes to separate the micro-nanoparticles 3 from the hydrosol adhesion layer 2, and refer to Figure 4(b), to obtain A micro-nano pillar array 6 of micro-nano particles 3;
6)参照图5,最后通过甲苯将微纳米柱阵列6顶端的微纳米颗粒3溶解,获得聚合物4的微纳米柱阵列6,从而得到与水平方向夹角为α=90°的PDMS的聚合物4的微纳米柱阵列6。6) Referring to FIG. 5 , finally dissolve the micronanoparticles 3 at the top of the micronanocolumn array 6 with toluene to obtain the micronanocolumn array 6 of the polymer 4, thereby obtaining the polymerization of PDMS with an angle of α=90° to the horizontal direction The micro-nano column array 6 of the object 4.
实施例2Example 2
一种形态可控柔性微纳米柱阵列的制造方法,包括以下步骤:A method for manufacturing a shape-controllable flexible micro-nano pillar array, comprising the following steps:
1)先在基底1表面涂覆水溶胶粘附层2,然后在水溶胶粘附层2上通过光刻工艺获取微纳米图形化的光刻胶;再在光刻胶表面通过刮涂法得到粒径D2=10μm的微纳米颗粒3的图形化,然后去除光刻胶,得到微纳米颗粒3的图形化模板,微纳米颗粒3为正方体三氧化二铟;1) Coating a hydrosol adhesion layer 2 on the surface of the substrate 1 first, and then obtaining a micro-nano patterned photoresist on the hydrosol adhesion layer 2 through a photolithography process; Patterning of micro-nanoparticles 3 with a diameter D2=10 μm, and then removing the photoresist to obtain a patterned template of micro-nanoparticles 3, where the micro-nanoparticles 3 are cubic indium trioxide;
2)将聚合物4涂覆在衬底5表面,然后对衬底5进行预加热,预加热参数:温度为75℃,时间为6分钟,聚合物4为PS(聚苯乙烯);2) Coating the polymer 4 on the surface of the substrate 5, and then preheating the substrate 5, the preheating parameters: the temperature is 75°C, the time is 6 minutes, and the polymer 4 is PS (polystyrene);
3)参照图6(a),将图形化模板表面的微纳米颗粒3接触并嵌入聚合物4,嵌入深度T2=5μm;3) Referring to FIG. 6(a), contact and embed the micronanoparticles 3 on the surface of the patterned template into the polymer 4, and the embedding depth T2=5 μm;
4)参照图6(b),再提拉图形化的模板,使聚合物4被拉伸为微纳米柱阵列6,提拉参数:提拉方向与水平方向夹角为α=45°,提拉速率为500μm/s,时间为5s;提拉的微纳米柱阵列6长度S2=2500μm,然后对衬底5加热使微纳米柱阵列6固化,加热温度为140℃,保持15分钟;4) Referring to Figure 6(b), pull the patterned template again, so that the polymer 4 is stretched into a micro-nano pillar array 6, the pulling parameters: the angle between the pulling direction and the horizontal direction is α=45°, and the The pulling rate is 500 μm/s, and the time is 5 s; the length of the pulled micro-nano column array 6 is S2=2500 μm, and then the substrate 5 is heated to cure the micro-nano column array 6, and the heating temperature is 140° C., and kept for 15 minutes;
5)再加热图形化模板,加热温度为150℃,时间为2分钟,使微纳米颗粒3脱离水溶胶粘附层2,得到顶端带有微纳米颗粒3的微纳米柱阵列6,5) Reheating the patterned template at a heating temperature of 150° C. for 2 minutes to separate the micro-nano particles 3 from the hydrosol adhesion layer 2 to obtain a micro-nano pillar array 6 with micro-nano particles 3 on the top,
6)参照图6(c),最后通过硝酸溶液将微纳米柱阵列6顶端的微纳米颗粒3溶解,获得聚合物4的微纳米柱阵列6,从而得到与水平方向夹角为α=45°的PS的聚合物4微纳米柱6阵列。6) Referring to Figure 6(c), finally dissolve the micronanoparticles 3 at the top of the micronanocolumn array 6 by nitric acid solution to obtain the micronanocolumn array 6 of the polymer 4, so that the angle between the horizontal direction and the horizontal direction is α=45° 6 arrays of PS polymers with 4 micro-nanopillars.
实施例3Example 3
一种形态可控柔性微纳米柱阵列的制造方法,包括以下步骤:A method for manufacturing a shape-controllable flexible micro-nano pillar array, comprising the following steps:
1)参照图7(a),先在基底1表面涂覆水溶胶粘附层2,然后在水溶胶粘附层2上通过光刻工艺获取微纳米图形化的光刻胶;然后在光刻胶表面通过刮涂法得到粒径D3=200μm的微纳米颗粒3口字型的图形化;去除光刻胶得到微纳米颗粒3口字型的图形化模板,微纳米颗粒3为柱状氯化钠;1) Referring to Fig. 7(a), the surface of the substrate 1 is coated with a hydrosol adhesion layer 2, and then a micro-nano patterned photoresist is obtained on the hydrosol adhesion layer 2 through a photolithography process; The surface is patterned with a 3-shaped micro-nano particle with a particle diameter of D3=200 μm by a scraping method; the photoresist is removed to obtain a 3-shaped patterned template of the micro-nano particle, and the micro-nano particle 3 is columnar sodium chloride;
2)将聚合物4涂覆在衬底5表面,然后对衬底5进行预加热,预加热参数:温度为90℃,时间为2分钟,聚合物4为PTT(聚氨酯);2) Coating the polymer 4 on the surface of the substrate 5, and then preheating the substrate 5, the preheating parameters: the temperature is 90°C, the time is 2 minutes, and the polymer 4 is PTT (polyurethane);
3)参照图7(b),将图形化模板表面的微纳米颗粒3接触并嵌入聚合物4,嵌入深度T3=50μm;3) Referring to FIG. 7(b), contact and embed the micronanoparticles 3 on the surface of the patterned template into the polymer 4, and the embedding depth T3=50 μm;
4)参照图7(c),再提拉图形化模板,使聚合物4被拉伸为微纳米柱阵列6,提拉参数:提拉方向与水平方向夹角为α=135°,提拉速率为1000μm/s,时间为6s;提拉的微纳米柱阵列6长度S3=6000μm,然后对衬底5加热使微纳米柱阵列6固化,加热温度为180℃,保持10分钟;4) Referring to Figure 7(c), pull the patterned template again, so that the polymer 4 is stretched into a micro-nano column array 6, the pulling parameters: the angle between the pulling direction and the horizontal direction is α=135°, and the pulling The rate is 1000 μm/s, and the time is 6s; the length of the pulled micro-nano column array 6 is S3=6000 μm, and then the substrate 5 is heated to cure the micro-nano column array 6, and the heating temperature is 180° C., and kept for 10 minutes;
5)加热图形化模板,加热温度为200℃,时间为1分钟,使微纳米颗粒3脱离水溶胶粘附层2,得到顶端带有微纳米颗粒3的微纳米柱阵列6;5) heating the patterned template at a heating temperature of 200° C. for 1 minute to separate the micro-nano particles 3 from the hydrosol adhesion layer 2 to obtain a micro-nano pillar array 6 with micro-nano particles 3 on the top;
6)参照图7(d),最后通过去离子水将微纳米柱阵列6顶端的微纳米颗粒3溶解,获得聚合物4的微纳米柱阵列6,从而得到与水平方向夹角为α=135°的PTT的聚合物4的微纳米柱阵列6。6) Referring to Figure 7(d), finally dissolve the micro-nano particles 3 at the top of the micro-nano column array 6 with deionized water to obtain the micro-nano column array 6 of the polymer 4, so that the angle with the horizontal direction is α=135 ° Micro-nanopillar arrays 6 of PTT polymers 4 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610211929.8A CN105776129B (en) | 2016-04-06 | 2016-04-06 | A kind of manufacture method of the controllable flexible micro-nano post array of form |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610211929.8A CN105776129B (en) | 2016-04-06 | 2016-04-06 | A kind of manufacture method of the controllable flexible micro-nano post array of form |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105776129A CN105776129A (en) | 2016-07-20 |
CN105776129B true CN105776129B (en) | 2017-03-29 |
Family
ID=56395754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610211929.8A Active CN105776129B (en) | 2016-04-06 | 2016-04-06 | A kind of manufacture method of the controllable flexible micro-nano post array of form |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105776129B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106430079B (en) * | 2016-09-28 | 2017-12-26 | 西安交通大学 | A kind of manufacture method of the compound micron post of electric field induced polymer base functionally gradient |
CN107364057A (en) * | 2017-07-10 | 2017-11-21 | 天津工业大学 | A kind of preparation method of different roughness template |
CN108285870A (en) * | 2018-02-02 | 2018-07-17 | 广东工业大学 | A kind of tissue culture plate and preparation method thereof with micro-pillar array |
CN110261452B (en) * | 2019-06-13 | 2020-03-24 | 西安交通大学 | Method for preparing reconfigurable ultramicroelectrode with controllable morphology based on magnetic field driving |
CN112357876B (en) * | 2020-11-25 | 2024-06-04 | 四川大学 | Method for preparing polymer array by combining 3D printing with electric field induction molding |
CN113368126B (en) * | 2021-05-24 | 2022-08-05 | 国家纳米科学中心 | A kind of micro-nano substrate and its preparation method and application |
CN113776722A (en) * | 2021-07-27 | 2021-12-10 | 西北工业大学 | Preparation process of micro-cylinder sensor measurement array |
CN113772616B (en) * | 2021-08-23 | 2023-12-19 | 西安交通大学 | Multi-layer micro-nano mechanical structure for enhancing damage resistance of functional surface |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101837946A (en) * | 2010-05-14 | 2010-09-22 | 华中科技大学 | Method for preparing dry adhesive |
CN102887477A (en) * | 2012-10-11 | 2013-01-23 | 无锡英普林纳米科技有限公司 | Polymer surface nanowire array and preparation method thereof |
CN103434127A (en) * | 2013-08-08 | 2013-12-11 | 西安交通大学 | High depth-to-width ratio nanofiber structure based on mechanical stretching and preparation method of high depth-to-width ratio nanofiber structure |
CN105018565A (en) * | 2015-06-26 | 2015-11-04 | 西安交通大学 | Molecular target capturing perception antenna making and pose controlling method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006010380A (en) * | 2004-06-23 | 2006-01-12 | Canon Inc | Magnetic coupling probe carrier and control method of reaction with target substance using it |
US9279759B2 (en) * | 2012-05-01 | 2016-03-08 | University Of Maryland, College Park | Nanoparticle array with tunable nanoparticle size and separation |
-
2016
- 2016-04-06 CN CN201610211929.8A patent/CN105776129B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101837946A (en) * | 2010-05-14 | 2010-09-22 | 华中科技大学 | Method for preparing dry adhesive |
CN102887477A (en) * | 2012-10-11 | 2013-01-23 | 无锡英普林纳米科技有限公司 | Polymer surface nanowire array and preparation method thereof |
CN103434127A (en) * | 2013-08-08 | 2013-12-11 | 西安交通大学 | High depth-to-width ratio nanofiber structure based on mechanical stretching and preparation method of high depth-to-width ratio nanofiber structure |
CN105018565A (en) * | 2015-06-26 | 2015-11-04 | 西安交通大学 | Molecular target capturing perception antenna making and pose controlling method |
Non-Patent Citations (2)
Title |
---|
Bio-inspired directional high-aspect-ratio nanopillars: fabrication and actuation.;Weitao Jiang, Lanlan Wang, Hongzhong Liu, et al.;《RSC Advances》;20140901;第4卷;第42002-42008页 * |
Ultrasound-assisted recovery of free-standing high-aspect-ratio micropillars.;Hongzhong Liu, Biao Lei, Weitao Jiang, et al.;《RSC Advances》;20160203;第6卷;第16640-16644页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105776129A (en) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105776129B (en) | A kind of manufacture method of the controllable flexible micro-nano post array of form | |
CN106644189A (en) | Flexible pressure sensor and preparation method therefor | |
Su et al. | The art of aligning one-dimensional (1D) nanostructures | |
CN104002474B (en) | There is the super-hydrophobic of micro-nano compound structure and adhere to preparation method and the application thereof on adjustable surface | |
CN102060262B (en) | Method for manufacturing micro-nano fluid control system by using low-pressure bonding technology | |
CN102145875B (en) | Preparation method of polydimethylsiloxane micro-nanofluidic chip | |
CN102012633A (en) | Method for making self-supporting structure of nano fluid system based on SU-8 photoresist | |
CN103086319B (en) | A kind of electric field induce preparation technology of the two-layer configuration for dry adhesion | |
Park et al. | Fabrication and applications of stimuli‐responsive micro/nanopillar arrays | |
CN103434127B (en) | Based on large depth-to-width ratio nanofibrous structures that mechanical force stretches and preparation method thereof | |
KR20130094844A (en) | Method for manufacturing microscopic structural body | |
TWI523809B (en) | Substrate with microstructure and method for producing the same | |
CN106365112B (en) | A kind of manufacture method of the curved surface micron post based on reconfiguration flexible mold | |
CN108089398A (en) | A kind of nanometer of through-hole array polymer template and preparation method thereof | |
Hwang et al. | Fabrication of roll imprint stamp for continuous UV roll imprinting process | |
CN104690969B (en) | Bionic irregular micro nano composite structure manufacturing process based on 3D ejection printing technique | |
CN103863999B (en) | A kind of preparation method of metal Nano structure | |
KR20130009213A (en) | Method for manufacturing implint resin and implinting method | |
CN104708800A (en) | Soft imprinting method for manufacturing micro-nano structure in cycloalkene polymer micro-fluidic chip | |
TWI661941B (en) | Apparatus and method for manufacturing fine patterned film | |
KR20100092091A (en) | Method of fabricting a nano-structure | |
CN104891426B (en) | A kind of preparation method with the micro-patterned films of selective stimulating recovery function | |
TWI664015B (en) | Method for producing three-dimensional ordered porous microstructure and monolithic column produced thereby | |
TWI396659B (en) | Method to produce a micro-structure | |
WO2017035947A1 (en) | Fast constant-temperature flat hot-embossing process for forming polymer microstructure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |