CN105731465A - Method and equipment for removing boron and phosphorous by utilizing chlorosilane fixed bed chemical adsorption reaction method - Google Patents
Method and equipment for removing boron and phosphorous by utilizing chlorosilane fixed bed chemical adsorption reaction method Download PDFInfo
- Publication number
- CN105731465A CN105731465A CN201610112604.4A CN201610112604A CN105731465A CN 105731465 A CN105731465 A CN 105731465A CN 201610112604 A CN201610112604 A CN 201610112604A CN 105731465 A CN105731465 A CN 105731465A
- Authority
- CN
- China
- Prior art keywords
- chlorosilane
- fixed bed
- heat exchanger
- chemical adsorption
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005046 Chlorosilane Substances 0.000 title claims abstract description 67
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 39
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 36
- 239000000126 substance Substances 0.000 title claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 28
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 title 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 35
- 239000011574 phosphorus Substances 0.000 claims abstract description 35
- 239000012535 impurity Substances 0.000 claims abstract description 29
- 239000008139 complexing agent Substances 0.000 claims abstract description 16
- 239000007791 liquid phase Substances 0.000 claims abstract description 16
- 239000012071 phase Substances 0.000 claims abstract description 15
- 239000003463 adsorbent Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 16
- 239000003921 oil Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 claims description 6
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 claims description 6
- BEYOBVMPDRKTNR-UHFFFAOYSA-N chembl79759 Chemical compound C1=CC(O)=CC=C1N=NC1=CC=CC=C1 BEYOBVMPDRKTNR-UHFFFAOYSA-N 0.000 claims description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- 239000002826 coolant Substances 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 239000002808 molecular sieve Substances 0.000 claims description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical compound [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 claims description 3
- 238000002309 gasification Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 3
- 150000002825 nitriles Chemical class 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 claims description 3
- HBGPNLPABVUVKZ-POTXQNELSA-N (1r,3as,4s,5ar,5br,7r,7ar,11ar,11br,13as,13br)-4,7-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1h-cyclopenta[a]chrysen-9-one Chemical compound C([C@@]12C)CC(=O)C(C)(C)[C@@H]1[C@H](O)C[C@]([C@]1(C)C[C@@H]3O)(C)[C@@H]2CC[C@H]1[C@@H]1[C@]3(C)CC[C@H]1C(=C)C HBGPNLPABVUVKZ-POTXQNELSA-N 0.000 claims 1
- PFRGGOIBYLYVKM-UHFFFAOYSA-N 15alpha-hydroxylup-20(29)-en-3-one Natural products CC(=C)C1CCC2(C)CC(O)C3(C)C(CCC4C5(C)CCC(=O)C(C)(C)C5CCC34C)C12 PFRGGOIBYLYVKM-UHFFFAOYSA-N 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 1
- SOKRNBGSNZXYIO-UHFFFAOYSA-N Resinone Natural products CC(=C)C1CCC2(C)C(O)CC3(C)C(CCC4C5(C)CCC(=O)C(C)(C)C5CCC34C)C12 SOKRNBGSNZXYIO-UHFFFAOYSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 22
- 229920005591 polysilicon Polymers 0.000 abstract description 22
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 238000000746 purification Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 9
- 239000007789 gas Substances 0.000 description 8
- CXDFMHMOTQWHKT-UHFFFAOYSA-N [NH4+].[S-]C=S.C1CCNC1 Chemical compound [NH4+].[S-]C=S.C1CCNC1 CXDFMHMOTQWHKT-UHFFFAOYSA-N 0.000 description 4
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 4
- 239000005052 trichlorosilane Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000011863 silicon-based powder Substances 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/10778—Purification
- C01B33/10794—Purification by forming addition compounds or complexes, the reactant being possibly contained in an adsorbent
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
本发明涉及一种氯硅烷固定床化学吸附反应法除硼磷的方法和设备。包括换热器、固定床吸附柱和导热油循环泵;换热器底部进料管线和换热器顶部出料管线均与固定床底部相连,导热油循环泵向固定床输送传热介质导热油。氯硅烷气相或液相首先进入换热器,再进入化学吸附固定床,由负载了化学络合剂的吸附剂对硼、磷杂质进行化学吸附反应,最终得到高纯氯硅烷。本发明氯硅烷固定床化学吸附反应法除硼、磷杂质的工艺简单,设备投资少,可有效除去氯硅烷中的硼、磷杂质,得到的氯硅烷纯度高。固定床化学吸附法提纯中吸附剂容易再生,成本低。利用固定床化学吸附反应法除氯硅烷中的硼、磷杂质是在国内首次并创造性的提出,为实现稳产电子级多晶硅奠定基础。
The invention relates to a method and equipment for removing boron and phosphorus by chemical adsorption reaction method of chlorosilane fixed bed. Including heat exchanger, fixed bed adsorption column and heat transfer oil circulation pump; the feed pipeline at the bottom of the heat exchanger and the discharge pipeline at the top of the heat exchanger are connected to the bottom of the fixed bed, and the heat transfer oil circulation pump delivers the heat transfer medium heat transfer oil to the fixed bed . The gas phase or liquid phase of chlorosilane first enters the heat exchanger, and then enters the chemical adsorption fixed bed. The adsorbent loaded with chemical complexing agent performs chemical adsorption reaction on boron and phosphorus impurities, and finally obtains high-purity chlorosilane. The chlorosilane fixed-bed chemical adsorption reaction method of the present invention has a simple process for removing boron and phosphorus impurities, requires less equipment investment, can effectively remove the boron and phosphorus impurities in the chlorosilane, and obtains chlorosilane with high purity. The adsorbent is easy to regenerate in the purification of fixed bed chemical adsorption method, and the cost is low. The use of fixed bed chemical adsorption reaction method to remove boron and phosphorus impurities in chlorosilane is the first and creative proposal in China, which lays the foundation for the realization of stable production of electronic grade polysilicon.
Description
技术领域technical field
本发明涉及电子级多晶硅生产的分离提纯技术领域,特别是涉及氯硅烷中硼、磷杂质的去除工艺。采用固定床化学吸附反应法分离提纯,使得产品最终达到多晶硅稳产电子级的水平;特别提出一种氯硅烷固定床化学吸附反应法除硼磷的方法和设备。The invention relates to the technical field of separation and purification for the production of electronic-grade polysilicon, in particular to a process for removing boron and phosphorus impurities in chlorosilane. The fixed bed chemical adsorption reaction method is used for separation and purification, so that the product can finally reach the level of electronic grade with stable production of polysilicon; a method and equipment for removing boron and phosphorus by the chlorosilane fixed bed chemical adsorption reaction method are especially proposed.
背景技术Background technique
我国多晶硅工业起步于上世纪50年代,60年代中期实现了产业化。电子信息和太阳能光伏产业的发展带动了多晶硅需求的增长,特别是国内太阳能产业高速发展的大背景下,不断超出市场预期的光伏新增装机量带动组件需求旺盛,使得上游的原材料多晶硅需求大幅增长。在2005-2008年四年间,国内各地纷纷引进或者开发多晶硅生产技术,引进千吨级多晶硅生产线,多晶硅的市场整体呈现欣欣向荣的趋势。同时,长期以来,国外的多晶硅厂商对我国进行技术封锁,国内大部分企业采用落后的生产工艺,至今国内还没有一家企业可稳定生产电子级多晶硅,技术水平与国外相比仍存在较大差距。总体差距表现在生产规模小,生产成本高,质量不稳定,环境污染严重,近些年甚至不少厂商难以维持生产,相继停产。my country's polysilicon industry started in the 1950s and achieved industrialization in the mid-1960s. The development of electronic information and solar photovoltaic industry has led to the growth of demand for polysilicon, especially against the background of the rapid development of the domestic solar industry, the new installed capacity of photovoltaics that continues to exceed market expectations has driven strong demand for components, resulting in a substantial increase in demand for upstream raw material polysilicon . During the four years from 2005 to 2008, polysilicon production technologies were introduced or developed in various parts of the country, and kiloton-level polysilicon production lines were introduced, and the polysilicon market as a whole showed a thriving trend. At the same time, for a long time, foreign polysilicon manufacturers have imposed a technological blockade on my country, and most domestic enterprises have adopted backward production processes. Up to now, no domestic enterprise has been able to stably produce electronic-grade polysilicon, and there is still a large gap in technology level compared with foreign countries. The overall gap is reflected in the small scale of production, high production costs, unstable quality, and serious environmental pollution. In recent years, even many manufacturers have difficulty maintaining production and have stopped production one after another.
改良西门子法是当今生产多晶硅的主流工艺:冶金级硅粉和氯化氢在反应器中生成三氯氢硅,然后对三氯氢硅提纯精制,最后在还原炉中三氯氢硅与氢气通过还原反应得到高纯多晶硅。此外,还原炉中还会产生大量的副产物四氯化硅,四氯化硅再与氢气、硅粉反应得到三氯氢硅,实现物料的循环利用。氯硅烷作为该工艺中的最主要的循环物料,即使其中含有痕量的杂质,最终也会影响多晶硅产品纯度。杂质的主要源头为工艺中冶金级硅粉的引入,包括金属氯化物、含硼磷的氯化物和氢化物以及含碳有机物等,因此氯硅烷中也不可避免的会存在硼、磷等微量杂质,而这些杂质会对最终产品多晶硅品质产生巨大的影响。The improved Siemens method is the mainstream process for producing polysilicon today: metallurgical grade silicon powder and hydrogen chloride generate trichlorosilane in the reactor, then the trichlorosilane is purified and refined, and finally the trichlorosilane and hydrogen undergo a reduction reaction in the reduction furnace Obtain high-purity polysilicon. In addition, a large amount of by-product silicon tetrachloride will be produced in the reduction furnace, and silicon tetrachloride will react with hydrogen and silicon powder to obtain trichlorosilane, which realizes the recycling of materials. Chlorosilane is the most important circulating material in this process, even if it contains trace impurities, it will eventually affect the purity of polysilicon products. The main source of impurities is the introduction of metallurgical-grade silicon powder in the process, including metal chlorides, chlorides and hydrides containing boron and phosphorus, and carbon-containing organic substances, so trace impurities such as boron and phosphorus will inevitably exist in chlorosilane , and these impurities will have a huge impact on the quality of the final product polysilicon.
目前氯硅烷的提纯精制技术主要为精馏法。国内一般对氯硅烷进行反复的脱去轻杂质和脱去重杂质,精馏塔级数多。由于部分杂质和氯硅烷的沸点接近,还有部分杂质会与氯硅烷形成共沸,仅仅通过传统的精馏法会带来能耗高、设备投资费高、产品质量不稳定等问题。本发明则通过固定床形式,通过化学吸附反应除去氯硅烷中的硼、磷杂质,使得最终产品多晶硅稳产电子级的水平,解决了多晶硅企业的难题。At present, the purification technology of chlorosilane is mainly rectification. In China, chlorosilane is generally used to remove light impurities and heavy impurities repeatedly, and there are many stages of rectification towers. Since the boiling points of some impurities and chlorosilanes are close, and some impurities will form azeotropes with chlorosilanes, only the traditional rectification method will bring problems such as high energy consumption, high equipment investment costs, and unstable product quality. The present invention removes boron and phosphorus impurities in chlorosilane through chemical adsorption reaction in the form of a fixed bed, so that the final product polysilicon can be stably produced at the level of electronic grade, and solves the problem of polysilicon enterprises.
发明内容Contents of the invention
本发明的目的在于解决上述不足问题,提供一种电子级多晶硅生产过程中固定床形式除硼、磷杂质的化学吸附除杂工艺,实现稳产电子级多晶硅的目标。The purpose of the present invention is to solve the above-mentioned problems, and provide a fixed-bed chemical adsorption and impurity removal process for removing boron and phosphorus impurities in the production process of electronic-grade polysilicon, so as to achieve the goal of stably producing electronic-grade polysilicon.
为实现上述目的,本发明所述一种氯硅烷固定床化学吸附反应法除硼磷的方法和设备,具体技术方案如下:In order to achieve the above object, a method and equipment for removing boron and phosphorus by a chlorosilane fixed-bed chemical adsorption reaction method according to the present invention, the specific technical scheme is as follows:
本发明一种氯硅烷固定床化学吸附反应法除硼、磷的设备,包括换热器、固定床吸附柱和导热油循环泵;换热器底部进料管线和换热器顶部出料管线均与固定床底部相连,导热油循环泵向固定床输送传热介质导热油。The present invention is a chlorosilane fixed-bed chemical adsorption reaction method for removing boron and phosphorus, comprising a heat exchanger, a fixed-bed adsorption column and a heat transfer oil circulation pump; the feed pipeline at the bottom of the heat exchanger and the discharge pipeline at the top of the heat exchanger are both Connected with the bottom of the fixed bed, the heat transfer oil circulation pump delivers the heat transfer medium heat transfer oil to the fixed bed.
本发明一种氯硅烷固定床化学吸附反应法除硼、磷的方法,氯硅烷气相或液相首先进入换热器,再进入化学吸附固定床,由负载了化学络合剂的吸附剂对硼、磷杂质进行化学吸附反应,最终得到高纯氯硅烷。The present invention is a method for removing boron and phosphorus by chlorosilane fixed bed chemical adsorption reaction method. Chlorosilane gas phase or liquid phase first enters the heat exchanger, and then enters the chemical adsorption fixed bed, and the boron is depleted by the adsorbent loaded with the chemical complexing agent. , phosphorus impurities for chemical adsorption reaction, and finally obtain high-purity chlorosilane.
是当氯硅烷为液相时,若需以液相形式进料,则通过换热器跨线直接进入固定床;若需以气相形式进料,则向换热器壳程通入蒸汽或其它热介质,氯硅烷通过换热器气化后进入固定床。When chlorosilane is in liquid phase, if it needs to be fed in liquid phase, it will directly enter the fixed bed through the heat exchanger; if it needs to be fed in gas phase, it will pass steam or other materials to the heat exchanger shell The heat medium, chlorosilane enters the fixed bed after being vaporized through the heat exchanger.
当氯硅烷为气相时,若需以气相形式进料,则通过换热器跨线直接进入固定床;若需以液相形式进料,则向换热器壳程通入循环水或其它冷却介质,氯硅烷通过换热器管程冷凝后进入固定床。When the chlorosilane is in the gas phase, if it needs to be fed in the gas phase, it will directly enter the fixed bed through the heat exchanger; Medium, chlorosilane enters the fixed bed after being condensed through the tube side of the heat exchanger.
所述换热器为立式固定管板式换热器,管程走氯硅烷,物料下进上出;需要加热气化物料时,壳程的加热介质为200kPa(G)饱和蒸汽,温度为110-200℃,需要冷凝物料时,壳程的冷却介质为33-43℃循环水。The heat exchanger is a vertical fixed tube-sheet heat exchanger, with chlorosilane in the tube side, and the material goes in and out from the bottom; when the gasification material needs to be heated, the heating medium in the shell side is 200kPa (G) saturated steam, and the temperature is 110 -200°C, when the material needs to be condensed, the cooling medium on the shell side is 33-43°C circulating water.
所述固定床为列管结构,列管内装填有吸附剂,氯硅烷物料下进上出,壳程通入导热油来调控吸附温度,吸附温度为20~150℃。吸附剂上固载了化学反应络合剂,化学反应络合剂不与氯硅烷发生反应,能与杂质形成化学上和热力学上高度稳定的络合物,该络合物与氯硅烷容易分离。The fixed bed has a tube structure, and the tubes are filled with adsorbents, the chlorosilane material is fed in from the bottom to the top, and the heat transfer oil is fed into the shell side to regulate the adsorption temperature, and the adsorption temperature is 20-150°C. The chemical reaction complexing agent is immobilized on the adsorbent, and the chemical reaction complexing agent does not react with chlorosilane, and can form a chemically and thermodynamically highly stable complex with impurities, and the complex is easy to separate from chlorosilane.
吸附剂难挥发且具有化学惰性,粒径均匀具有较大的比表面积,主要为活性硅铝氧化物、人造沸石、分子筛、活性炭、硅胶、树脂一种或它们的组合。The adsorbent is non-volatile and chemically inert, with uniform particle size and large specific surface area. It is mainly active silica-alumina oxide, artificial zeolite, molecular sieve, activated carbon, silica gel, resin or a combination of them.
化学反应络合剂包括吡咯烷二硫代甲酸铵、对-羟基偶氮苯、三苯基氯甲烷、辛醇、苯-偶氮-α-萘、AlCl3络合剂、腈类、硫代乙醇酸(β萘)-酰胺一种或它们的组合或它们的同系物。Chemically reactive complexing agents include ammonium pyrrolidine dithioformate, p-hydroxyazobenzene, triphenylchloromethane, octanol, benzene-azo-α - naphthalene, AlCl complexing agents, nitriles, thio Glycolic acid (β-naphthalene)-amides alone or their combination or their homologues.
本发明的效果优点说明如下:Effect advantage of the present invention is described as follows:
[1]本发明氯硅烷固定床化学吸附反应法除硼、磷杂质的工艺简单,设备投资少,可有效除去氯硅烷中的硼、磷杂质,得到的氯硅烷纯度高。[1] The process of removing boron and phosphorus impurities by the chlorosilane fixed bed chemical adsorption reaction method of the present invention is simple, the equipment investment is small, the boron and phosphorus impurities in chlorosilane can be effectively removed, and the obtained chlorosilane has high purity.
[2]固定床化学吸附法提纯中吸附剂容易再生,成本低。[2] The adsorbent in the fixed bed chemical adsorption method is easy to regenerate and the cost is low.
[3]创造性和新颖性,利用固定床化学吸附反应法除氯硅烷中的硼、磷杂质是在国内首次并创造性的提出,具有创造性和新颖性;为实现稳产电子级多晶硅奠定基础。[3] Creativity and novelty. The use of fixed bed chemical adsorption reaction method to remove boron and phosphorus impurities in chlorosilane is the first and creative proposal in China. It is creative and novel; it lays the foundation for the realization of stable production of electronic grade polysilicon.
附图说明Description of drawings
图1为本发明所述的电子级多晶硅生产过程中原料为液相氯硅烷时,固定床化学吸附反应法除硼磷的工艺流程示意图。Fig. 1 is a schematic diagram of the technical process of boron and phosphorus removal by fixed bed chemical adsorption reaction method when the raw material is liquid phase chlorosilane in the production process of electronic grade polysilicon according to the present invention.
图2为本发明所述的电子级多晶硅生产过程中原料为气相氯硅烷时,固定床化学吸附反应法除硼磷的工艺流程示意图。Fig. 2 is a schematic diagram of the process flow of boron and phosphorus removal by fixed bed chemical adsorption reaction method when the raw material is gaseous chlorosilane in the production process of electronic grade polysilicon according to the present invention.
其中:换热器-1,吸附柱-2,导热油循环泵-3。Among them: heat exchanger-1, adsorption column-2, heat conduction oil circulation pump-3.
具体实施方式detailed description
下面结合附图1和附图2,对发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the invention are clearly and completely described below in conjunction with accompanying drawings 1 and 2. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
本发明一种氯硅烷固定床化学吸附反应法除硼、磷的设备,包括换热器、固定床吸附柱和导热油循环泵;换热器底部进料管线和换热器顶部出料管线均与固定床底部相连,导热油循环泵向固定床输送传热介质导热油。The present invention is a chlorosilane fixed-bed chemical adsorption reaction method for removing boron and phosphorus, comprising a heat exchanger, a fixed-bed adsorption column and a heat transfer oil circulation pump; the feed pipeline at the bottom of the heat exchanger and the discharge pipeline at the top of the heat exchanger are both Connected with the bottom of the fixed bed, the heat transfer oil circulation pump delivers the heat transfer medium heat transfer oil to the fixed bed.
氯硅烷气相或液相首先进入换热器,再从底部进入化学吸附固定床,由负载了化学络合剂的吸附剂对硼、磷杂质进行化学吸附反应,最终得到高纯氯硅烷。Chlorosilane gas phase or liquid phase first enters the heat exchanger, and then enters the chemical adsorption fixed bed from the bottom, and the adsorbent loaded with chemical complexing agent performs chemical adsorption reaction on boron and phosphorus impurities, and finally obtains high-purity chlorosilane.
是当氯硅烷为液相时,若需以液相形式进料,则通过换热器跨线直接进入固定床;若需以气相形式进料,则向换热器壳程通入蒸汽或其它热介质,氯硅烷通过换热器气化后进入固定床。When chlorosilane is in liquid phase, if it needs to be fed in liquid phase, it will directly enter the fixed bed through the heat exchanger; if it needs to be fed in gas phase, it will pass steam or other materials to the heat exchanger shell The heat medium, chlorosilane enters the fixed bed after being vaporized through the heat exchanger.
当氯硅烷为气相时,若需以气相形式进料,则通过换热器跨线直接进入固定床;若需以液相形式进料,则向换热器壳程通入循环水或其它冷却介质,氯硅烷通过换热器管程冷凝后进入固定床。When the chlorosilane is in the gas phase, if it needs to be fed in the gas phase, it will directly enter the fixed bed through the heat exchanger; Medium, chlorosilane enters the fixed bed after being condensed through the tube side of the heat exchanger.
所述换热器为立式固定管板式换热器,管程走氯硅烷,物料下进上出;需要加热气化物料时,壳程的加热介质为200kPa(G)饱和蒸汽,温度为110-200℃,需要冷凝物料时,壳程的冷却介质为33-43℃循环水。The heat exchanger is a vertical fixed tube-sheet heat exchanger, with chlorosilane in the tube side, and the material goes in and out from the bottom; when the gasification material needs to be heated, the heating medium in the shell side is 200kPa (G) saturated steam, and the temperature is 110 -200°C, when the material needs to be condensed, the cooling medium on the shell side is 33-43°C circulating water.
所述固定床为列管结构,列管内装填有吸附剂,氯硅烷物料下进上出,壳程通入导热油来调控吸附温度,吸附温度为20~150℃。吸附剂上固载了化学反应络合剂,化学反应络合剂不与氯硅烷发生反应,能与杂质形成化学上和热力学上高度稳定的络合物,该络合物与氯硅烷容易分离。The fixed bed has a tube structure, and the tubes are filled with adsorbents, the chlorosilane material is fed in from the bottom to the top, and the heat transfer oil is fed into the shell side to regulate the adsorption temperature, and the adsorption temperature is 20-150°C. The chemical reaction complexing agent is immobilized on the adsorbent, and the chemical reaction complexing agent does not react with chlorosilane, and can form a chemically and thermodynamically highly stable complex with impurities, and the complex is easy to separate from chlorosilane.
吸附剂难挥发且具有化学惰性,粒径均匀具有较大的比表面积,主要为活性硅铝氧化物、人造沸石、分子筛、活性炭、硅胶、树脂一种或它们的组合。The adsorbent is non-volatile and chemically inert, with uniform particle size and large specific surface area. It is mainly active silica-alumina oxide, artificial zeolite, molecular sieve, activated carbon, silica gel, resin or a combination of them.
化学反应络合剂包括吡咯烷二硫代甲酸铵、对-羟基偶氮苯、三苯基氯甲烷、辛醇、苯-偶氮-α-萘、AlCl3络合剂、腈类、硫代乙醇酸(β萘)-酰胺一种或它们的组合或它们的同系物。Chemically reactive complexing agents include ammonium pyrrolidine dithioformate, p-hydroxyazobenzene, triphenylchloromethane, octanol, benzene-azo-α - naphthalene, AlCl complexing agents, nitriles, thio Glycolic acid (β-naphthalene)-amides alone or their combination or their homologues.
实施例1:Example 1:
固定床内填充了负载了吡咯烷二硫代甲酸铵的活性硅铝氧化物。液相氯硅烷首先进入换热器1,经过加热后发生气化,气化后的氯硅烷温度为40~110℃;气相氯硅烷进入固定床2对硼磷杂质进行吸附,提纯前硼、磷含量为0.5%,提纯后硼含量降至0.05ppb,磷含量降至0.1ppb。The fixed bed is filled with active silicon aluminum oxide loaded with ammonium pyrrolidine dithioformate. The liquid-phase chlorosilane first enters the heat exchanger 1, and is gasified after being heated. The temperature of the gasified chlorosilane is 40-110°C; the gas-phase chlorosilane enters the fixed bed 2 to adsorb boron and phosphorus impurities, and the boron and phosphorus before purification The content is 0.5%, and the boron content is reduced to 0.05ppb after purification, and the phosphorus content is reduced to 0.1ppb.
实施例2:Example 2:
固定床内填充的为负载了吡咯烷二硫代甲酸铵的人造沸石。液相氯硅烷通过换热器跨线直接进入固定床2对硼磷杂质进行吸附,提纯前硼、磷含量为0.5%,提纯后硼含量降至0.05ppb,磷含量降至0.1ppb。The fixed bed is filled with artificial zeolite loaded with ammonium pyrrolidine dithioformate. The liquid-phase chlorosilane directly enters the fixed bed 2 through the heat exchanger to adsorb boron and phosphorus impurities. Before purification, the content of boron and phosphorus is 0.5%.
实施例3:Example 3:
固定床内填充的为负载了对-羟基偶氮苯的分子筛。气相氯硅烷首先进入换热器1,经过冷凝后的液相氯硅烷温度为40~110℃;液相氯硅烷进入固定床2对硼磷杂质进行吸附,提纯前硼、磷含量为0.5%,提纯后硼含量降至0.05ppb,磷含量降至0.1ppb。The fixed bed is filled with molecular sieves loaded with p-hydroxyazobenzene. The gas-phase chlorosilane first enters the heat exchanger 1, and the temperature of the liquid-phase chlorosilane after condensation is 40-110°C; the liquid-phase chlorosilane enters the fixed bed 2 to adsorb boron and phosphorus impurities, and the content of boron and phosphorus before purification is 0.5%. After purification, the boron content is reduced to 0.05ppb, and the phosphorus content is reduced to 0.1ppb.
实施例4:Example 4:
固定床内填充的为负载了对-羟基偶氮苯的活性硅铝氧化物。气相氯硅烷通过换热器跨线直接进入固定床2对硼磷杂质进行吸附,提纯前硼、磷含量为0.5%,提纯后硼含量降至0.05ppb,磷含量降至0.1ppb。The fixed bed is filled with active silicon aluminum oxide loaded with p-hydroxyazobenzene. The gaseous chlorosilane directly enters the fixed bed 2 through the heat exchanger to adsorb boron and phosphorus impurities. Before purification, the content of boron and phosphorus is 0.5%.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610112604.4A CN105731465A (en) | 2016-02-29 | 2016-02-29 | Method and equipment for removing boron and phosphorous by utilizing chlorosilane fixed bed chemical adsorption reaction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610112604.4A CN105731465A (en) | 2016-02-29 | 2016-02-29 | Method and equipment for removing boron and phosphorous by utilizing chlorosilane fixed bed chemical adsorption reaction method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105731465A true CN105731465A (en) | 2016-07-06 |
Family
ID=56249872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610112604.4A Pending CN105731465A (en) | 2016-02-29 | 2016-02-29 | Method and equipment for removing boron and phosphorous by utilizing chlorosilane fixed bed chemical adsorption reaction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105731465A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110156026A (en) * | 2019-04-26 | 2019-08-23 | 新疆大全新能源股份有限公司 | A kind of purification process of polysilicon raw material |
CN110743199A (en) * | 2019-11-12 | 2020-02-04 | 新疆东方希望新能源有限公司 | Adsorption equipment for reducing content of boron and phosphorus impurities in chlorosilane |
CN111036029A (en) * | 2018-10-15 | 2020-04-21 | 新特能源股份有限公司 | Method for recovering waste gas in polycrystalline silicon production process |
CN111097194A (en) * | 2020-01-05 | 2020-05-05 | 天津大学 | Selective adsorption method and device for purifying dimethyldichlorosilane |
CN112250073A (en) * | 2020-11-16 | 2021-01-22 | 天津大学 | Method and device of chlorosilane purification system |
CN113603096A (en) * | 2021-05-26 | 2021-11-05 | 中国科学院过程工程研究所 | Method for adsorbing trace boron and phosphorus impurities in chlorosilane system |
CN114588877A (en) * | 2022-02-23 | 2022-06-07 | 木林森活性炭江苏有限公司 | Modified activated carbon carrier, liquid-phase chlorosilane impurity-removing adsorbent and production process of adsorbent |
CN115023407A (en) * | 2020-11-05 | 2022-09-06 | 瓦克化学股份公司 | Process for removing impurities from chlorosilane mixtures |
CN116062758A (en) * | 2022-11-02 | 2023-05-05 | 鄂尔多斯市瀚博科技有限公司 | A boron, phosphorus impurity adsorption device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102058992A (en) * | 2010-11-13 | 2011-05-18 | 天津大学 | Clapboard adsorption device and method for removing boron impurities in chlorosilane system |
CN103172071A (en) * | 2013-03-27 | 2013-06-26 | 天津大学 | Device and method for preparing high-purity silane through disproportionation reactive distillation of trichlorosilane |
WO2014167757A1 (en) * | 2013-04-11 | 2014-10-16 | 信越化学工業株式会社 | Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin |
JP2015202991A (en) * | 2014-04-15 | 2015-11-16 | 信越化学工業株式会社 | Chlorosilanes, purification method of chlorosilanes, and silicon crystals |
CN105329902A (en) * | 2015-11-24 | 2016-02-17 | 宜昌南玻硅材料有限公司 | Adsorbing removal technology for ppb-level boron and phosphorus element impurities in trichlorosilane |
-
2016
- 2016-02-29 CN CN201610112604.4A patent/CN105731465A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102058992A (en) * | 2010-11-13 | 2011-05-18 | 天津大学 | Clapboard adsorption device and method for removing boron impurities in chlorosilane system |
CN103172071A (en) * | 2013-03-27 | 2013-06-26 | 天津大学 | Device and method for preparing high-purity silane through disproportionation reactive distillation of trichlorosilane |
WO2014167757A1 (en) * | 2013-04-11 | 2014-10-16 | 信越化学工業株式会社 | Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin |
JP2015202991A (en) * | 2014-04-15 | 2015-11-16 | 信越化学工業株式会社 | Chlorosilanes, purification method of chlorosilanes, and silicon crystals |
CN105329902A (en) * | 2015-11-24 | 2016-02-17 | 宜昌南玻硅材料有限公司 | Adsorbing removal technology for ppb-level boron and phosphorus element impurities in trichlorosilane |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111036029A (en) * | 2018-10-15 | 2020-04-21 | 新特能源股份有限公司 | Method for recovering waste gas in polycrystalline silicon production process |
CN111036029B (en) * | 2018-10-15 | 2022-03-04 | 新特能源股份有限公司 | Method for recovering waste gas in polycrystalline silicon production process |
CN110156026A (en) * | 2019-04-26 | 2019-08-23 | 新疆大全新能源股份有限公司 | A kind of purification process of polysilicon raw material |
CN110156026B (en) * | 2019-04-26 | 2020-09-04 | 新疆大全新能源股份有限公司 | Purification process of polycrystalline silicon raw material |
CN110743199A (en) * | 2019-11-12 | 2020-02-04 | 新疆东方希望新能源有限公司 | Adsorption equipment for reducing content of boron and phosphorus impurities in chlorosilane |
CN111097194A (en) * | 2020-01-05 | 2020-05-05 | 天津大学 | Selective adsorption method and device for purifying dimethyldichlorosilane |
CN115023407A (en) * | 2020-11-05 | 2022-09-06 | 瓦克化学股份公司 | Process for removing impurities from chlorosilane mixtures |
CN115023407B (en) * | 2020-11-05 | 2024-05-24 | 瓦克化学股份公司 | Method for removing impurities from chlorosilane mixtures |
CN112250073A (en) * | 2020-11-16 | 2021-01-22 | 天津大学 | Method and device of chlorosilane purification system |
CN113603096A (en) * | 2021-05-26 | 2021-11-05 | 中国科学院过程工程研究所 | Method for adsorbing trace boron and phosphorus impurities in chlorosilane system |
CN114588877A (en) * | 2022-02-23 | 2022-06-07 | 木林森活性炭江苏有限公司 | Modified activated carbon carrier, liquid-phase chlorosilane impurity-removing adsorbent and production process of adsorbent |
CN116062758A (en) * | 2022-11-02 | 2023-05-05 | 鄂尔多斯市瀚博科技有限公司 | A boron, phosphorus impurity adsorption device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105731465A (en) | Method and equipment for removing boron and phosphorous by utilizing chlorosilane fixed bed chemical adsorption reaction method | |
WO2020103799A1 (en) | Device and method for removing methyldichlorosilane from trichlorosilane by means of reactive distillation | |
CN105800617A (en) | Method and equipment for removing boron and phosphorus impurities from chloro-silicane by virtue of reactive distillation including chemical adsorption | |
CN109987608B (en) | Method for simultaneously producing electronic-grade dichlorosilane, electronic-grade trichlorosilane and electronic-grade silicon tetrachloride | |
CN101628710B (en) | Method for producing high-purity concentrated hydrochloric acid by adopting hydrogen chloride gas containing chlorosilane | |
JP5886234B2 (en) | Silane compound or chlorosilane compound purification method, polycrystalline silicon production method, and weakly basic ion exchange resin regeneration treatment method | |
CN103172071B (en) | Device and method for preparing high-purity silane through disproportionation reactive distillation of trichlorosilane | |
CN108467042B (en) | Preparation method of electronic grade polycrystalline silicon | |
WO2018131500A1 (en) | Method for producing polycrystalline silicon | |
CN105797543A (en) | SiHCl3 synthetic tail gas treatment device | |
CN102100998B (en) | Method and device for processing trichlorosilane synthesis tail gas | |
CN109279611B (en) | Method and device for removing impurities in chlorosilane | |
CN104556042B (en) | Method for preparing polysilicon based on improved Siemens and production of polysilicon equipment | |
CN102030335B (en) | Method and device for removing boron impurity in chlorosilane system by rectification through double-tower thermocouple reaction | |
CN107572535A (en) | Prepare the device of dichlororosilane eiectronic grade | |
CN109467089B (en) | Polycrystalline silicon production method | |
CN116969467B (en) | A new improved Siemens polysilicon production process | |
CN106517094B (en) | The method that purifying has High Purity Hydrogen or high-purity chlorosilane containing phosphorus impurities | |
TWI745449B (en) | Method of producing polysilicon | |
CN204803014U (en) | Device of complexation purifying and separating by distillation silane | |
CN117263141A (en) | Method for purifying circulating hydrogen in polysilicon production | |
CN206985726U (en) | A kind of apparatus system of impurity removal reaction purification chlorosilane | |
JPH026318A (en) | Method of removing n type doping impurity from liquefied or gaseous substance generated by vapor phase precipitation of silicon | |
AU2020100042A4 (en) | Purification process of polycrystalline silicon raw material | |
CN104891499A (en) | Technological method for preparing polysilicon by silane method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160706 |