CN105628810B - A kind of seizure heterogeneous catalytic reaction intermediate product device and its application method in situ - Google Patents
A kind of seizure heterogeneous catalytic reaction intermediate product device and its application method in situ Download PDFInfo
- Publication number
- CN105628810B CN105628810B CN201510996781.9A CN201510996781A CN105628810B CN 105628810 B CN105628810 B CN 105628810B CN 201510996781 A CN201510996781 A CN 201510996781A CN 105628810 B CN105628810 B CN 105628810B
- Authority
- CN
- China
- Prior art keywords
- reaction
- gas
- situ
- infrared
- situ infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 98
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 31
- 239000000047 product Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000007806 chemical reaction intermediate Substances 0.000 title claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 156
- 239000007789 gas Substances 0.000 claims abstract description 74
- 239000003054 catalyst Substances 0.000 claims abstract description 32
- 239000012495 reaction gas Substances 0.000 claims abstract description 24
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 238000012360 testing method Methods 0.000 claims abstract description 10
- 239000000543 intermediate Substances 0.000 claims abstract description 5
- 238000010926 purge Methods 0.000 claims description 30
- 239000000523 sample Substances 0.000 claims description 19
- 239000000498 cooling water Substances 0.000 claims description 17
- 239000011261 inert gas Substances 0.000 claims description 10
- 238000005485 electric heating Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 7
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 claims description 6
- 230000008054 signal transmission Effects 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 3
- BLLFVUPNHCTMSV-UHFFFAOYSA-N methyl nitrite Chemical compound CON=O BLLFVUPNHCTMSV-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000002596 correlated effect Effects 0.000 claims description 2
- 238000007405 data analysis Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 230000000007 visual effect Effects 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000012863 analytical testing Methods 0.000 claims 1
- 230000007246 mechanism Effects 0.000 abstract description 10
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 4
- 239000007795 chemical reaction product Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000007210 heterogeneous catalysis Methods 0.000 abstract 1
- 238000004451 qualitative analysis Methods 0.000 abstract 1
- 238000004445 quantitative analysis Methods 0.000 abstract 1
- 239000013067 intermediate product Substances 0.000 description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 13
- 238000002329 infrared spectrum Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004566 IR spectroscopy Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- -1 NO and O2 Chemical compound 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000011208 chromatographic data Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical compound OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N2030/022—Column chromatography characterised by the kind of separation mechanism
- G01N2030/025—Gas chromatography
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种原位捕捉多相催化反应中间物的装置和方法,所述的装置包括反应气控制系统、原位红外池系统、分析测试系统。本装置可以进行低压下(≤1.0MPa)变温的多相催化反应,可对催化反应中的催化剂活性物种、反应中间物以及反应产物等进行实时监测与跟踪,可以在线观察反应过程随各种催化反应条件的变化,如反应原料气配比、反应温度、反应压力等对催化反应的影响,同时可对催化反应过程中的反应物、中间物和产物利用原位红外仪、气相色谱仪、质谱法仪进行定量和定性分析,尤其是可以对含量低(ppm级别)的中间物和产物进行在线监测,从而可以对催化剂的性能进行对比,研究多相催化反应机理。与现有技术相比,本发明数据精确、易操作,对于多相催化反应机理研究有重要意义。
The invention discloses a device and method for in-situ capturing heterogeneous catalytic reaction intermediates. The device includes a reaction gas control system, an in-situ infrared pool system, and an analysis and testing system. This device can carry out heterogeneous catalytic reaction with variable temperature under low pressure (≤1.0MPa). It can monitor and track the catalyst active species, reaction intermediates and reaction products in the catalytic reaction in real time, and can observe the reaction process online with various catalytic reactions. Changes in reaction conditions, such as the effect of reaction raw material gas ratio, reaction temperature, reaction pressure, etc. Quantitative and qualitative analysis can be carried out by the instrument, especially the online monitoring of intermediates and products with low content (ppm level), so that the performance of catalysts can be compared and the mechanism of heterogeneous catalytic reactions can be studied. Compared with the prior art, the data of the present invention are accurate and easy to operate, and have great significance for the research on the reaction mechanism of heterogeneous catalysis.
Description
技术领域technical field
本发明涉及一种原位捕捉多相催化反应中间产物的装置及其使用方法。The invention relates to a device for capturing heterogeneous catalytic reaction intermediate products in situ and an application method thereof.
背景技术Background technique
多相催化反应过程与人们的生活息息相关,一直以来都是化学化工过程的基础。多年来,世界各地的科学家们想尽各种方法,在多种分析仪器上试图采用一些原位分析仪,如原位红外、原位拉曼、原位电镜、原位核磁等手段来捕捉多相催化反应的过渡态和中间态,研究反应机理,以期揭开反应过程中的“黑箱子”。但是由于多相催化反应过程的复杂性,人们也只是在某些方面了解到了一些多相催化反应过程的细节。The heterogeneous catalytic reaction process is closely related to people's life, and has always been the basis of chemical and chemical processes. Over the years, scientists from all over the world have tried various methods and tried to use some in-situ analyzers on various analytical instruments, such as in-situ infrared, in-situ Raman, in-situ electron microscopy, in-situ NMR and other means to capture multiple The transition state and intermediate state of the phase catalysis reaction, study the reaction mechanism, in order to uncover the "black box" in the reaction process. However, due to the complexity of the heterogeneous catalytic reaction process, people only understand the details of the heterogeneous catalytic reaction process in some aspects.
红外光谱是认识化学反应的强有力的工具之一,因为化学反应通常涉及化学键的断裂和形成,红外光谱能够提供分子内部原子间的相对振动和分子转动等信息。但是,无论是透射法,还是漫反射法的原位红外光谱技术都出不了同核双原子分子(如N2、H2、O2、Cl2等)的特征峰,这影响了对有同核双原子分子参与的反应的分析,此外,原位红外仪的灵敏度和精度不够高,含量少于1%的组分很难被测出,且其分析多为定性分析。Infrared spectroscopy is one of the powerful tools for understanding chemical reactions, because chemical reactions usually involve the breaking and formation of chemical bonds, and infrared spectroscopy can provide information such as relative vibration between atoms in molecules and molecular rotation. However, neither the transmission method nor the diffuse reflectance method can reveal the characteristic peaks of homonuclear diatomic molecules (such as N 2 , H 2 , O 2 , Cl 2 , etc.), which affects the analysis of homonuclear diatomic molecules. The analysis of reactions involving nuclear diatomic molecules. In addition, the sensitivity and precision of in-situ infrared instruments are not high enough, and components with a content of less than 1% are difficult to be detected, and their analysis is mostly qualitative.
气相色谱法–质谱法联用(GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。气相色谱(GAS CHROMATOGRAPHY,GC)具有极强的分离能力,质谱(MASSSPECTROMETRY,MS)对未知化合物具有独特的鉴定能力,且灵敏度极高,因此GC-MS是分离和检测复杂化合物的最有力工具之一,可以作为原位红外光谱对反应中间产物捕捉的有益补充。但对反应中间态的捕捉还未见到有用气相色谱法–质谱法联用的报道。Gas chromatography-mass spectrometry (GC-MS) is a method that combines the characteristics of gas chromatography and mass spectrometry to identify different substances in a sample. Gas chromatography (GAS CHROMATOGRAPHY, GC) has a strong separation ability, and mass spectrometry (MASSSPECTROMETRY, MS) has a unique ability to identify unknown compounds with high sensitivity, so GC-MS is one of the most powerful tools for separating and detecting complex compounds First, it can be used as a useful supplement to capture reaction intermediates by in situ infrared spectroscopy. However, there is no report on the use of gas chromatography-mass spectrometry to capture the intermediate state of the reaction.
专利CN102590090A报道了一种用于研究气液固三相界面的原位红外光谱池,能够研究发生在气-液-固三相界面的吸附、脱附与反应行为,但该装置对同核双原子分子无法做到实时在线监测。Patent CN102590090A reports an in-situ infrared spectroscopic cell for studying the gas-liquid-solid three-phase interface, which can study the adsorption, desorption and reaction behaviors that occur at the gas-liquid-solid three-phase interface, but the device is not sensitive to homonuclear double Atoms and molecules cannot be monitored online in real time.
专利CN103846072A报道了一种用于原位红外监测的反应池,与梅特勒-托利多在线红外分析仪配套使用,用于原位监测氧化、加氢等高温高压液相反应,同样,该装置对反应过程中的O2和H2无法做到实时在线监测。Patent CN103846072A reports a reaction cell for in-situ infrared monitoring, which is used in conjunction with the Mettler-Toledo online infrared analyzer for in-situ monitoring of high-temperature and high-pressure liquid phase reactions such as oxidation and hydrogenation. Similarly, the device Real-time online monitoring of O 2 and H 2 in the reaction process cannot be achieved.
专利CN103969186A报道了一种原位红外光谱池,提供了一种光热反应条件可同时进行或相互切换且具有较高加热效率及对样品温度测量精确的原位红外光谱池,同样,该装置对同核双原子分子的无法做到实时在线监测。Patent CN103969186A reports an in-situ infrared spectroscopic cell, which provides an in-situ infrared spectroscopic cell that can perform simultaneous or mutual switching of photothermal reaction conditions and has high heating efficiency and accurate temperature measurement of samples. The homonuclear diatomic molecules cannot be monitored on-line in real time.
可见,采用原位红外仪虽可以捕捉到大部分反应物的吸脱附形式、反应过程和产物,但对于同核双原子分子(如N2、H2、O2、Cl2等)无法做到实时在线监测,无法为此类物质的反应机理研究提供充足的数据,例如对于探讨H2和O2的反应机理,现有的原位红外仪提供不了充足的数据。It can be seen that although the in-situ infrared instrument can capture the adsorption and desorption forms, reaction process and products of most reactants, it cannot do so for homonuclear diatomic molecules (such as N 2 , H 2 , O 2 , Cl 2 , etc.). Real-time on-line monitoring cannot provide sufficient data for the research on the reaction mechanism of such substances. For example, for exploring the reaction mechanism of H2 and O2 , the existing in-situ infrared instrument cannot provide sufficient data.
目前,未见有原位红外连接气相色谱法–质谱法联用仪捕捉吸附、脱附和反应过程的报道,因此,开发一种原位捕捉多相催化反应中间产物的装置和方法,对于研究多相催化反应的机理具有重要意义。At present, there is no report on the capture of adsorption, desorption and reaction processes by in-situ infrared coupled gas chromatography-mass spectrometry. The mechanism of the phase-catalyzed reaction is of great significance.
发明内容Contents of the invention
本发明的目的是提供一种原位捕捉多相催化反应中间产物的装置及其方法,原位红外系统用于捕捉和采集反应原料、中间产物、产物的红外特征谱图,分析测试系统用于分离、捕捉、采集反应原料、中间产物、产物的色谱和质谱碎片特征谱图,该装置可用于多相催化反应中间产物的捕捉,研究催化反应机理。The object of the present invention is to provide a device and method for in-situ capture of heterogeneous catalytic reaction intermediate products. The in-situ infrared system is used to capture and collect the infrared characteristic spectra of reaction raw materials, intermediate products and products. Separation, capture, and collection of reaction raw materials, intermediate products, and product chromatograms and mass spectrometry fragment characteristic spectra. This device can be used to capture intermediate products of heterogeneous catalytic reactions and study the mechanism of catalytic reactions.
本发明所提供的一种原位捕捉多相催化反应中间产物的装置,包括反应气控制系统X、原位红外反应系统Y、分析测试系统Z。其中:The present invention provides a device for in-situ capturing of intermediate products of heterogeneous catalytic reactions, including a reaction gas control system X, an in-situ infrared reaction system Y, and an analysis and testing system Z. in:
反应气控制系统X包括三路原料气1、2、3,一路吹扫气4,一个气体混合器5,原料气和吹扫气管路包括质量流量计a、截止阀b和单向阀c,原料气和吹扫气外接钢瓶气;The reaction gas control system X includes three paths of raw material gas 1, 2, and 3, one path of purge gas 4, and a gas mixer 5. The raw material gas and purge gas pipelines include a mass flow meter a, a shut-off valve b, and a one-way valve c. The raw material gas and purge gas are externally connected to cylinder gas;
原位红外反应系统Y包括原位红外箱体31和原位红外反应器32;The in-situ infrared reaction system Y includes an in-situ infrared cabinet 31 and an in-situ infrared reactor 32;
原位红外箱体31包括吹扫气入口14、吹扫气出口15、漫反射光源16、信号传输线17。The in-situ infrared box 31 includes a purge gas inlet 14 , a purge gas outlet 15 , a diffuse reflection light source 16 , and a signal transmission line 17 .
其中,原位红外箱体31外接电源,用于给漫反射光源供电,信号传输线17与电脑连接,用于传输漫反射信号。Wherein, the in-situ infrared box 31 is connected to an external power supply for supplying power to the diffuse reflection light source, and the signal transmission line 17 is connected to a computer for transmitting diffuse reflection signals.
原位红外反应器32包括:一个反应池7,循环冷却水系统9,反应池顶盖10。The in-situ infrared reactor 32 includes: a reaction pool 7 , a circulating cooling water system 9 , and a top cover 10 for the reaction pool.
反应池7位于原位红外反应器32的中心位置,外形为圆柱体,四周包裹电加热带11,内部有热电偶17,质谱探针18,不锈钢滤网8。热电偶17的插入点应在反应池床层内,尽可能靠近质谱仪探针18所在位置,用于确保数据的一致性。The reaction pool 7 is located at the center of the in-situ infrared reactor 32 . It is cylindrical in shape, surrounded by an electric heating belt 11 , and has a thermocouple 17 , a mass spectrometer probe 18 and a stainless steel filter 8 inside. The insertion point of the thermocouple 17 should be in the bed layer of the reaction pool, as close as possible to the position of the mass spectrometer probe 18, so as to ensure the consistency of the data.
电加热带11带程序升温功能,热电偶19用于控制电加热带的温度。The electric heating belt 11 has a temperature programming function, and the thermocouple 19 is used to control the temperature of the electric heating belt.
不锈钢滤网8位于反应池7底部,滤网网孔在200-500目;滤网用以防止催化剂进入反应管路,同时起到气体分布器的作用,使反应气体均匀的通过催化剂床层。The stainless steel filter screen 8 is located at the bottom of the reaction tank 7, and the filter screen mesh is 200-500 mesh; the filter screen is used to prevent the catalyst from entering the reaction pipeline, and at the same time plays the role of a gas distributor to make the reaction gas pass through the catalyst bed evenly.
冷却水循环系统9为圆柱体,底部有一个冷却水入口12、顶部有一个冷却水出口13;用于移出多余的热,维持整个温度的均匀性,冷却水为常温自来水。The cooling water circulation system 9 is a cylinder with a cooling water inlet 12 at the bottom and a cooling water outlet 13 at the top; it is used to remove excess heat and maintain the uniformity of the entire temperature. The cooling water is tap water at normal temperature.
反应池顶盖10外形为圆锥体,锥面上等距离分布三个圆形玻璃镜片,两个用于接收漫反射光源,一个作为可视窗口,顶部有出气口,顶盖底部与反应池用橡皮圈和螺丝密封连接。The shape of the reaction tank top cover 10 is a cone, and three circular glass mirrors are equidistantly distributed on the cone surface, two of which are used to receive diffuse reflection light sources, and one is used as a visual window with an air outlet on the top, and the bottom of the top cover is used for connecting with the reaction pool. Rubber ring and screw seal connection.
吹扫气4及反应气1、2或3从反应池底部6进,从反应池顶部20出,分别经过压力表21、背压阀22、三通球阀23,由三通球阀控制流向,或直接放空,或进入分析测试系统。The purge gas 4 and the reaction gas 1, 2 or 3 enter from the bottom 6 of the reaction tank, exit from the top 20 of the reaction tank, respectively pass through the pressure gauge 21, the back pressure valve 22, and the three-way ball valve 23, and the flow direction is controlled by the three-way ball valve, or Vent directly, or enter the analytical test system.
分析测试系统Z包括气相色谱仪24、质谱仪25、质谱探针30、18、29,其中气相色谱仪采用FID和TCD双检测器,FID采用毛细管柱,TCD采用填充柱,三个质谱探针30、18、29分别插入反应气混合器、原位红外反应池催化剂装填区域、原位红外池顶部气体出口,分别分析不同部位气体的成分变化。The analysis and test system Z includes a gas chromatograph 24, a mass spectrometer 25, and mass spectrometer probes 30, 18, and 29, wherein the gas chromatograph uses FID and TCD dual detectors, the FID uses a capillary column, the TCD uses a packed column, and three mass spectrometer probes 30, 18, and 29 are respectively inserted into the reaction gas mixer, the catalyst loading area of the in-situ infrared reaction cell, and the gas outlet at the top of the in-situ infrared cell to analyze the composition changes of gases in different parts.
上述原位捕捉多相催化反应中间产物的装置的使用方法,具体步骤如下:The specific steps of the method for using the device for capturing the intermediate product of the heterogeneous catalytic reaction in situ are as follows:
A.在原位反应池7底部放置好不锈钢滤网8,把磨成小于100目的催化剂样品装填到原位红外反应池7,插好热电偶17和质谱仪探针18到反应池7中,把表面的催化剂压平后盖上顶盖10,旋紧螺丝,放入原位反应箱体31后固定,热电偶的测温点和反应区域的质谱仪探针要尽可能贴近,使得捕捉到的中间产物种能和反应温度能相互关联;A. Place a stainless steel filter screen 8 at the bottom of the in-situ reaction pool 7, fill the catalyst sample that is ground into less than 100 meshes into the in-situ infrared reaction pool 7, insert the thermocouple 17 and the mass spectrometer probe 18 into the reaction pool 7, Flatten the catalyst on the surface and cover the top cover 10, tighten the screws, put it into the in-situ reaction box 31 and fix it, the temperature measuring point of the thermocouple and the mass spectrometer probe in the reaction area should be as close as possible, so that the captured The species energy of the intermediate product and the reaction temperature can be related to each other;
B.连接好反应气路1、2和3,其中还原气体可选取三路反应气路的一路使用,连接原位红外反应池的吹扫气路4和原位反应箱体吹扫气14;B. Connect the reaction gas paths 1, 2 and 3, wherein the reducing gas can be used in one of the three reaction gas paths, and connect the purge gas path 4 of the in-situ infrared reaction cell and the purge gas 14 of the in-situ reaction box;
C.连接好冷却水12、13,接通加热电路和原位红外发射源电路16,打开色谱仪24和质谱仪25;C. Connect the cooling water 12, 13, connect the heating circuit and the in-situ infrared emission source circuit 16, open the chromatograph 24 and the mass spectrometer 25;
D.从4向原位红外反应池吹扫惰性气体,从14向原位反应箱体吹扫惰性气体,对原位反应箱体进行吹扫的目的是减少空气中的CO2、水蒸气对采集数据的影响,所用的惰性气体可用N2、Ar、He等,优选N2;D. Purge inert gas from 4 to the in-situ infrared reaction cell, and purge inert gas from 14 to the in-situ reaction box. The purpose of purging the in-situ reaction box is to reduce the impact of CO 2 and water vapor in the air. The impact of data collection, the inert gas used can be N 2 , Ar, He, etc., preferably N 2 ;
E.对催化剂进行还原或者活化处理,还原气体可用H2或者CO的任一种或者两者的混合气体;E. The catalyst is reduced or activated, and the reducing gas can be either H2 or CO or a mixture of both;
F.通入反应气体开始反应,依据反应条件调变反应压力和反应温度,反应压力控制在0-1.0MPa,反应压力由入口气体压力和背压阀22联动控制,反应温度控制在室温-500℃;F. Introduce the reaction gas to start the reaction, adjust the reaction pressure and reaction temperature according to the reaction conditions, the reaction pressure is controlled at 0-1.0MPa, the reaction pressure is controlled by the linkage of the inlet gas pressure and the back pressure valve 22, and the reaction temperature is controlled at room temperature-500 ℃;
G.用原位红外仪采集红外数据,用分析测试系统的气相色谱仪和质谱仪采集中间产物和产物数据,为保证反应数据的一致性,需确保原位红外仪、气相色谱仪、质谱仪的采集时间保持同步,使得采集的数据能真实反映出反应的实时情况;G. Use the in-situ infrared instrument to collect infrared data, and use the gas chromatograph and mass spectrometer of the analysis and testing system to collect intermediate product and product data. In order to ensure the consistency of the reaction data, it is necessary to ensure that the in-situ infrared instrument, gas chromatograph, and mass spectrometer The acquisition time is kept synchronized, so that the collected data can truly reflect the real-time situation of the reaction;
H.关闭反应气,关闭加热电源,通惰性气体冷却到室温,关闭冷却水,结束试验;H. Turn off the reaction gas, turn off the heating power supply, cool to room temperature with an inert gas, turn off the cooling water, and end the test;
I.数据分析。I. Data analysis.
该装置及其方法适用于气固相的多相催化反应,如H2和O2的反应、CO和O2的反应、CO与H2的混合气体和O2的反应、CO和MN(亚硝酸甲酯)合成碳酸二甲酯的反应、CO和MN合成草酸二甲酯的反应、NO和O2的反应、H2S和O2的反应、SO2和O2的反应、CO和H2的费托反应、NH3与O2的反应等,优选H2和O2的反应、CO和O2的反应、CO与H2的混合气体和O2的反应、CO和MN合成碳酸二甲酯的反应、CO和MN合成草酸二甲酯的反应、CO和H2的费托反应。The device and its method are suitable for gas-solid phase heterogeneous catalytic reactions, such as the reaction of H2 and O2 , the reaction of CO and O2 , the reaction of the mixed gas of CO and H2 and O2 , the reaction of CO and MN (sub- Methyl nitrate) to synthesize dimethyl carbonate, CO and MN to synthesize dimethyl oxalate, NO and O2 , H2S and O2 , SO2 and O2 , CO and H The Fischer-Tropsch reaction of 2 , the reaction of NH3 and O2 , etc., preferably the reaction of H2 and O2 , the reaction of CO and O2 , the reaction of the mixed gas of CO and H2 and O2 , the synthesis of dicarbonate by CO and MN The reaction of methyl ester, the reaction of CO and MN to synthesize dimethyl oxalate, the Fischer-Tropsch reaction of CO and H2 .
本发明具有以下优点:The present invention has the following advantages:
本发明用于原位连续反应条件下捕捉反应中间产物的多相催化反应装置,可以进行低压下(≤1.0MPa)变温的多相催化反应,可对催化反应中的催化剂活性物种、反应中间产物以及反应产物等进行实时监测与跟踪,可以在线观察催化反应过程随各种反应条件的变化,如反应原料气配比、反应温度、反应压力等对催化反应的影响,同时可对催化反应过程中的反应物、中间产物和产物利用原位红外仪、气相色谱仪和质谱仪进行定量和定性分析,尤其是可以对含量低(ppm级别)的中间产物和产物进行在线监测,从而可以对催化剂的性能进行对比,对于研究多相催化反应的机理具有重要意义。The invention is a heterogeneous catalytic reaction device for capturing reaction intermediate products under in-situ continuous reaction conditions, which can carry out heterogeneous catalytic reactions with variable temperature under low pressure (≤1.0MPa), and can treat catalyst active species and reaction intermediate products in catalytic reactions Real-time monitoring and tracking of reaction products, etc., can observe the change of catalytic reaction process with various reaction conditions online, such as the influence of reaction raw material gas ratio, reaction temperature, reaction pressure, etc. The reactants, intermediate products and products are quantitatively and qualitatively analyzed by in-situ infrared instrument, gas chromatograph and mass spectrometer, especially the intermediate products and products with low content (ppm level) can be monitored online, so that the catalyst can be monitored The performance comparison is of great significance for the study of the mechanism of heterogeneous catalytic reactions.
附图说明Description of drawings
图1为捕捉多相催化反应装置示意图。Figure 1 is a schematic diagram of a capture heterogeneous catalytic reaction device.
其中,X为气体控制体统,Y为原位红外反应系统、Z为分析测试系统,1、2、3为三路反应气路,4为吹扫气路,a为截止阀,b为质量流量计,c为单向阀,5为气体混合器,6为反应气入口,7为反应池,8为不锈钢滤网,9为反应器壳体,10为盖子,11为程序升温的电加热带,12为冷却水入口,13为冷却水出口,14为吹扫气入口,15为吹扫气出口,16为漫反射光源,17为热电偶,18为原位红外反应池质谱探针,19为程序升温的电加热带控温热电偶,20为反应气出口,21为压力表,22为背压阀,23为三通球阀,24为气相色谱仪,25为质谱仪,26为电脑,27、28为信号传输线,29为反应后气体质谱探针,30为气体混合器质谱探针,31为原位反应箱体,32为原位红外反应器。Among them, X is the gas control system, Y is the in-situ infrared reaction system, Z is the analysis and testing system, 1, 2, 3 are the three-way reaction gas circuit, 4 is the purge gas circuit, a is the stop valve, b is the mass flow rate C is a one-way valve, 5 is a gas mixer, 6 is a reaction gas inlet, 7 is a reaction tank, 8 is a stainless steel filter, 9 is a reactor shell, 10 is a cover, and 11 is an electric heating belt for programmed temperature rise , 12 is the cooling water inlet, 13 is the cooling water outlet, 14 is the purge gas inlet, 15 is the purge gas outlet, 16 is the diffuse reflection light source, 17 is the thermocouple, 18 is the in-situ infrared reaction cell mass spectrometer probe, 19 20 is a reaction gas outlet, 21 is a pressure gauge, 22 is a back pressure valve, 23 is a three-way ball valve, 24 is a gas chromatograph, 25 is a mass spectrometer, 26 is a computer, 27 and 28 are signal transmission lines, 29 is a gas mass spectrometer probe after reaction, 30 is a gas mixer mass spectrometer probe, 31 is an in-situ reaction box, and 32 is an in-situ infrared reactor.
图2为原位红外反应器32的剖面图。FIG. 2 is a cross-sectional view of the in-situ infrared reactor 32 .
图3为实施例1中CO和MN在Pd--Al2O3催化剂上不同温度下(30℃、90℃、110℃、130℃)反应的原位红外谱图。Fig. 3 is the in situ infrared spectrum of the reaction of CO and MN on the Pd--Al 2 O 3 catalyst at different temperatures (30°C, 90°C, 110°C, 130°C) in Example 1.
图4为实施例1中CO和MN在Pd--Al2O3催化剂上不同温度下(30℃、90℃、110℃、130℃)反应时中间产物和产物的原位红外谱图。Fig. 4 is the in situ infrared spectrum of intermediate products and products when CO and MN react on Pd--Al 2 O 3 catalyst at different temperatures (30°C, 90°C, 110°C, 130°C) in Example 1.
图5是实施例2中CO、H2和O2在Pd--Al2O3催化剂上220℃反应时的原位红外谱图。Fig. 5 is the in-situ infrared spectrum of CO, H 2 and O 2 reacting on Pd--Al 2 O 3 catalyst at 220°C in Example 2.
图6是实施例2中CO、H2和O2在Pd--Al2O3催化剂上220℃反应时的在线质谱图。Fig. 6 is the online mass spectrogram of CO, H 2 and O 2 reacting on Pd--Al 2 O 3 catalyst at 220°C in Example 2.
图7是实施例2中CO、H2和O2在Pd--Al2O3催化剂上220℃反应时的在线色谱图。Fig. 7 is an online chromatogram of CO, H 2 and O 2 reacting on Pd--Al 2 O 3 catalyst at 220°C in Example 2.
具体实施例specific embodiment
实施例1:CO和MN(亚硝酸甲酯)在Pd-Al2O3催化剂上的反应研究。Example 1: Research on the reaction of CO and MN (methyl nitrite) over Pd-Al 2 O 3 catalyst.
把经过碾磨到120目的Pd-Al2O3催化剂装填到原位红外反应池7,插入热电偶17和质谱探针18到原位反应池7中,把原位红外反应池体表面的催化剂压平后盖上原位池盖子10,拧紧螺丝后放入原位反应箱体31,连接好反应气路1(接CO气路)和2(接MN气路),3(接还原气体H2气路),4(接惰性气体N2),经14向箱体通入吹扫气N2,经气路4通入N2吹扫反应池,经12通入冷却水,接通加热电路和原位红外发射源电路,吹扫10min后逐渐升温到80℃,逐渐降低4气体流量,经3逐渐通入H2,待流量稳定后,升温到160℃,用H2还原催化剂30min后降温到室温,关闭H2,从4通入N2吹扫管路中的H2,再从1和2分别通入CO和MN开始反应,控制22保持反应压力为0.3MPa,分别选取30℃、90℃、110℃、130℃4个温度点采集数据。Fill the in-situ infrared reaction cell 7 through grinding to 120 mesh Pd-Al 2 O 3 catalyst, insert thermocouple 17 and mass spectrometer probe 18 in the in-situ reaction cell 7, put the catalyst on the surface of the in-situ infrared reaction cell body After flattening, cover the in-situ pool cover 10, tighten the screws and put it into the in-situ reaction box 31, and connect the reaction gas path 1 (connected to the CO gas path) and 2 (connected to the MN gas path), 3 (connected to the reducing gas H 2 gas path), 4 (connected to inert gas N 2 ), pass purge gas N 2 into the box through 14, pass into N 2 to purge the reaction pool through gas path 4, pass into cooling water through 12, and turn on the heating For the circuit and the in-situ infrared emission source circuit, after purging for 10 minutes, gradually heat up to 80°C, gradually reduce the gas flow in 4, and gradually feed H 2 in 3, after the flow is stable, heat up to 160°C, and reduce the catalyst with H 2 for 30 minutes Cool down to room temperature, turn off H2 , purge the H2 in the pipeline with N2 from 4, then feed CO and MN from 1 and 2 to start the reaction, control 22 to keep the reaction pressure at 0.3MPa, and select 30°C respectively , 90°C, 110°C, 130°C 4 temperature points to collect data.
图3是CO和MN在Pd--Al2O3催化剂上不同温度下(30℃、90℃、110℃、130℃)反应的原位红外谱图。图中1765cm-1、1211cm-1、1159cm-1为产物草酸二甲酯的特征峰。Fig. 3 is the in situ infrared spectrum of the reaction of CO and MN on the Pd--Al 2 O 3 catalyst at different temperatures (30°C, 90°C, 110°C, 130°C). In the figure, 1765cm -1 , 1211cm -1 and 1159cm -1 are the characteristic peaks of the product dimethyl oxalate.
图4是CO和MN在Pd--Al2O3催化剂上不同温度下(30℃、90℃、110℃、130℃)反应时中间产物和产物的原位红外谱图。图中1778cm-1、1754cm-1、1745cm-1、1733cm-1、1717cm-1为中间产物OC-COOCH3、COOCH3、OCCO的原位红外特征峰,1865cm-1为产物NO的特征峰。Figure 4 is the in situ infrared spectra of intermediate products and products when CO and MN react on Pd--Al 2 O 3 catalyst at different temperatures (30°C, 90°C, 110°C, 130°C). In the figure, 1778cm -1 , 1754cm -1 , 1745cm -1 , 1733cm -1 , 1717cm -1 are the in-situ infrared characteristic peaks of the intermediate products OC-COOCH 3 , COOCH 3 , OCCO, and 1865cm -1 is the characteristic peak of the product NO.
从图3和图4中可以看到,原位红外装置捕捉到了CO和MN反应的中间产物OC-COOCH3、COOCH3、OCCO的特征峰,这些特征峰为CO和MN反应生成草酸二甲酯的反应机理研究提供了重要的信息,使得我们对C-C偶联反应的历程有了进一步的了解。It can be seen from Figure 3 and Figure 4 that the in-situ infrared device captured the characteristic peaks of OC-COOCH 3 , COOCH 3 , and OCCO, the intermediate products of the reaction between CO and MN. These characteristic peaks are the reaction of CO and MN to form dimethyl oxalate. The study of the reaction mechanism provided important information, which enabled us to further understand the course of the CC coupling reaction.
实施例2:CO、H2和O2在Pd-Al2O3催化剂上的反应研究。Example 2: Study on the reaction of CO, H 2 and O 2 over Pd-Al 2 O 3 catalyst.
把经过碾磨到300目的Pd-Al2O3催化剂装填到原位红外反应池7,插入热电偶17和质谱探针18到原位反应池7中,把原位红外反应池体表面的催化剂压平后盖上原位池盖子10,拧紧螺丝后放入原位反应箱体31,连接好反应气路1(接CO气路)和2(接H2气路),3(接O2气路),4(接惰性气体N2),经14向箱体通入吹扫气N2,经气路4通入N2吹扫反应池,经12通入冷却水,接通加热电路和原位红外发射源电路,吹扫10min后逐渐升温到50℃,逐渐降低4气体流量,经1、2、3逐渐通入三路反应气体,待流量稳定后,控制22保持反应压力为1.0MPa,升温到220℃开始反应,采集数据。Fill the in-situ infrared reaction cell 7 through grinding to 300 mesh Pd-Al 2 O 3 catalyst, insert thermocouple 17 and mass spectrometer probe 18 in the in-situ reaction cell 7, put the catalyst on the surface of the in-situ infrared reaction cell body After flattening, cover the in-situ pool cover 10, put it into the in-situ reaction box 31 after tightening the screws, and connect the reaction gas circuit 1 (connected to the CO gas circuit) and 2 (connected to the H 2 gas circuit), 3 (connected to the O 2 gas circuit) Gas path), 4 (connected to inert gas N 2 ), pass purge gas N 2 into the box through 14, pass into N 2 to purge the reaction pool through gas path 4, pass into cooling water through 12, and connect the heating circuit And the in-situ infrared emission source circuit, after purging for 10 minutes, gradually raise the temperature to 50°C, gradually reduce the flow rate of 4 gases, and gradually feed the three-way reaction gas through 1, 2, 3. After the flow rate is stable, control 22 to keep the reaction pressure at 1.0 MPa, the temperature was raised to 220°C to start the reaction, and the data was collected.
图5是CO、H2和O2在Pd--Al2O3催化剂上220℃反应时的原位红外谱图。图中3680cm-1为OH的特征峰,2375cm-1为CO2的特征峰,2175cm-1气态CO的特征峰,2080cm-1为CO的线式吸附峰(过渡态),1975cm-1为CO的桥式吸附峰(过渡态),1382cm-1为中间产物产物CO3 2-的特征峰。Figure 5 is the in situ infrared spectrum of CO, H 2 and O 2 reacting on Pd--Al 2 O 3 catalyst at 220 °C. In the figure, 3680cm -1 is the characteristic peak of OH, 2375cm -1 is the characteristic peak of CO2 , 2175cm-1 is the characteristic peak of gaseous CO, 2080cm - 1 is the linear adsorption peak (transition state) of CO, and 1975cm -1 is CO The bridge adsorption peak (transition state), 1382cm -1 is the characteristic peak of the intermediate product CO 3 2- .
图6是CO、H2和O2在Pd--Al2O3催化剂上220℃反应时的在线质谱图。图中原子数为1-2的峰为H峰,原子数为14-18的峰为OH、H2O的峰,原子数为26-32的峰为N2、CO、O2的峰,原子数为44的峰为CO2的峰,原子数为60的峰为HCO3 -的峰。Figure 6 is the online mass spectrum of CO, H 2 and O 2 reacting on Pd--Al 2 O 3 catalyst at 220 °C. In the figure, the peak with atomic number 1-2 is H peak, the peak with atomic number 14-18 is the peak of OH and H 2 O, the peak with atomic number 26-32 is the peak of N 2 , CO, O 2 , The peak with atomic number 44 is the peak of CO 2 , and the peak with atomic number 60 is the peak of HCO 3 - .
图7是CO、H2和O2在Pd--Al2O3催化剂上220℃反应时的在线色谱图。图7-1来自于取样口5,是反应前三种反应物的色谱图,第一个峰(2.2s)代表H2的峰,第二个峰(3.9s)代表O2的峰,第三个峰(13.1s);图7-2来自于取样口20,三种物种的出峰位置与图7-1一致。Figure 7 is the online chromatogram of CO, H2 and O2 reacting on Pd -- Al2O3 catalyst at 220 °C. Figure 7-1 comes from sampling port 5, which is the chromatogram of the three reactants before the reaction. The first peak (2.2s) represents the peak of H2 , the second peak (3.9s) represents the peak of O2 , and the first peak (2.2s) represents the peak of O2. Three peaks (13.1s); Figure 7-2 comes from the sampling port 20, and the peak positions of the three species are consistent with Figure 7-1.
在图5中,原位红外装置捕捉到了CO、H2和O2反应的中间产物CO3 2-的特征峰,使得我们对CO、H2和O2反应的历程有了进一步的了解。在图6中,质谱捕捉到了CO、H2和O2反应的中间产物H、OH、HCO3 -的特征峰,与图5的原位红外数据可以相互关联的分析反应的中间产物。图7的色谱数据可以对图5和图6的数据进行补充,验证了催化剂的效果。In Figure 5, the in-situ infrared device captured the characteristic peak of CO 3 2- , the intermediate product of the reaction of CO, H 2 and O 2 , which gave us a further understanding of the course of the reaction of CO, H 2 and O 2 . In Figure 6, the mass spectrum captures the characteristic peaks of the intermediate products H, OH, and HCO 3 - of the reaction of CO, H 2 and O 2 , which can be correlated with the in-situ infrared data in Figure 5 to analyze the intermediate products of the reaction. The chromatographic data in Figure 7 can be supplemented to the data in Figures 5 and 6 to verify the effect of the catalyst.
由图3至图7说明,本发明装置可以很好捕捉到反应中间产物,有利于催化反应机理的研究。It is illustrated from Fig. 3 to Fig. 7 that the device of the present invention can capture the reaction intermediate product very well, which is beneficial to the research of the catalytic reaction mechanism.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510996781.9A CN105628810B (en) | 2015-12-26 | 2015-12-26 | A kind of seizure heterogeneous catalytic reaction intermediate product device and its application method in situ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510996781.9A CN105628810B (en) | 2015-12-26 | 2015-12-26 | A kind of seizure heterogeneous catalytic reaction intermediate product device and its application method in situ |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105628810A CN105628810A (en) | 2016-06-01 |
CN105628810B true CN105628810B (en) | 2017-06-06 |
Family
ID=56043944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510996781.9A Active CN105628810B (en) | 2015-12-26 | 2015-12-26 | A kind of seizure heterogeneous catalytic reaction intermediate product device and its application method in situ |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105628810B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019179887A1 (en) * | 2018-03-20 | 2019-09-26 | Hte Gmbh The High Throughput Experimentation Company | Method for analysing process streams |
CN108982397B (en) * | 2018-06-20 | 2019-11-05 | 中国科学院力学研究所 | A kind of gas-detecting device and method |
CN109142503B (en) * | 2018-08-23 | 2020-10-16 | 厦门大学 | In-situ mass spectrometry detection device for heterogeneous catalytic reaction intermediate and product |
CN109696456A (en) * | 2018-12-29 | 2019-04-30 | 上海华林工业气体有限公司 | A kind of detection method for avoiding hydrogen analyser from malfunctioning |
CN109682771B (en) * | 2019-02-21 | 2020-09-15 | 中国科学院力学研究所 | A gas detection device |
CN109847655B (en) * | 2019-03-08 | 2024-01-05 | 中国科学技术大学 | Experimental device for be used for normal position to survey high-pressure gas-solid phase catalytic reaction product |
CN109932334A (en) * | 2019-04-01 | 2019-06-25 | 中国科学院过程工程研究所 | A multifunctional dynamic analysis system for chemical process |
CN110296938A (en) * | 2019-06-11 | 2019-10-01 | 江苏大学 | In-situ ft-ir reaction unit under a kind of freelymoving rats atmosphere |
CN110346473B (en) * | 2019-07-11 | 2021-09-28 | 广东石油化工学院 | Device and method for measuring carbon deposition rate of catalytic reforming catalyst |
CN112326554B (en) * | 2019-08-05 | 2023-11-07 | 上海科技大学 | An in-situ infrared micro-reaction cell that controls medium and high temperature and pressure |
CN110361443A (en) * | 2019-08-08 | 2019-10-22 | 中国科学院兰州化学物理研究所 | A kind of quasi- reaction in-situ monitoring system of high-resolution time of-flight mass spectrometer |
CN113624708A (en) * | 2020-05-07 | 2021-11-09 | 中国科学院兰州化学物理研究所 | Photocatalytic material in-situ infrared pond system |
CN112083054A (en) * | 2020-07-10 | 2020-12-15 | 中国科学院过程工程研究所 | On-line mass spectrometry device for rapid chemical reaction |
CN112697832B (en) * | 2020-12-18 | 2023-09-12 | 兰州大学 | In-situ and quasi-in-situ heterogeneous catalysis electron paramagnetic resonance platform and use method |
CN113295643A (en) * | 2021-05-25 | 2021-08-24 | 中国科学院福建物质结构研究所 | Device and method for analyzing gas-liquid two-phase catalytic reaction intermediate and product |
CN115728241A (en) * | 2022-12-19 | 2023-03-03 | 福州大学 | Sulfur-resistant in-situ infrared reaction device suitable for gas-liquid phase reaction and application thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449369A (en) * | 2000-07-06 | 2003-10-15 | 米兰纽姆石化公司 | Process control for acetic acid manufacture |
CN2786633Y (en) * | 2005-01-10 | 2006-06-07 | 廖远琰 | Chemistry and chemical reaction process testing equipment |
CN1804632A (en) * | 2005-01-10 | 2006-07-19 | 廖远琰 | Mobile and combined chemical reaction process testing system |
WO2010110984A1 (en) * | 2009-03-24 | 2010-09-30 | Dow Global Technologies Inc. | Method for monitoring monomer concentration in interfacial polycarbonate manufacturing process |
CN102249835A (en) * | 2010-05-21 | 2011-11-23 | 中国石油化工股份有限公司 | Selective hydrogenation method of alkyne and alkadiene in C4 hydrocarbon material flow |
CN103846072A (en) * | 2012-12-05 | 2014-06-11 | 中国科学院大连化学物理研究所 | Reaction tank for in-situ infrared monitoring |
US9023901B2 (en) * | 2013-07-31 | 2015-05-05 | Chevron U.S.A. Inc. | System, process and reactor for conducting a synthesis gas conversion reaction |
CN104614316A (en) * | 2015-02-11 | 2015-05-13 | 中国科学技术大学 | Infrared spectrometer and reaction tank thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7482164B2 (en) * | 2006-07-14 | 2009-01-27 | Exxonmobil Research And Engineering Company | Rapid serial experimentation of catalysts and catalyst systems |
-
2015
- 2015-12-26 CN CN201510996781.9A patent/CN105628810B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449369A (en) * | 2000-07-06 | 2003-10-15 | 米兰纽姆石化公司 | Process control for acetic acid manufacture |
CN2786633Y (en) * | 2005-01-10 | 2006-06-07 | 廖远琰 | Chemistry and chemical reaction process testing equipment |
CN1804632A (en) * | 2005-01-10 | 2006-07-19 | 廖远琰 | Mobile and combined chemical reaction process testing system |
WO2010110984A1 (en) * | 2009-03-24 | 2010-09-30 | Dow Global Technologies Inc. | Method for monitoring monomer concentration in interfacial polycarbonate manufacturing process |
CN102249835A (en) * | 2010-05-21 | 2011-11-23 | 中国石油化工股份有限公司 | Selective hydrogenation method of alkyne and alkadiene in C4 hydrocarbon material flow |
CN103846072A (en) * | 2012-12-05 | 2014-06-11 | 中国科学院大连化学物理研究所 | Reaction tank for in-situ infrared monitoring |
US9023901B2 (en) * | 2013-07-31 | 2015-05-05 | Chevron U.S.A. Inc. | System, process and reactor for conducting a synthesis gas conversion reaction |
CN104614316A (en) * | 2015-02-11 | 2015-05-13 | 中国科学技术大学 | Infrared spectrometer and reaction tank thereof |
Non-Patent Citations (6)
Title |
---|
Carbon monoxide oxidation catalysed by defective palladium chloride: DFT calculations, EXAFS, and in situ DRIRS measurements;Li, Qiaohong; Qiao, Luyang; Chen, Ruiping;《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》;20151215;第18卷(第4期);2784-2791 * |
Insights into the reaction mechanism of CO oxidative coupling to dimethyl oxalate over palladium: a combined DFT and IR study;Li, Qiaohong; Zhou, Zhangfeng; Chen, Ruiping;《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》;20150223;第17卷(第14期);9126-9134 * |
动态脉冲一原位测试技术的发展;袁乃驹;《化学反应工程与工艺》;19930131;第9卷(第1期);98-107 * |
原位红外研究CO偶联制取草酸二甲酯的反应机理;周张锋;《光谱学与光谱分析》;20141031;第34卷(第10期);203-204 * |
原位红外跟踪ARGETATRP合成甲基丙烯酸酯类共聚物反应过程;陈锐毫;《中国优秀硕士学位论文全文数据库》;20130131(第1期);10-11 * |
多相催化反应原位红外系统及其应用;季生福;《分析测试技术与仪器》;19971231;第3卷(第4期);第205页附图1及其说明 * |
Also Published As
Publication number | Publication date |
---|---|
CN105628810A (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105628810B (en) | A kind of seizure heterogeneous catalytic reaction intermediate product device and its application method in situ | |
Meunier et al. | Quantitative DRIFTS investigation of possible reaction mechanisms for the water–gas shift reaction on high-activity Pt-and Au-based catalysts | |
CN106442377B (en) | A kind of real-time dual-beam in-situ ft-ir system and method | |
US10215737B2 (en) | Apparatus for and method of gas analysis | |
US11435301B2 (en) | Reaction control and mass spectrometry workstation for coupling an X-ray spectroscopic characterization instrument with an in-situ reaction cell | |
CN109142503B (en) | In-situ mass spectrometry detection device for heterogeneous catalytic reaction intermediate and product | |
JP2004511797A (en) | Improved detection method of carbon monoxide by infrared absorption spectroscopy | |
CN107084860A (en) | Reaction generation minimum gas on-line detecting system | |
Silverwood et al. | Experimental arrangements suitable for the acquisition of inelastic neutron scattering spectra of heterogeneous catalysts | |
CN103983799A (en) | Pulse sampling device for gas, pulse sampling method, and application of method | |
Pandit et al. | Versatile in situ/operando setup for studying catalysts by X‐ray absorption spectroscopy under demanding and dynamic reaction conditions for energy storage and conversion | |
CN111103255B (en) | Spectrometer | |
CN112326554B (en) | An in-situ infrared micro-reaction cell that controls medium and high temperature and pressure | |
CN202041512U (en) | Analysis device | |
CN209182272U (en) | In-Situ Chemical Reactor and Its Combined System with Nuclear Magnetic Resonance | |
CN203909055U (en) | Pulse sampling device used for gas | |
Potter et al. | Fully automated, high‐precision instrumentation for the isotopic analysis of tropospheric N2O using continuous flow isotope ratio mass spectrometry | |
CN102053163B (en) | In-situ analysis system for catalytic reaction (CR) pulses | |
CN110609053A (en) | In-Situ Chemical Reactor and Its Combined System with Nuclear Magnetic Resonance | |
CN215678237U (en) | Online thermal desorption appearance with cold-trap gathers function | |
CN219142659U (en) | In-situ spectrum device suitable for low-paraffin catalytic system | |
CN113295643A (en) | Device and method for analyzing gas-liquid two-phase catalytic reaction intermediate and product | |
CN111638201B (en) | Device and method for synchronously characterizing micro reaction dynamics process and macro qualitative and quantitative of gas hydrate on line | |
JP5026304B2 (en) | Method for analysis of carbon dioxide in ammonia-containing gas | |
CN219695029U (en) | Enrichment sample injection device for measuring trace impurities in high-pressure liquid by serial gas chromatograph-mass spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |