[go: up one dir, main page]

CN105655352B - The production method of low temperature polycrystalline silicon tft array substrate - Google Patents

The production method of low temperature polycrystalline silicon tft array substrate Download PDF

Info

Publication number
CN105655352B
CN105655352B CN201610024267.3A CN201610024267A CN105655352B CN 105655352 B CN105655352 B CN 105655352B CN 201610024267 A CN201610024267 A CN 201610024267A CN 105655352 B CN105655352 B CN 105655352B
Authority
CN
China
Prior art keywords
layer
low
temperature polysilicon
photoresist
array substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610024267.3A
Other languages
Chinese (zh)
Other versions
CN105655352A (en
Inventor
赵瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Technology Co Ltd
Priority to CN201610024267.3A priority Critical patent/CN105655352B/en
Publication of CN105655352A publication Critical patent/CN105655352A/en
Application granted granted Critical
Publication of CN105655352B publication Critical patent/CN105655352B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/01Manufacture or treatment
    • H10D86/021Manufacture or treatment of multiple TFTs
    • H10D86/0231Manufacture or treatment of multiple TFTs using masks, e.g. half-tone masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提供一种低温多晶硅TFT阵列基板的制作方法,该方法通过连续两次光阻灰化和去光阻处理将离子掺杂后残留的固化光阻完全去除干净,有效解决光阻层在第一次灰化处理之前某些区域可能覆盖有杂质颗粒而阻挡第一次灰化处理造成的固化光阻残留的问题,能够改善栅极绝缘层和层间绝缘层的界面清洁度,避免界面问题导致的产品良率下降。

The invention provides a method for manufacturing a low-temperature polysilicon TFT array substrate, which completely removes the cured photoresist remaining after ion doping through two consecutive photoresist ashing and photoresist removal treatments, effectively solving the problem of photoresist layer Before the first ashing process, some areas may be covered with impurity particles to block the problem of cured photoresist residue caused by the first ashing process, which can improve the cleanliness of the interface between the gate insulating layer and the interlayer insulating layer, and avoid interface problems Resulting in a decline in product yield.

Description

低温多晶硅TFT阵列基板的制作方法Manufacturing method of low-temperature polysilicon TFT array substrate

技术领域technical field

本发明涉及显示技术领域,尤其涉及一种低温多晶硅TFT阵列基板的制作方法。The invention relates to the field of display technology, in particular to a method for manufacturing a low-temperature polysilicon TFT array substrate.

背景技术Background technique

薄膜晶体管(Thin Film Transistor,TFT)是目前液晶显示装置(Liquid CrystalDisplay,LCD)和有源矩阵驱动式有机电致发光显示装置(Active Matrix Organic Light-Emitting Diode,AMOLED)中的主要驱动元件,直接关系平板显示装置的显示性能。Thin Film Transistor (TFT) is the main driving element in current Liquid Crystal Display (LCD) and Active Matrix Organic Light-Emitting Diode (AMOLED). It is related to the display performance of the flat panel display device.

薄膜晶体管具有多种结构,制备相应结构的薄膜晶体管的材料也具有多种,低温多晶硅(Low Temperature Poly-silicon,LTPS)材料是其中较为优选的一种,由于低温多晶硅的原子规则排列,载流子迁移率高,对电压驱动式的液晶显示装置而言,低温多晶硅薄膜晶体管由于其具有较高的迁移率,可以使用体积较小的薄膜晶体管实现对液晶分子的偏转驱动,在很大程度上缩小了薄膜晶体管所占的体积,增加透光面积,得到更高的亮度和解析度;对于电流驱动式的有源矩阵驱动式有机电致发光显示装置而言,低温多晶硅薄膜晶体管可以更好的满足驱动电流要求。Thin film transistors have various structures, and there are also various materials for preparing thin film transistors with corresponding structures. Low Temperature Polysilicon (LTPS) material is one of the more preferred materials. Due to the regular arrangement of atoms of low temperature polysilicon, the current carrying High sub-mobility. For voltage-driven liquid crystal display devices, low-temperature polysilicon thin-film transistors can use smaller thin-film transistors to drive deflection of liquid crystal molecules due to their high mobility. The volume occupied by thin-film transistors is reduced, the light-transmitting area is increased, and higher brightness and resolution are obtained; for current-driven active matrix-driven organic electroluminescent display devices, low-temperature polysilicon thin-film transistors can be better Meet the drive current requirements.

不论是LCD还是AMOLED均包括一TFT阵列基板。Both LCD and AMOLED include a TFT array substrate.

现有的低温多晶硅TFT阵列基板的制作过程通常为:在衬底基板上从下至上依次制作遮光层、绝缘缓冲层、低温多晶硅半导体层、栅极绝缘层、栅极、层间绝缘层、源/漏极、平坦层、底层电极、保护层、和顶层电极。其中,低温多晶硅半导体层又包括位于中间的对应于栅极的沟道区、和位于两端的对应于源/漏极的离子掺杂区。The manufacturing process of the existing low-temperature polysilicon TFT array substrate is usually as follows: on the substrate, from bottom to top, a light-shielding layer, an insulating buffer layer, a low-temperature polysilicon semiconductor layer, a gate insulating layer, a gate, an interlayer insulating layer, a source /drain, planarization layer, bottom electrode, protective layer, and top electrode. Wherein, the low-temperature polysilicon semiconductor layer further includes a channel region in the middle corresponding to the gate, and ion-doped regions at both ends corresponding to the source/drain.

制作离子掺杂区的具体过程为:首先在低温多晶硅层上涂布光阻,对光阻进行曝光、显影、烘烤后得到图案化的光阻层,以暴露出低温多晶硅层的两端区域;然后以光阻层为遮蔽层,对低温多晶硅层的两端区域进行离子掺杂;接下来先后进行光阻灰化和去光阻。在这一过程中,光阻层的某些区域可能覆盖有杂质颗粒,阻挡了光阻灰化,导致无法完全去除光阻层,引起固化光阻残留,进而影响到后续制作的栅极绝缘层、层间绝缘层的界面质量,造成栅极绝缘层、层间绝缘层产生剥落和裂纹等问题,最终导致产品质量下降。The specific process of making the ion-doped region is as follows: first, apply photoresist on the low-temperature polysilicon layer, then expose, develop, and bake the photoresist to obtain a patterned photoresist layer to expose the two ends of the low-temperature polysilicon layer ; Then, using the photoresist layer as a shielding layer, ion doping is performed on both ends of the low-temperature polysilicon layer; followed by photoresist ashing and photoresist removal. During this process, some areas of the photoresist layer may be covered with impurity particles, which prevent the ashing of the photoresist layer, resulting in the inability to completely remove the photoresist layer, resulting in residual cured photoresist, which in turn affects the subsequent gate insulating layer. 1. The interface quality of the interlayer insulating layer will cause problems such as peeling and cracking of the gate insulating layer and the interlayer insulating layer, which will eventually lead to a decline in product quality.

目前现有的改善栅极绝缘层、层间绝缘层界面的措施有:在成膜前更改清洗条件或进行等离子处理,但这些措施作用有限且都忽视了因离子掺杂所用到的光阻层在灰化处理之前某些区域可能覆盖有杂质颗粒而造成的固化光阻残留的问题。At present, the existing measures to improve the interface between the gate insulating layer and the interlayer insulating layer include: changing the cleaning conditions or performing plasma treatment before film formation, but these measures have limited effects and ignore the photoresist layer used due to ion doping Some areas may be covered with impurity particles before the ashing process, resulting in the problem of cured photoresist residue.

发明内容Contents of the invention

本发明的目的在于提供一种低温多晶硅TFT阵列基板的制作方法,能够完全去除离子掺杂后残留的固化光阻,改善栅极绝缘层和层间绝缘层的界面清洁度,避免界面问题导致的产品良率下降。The purpose of the present invention is to provide a method for manufacturing a low-temperature polysilicon TFT array substrate, which can completely remove the cured photoresist remaining after ion doping, improve the cleanliness of the interface between the gate insulating layer and the interlayer insulating layer, and avoid interface problems. Product yield drops.

为实现上述目的,本发明提供了一种低温多晶硅TFT阵列基板的制作方法,包括如下步骤:In order to achieve the above object, the present invention provides a method for manufacturing a low-temperature polysilicon TFT array substrate, comprising the following steps:

步骤1、提供一衬底基板,在所述衬底基板上形成图案化的遮光层,在所述遮光层与衬底基板上沉积覆盖绝缘缓冲层;Step 1. Provide a base substrate, form a patterned light-shielding layer on the base substrate, and deposit a covering insulating buffer layer on the light-shielding layer and the base substrate;

步骤2、在所述绝缘缓冲层上形成对应于所述遮光层的图案化的低温多晶硅层;Step 2, forming a patterned low-temperature polysilicon layer corresponding to the light-shielding layer on the insulating buffer layer;

步骤3、在所述低温多晶硅层与缓冲层上涂布光阻材料,图案化所述光阻材料,形成光阻层,暴露出至少部分低温多晶硅层的两端区域;Step 3, coating a photoresist material on the low-temperature polysilicon layer and the buffer layer, patterning the photoresist material to form a photoresist layer, and exposing at least part of both end regions of the low-temperature polysilicon layer;

步骤4、以所述光阻层为遮蔽层,对相应低温多晶硅层的两端区域进行一种类型的离子掺杂,形成低温多晶硅半导体层;Step 4, using the photoresist layer as a shielding layer, performing one type of ion doping on both end regions of the corresponding low-temperature polysilicon layer to form a low-temperature polysilicon semiconductor layer;

步骤5、进行第一次光阻灰化和去光阻处理;Step 5, performing the first photoresist ashing and photoresist removal treatment;

步骤6、进行第二次光阻灰化和去光阻处理,以完全去除光阻层;Step 6, performing a second photoresist ashing and photoresist removal treatment to completely remove the photoresist layer;

步骤7、在所述低温多晶硅半导体层及绝缘缓冲层上依次制作栅极绝缘层、栅极、层间绝缘层、源/漏极、平坦层、底层电极、保护层、及顶层电极。Step 7, sequentially fabricating a gate insulating layer, a gate, an interlayer insulating layer, a source/drain, a flat layer, a bottom electrode, a protective layer, and a top electrode on the low-temperature polysilicon semiconductor layer and the insulating buffer layer.

所述步骤7在完成制作栅极后,还包括在栅极与栅极绝缘层上涂布并图案化光阻材料,形成另一光阻层,以所述另一光阻层为遮蔽层,对未经步骤4进行离子掺杂的剩余的低温多晶硅层的两端区域进行另一种类型的离子掺杂,形成低温多晶硅半导体层,及连续两次的光阻灰化和去光阻处理的过程,之后再制作所述层间绝缘层。The step 7 further includes coating and patterning a photoresist material on the gate and the gate insulation layer to form another photoresist layer, using the other photoresist layer as a shielding layer, Perform another type of ion doping to the two end regions of the remaining low-temperature polysilicon layer that has not been ion-doped in step 4 to form a low-temperature polysilicon semiconductor layer, and two consecutive photoresist ashing and photoresist removal processes process, and then fabricate the interlayer insulating layer.

所述步骤2中图案化的低温多晶硅层的具体制作过程为:先在所述绝缘缓冲层上沉积一层非晶硅,再对非晶硅进行晶化处理,制得低温多晶硅,然后通过光刻制程得到图案化的低温多晶硅层。The specific manufacturing process of the patterned low-temperature polysilicon layer in the step 2 is as follows: first deposit a layer of amorphous silicon on the insulating buffer layer, then carry out crystallization treatment on the amorphous silicon to obtain low-temperature polysilicon, and then pass light to A patterned low-temperature polysilicon layer is obtained through the engraving process.

所述步骤3中通过曝光、显影制程图案化所述光阻材料得到所述光阻层。In the step 3, the photoresist material is patterned by exposing and developing processes to obtain the photoresist layer.

步骤4中所述的一种类型的离子掺杂为掺杂磷离子的N型离子掺杂或掺杂硼离子的P型离子掺杂;步骤7中所述另一种类型的离子掺杂为不同于步骤4的P型离子掺杂或N型离子掺杂。One type of ion doping described in step 4 is N-type ion doping of doping phosphorus ions or P-type ion doping of doping boron ions; another type of ion doping described in step 7 is It is different from P-type ion doping or N-type ion doping in step 4.

所述源/漏极分别通过贯穿层间绝缘层和栅极绝缘层的过孔与所述低温多晶硅半导体层的两端相接触。The source/drain are in contact with both ends of the low temperature polysilicon semiconductor layer through via holes penetrating through the interlayer insulating layer and the gate insulating layer respectively.

所述绝缘缓冲层、栅极绝缘层、层间绝缘层、平坦层、及保护层的材料均为氧化硅、氮化硅中的一种或两种的复合。The insulating buffer layer, the gate insulating layer, the interlayer insulating layer, the flat layer and the protective layer are all made of one or a combination of silicon oxide and silicon nitride.

所述顶层电极通过贯穿所述保护层、底层电极、及平坦层的过孔与所述漏极接触。The top electrode is in contact with the drain through a via hole penetrating through the protection layer, the bottom electrode, and the planar layer.

所述顶层电极和底层电极的材料均为ITO。The materials of the top electrode and the bottom electrode are both ITO.

本发明的有益效果:本发明提供的一种低温多晶硅TFT阵列基板的制作方法通过连续两次光阻灰化和去光阻处理将离子掺杂后残留的固化光阻完全去除干净,有效解决光阻层在第一次灰化处理之前某些区域可能覆盖有杂质颗粒而阻挡第一次灰化处理造成的固化光阻残留的问题,能够改善栅极绝缘层和层间绝缘层的界面清洁度,避免界面问题导致的产品良率下降。Beneficial effects of the present invention: the manufacturing method of a low-temperature polysilicon TFT array substrate provided by the present invention completely removes the cured photoresist remaining after ion doping through two consecutive photoresist ashing and photoresist removal treatments, effectively solving the problem of photoresist Before the first ashing process, some areas of the resist layer may be covered with impurity particles to block the problem of cured photoresist residue caused by the first ashing process, which can improve the cleanliness of the interface between the gate insulating layer and the interlayer insulating layer , to avoid the decline in product yield caused by interface problems.

附图说明Description of drawings

为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and accompanying drawings of the present invention. However, the accompanying drawings are provided for reference and illustration only, and are not intended to limit the present invention.

附图中,In the attached picture,

图1为本发明的低温多晶硅TFT阵列基板的制作方法的流程图;Fig. 1 is the flowchart of the manufacturing method of the low-temperature polysilicon TFT array substrate of the present invention;

图2为本发明的低温多晶硅TFT阵列基板的制作方法的步骤1的示意图;Fig. 2 is the schematic diagram of step 1 of the manufacturing method of the low-temperature polysilicon TFT array substrate of the present invention;

图3为本发明的低温多晶硅TFT阵列基板的制作方法的步骤2的示意图;Fig. 3 is the schematic diagram of step 2 of the manufacturing method of the low-temperature polysilicon TFT array substrate of the present invention;

图4为本发明的低温多晶硅TFT阵列基板的制作方法的步骤3的示意图;4 is a schematic diagram of step 3 of the manufacturing method of the low-temperature polysilicon TFT array substrate of the present invention;

图5为本发明的低温多晶硅TFT阵列基板的制作方法的步骤4的示意图;5 is a schematic diagram of step 4 of the manufacturing method of the low-temperature polysilicon TFT array substrate of the present invention;

图6为本发明的低温多晶硅TFT阵列基板的制作方法的步骤5的示意图;6 is a schematic diagram of step 5 of the method for manufacturing a low-temperature polysilicon TFT array substrate of the present invention;

图7为本发明的低温多晶硅TFT阵列基板的制作方法的步骤6的示意图;7 is a schematic diagram of step 6 of the method for manufacturing a low-temperature polysilicon TFT array substrate of the present invention;

图8为本发明的低温多晶硅TFT阵列基板的制作方法的步骤7的示意图。FIG. 8 is a schematic diagram of step 7 of the manufacturing method of the low-temperature polysilicon TFT array substrate of the present invention.

具体实施方式Detailed ways

为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。In order to further illustrate the technical means adopted by the present invention and its effects, the following describes in detail in conjunction with preferred embodiments of the present invention and accompanying drawings.

请参阅图1,本发明提供一种低温多晶硅TFT阵列基板的制作方法,包括如下步骤:Referring to Fig. 1, the present invention provides a method for manufacturing a low-temperature polysilicon TFT array substrate, comprising the following steps:

步骤1、如图2所示,提供一衬底基板10,在所述衬底基板10上形成图案化的遮光层11,在所述遮光层11与衬底基板10上沉积覆盖绝缘缓冲层12。Step 1. As shown in FIG. 2 , a base substrate 10 is provided, a patterned light-shielding layer 11 is formed on the base substrate 10 , and a covering insulating buffer layer 12 is deposited on the light-shielding layer 11 and the base substrate 10 .

具体地,所述衬底基板10优选为玻璃基板;所述遮光层11的材料为不透光的金属;所述绝缘缓冲层12的材料为氧化硅(SiOx)、氮化硅(SiNx)中的一种或两种的复合,优选的,所述绝缘缓冲层12包括自下而上层叠设置的氮化硅层和氧化硅层。Specifically, the base substrate 10 is preferably a glass substrate; the material of the light-shielding layer 11 is an opaque metal; the material of the insulating buffer layer 12 is silicon oxide (SiOx), silicon nitride (SiNx) Preferably, the insulating buffer layer 12 includes a silicon nitride layer and a silicon oxide layer stacked from bottom to top.

步骤2、如图3所示,在所述绝缘缓冲层12上形成对应于所述遮光层11的图案化的低温多晶硅层20。Step 2, as shown in FIG. 3 , forming a patterned low temperature polysilicon layer 20 corresponding to the light shielding layer 11 on the insulating buffer layer 12 .

具体地,该步骤2的详细过程为:先在所述绝缘缓冲层12上沉积一层非晶硅,再通过准分子激光退火(Excimer Laser Annealing,ELA)、或固相结晶(Solid PhaseCrystallization,SPC)等方式对非晶硅进行晶化处理,使非晶硅结晶转变为低温多晶硅,然后通过光刻制程得到所述图案化的低温多晶硅层20。Specifically, the detailed process of step 2 is: first deposit a layer of amorphous silicon on the insulating buffer layer 12, and then pass Excimer Laser Annealing (ELA) or solid phase crystallization (Solid Phase Crystallization, SPC ) and other methods to crystallize the amorphous silicon to convert the amorphous silicon into low-temperature polysilicon, and then obtain the patterned low-temperature polysilicon layer 20 through a photolithography process.

步骤3、如图4所示,在所述低温多晶硅层20与绝缘缓冲层12上涂布光阻材料,通过曝光、显影制程图案化所述光阻材料,形成光阻层30,暴露出至少部分低温多晶硅层20的两端区域。Step 3, as shown in FIG. 4 , coat a photoresist material on the low-temperature polysilicon layer 20 and the insulating buffer layer 12, and pattern the photoresist material through exposure and development processes to form a photoresist layer 30, exposing at least Two end regions of part of the low temperature polysilicon layer 20 .

值得一提的是,若设计最终制得的低温多晶硅TFT阵列基板仅包括N型或P型的单型TFT,则该步骤3中图案化的光阻层30应暴露出全部低温多晶硅层20的两端区域;若设计最终制得的低温多晶硅TFT阵列基板既包括N型TFT又包括P型TFT,则该步骤3中图案化的光阻层30应暴露出部分低温多晶硅层20的两端区域。It is worth mentioning that if the final low-temperature polysilicon TFT array substrate is designed to only include N-type or P-type single-type TFTs, the patterned photoresist layer 30 in step 3 should expose all of the low-temperature polysilicon layer 20. Regions at both ends; if the final low-temperature polysilicon TFT array substrate is designed to include both N-type TFTs and P-type TFTs, then the patterned photoresist layer 30 in step 3 should expose part of the two-end regions of the low-temperature polysilicon layer 20 .

步骤4、如图5所示,以所述光阻层30为遮蔽层,对相应低温多晶硅层20的两端区域进行一种类型的离子掺杂,形成低温多晶硅半导体层20’,其中经过离子掺杂的区域成为多晶硅半导体层20’的源/漏极接触区,未经离子掺杂的区域成为多晶硅半导体层20’的沟道区。Step 4, as shown in FIG. 5 , using the photoresist layer 30 as a shielding layer, perform one type of ion doping on the two end regions of the corresponding low-temperature polysilicon layer 20 to form a low-temperature polysilicon semiconductor layer 20 ′, in which the ion doping The doped region becomes the source/drain contact region of the polysilicon semiconductor layer 20 ′, and the region not doped with ions becomes the channel region of the polysilicon semiconductor layer 20 ′.

值得一提的是,若设计最终制得的低温多晶硅TFT阵列基板仅包括N型TFT,则该步骤4所述的一种类型的离子掺杂为掺杂磷(P)离子的N型离子掺杂;若设计最终制得的低温多晶硅TFT阵列基板仅包括P型TFT,则该步骤4所述的一种类型的离子掺杂为掺杂硼(B)离子的P型离子掺杂;若设计最终制得的低温多晶硅TFT阵列基板既包括N型TFT又包括P型TFT,则该步骤4中所述的一种类型的离子掺杂为N型离子掺杂、P型离子掺杂的其中一种。It is worth mentioning that if the final low-temperature polysilicon TFT array substrate is designed to only include N-type TFTs, one type of ion doping described in step 4 is N-type ion doping with phosphorus (P) ions. impurity; if the low-temperature polysilicon TFT array substrate that finally makes is designed to only include P-type TFTs, then a type of ion doping described in step 4 is P-type ion doping of boron (B) ions; if the design The finally obtained low-temperature polysilicon TFT array substrate includes both N-type TFTs and P-type TFTs, and one type of ion doping described in step 4 is one of N-type ion doping and P-type ion doping. kind.

由图5可知,该步骤4的离子掺杂过程会造成杂质颗粒覆盖光阻层30的某些区域。It can be seen from FIG. 5 that the ion doping process in Step 4 will cause impurity particles to cover certain areas of the photoresist layer 30 .

步骤5、进行第一次光阻灰化和去光阻处理。Step 5, performing the first photoresist ashing and photoresist removal treatment.

如图6所示,该步骤5完成第一次光阻灰化和去光阻处理后,会将上述步骤4中产生的杂质颗粒及未被杂质颗粒覆盖的那部分光阻层30去除,但光阻层30被杂质颗粒覆盖的区域由于杂质颗粒阻挡了光阻灰化则会残留有固化光阻。As shown in FIG. 6, after the first photoresist ashing and photoresist removal treatment in step 5, the impurity particles generated in the above step 4 and the part of the photoresist layer 30 not covered by the impurity particles will be removed, but The region of the photoresist layer 30 covered by the impurity particles will remain cured photoresist because the impurity particles block the ashing of the photoresist.

步骤6、进行第二次光阻灰化和去光阻处理。Step 6, performing a second photoresist ashing and photoresist removal treatment.

如图7所述,该步骤6再次进行光阻灰化和去光阻处理能够去除第一次光阻灰化和去光阻处理后残留的固化光阻,从而完全去除了光阻层30,为后续的栅极绝缘层成膜提供了清洁的界面,避免界面问题导致栅极绝缘层出现剥落和裂纹等。As shown in FIG. 7 , performing photoresist ashing and photoresist removal treatment again in step 6 can remove the cured photoresist remaining after the first photoresist ashing and photoresist removal treatment, thereby completely removing the photoresist layer 30 , It provides a clean interface for the subsequent film formation of the gate insulating layer, and avoids peeling and cracking of the gate insulating layer due to interface problems.

步骤7、如图8所示,在所述低温多晶硅半导体层20’及绝缘缓冲层12上依次制作栅极绝缘层31、栅极41、层间绝缘层32、源/漏极42、平坦层50、底层电极60、保护层70、及顶层电极80。Step 7, as shown in FIG. 8 , sequentially fabricate a gate insulating layer 31 , a gate 41 , an interlayer insulating layer 32 , a source/drain 42 , and a flat layer on the low-temperature polysilicon semiconductor layer 20 ′ and the insulating buffer layer 12 50 , a bottom electrode 60 , a protection layer 70 , and a top electrode 80 .

值得一提的是,若设计最终制得的低温多晶硅TFT阵列基板仅包括N型TFT或P型TFT,则该步骤7仅依次制作上述各膜层即可;若设计最终制得的低温多晶硅TFT阵列基板既包括N型TFT又包括P型TFT,则该步骤7在完成制作栅极41后,还包括在栅极41与栅极绝缘层31上涂布并图案化光阻材料,形成另一光阻层,以所述另一光阻层为遮蔽层,对未经步骤4进行离子掺杂的剩余的低温多晶硅层20的两端区域进行另一种类型的离子掺杂,形成低温多晶硅半导体层,及连续两次的光阻灰化和去光阻处理的过程,为后续的层间绝缘层32成膜提供清洁的界面,避免界面问题导致层间绝缘层32出现剥落和裂纹等,之后再制作所述层间绝缘层32。进一步地,若所述步骤4中进行的是N型离子掺杂,则该步骤7中进行P型离子掺杂;若所述步骤4中进行的是P型离子掺杂,则该步骤7中进行N型离子掺杂。It is worth mentioning that if the design of the final low-temperature polysilicon TFT array substrate only includes N-type TFTs or P-type TFTs, then step 7 only needs to fabricate the above-mentioned film layers in sequence; if the design of the final low-temperature polysilicon TFT The array substrate includes both N-type TFTs and P-type TFTs. After the gate 41 is fabricated in step 7, coating and patterning a photoresist material on the gate 41 and the gate insulating layer 31 to form another The photoresist layer, using the other photoresist layer as a shielding layer, performs another type of ion doping on the two end regions of the remaining low-temperature polysilicon layer 20 that has not been ion-doped in step 4 to form a low-temperature polysilicon semiconductor Layer, and two consecutive photoresist ashing and photoresist removal processes provide a clean interface for the subsequent film formation of the interlayer insulating layer 32, avoiding interface problems that cause peeling and cracks in the interlayer insulating layer 32, and then The interlayer insulating layer 32 is fabricated again. Further, if the N-type ion doping is carried out in the step 4, then the P-type ion doping is carried out in the step 7; if the P-type ion doping is carried out in the step 4, then in the step 7 Perform N-type ion doping.

具体地,所述源/漏极42分别通过贯穿层间绝缘层32和栅极绝缘层31的过孔与所述低温多晶硅半导体层20’的两端相接触。Specifically, the source/drain 42 is in contact with both ends of the low temperature polysilicon semiconductor layer 20' through via holes penetrating the interlayer insulating layer 32 and the gate insulating layer 31 respectively.

所述顶层电极80通过贯穿所述保护层70、底层电极60、及平坦层50的过孔81与所述漏极接触。The top electrode 80 is in contact with the drain through the via hole 81 penetrating through the passivation layer 70 , the bottom electrode 60 , and the planar layer 50 .

所述栅极绝缘层31、层间绝缘层32、平坦层50、及保护层70的材料均为氧化硅、氮化硅中的一种或两种的复合。The materials of the gate insulating layer 31 , the interlayer insulating layer 32 , the planar layer 50 , and the protection layer 70 are all one of silicon oxide and silicon nitride or a combination of the two.

所述顶层电极80和底层电极60的材料均为氧化铟锡(Indium Tin Oxide,ITO)。The materials of the top electrode 80 and the bottom electrode 60 are both Indium Tin Oxide (ITO).

综上所述,本发明的低温多晶硅TFT阵列基板的制作方法通过连续两次光阻灰化和去光阻处理将离子掺杂后残留的固化光阻完全去除干净,有效解决光阻层在第一次灰化处理之前某些区域可能覆盖有杂质颗粒而阻挡第一次灰化处理造成的固化光阻残留的问题,能够改善栅极绝缘层和层间绝缘层的界面清洁度,避免界面问题导致的产品良率下降。In summary, the manufacturing method of the low-temperature polysilicon TFT array substrate of the present invention completely removes the cured photoresist remaining after ion doping through two consecutive photoresist ashing and photoresist removal treatments, effectively solving the problem of photoresist layer Before the first ashing process, some areas may be covered with impurity particles to block the problem of cured photoresist residue caused by the first ashing process, which can improve the cleanliness of the interface between the gate insulating layer and the interlayer insulating layer, and avoid interface problems Resulting in a decline in product yield.

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。As mentioned above, for those of ordinary skill in the art, various other corresponding changes and deformations can be made according to the technical scheme and technical concept of the present invention, and all these changes and deformations should belong to the protection scope of the claims of the present invention .

Claims (8)

1.一种低温多晶硅TFT阵列基板的制作方法,其特征在于,包括如下步骤:1. A method for manufacturing a low-temperature polysilicon TFT array substrate, characterized in that, comprising the steps: 步骤1、提供一衬底基板(10),在所述衬底基板(10)上形成图案化的遮光层(11),在所述遮光层(11)与衬底基板(10)上沉积覆盖绝缘缓冲层(12);Step 1. Provide a base substrate (10), form a patterned light-shielding layer (11) on the base substrate (10), and deposit a covering layer on the light-shielding layer (11) and the base substrate (10). Insulating buffer layer (12); 步骤2、在所述绝缘缓冲层(12)上形成对应于所述遮光层(11)的图案化的低温多晶硅层(20);Step 2, forming a patterned low-temperature polysilicon layer (20) corresponding to the light shielding layer (11) on the insulating buffer layer (12); 步骤3、在所述低温多晶硅层(20)与绝缘缓冲层(12)上涂布光阻材料,图案化所述光阻材料,形成光阻层(30),暴露出至少部分低温多晶硅层(20)的两端区域;Step 3, coating a photoresist material on the low temperature polysilicon layer (20) and the insulating buffer layer (12), patterning the photoresist material to form a photoresist layer (30), exposing at least part of the low temperature polysilicon layer ( 20) both end regions; 步骤4、以所述光阻层(30)为遮蔽层,对相应低温多晶硅层(20)的两端区域进行一种类型的离子掺杂,形成低温多晶硅半导体层(20’);Step 4, using the photoresist layer (30) as a shielding layer, performing a type of ion doping on the two end regions of the corresponding low-temperature polysilicon layer (20) to form a low-temperature polysilicon semiconductor layer (20'); 步骤5、进行第一次光阻灰化和去光阻处理;Step 5, performing the first photoresist ashing and photoresist removal treatment; 步骤6、进行第二次光阻灰化和去光阻处理,以完全去除光阻层(30);Step 6, performing a second photoresist ashing and photoresist removal treatment to completely remove the photoresist layer (30); 步骤7、在所述低温多晶硅半导体层(20’)及绝缘缓冲层(12)上依次制作栅极绝缘层(31)、栅极(41)、层间绝缘层(32)、源/漏极(42)、平坦层(50)、底层电极(60)、保护层(70)、及顶层电极(80);Step 7, sequentially fabricate a gate insulating layer (31), a gate (41), an interlayer insulating layer (32), and a source/drain on the low-temperature polysilicon semiconductor layer (20') and the insulating buffer layer (12) (42), flat layer (50), bottom electrode (60), protective layer (70), and top electrode (80); 所述绝缘缓冲层(12)、栅极绝缘层(31)、层间绝缘层(32)、平坦层(50)、及保护层(70)的材料均为氧化硅、氮化硅中的一种或两种的复合。The insulating buffer layer (12), the gate insulating layer (31), the interlayer insulating layer (32), the flat layer (50), and the protective layer (70) are all made of silicon oxide or silicon nitride. one or a combination of two. 2.如权利要求1所述的低温多晶硅TFT阵列基板的制作方法,其特征在于,所述步骤7在完成制作栅极(41)后,还包括在栅极(41)与栅极绝缘层(31)上涂布并图案化光阻材料,形成另一光阻层,以所述另一光阻层为遮蔽层,对未经步骤4进行离子掺杂的剩余的低温多晶硅层(20)的两端区域进行另一种类型的离子掺杂,形成低温多晶硅半导体层(20’),及连续两次的光阻灰化和去光阻处理的过程,之后再制作所述层间绝缘层(32)。2. the manufacture method of low-temperature polysilicon TFT array substrate as claimed in claim 1, is characterized in that, described step 7 also comprises after gate (41) is made, after gate (41) and gate insulating layer ( 31) Coating and patterning a photoresist material on top to form another photoresist layer, using the other photoresist layer as a shielding layer, for the remaining low-temperature polysilicon layer (20) that has not been ion-doped in step 4 Another type of ion doping is performed on the regions at both ends to form a low-temperature polysilicon semiconductor layer (20'), and two consecutive photoresist ashing and photoresist removal processes are performed, and then the interlayer insulating layer ( 32). 3.如权利要求1所述的低温多晶硅TFT阵列基板的制作方法,其特征在于,所述步骤2中图案化的低温多晶硅层(20)的具体制作过程为:先在所述绝缘缓冲层(12)上沉积一层非晶硅,再对非晶硅进行晶化处理,制得低温多晶硅,然后通过光刻制程得到图案化的低温多晶硅层(20)。3. the manufacturing method of low-temperature polysilicon TFT array substrate as claimed in claim 1, is characterized in that, the specific manufacturing process of the patterned low-temperature polysilicon layer (20) in the described step 2 is: first in the described insulating buffer layer ( 12) Deposit a layer of amorphous silicon on it, and then crystallize the amorphous silicon to produce low-temperature polysilicon, and then obtain a patterned low-temperature polysilicon layer (20) through a photolithography process. 4.如权利要求1所述的低温多晶硅TFT阵列基板的制作方法,其特征在于,所述步骤3中通过曝光、显影制程图案化所述光阻材料得到所述光阻层(30)。4. The method for manufacturing a low-temperature polysilicon TFT array substrate according to claim 1, characterized in that, in said step 3, said photoresist layer (30) is obtained by patterning said photoresist material through exposure and development processes. 5.如权利要求2所述的低温多晶硅TFT阵列基板的制作方法,其特征在于,步骤4中所述的一种类型的离子掺杂为掺杂磷离子的N型离子掺杂或掺杂硼离子的P型离子掺杂;步骤7中所述另一种类型的离子掺杂为不同于步骤4的P型离子掺杂或N型离子掺杂。5. The manufacturing method of low-temperature polysilicon TFT array substrate as claimed in claim 2, is characterized in that, one type of ion doping described in step 4 is N-type ion doping or doping boron doped with phosphorus ions P-type ion doping of ions; another type of ion doping described in step 7 is P-type ion doping or N-type ion doping different from step 4. 6.如权利要求1所述的低温多晶硅TFT阵列基板的制作方法,其特征在于,所述源/漏极(42)分别通过贯穿层间绝缘层(32)和栅极绝缘层(31)的过孔与所述低温多晶硅半导体层(20’)的两端相接触。6. the manufacture method of low-temperature polysilicon TFT array substrate as claimed in claim 1 is characterized in that, described source/drain (42) passes through interlayer insulating layer (32) and gate insulating layer (31) respectively The via holes are in contact with both ends of the low temperature polysilicon semiconductor layer (20'). 7.如权利要求1所述的低温多晶硅TFT阵列基板的制作方法,其特征在于,所述顶层电极(80)通过贯穿所述保护层(70)、底层电极(60)、及平坦层(50)的过孔(81)与所述漏极接触。7. The method for manufacturing a low-temperature polysilicon TFT array substrate as claimed in claim 1, wherein the top layer electrode (80) passes through the protection layer (70), the bottom electrode (60), and the flat layer (50). ) via hole (81) is in contact with the drain. 8.如权利要求1所述的低温多晶硅TFT阵列基板的制作方法,其特征在于,所述顶层电极(80)和底层电极(60)的材料均为ITO。8. The method for manufacturing a low-temperature polysilicon TFT array substrate according to claim 1, characterized in that the materials of the top electrode (80) and the bottom electrode (60) are both ITO.
CN201610024267.3A 2016-01-14 2016-01-14 The production method of low temperature polycrystalline silicon tft array substrate Active CN105655352B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610024267.3A CN105655352B (en) 2016-01-14 2016-01-14 The production method of low temperature polycrystalline silicon tft array substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610024267.3A CN105655352B (en) 2016-01-14 2016-01-14 The production method of low temperature polycrystalline silicon tft array substrate

Publications (2)

Publication Number Publication Date
CN105655352A CN105655352A (en) 2016-06-08
CN105655352B true CN105655352B (en) 2018-08-14

Family

ID=56487473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610024267.3A Active CN105655352B (en) 2016-01-14 2016-01-14 The production method of low temperature polycrystalline silicon tft array substrate

Country Status (1)

Country Link
CN (1) CN105655352B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666218A (en) 2017-03-29 2018-10-16 京东方科技集团股份有限公司 Thin film transistor, display substrate, manufacturing method thereof, and display device
WO2018232698A1 (en) * 2017-06-22 2018-12-27 深圳市柔宇科技有限公司 Array substrate manufacturing apparatus and array substrate manufacturing method
CN107611139B (en) * 2017-08-10 2020-06-30 昆山龙腾光电股份有限公司 Thin film transistor array substrate and manufacturing method thereof
CN107623042A (en) * 2017-09-21 2018-01-23 深圳市华星光电半导体显示技术有限公司 Thin film transistor structure and fabrication method thereof
CN108538860B (en) * 2018-04-27 2021-06-25 武汉华星光电技术有限公司 Manufacturing method of top gate type amorphous silicon TFT substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426544A (en) * 2000-04-26 2003-06-25 东进瑟弥侃株式会社 Light carving rubber stripper composition
CN105206568A (en) * 2015-10-16 2015-12-30 京东方科技集团股份有限公司 Low-temperature multi-crystalline silicon TFT array substrate preparation method and array substrate obtained through same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006060734B4 (en) * 2006-06-30 2014-03-06 Lg Display Co., Ltd. Liquid crystal display and method for its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426544A (en) * 2000-04-26 2003-06-25 东进瑟弥侃株式会社 Light carving rubber stripper composition
CN105206568A (en) * 2015-10-16 2015-12-30 京东方科技集团股份有限公司 Low-temperature multi-crystalline silicon TFT array substrate preparation method and array substrate obtained through same

Also Published As

Publication number Publication date
CN105655352A (en) 2016-06-08

Similar Documents

Publication Publication Date Title
CN104332477B (en) Thin film transistor component, array substrate, method for manufacturing array substrate and display device comprising array substrate
CN103745978B (en) Display device, array base palte and preparation method thereof
CN102280466B (en) Display device and manufacture method thereof
CN108538860B (en) Manufacturing method of top gate type amorphous silicon TFT substrate
US9825069B2 (en) Array substrate manufacturing method
CN105655352B (en) The production method of low temperature polycrystalline silicon tft array substrate
CN105304500B (en) N-type TFT preparation method
CN105702623B (en) Manufacturing method of TFT array substrate
WO2016041304A1 (en) Thin film transistor and manufacturing method therefor, array substrate and manufacturing method therefor, and display device
CN103383989B (en) Manufacturing method of pixel structure and structure thereof
CN104240633A (en) Thin-film transistor, active matrix organic light-emitting diode assembly, and manufacturing method thereof
WO2014183422A1 (en) Thin-film transistor and preparation method therefor, and array substrate
CN105470197A (en) Production method of low temperature poly silicon array substrate
CN103123910A (en) Array substrate, manufacture method of array substrate and display device
CN104600028B (en) Manufacturing method and structure of low-temperature polysilicon TFT substrate
CN104952880A (en) Bi-grid TFT (thin film transistor) substrate manufacturing method and bi-grid TFT substrate structure
CN103022145A (en) Array substrate, display device and preparation method
CN105097552A (en) Manufacturing methods of thin film transistor and array substrate, array substrate and display device
CN103745954B (en) Display device, array substrate and manufacturing method of array substrate
CN102437196B (en) Low-temperature polycrystalline silicon thin-film transistor and manufacturing method thereof
CN104599959A (en) Manufacturing method and structure of low-temperature polycrystalline silicon TFT substrate
CN104022079A (en) Manufacturing method for substrate of thin film transistor
CN104466020B (en) A kind of LTPS pixel cells and its manufacture method
WO2017067336A1 (en) Array substrate, manufacturing method therefor, display panel, and display apparatus
WO2016026177A1 (en) Method for manufacturing tft substrate, and structure of tft substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant