CN105625998B - A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus - Google Patents
A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus Download PDFInfo
- Publication number
- CN105625998B CN105625998B CN201610071790.1A CN201610071790A CN105625998B CN 105625998 B CN105625998 B CN 105625998B CN 201610071790 A CN201610071790 A CN 201610071790A CN 105625998 B CN105625998 B CN 105625998B
- Authority
- CN
- China
- Prior art keywords
- gas
- carbon dioxide
- layer
- production
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000011084 recovery Methods 0.000 title claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 124
- 238000004519 manufacturing process Methods 0.000 claims abstract description 92
- 239000007789 gas Substances 0.000 claims abstract description 65
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 63
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 63
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000007924 injection Substances 0.000 claims abstract description 30
- 238000002347 injection Methods 0.000 claims abstract description 30
- 239000003345 natural gas Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 17
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 238000007596 consolidation process Methods 0.000 claims abstract description 13
- 230000001105 regulatory effect Effects 0.000 claims description 24
- 239000007787 solid Substances 0.000 claims description 23
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 claims description 11
- 230000006837 decompression Effects 0.000 claims description 8
- 239000004576 sand Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 6
- 150000004677 hydrates Chemical class 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 230000002706 hydrostatic effect Effects 0.000 claims description 3
- 239000013535 sea water Substances 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 2
- XQCFHQBGMWUEMY-ZPUQHVIOSA-N Nitrovin Chemical compound C=1C=C([N+]([O-])=O)OC=1\C=C\C(=NNC(=N)N)\C=C\C1=CC=C([N+]([O-])=O)O1 XQCFHQBGMWUEMY-ZPUQHVIOSA-N 0.000 claims 1
- GCNLQHANGFOQKY-UHFFFAOYSA-N [C+4].[O-2].[O-2].[Ti+4] Chemical compound [C+4].[O-2].[O-2].[Ti+4] GCNLQHANGFOQKY-UHFFFAOYSA-N 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 claims 1
- 239000008246 gaseous mixture Substances 0.000 claims 1
- 239000004408 titanium dioxide Substances 0.000 claims 1
- 238000005065 mining Methods 0.000 abstract description 17
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 239000013049 sediment Substances 0.000 description 15
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- -1 Natural Gas Hydrates Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013000 chemical inhibitor Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明涉及了一种海底天然气水合物稳定层逆向开采方法,包括以下几个步骤:S1、降压采气:首先将生产井内的液体抽出,使井底压力降低,开采水合物稳定层底下游离气,同时分解水合物稳定层的下表面;S2、注热分解:向生产层上部注入热水或蒸汽,使天然气水合物稳定层由下至上分解,分解后由生产井采出;S3、二氧化碳固结:向生产层下部注入二氧化碳,使生产层底部由下至上逐步固结;S4、待固结完成后,重复步骤S1、S2和S3,循环开采,直至天然气水合物稳定层减薄到适宜厚度时,停止生产。本发明的优点在于:克服了海底天然气水合物在开采过程中天然气易泄漏、易污染海洋环境与易发生地质灾害的难题,提高了开采的安全性与环保性。
The invention relates to a reverse mining method of a seabed natural gas hydrate stable layer, which includes the following steps: S1. Gas production by reducing pressure: firstly, the liquid in the production well is pumped out to reduce the bottom hole pressure, and the gas hydrate is exploited to free the bottom of the hydrate stable layer. At the same time, decompose the lower surface of the hydrate stable layer; S2, thermal injection decomposition: inject hot water or steam into the upper part of the production layer to decompose the natural gas hydrate stable layer from bottom to top, and extract it from the production well after decomposition; S3, carbon dioxide Consolidation: Inject carbon dioxide into the lower part of the production layer, so that the bottom of the production layer is gradually consolidated from bottom to top; S4, after the consolidation is completed, repeat steps S1, S2 and S3, and cycle mining until the gas hydrate stable layer is thinned to an appropriate level When the thickness is exceeded, stop production. The invention has the advantages of overcoming the problems of easy leakage of natural gas, easy pollution of the marine environment and easy occurrence of geological disasters during the exploitation of the seabed natural gas hydrate, and improving the safety and environmental protection of the exploitation.
Description
技术领域technical field
本发明涉及天然气水合物开采技术领域,特别是一种海底天然气水合物稳定层逆向开采方法及其开采设备。The invention relates to the technical field of natural gas hydrate exploitation, in particular to a reverse exploitation method and exploitation equipment of a seabed natural gas hydrate stable layer.
背景技术Background technique
天然气水合物(Natural Gas Hydrates,NGH)是在低温高压条件下由轻烃、CO2 及H2S 等小分子气体与水相互作用过程中形成的白色固态结晶物质,因遇火可以燃烧,又称可燃冰。1立方米天然气水合物可转化为164立方米的天然气和0.8立方米的水,是一种极为高效清洁的能源,其污染比煤、石油要小得多。Natural gas hydrate (Natural Gas Hydrates, NGH) is a white solid crystalline substance formed during the interaction of small molecular gases such as light hydrocarbons, CO 2 and H 2 S with water under low temperature and high pressure conditions. It is called combustible ice. 1 cubic meter of natural gas hydrate can be converted into 164 cubic meters of natural gas and 0.8 cubic meters of water. It is an extremely efficient and clean energy source with much less pollution than coal and oil.
水合物的常规开采方法主要有四类:降压法、注热法、注化学试剂法与二氧化碳置换法。降压法是通过抽取生产井内的水或者以其他的方式,将水合物藏的压力降低到水合物的相平衡压力以下,从而使水合物发生分解。降压法主要缺点是水合物分解相变所需热量很大,可能导致水合物二次生成或产生大范围结冰,堵塞渗透路径,影响长期开采效率。There are four main types of conventional mining methods for hydrates: depressurization method, heat injection method, chemical reagent injection method and carbon dioxide replacement method. The depressurization method is to reduce the pressure of the hydrate reservoir to below the phase equilibrium pressure of the hydrate by pumping water in the production well or in other ways, so as to decompose the hydrate. The main disadvantage of the depressurization method is that the heat required for hydrate decomposition and phase transition is very large, which may lead to secondary formation of hydrate or large-scale freezing, blockage of seepage paths, and affect long-term production efficiency.
注热法是通过向井底的水合物注入热能,使水合物藏的温度升高,当水合物的物藏压力低于此种温度下水合物的相平衡压力时,水合物就会发生分解。注热开采法存在的缺点是不仅要提供水合物分解相变的热量,也要加热沉积物、孔隙气体和液体,同时上下边界层存在散热问题,导致热量损失很大,开采费用较高。The heat injection method is to inject heat energy into the hydrate at the bottom of the well to increase the temperature of the hydrate reservoir. When the reservoir pressure of the hydrate is lower than the phase equilibrium pressure of the hydrate at this temperature, the hydrate will decompose. The disadvantage of the heat injection mining method is that it not only needs to provide heat for hydrate decomposition and phase transition, but also heats sediments, pore gases and liquids. At the same time, there is a problem of heat dissipation in the upper and lower boundary layers, resulting in a large heat loss and high mining costs.
注化学抑制剂法是通过向水合物藏注入化学试剂,如盐水、甲醇、乙醇、乙二醇、丙三醇等,改变它的水合物藏平衡条件,使水合物的相平衡曲线向上移动。于是水合物在现有的条件下不能稳定存在,从而发生分解。注化学试剂法的缺点是化学试剂价格高而且环境污染严重,化学试剂对水合物相平衡影响并不十分明显,且很难单独采用此方法开采海底天然气水合物稳定层。The chemical inhibitor injection method is to inject chemical reagents into the hydrate reservoir, such as brine, methanol, ethanol, ethylene glycol, glycerin, etc., to change the equilibrium conditions of the hydrate reservoir and move the phase equilibrium curve of the hydrate upward. Therefore, the hydrate cannot exist stably under the existing conditions, and thus decomposes. The disadvantages of the chemical reagent injection method are that the price of chemical reagents is high and the environment is seriously polluted. The influence of chemical reagents on the hydrate phase balance is not very obvious, and it is difficult to use this method alone to exploit the stable layer of seabed natural gas hydrate.
二氧化碳置换法主要是通过向天然气水合物稳定层通入置换物二氧化碳,由于二氧化碳在同等条件下(如同等的压力),它可以在更高的温度下形成水合物,因此,二氧化碳能够将天然气水合物中的天然气替换出来。二氧化碳置换法开采存在的问题是置换过程持续的时间较长,置换效率较低,效果不明显,且不适用于没有封闭盖层的海底天然气水合物稳定层的开采。综上所述,若用常规方法直接顺层开采这种海洋天然气水合物稳定层,容易导致没有封闭盖层的天然气水合物藏分解失控,释放大量天然气造成环境的污染。所以目前探索没有封闭盖层的海底天然气水合物矿体开发模式已成为全世界关注的焦点。The carbon dioxide replacement method is mainly through introducing replacement carbon dioxide into the stable layer of natural gas hydrate. Since carbon dioxide can form hydrate at a higher temperature under the same conditions (such as the same pressure), carbon dioxide can hydrate natural gas. The natural gas in the material is replaced. The problem of the carbon dioxide replacement method is that the replacement process lasts for a long time, the replacement efficiency is low, the effect is not obvious, and it is not suitable for the exploitation of the seabed gas hydrate stable layer without a closed caprock. To sum up, if conventional methods are used to directly exploit this stable layer of marine gas hydrate along the bedding, it will easily lead to uncontrolled decomposition of gas hydrate reservoirs without sealed cap rocks, releasing a large amount of natural gas and causing environmental pollution. Therefore, exploring the development mode of seabed gas hydrate ore bodies without sealed cap rocks has become the focus of attention all over the world.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点,提供一种海底天然气水合物稳定层逆向开采方法及其开采设备,克服了海底天然气水合物在开采过程中易泄漏的难题,提高了开采过程中的安全性与环保性。The purpose of the present invention is to overcome the shortcomings of the prior art, provide a reverse mining method and mining equipment for the stable layer of seabed natural gas hydrate, overcome the difficult problem that the natural gas hydrate in the seabed is easy to leak during the mining process, and improve the production efficiency in the mining process. Safety and environmental protection.
本发明的目的通过以下技术方案来实现:一种海底天然气水合物稳定层逆向开采方法,它包括以下步骤:The object of the present invention is achieved through the following technical solutions: a method for reverse mining of a seabed natural gas hydrate stable layer, which comprises the following steps:
S1、降压采气:打一口生产井穿越海底沉积物层、天然气水合物稳定层,到达生产层,在生产井的井底安装潜水泵,打开调节阀A,启动降压采气模块,通过潜水泵抽取生产井内的液体,使生产井内的压力降低,天然气水合物稳定层下面的游离态气体和天然气水合物稳定层下表面分解的天然气在海底静水高压的作用下,流向低压的生产井内,采出的混合流体经过除沙装置、潜水泵和节流阀后,再经过气液固分离器,将混合流体中的气体、水和泥沙进行分离,分离出的混合气体进入气体分离器,使混合气体中的天然气分离进入天然气储罐,二氧化碳气体分离进入二氧化碳储罐;S1. Reduced pressure gas production: drill a production well to pass through the seabed sediment layer and natural gas hydrate stable layer to reach the production layer, install a submersible pump at the bottom of the production well, open the regulating valve A, start the depressurized gas production module, and pass The submersible pump pumps the liquid in the production well to reduce the pressure in the production well. The free gas under the stable layer of natural gas hydrate and the natural gas decomposed on the lower surface of the stable layer of natural gas hydrate flow into the low-pressure production well under the action of the high pressure of the seabed hydrostatic water. After passing through the sand removal device, submersible pump and throttle valve, the mixed fluid passes through the gas-liquid-solid separator to separate the gas, water and sediment in the mixed fluid, and the separated mixed gas enters the gas separator to make The natural gas in the mixed gas is separated into the natural gas storage tank, and the carbon dioxide gas is separated into the carbon dioxide storage tank;
S2、注热分解:打开调节阀C,启动注热分解模块,热介质储罐中的热水或蒸汽由高压泵通过控制井向生产层内注入,天然气水合物稳定层的下表面获得热量后分解,分解后的气体和注入的热水或蒸汽通过潜水泵由生产井采出;S2. Thermal injection decomposition: Open the regulating valve C, start the thermal injection decomposition module, the hot water or steam in the heat medium storage tank is injected into the production layer through the control well by the high-pressure pump, and the lower surface of the natural gas hydrate stable layer obtains heat Decomposition, the decomposed gas and injected hot water or steam are extracted from the production well through the submersible pump;
S3、二氧化碳固结:关闭调节阀A和调节阀C,关闭降压采气模块和注热分解模块,打开调节阀B,启动二氧化碳固结模块,将二氧化碳储罐中的二氧化碳通过高压泵加压后由控制井通入生产层的底部,通入的二氧化碳在地层高压、低温环境的作用下,与生产层中的泥沙和水形成固态的二氧化碳水合物层,随着二氧化碳水合物层形成过程的推进,二氧化碳水合物层上表面向上推移,生产层的厚度逐渐减少,当减少到生产层的最小厚度时,停止向生产层注二氧化碳;S3. Carbon dioxide consolidation: close regulating valve A and regulating valve C, close the decompression gas extraction module and thermal injection decomposition module, open regulating valve B, start the carbon dioxide consolidation module, and pressurize the carbon dioxide in the carbon dioxide storage tank through the high-pressure pump Afterwards, the control well is passed into the bottom of the production layer, and the injected carbon dioxide forms a solid carbon dioxide hydrate layer with the sediment and water in the production layer under the action of the formation high pressure and low temperature environment. The upper surface of the carbon dioxide hydrate layer moves upwards, and the thickness of the production layer gradually decreases. When the thickness decreases to the minimum thickness of the production layer, stop injecting carbon dioxide into the production layer;
S4、停止注入二氧化碳,待生产层内的二氧化碳与泥沙、水充分形成固态的二氧化碳水合物层后,重复步骤S1、S2和S3,如此循环逆向开采天然气水合物稳定层,直至海底天然气水合物稳定层减薄到适宜厚度时,停止生产。S4. Stop injecting carbon dioxide. After the carbon dioxide, sediment and water in the production layer fully form a solid carbon dioxide hydrate layer, repeat steps S1, S2 and S3, and reversely exploit the gas hydrate stable layer in this way until the seabed gas hydrate When the stable layer is thinned to an appropriate thickness, stop production.
用于海底天然气水合物稳定层逆向开采方法的开采设备包括降压采气模块、注热分解模块和二氧化碳固结模块,所述的降压采气模块包括生产井、潜水泵、排液采气管道、气液固分离器和气体分离器,生产井由海平面依次穿过海底沉积物层和天然气水合物稳定层,并伸入生产层,潜水泵设置于生产井内侧底部,排液采气管道的下端与潜水泵的出口连接,上端与气液固分离器的入口连接,气液固分离器的气体出口与气体分离器的入口连接,气体分离器的天然气出口与天然气储罐的入口连接,二氧化碳出口与二氧化碳储罐的入口连接,排液采气管道的管路上还安装有节流阀和调节阀A;所述的二氧化碳固结模块包括控制井、注入管道和高压泵,控制井由海平面依次穿过海底沉积物层和天然气水合物稳定层,并伸入生产层,注入管道设置于控制井内,且下端位于控制井的底部,上端与高压泵的出口连接,高压泵的入口与二氧化碳储罐的出口连接,高压泵与二氧化碳储罐之间的管路上设置有调节阀B;所述的注热分解模块包括加热装置和热介质储罐,加热装置的入口与海水连通,出口与热介质储罐的第一入口连通,热介质储罐的出口与高压泵的入口连通,热介质储罐与高压泵之间的管路上设置有调节阀C。The production equipment used for the reverse mining method of the seabed natural gas hydrate stable layer includes a decompression gas production module, a thermal injection decomposition module and a carbon dioxide consolidation module. The depressurization gas production module includes a production well, a submersible pump, a liquid drainage gas production Pipelines, gas-liquid-solid separators and gas separators, the production well passes through the seabed sediment layer and the gas hydrate stable layer from the sea level, and extends into the production layer, and the submersible pump is installed at the bottom of the inner side of the production well to discharge liquid and gas The lower end of the pipeline is connected to the outlet of the submersible pump, the upper end is connected to the inlet of the gas-liquid-solid separator, the gas outlet of the gas-liquid-solid separator is connected to the inlet of the gas separator, and the natural gas outlet of the gas separator is connected to the inlet of the natural gas storage tank , the carbon dioxide outlet is connected to the inlet of the carbon dioxide storage tank, and a throttling valve and a regulating valve A are also installed on the pipeline of the liquid discharge gas production pipeline; the carbon dioxide consolidation module includes a control well, an injection pipeline and a high-pressure pump, and the control well is composed of The sea level passes through the seabed sediment layer and the gas hydrate stable layer in turn, and extends into the production layer. The injection pipeline is set in the control well, and the lower end is located at the bottom of the control well, and the upper end is connected to the outlet of the high-pressure pump. The inlet of the high-pressure pump is connected to the The outlet of the carbon dioxide storage tank is connected, and a regulating valve B is arranged on the pipeline between the high-pressure pump and the carbon dioxide storage tank; the thermal injection and decomposition module includes a heating device and a heat medium storage tank, the inlet of the heating device communicates with seawater, and the outlet connects with the The first inlet of the heat medium storage tank is connected, the outlet of the heat medium storage tank is connected with the inlet of the high-pressure pump, and a regulating valve C is arranged on the pipeline between the heat medium storage tank and the high-pressure pump.
所述的生产井的底部设置有防沙装置。The bottom of the production well is provided with a sand control device.
所述的气液固分离器的液体出口与热介质储罐的第二入口连通。The liquid outlet of the gas-liquid-solid separator communicates with the second inlet of the heat medium storage tank.
本发明具有以下优点:The present invention has the following advantages:
1、开采过程中,采用了降压法和注热法联合逆向开采天然气水合物稳定层下部的方法,利用天然气水合物稳定层本身作为封闭的盖层,由于生产层上部是天然气水合物稳定层,下部是二氧化碳水合物固态层,形成了一个上覆盖层和一个下覆盖层,保证了生产层开采过程的安全性,理论上不存在开采天然气的泄露,污染环境的问题。1. During the production process, the method of reverse mining the lower part of the gas hydrate stable layer was adopted by combining the pressure reduction method and the heat injection method, and the gas hydrate stable layer itself was used as a closed cap rock. Since the upper part of the production layer is a gas hydrate stable layer , the lower part is the solid layer of carbon dioxide hydrate, which forms an upper cover layer and a lower cover layer, which ensures the safety of the production layer mining process. In theory, there is no problem of natural gas leakage and environmental pollution.
2、利用二氧化碳易于形成固态水合物的特性,将水合物分解后的泥沙和剩余水进行固结处理,保证了天然气水合物开采后的海底地质结构的稳定,形成的固态二氧化碳水合物对海底有支撑作用,不会因为天然气水合物稳定层开采过量,而造成其下部出现空腔,进而导致海底地质灾害,如海底坍塌与滑坡,甚至引起海啸的发生。2. Utilizing the characteristics that carbon dioxide is easy to form solid hydrate, the sediment and remaining water after hydrate decomposition are consolidated to ensure the stability of the seabed geological structure after natural gas hydrate mining. It has a supporting function, and will not cause cavities in the lower part of the natural gas hydrate stable layer due to excessive exploitation, which will lead to submarine geological disasters, such as submarine collapse and landslides, and even tsunamis.
3、由于合理地利用了二氧化碳废气,避免了向大气中直接排放,降低了大气中的二氧化碳含量,减少了大气温室效应。当需要的二氧化碳不足时,可以向一些产生二氧化碳较多的工厂和企业收集,确保二氧化碳的供应。3. Due to the rational use of carbon dioxide waste gas, direct emission into the atmosphere is avoided, the carbon dioxide content in the atmosphere is reduced, and the atmospheric greenhouse effect is reduced. When the required carbon dioxide is insufficient, it can be collected from some factories and enterprises that produce more carbon dioxide to ensure the supply of carbon dioxide.
附图说明Description of drawings
图1 为一种海底天然气水合物稳定层逆向开采的结构示意图;Fig. 1 is a structural schematic diagram of reverse mining of a seabed gas hydrate stable layer;
图中:1-生产井,2-防沙装置,3-潜水泵,4-排液采气管道,5-节流阀,6-调节阀A,7-气液固分离器,8-气体分离器,9-天然气储罐,10-二氧化碳储罐,11-调节阀B,12-高压泵,13-控制井,14-注入管道,15-加热装置,16-热介质储罐,17-调节阀C,18-海底沉积物层,19-天然气水合物稳定层,20-生产层,21-二氧化碳水合物层,22-地层。In the figure: 1-production well, 2-sand control device, 3-submersible pump, 4-discharging gas production pipeline, 5-throttle valve, 6-regulating valve A, 7-gas-liquid-solid separator, 8-gas Separator, 9-natural gas storage tank, 10-carbon dioxide storage tank, 11-regulating valve B, 12-high pressure pump, 13-control well, 14-injection pipeline, 15-heating device, 16-heat medium storage tank, 17- Control valve C, 18-seabed sediment layer, 19-gas hydrate stable layer, 20-production layer, 21-carbon dioxide hydrate layer, 22-formation.
具体实施方式detailed description
下面结合附图对本发明做进一步的描述,但本发明的保护范围不局限于以下所述。The present invention will be further described below in conjunction with the accompanying drawings, but the protection scope of the present invention is not limited to the following description.
一种海底天然气水合物稳定层逆向开采方法,它包括以下步骤:A method for reverse mining of a seabed natural gas hydrate stable layer, comprising the following steps:
S1、降压采气:打一口生产井1穿越海底沉积物层18、天然气水合物稳定层19,到达生产层20,在生产井1的井底安装潜水泵3,打开调节阀A6,启动降压采气模块,通过潜水泵3抽取生产井1内的液体,使生产井1内的压力降低,天然气水合物稳定层19下面的游离态气体和天然气水合物稳定层19下表面分解的天然气在海底静水高压的作用下,流向低压的生产井1内,采出的混合流体经过除沙装置2、潜水泵3和节流阀5后,再经过气液固分离器7,将混合流体中的气体、水和泥沙进行分离,分离出的混合气体进入气体分离器8,使混合气体中的天然气分离进入天然气储罐9,二氧化碳气体分离进入二氧化碳储罐10;S1. Depressurization gas production: drill a production well 1 to pass through the seabed sediment layer 18, the natural gas hydrate stable layer 19, and reach the production layer 20. Install a submersible pump 3 at the bottom of the production well 1, open the regulating valve A6, and start the descending process. The pressure gas recovery module uses the submersible pump 3 to extract the liquid in the production well 1, so that the pressure in the production well 1 is reduced, and the free gas under the natural gas hydrate stable layer 19 and the natural gas decomposed on the lower surface of the natural gas hydrate stable layer 19 are released on the seabed Under the action of hydrostatic high pressure, it flows into the low-pressure production well 1, and the produced mixed fluid passes through the sand removal device 2, submersible pump 3 and throttle valve 5, and then passes through the gas-liquid-solid separator 7 to separate the gas in the mixed fluid. , water and silt are separated, and the separated mixed gas enters the gas separator 8, the natural gas in the mixed gas is separated into the natural gas storage tank 9, and the carbon dioxide gas is separated into the carbon dioxide storage tank 10;
S2、注热分解:打开调节阀C17,启动注热分解模块,热介质储罐16中的热水或蒸汽由高压泵12通过控制井13向生产层20内注入,天然气水合物稳定层19的下表面获得热量后分解,分解后的天然气和部分地层流体通过潜水泵3由生产井1采出,分解后的泥沙由于防沙装置2的阻挡作用,大部分都留在生产层20内,并沉入生产层20的底部,随着天然气水合物稳定层19开采过程的推进,天然气水合物稳定层19的下表面向上推移,生产层20的厚度逐渐增加,当达到生产层20的最大厚度时,停止向生产层20注热;S2. Thermal injection decomposition: open the regulating valve C17, start the thermal injection decomposition module, the hot water or steam in the heat medium storage tank 16 is injected into the production layer 20 through the control well 13 by the high-pressure pump 12, and the natural gas hydrate stable layer 19 The lower surface is decomposed after gaining heat, and the decomposed natural gas and part of the formation fluid are extracted from the production well 1 through the submersible pump 3, and most of the decomposed sand remains in the production layer 20 due to the blocking effect of the sand control device 2, and sinks into the bottom of the production layer 20, and with the advancement of the production process of the gas hydrate stable layer 19, the lower surface of the gas hydrate stable layer 19 moves upwards, and the thickness of the production layer 20 gradually increases. When the maximum thickness of the production layer 20 is reached , stop injecting heat into the production layer 20;
S3、二氧化碳固结:关闭调节阀A6和调节阀C17,关闭降压采气模块和注热分解模块,打开调节阀B11,启动二氧化碳固结模块,将二氧化碳储罐10中的二氧化碳通过高压泵12加压后由控制井13通入生产层20的底部,通入的二氧化碳在地层22高压、低温环境的作用下,与生产层20中的泥沙和水形成固态的二氧化碳水合物层21,随着二氧化碳水合物层21形成过程的推进,二氧化碳水合物层21上表面向上推移,生产层20的厚度逐渐减少,当减少到生产层20的最小厚度时,停止向生产层20注二氧化碳。S3. Carbon dioxide consolidation: close the regulating valve A6 and regulating valve C17, close the pressure-reducing gas extraction module and the thermal injection decomposition module, open the regulating valve B11, start the carbon dioxide consolidation module, and pass the carbon dioxide in the carbon dioxide storage tank 10 through the high-pressure pump 12 After pressurization, the control well 13 is passed into the bottom of the production layer 20, and the introduced carbon dioxide forms a solid carbon dioxide hydrate layer 21 with the sediment and water in the production layer 20 under the action of the high-pressure and low-temperature environment of the formation 22. As the formation process of the carbon dioxide hydrate layer 21 progresses, the upper surface of the carbon dioxide hydrate layer 21 moves upwards, and the thickness of the production layer 20 gradually decreases. When the thickness of the production layer 20 is reduced to the minimum, stop injecting carbon dioxide into the production layer 20.
S4、停止注入二氧化碳,待生产层20内的二氧化碳与泥沙、水充分形成固态的二氧化碳水合物层21后,重复步骤S1、S2和S3,如此循环逆向开采天然气水合物稳定层19,直至海底天然气水合物稳定层19减薄到适宜厚度时,停止生产。S4. Stop injecting carbon dioxide. After the carbon dioxide, sediment and water in the production layer 20 fully form a solid carbon dioxide hydrate layer 21, repeat steps S1, S2 and S3, and reversely exploit the natural gas hydrate stable layer 19 in this way until the bottom of the sea. When the gas hydrate stable layer 19 is thinned to an appropriate thickness, the production is stopped.
如图1所示,用于海底天然气水合物稳定层逆向开采方法的开采设备包括降压采气模块、注热分解模块和二氧化碳固结模块,所述的降压采气模块包括生产井1、潜水泵3、排液采气管道4、气液固分离器7和气体分离器8,生产井1由海平面依次穿过海底沉积物层18和天然气水合物稳定层19,并伸入生产层20,所述的生产井1的底部设置有防沙装置2,防止大量泥沙混进排液采气管道4,发生堵塞,潜水泵3设置于生产井1内侧底部,排液采气管道4的下端与潜水泵3的出口连接,上端与气液固分离器7的入口连接,气液固分离器7的气体出口与气体分离器8的入口连接,气体分离器8的天然气出口与天然气储罐9的入口连接,二氧化碳出口与二氧化碳储罐10的入口连接,由于合理地利用了二氧化碳废气,避免了向大气中直接排放,降低了大气中的二氧化碳含量,减少了温室效应。排液采气管道4的管路上还安装有节流阀5和调节阀A6,节流阀5防止了采气过程中出现井喷;所述的二氧化碳固结模块包括控制井13、注入管道14和高压泵12,控制井13由海平面依次穿过海底沉积物层18和天然气水合物稳定层19,并伸入生产层20,注入管道14设置于控制井13内,且下端位于控制井13的底部,上端与高压泵12的出口连接,高压泵12的入口与二氧化碳储罐10的出口连接,高压泵12与二氧化碳储罐10之间的管路上设置有调节阀B11;所述的注热分解模块包括加热装置15和热介质储罐16,加热装置15的入口与海水连通,出口与热介质储罐16的第一入口连通,热介质储罐16的出口与高压泵12的入口连通,热介质储罐16与高压泵12之间的管路上设置有调节阀C17,所述的气液固分离器7的液体出口与热介质储罐16的第二入口连通。As shown in Figure 1, the production equipment used for the reverse mining method of the seabed natural gas hydrate stable layer includes a decompression gas production module, a thermal injection decomposition module and a carbon dioxide consolidation module, and the depressurization gas production module includes a production well 1, Submersible pump 3, liquid drainage and gas production pipeline 4, gas-liquid-solid separator 7 and gas separator 8, production well 1 passes through seabed sediment layer 18 and natural gas hydrate stable layer 19 sequentially from sea level, and extends into the production layer 20. The bottom of the production well 1 is provided with a sand prevention device 2 to prevent a large amount of sediment from mixing into the liquid drainage gas production pipeline 4 and causing blockage. The lower end of the pump is connected to the outlet of the submersible pump 3, the upper end is connected to the inlet of the gas-liquid-solid separator 7, the gas outlet of the gas-liquid-solid separator 7 is connected to the inlet of the gas separator 8, and the natural gas outlet of the gas separator 8 is connected to the natural gas storage The inlet of the tank 9 is connected, and the carbon dioxide outlet is connected with the inlet of the carbon dioxide storage tank 10. Due to the rational use of the carbon dioxide waste gas, direct emission into the atmosphere is avoided, the carbon dioxide content in the atmosphere is reduced, and the greenhouse effect is reduced. A throttle valve 5 and a regulating valve A6 are also installed on the pipeline of the liquid discharge gas production pipeline 4, and the throttle valve 5 prevents a blowout during the gas production process; the carbon dioxide consolidation module includes a control well 13, an injection pipeline 14 and a The high-pressure pump 12 and the control well 13 pass through the seabed sediment layer 18 and the gas hydrate stable layer 19 sequentially from the sea level, and extend into the production layer 20. The injection pipeline 14 is arranged in the control well 13, and the lower end is located at the bottom of the control well 13 The bottom and the upper end are connected to the outlet of the high-pressure pump 12, the inlet of the high-pressure pump 12 is connected to the outlet of the carbon dioxide storage tank 10, and a regulating valve B11 is arranged on the pipeline between the high-pressure pump 12 and the carbon dioxide storage tank 10; The module includes a heating device 15 and a heat medium storage tank 16, the inlet of the heating device 15 communicates with seawater, the outlet communicates with the first inlet of the heat medium storage tank 16, the outlet of the heat medium storage tank 16 communicates with the inlet of the high-pressure pump 12, and the heat A regulating valve C17 is provided on the pipeline between the medium storage tank 16 and the high-pressure pump 12 , and the liquid outlet of the gas-liquid-solid separator 7 communicates with the second inlet of the heat medium storage tank 16 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610071790.1A CN105625998B (en) | 2016-02-02 | 2016-02-02 | A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610071790.1A CN105625998B (en) | 2016-02-02 | 2016-02-02 | A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105625998A CN105625998A (en) | 2016-06-01 |
CN105625998B true CN105625998B (en) | 2017-10-17 |
Family
ID=56041289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610071790.1A Expired - Fee Related CN105625998B (en) | 2016-02-02 | 2016-02-02 | A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105625998B (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO344641B1 (en) * | 2016-07-06 | 2020-02-17 | Aker Solutions As | Subsea methane production assembly |
CN106351615B (en) * | 2016-10-31 | 2019-07-19 | 重庆大学 | Method for assisted hydrate extraction by reaction of halogen acid solution and soluble carbonate |
CN108071372A (en) * | 2016-11-15 | 2018-05-25 | 中国计量大学 | The simple type recovery method of common seabed combustible ice |
CN106854984B (en) * | 2016-11-17 | 2019-03-05 | 大连理工大学 | A kind of gas hydrates method of replacing of combination injection hot sea water enhancing methane exploitation and carbon dioxide sequestration |
CN106677745B (en) * | 2016-12-02 | 2018-10-12 | 中国石油大学(华东) | A kind of gas hydrates decompression exploitation and CO2Bury the process of combination |
CN106761589B (en) * | 2017-01-03 | 2018-12-25 | 中国石油大学(北京) | A kind of method of Gas Hydrate In Sea Areas reservoir reconstruction exploitation |
CN107740686A (en) * | 2017-10-23 | 2018-02-27 | 大庆东油睿佳石油科技有限公司 | A kind of method that parallel water horizontal well mixed phase drives exploitation of gas hydrate |
CN107575195A (en) * | 2017-10-23 | 2018-01-12 | 大庆东油睿佳石油科技有限公司 | A kind of method that gas hydrates parallel water horizontal well mixed phase drives exploitation |
CN107676062A (en) * | 2017-10-23 | 2018-02-09 | 大庆东油睿佳石油科技有限公司 | A kind of method that row's formula horizontal well mixed phase drives exploitation of gas hydrate |
CN107575197A (en) * | 2017-10-23 | 2018-01-12 | 大庆东油睿佳石油科技有限公司 | A kind of method of row's formula horizontal well chemical flooding exploitation of gas hydrate |
CN107575196A (en) * | 2017-10-23 | 2018-01-12 | 大庆东油睿佳石油科技有限公司 | A kind of method that gas hydrates row's formula horizontal well mixed phase drives exploitation |
CN107701150A (en) * | 2017-10-23 | 2018-02-16 | 大庆东油睿佳石油科技有限公司 | A kind of method of offshore natural gas hydrate parallel water horizontal well exploitation |
CN109695441A (en) * | 2017-10-23 | 2019-04-30 | 大庆东油睿佳石油科技有限公司 | A kind of method of parallel water horizontal well microwave heating exploitation of gas hydrate |
CN107676061A (en) * | 2017-10-23 | 2018-02-09 | 大庆东油睿佳石油科技有限公司 | A kind of method of parallel water horizontal well exploitation offshore natural gas hydrate |
CN107701151A (en) * | 2017-11-17 | 2018-02-16 | 中国矿业大学 | A kind of method of directional drilling decompression extraction gas hydrates |
CN108005618B (en) * | 2017-12-07 | 2023-09-26 | 华南理工大学 | Natural gas hydrate exploitation device and method based on solar energy-seawater source heat pump combined heat supply technology |
BR102018068428B1 (en) * | 2018-09-12 | 2021-12-07 | Petróleo Brasileiro S.A. - Petrobras | NON-RESIDENT SYSTEM AND METHOD FOR DEPRESSURIZING EQUIPMENT AND SUBSEA LINES |
CN111173480B (en) * | 2018-11-12 | 2021-09-21 | 中国石油化工股份有限公司 | Natural gas hydrate exploitation method |
CN109915094A (en) * | 2019-03-29 | 2019-06-21 | 大连理工大学 | A kind of natural gas hydrate replacement mining method combined with carbon dioxide inhibitor |
CN112127848B (en) * | 2019-06-24 | 2023-09-05 | 南京延长反应技术研究院有限公司 | Submarine combustible ice exploitation system |
CN113107433A (en) * | 2020-01-13 | 2021-07-13 | 中国石油大学(北京) | Exploitation method of natural gas hydrate |
CN111502605A (en) * | 2020-05-29 | 2020-08-07 | 中国华能集团有限公司 | Novel natural gas hydrate development device and method |
CN113236192A (en) * | 2021-03-31 | 2021-08-10 | 中国石油大学(北京) | Marine hydrate underwater mining system and method |
CN115370324A (en) * | 2021-05-20 | 2022-11-22 | 中国石油化工股份有限公司 | Natural gas hydrate heat injection exploitation system and method |
CN113309494B (en) * | 2021-06-23 | 2022-12-20 | 中海石油(中国)有限公司海南分公司 | Production pipeline and processing system for natural gas hydrate with covering layer and production method thereof |
CN114412421A (en) * | 2022-01-20 | 2022-04-29 | 北京大学 | A kind of sea area natural gas hydrate exploitation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201953359U (en) * | 2011-02-23 | 2011-08-31 | 中国地质科学院勘探技术研究所 | Automatic exploitation system of natural gas hydrate |
CN103216219A (en) * | 2013-05-01 | 2013-07-24 | 吉林大学 | A CO2/N2 Underground Replacement Method for Exploiting Natural Gas Hydrate |
CN103334729A (en) * | 2013-04-25 | 2013-10-02 | 李贤明 | Exploitation method and system of seabed methane hydrate |
CN103410488A (en) * | 2013-09-05 | 2013-11-27 | 中国石油大学(华东) | Natural gas hydrate water discharge gas production exploitation device and exploitation method of natural gas hydrate water discharge gas production exploitation device |
CN103498652A (en) * | 2013-10-18 | 2014-01-08 | 辽宁石油化工大学 | Method and device for exploiting natural gas hydrate in frozen soil area through injection of high-temperature steam |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007117167A1 (en) * | 2006-04-07 | 2007-10-18 | Petru Baciu | Procedure and apparatus for hydrocarbon gases extraction from under ground hydrates |
-
2016
- 2016-02-02 CN CN201610071790.1A patent/CN105625998B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201953359U (en) * | 2011-02-23 | 2011-08-31 | 中国地质科学院勘探技术研究所 | Automatic exploitation system of natural gas hydrate |
CN103334729A (en) * | 2013-04-25 | 2013-10-02 | 李贤明 | Exploitation method and system of seabed methane hydrate |
CN103216219A (en) * | 2013-05-01 | 2013-07-24 | 吉林大学 | A CO2/N2 Underground Replacement Method for Exploiting Natural Gas Hydrate |
CN103410488A (en) * | 2013-09-05 | 2013-11-27 | 中国石油大学(华东) | Natural gas hydrate water discharge gas production exploitation device and exploitation method of natural gas hydrate water discharge gas production exploitation device |
CN103498652A (en) * | 2013-10-18 | 2014-01-08 | 辽宁石油化工大学 | Method and device for exploiting natural gas hydrate in frozen soil area through injection of high-temperature steam |
Also Published As
Publication number | Publication date |
---|---|
CN105625998A (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105625998B (en) | A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus | |
CN105003237B (en) | Apparatus and method for integrating geothermal exploitation of natural gas hydrate and CO2 waste gas reinjection treatment | |
CN108278100B (en) | A kind of natural gas hydrate exploitation method and system | |
US10683736B2 (en) | Method and system for recovering gas in natural gas hydrate exploitation | |
CN106854984B (en) | A kind of gas hydrates method of replacing of combination injection hot sea water enhancing methane exploitation and carbon dioxide sequestration | |
US9187246B2 (en) | Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods | |
Farajzadeh et al. | Life-cycle assessment of water injection into hydrocarbon reservoirs using exergy concept | |
CN111271035B (en) | Natural gas hydrate exploitation well structure | |
CN110644963B (en) | Method for exploiting hydrate based on multilateral well | |
CN106677745B (en) | A kind of gas hydrates decompression exploitation and CO2Bury the process of combination | |
CN101016841A (en) | Method for exploiting natural gas hydrates and device thereof | |
CN102027193A (en) | A system that promotes the decomposition of methane hydrate and extracts methane gas | |
CN113294126A (en) | Natural gas hydrate combined mining method and device for stabilizing stratum | |
CN108412466B (en) | Seabed natural gas hydrate exploitation device and exploitation method | |
US12281542B2 (en) | Subterranean sequestration of low-density organic wastes | |
RU2491420C2 (en) | Method for production of natural gas from gas-hydrate pools and device for its realisation | |
US9586759B2 (en) | Method for storing carbon dioxide compositions in subterranean geological formations and an arrangement for use in such methods | |
CN112081559A (en) | Device and method for extracting natural gas hydrate by depressurization and double-pipe injection of modified fluid | |
CN1587641A (en) | Method and device for sea natural gas hydrate production | |
CN108005626A (en) | A kind of gas hydrate exploitation device and method based on hot pipe technique | |
CN1587642A (en) | Method and device for sea natural gas hydrate production | |
CN115126449B (en) | A method and system for circular thermal shock recovery of natural gas hydrate in sea area | |
JP2022050684A (en) | Methane gas production facility and methane gas production method | |
JP5208862B2 (en) | Emulsion production / injection apparatus and method, and methane hydrate mining method | |
CN116122781B (en) | Device and method for realizing combined exploitation of underlying free gas and ocean hydrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171017 Termination date: 20210202 |
|
CF01 | Termination of patent right due to non-payment of annual fee |