CN105609572A - Texturing method for monocrystalline cell, monocrystalline cell and monocrystalline photovoltaic module - Google Patents
Texturing method for monocrystalline cell, monocrystalline cell and monocrystalline photovoltaic module Download PDFInfo
- Publication number
- CN105609572A CN105609572A CN201610161757.8A CN201610161757A CN105609572A CN 105609572 A CN105609572 A CN 105609572A CN 201610161757 A CN201610161757 A CN 201610161757A CN 105609572 A CN105609572 A CN 105609572A
- Authority
- CN
- China
- Prior art keywords
- single crystal
- monocrystalline
- silicon
- cell
- crystal silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002253 acid Substances 0.000 claims abstract description 17
- 239000003513 alkali Substances 0.000 claims abstract description 17
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 13
- 238000005530 etching Methods 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 229910021426 porous silicon Inorganic materials 0.000 claims abstract description 8
- 238000004140 cleaning Methods 0.000 claims abstract description 6
- 238000007605 air drying Methods 0.000 claims abstract description 4
- 238000001035 drying Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 32
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- 239000011521 glass Substances 0.000 claims description 12
- 238000005538 encapsulation Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 229910001868 water Inorganic materials 0.000 claims description 3
- 210000002268 wool Anatomy 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 abstract description 25
- 210000002858 crystal cell Anatomy 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000001020 plasma etching Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910021418 black silicon Inorganic materials 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明提供一种单晶电池片的制绒方法、单晶电池片及单晶光伏组件,在单晶电池片表面形成漫反射型结构,可以更好的利用入射太阳光,提升电池的光生电流,进而显著提升单晶光伏组件的CTM。一种单晶电池片的制绒方法,依次包括如下步骤:S1、用10~30wt%的碱溶液对单晶硅进行处理;S2、用1~5wt%的碱溶液对单晶硅的表面进行各向异性腐蚀;S3、用HNO3/HF混酸溶液对单晶硅的表面进行处理,在表面上形成多孔硅结构,所述HNO3/HF混酸溶液中HF、HNO3、H2O的重量比为1:(3~5):(2~4);S4、清洗;S5、风干或甩干。The invention provides a method for making texture of a single crystal cell, a single crystal cell and a single crystal photovoltaic module, forming a diffuse reflection structure on the surface of the single crystal cell, which can better utilize incident sunlight and increase the photogenerated current of the cell , thereby significantly improving the CTM of monocrystalline photovoltaic modules. A method for making texture of a monocrystalline cell, comprising the following steps in turn: S1, treating the monocrystalline silicon with an alkali solution of 10 to 30 wt %; S2, treating the surface of the single crystal silicon with an alkali solution of 1 to 5 wt % Anisotropic etching; S3, treating the surface of single crystal silicon with HNO3/HF mixed acid solution to form a porous silicon structure on the surface, the weight ratio of HF, HNO3 and H2O in the HNO3/HF mixed acid solution is 1:( 3~5): (2~4); S4, cleaning; S5, air drying or drying.
Description
技术领域 technical field
本发明涉及太阳能电池领域,特别涉及一种单晶电池片的制绒方法、单晶电池片及单晶光伏组件。 The invention relates to the field of solar cells, in particular to a texturing method for a single crystal cell, a single crystal cell and a single crystal photovoltaic module.
背景技术 Background technique
硅太阳能电池利用半导体的光生伏特效应工作,入射至硅内部的光转化为电能被收集传导出去加以利用,越多的光能被转化成电能,电池的性能越好,转换效率越高。提升电池转化效率总的来说有两种途径,光学途径和电学途径,目的都是让尽量多的光在硅内部转化为空穴电子对,让尽量多空穴电子对被分开收集传导到外部。常见的光学途径是把硅表面做成所谓的绒面和减反射膜的“陷光”结构增加光的入射。对于单晶硅电池,一般使用碱对硅做各向异性腐蚀,在硅表面形成的微米级的金字塔结构。还有人用光刻和反应离子刻蚀(RIE)的方法在晶硅表面制作更为复杂的陷光结构,本质上都是在硅片表面形成比较糙糙的形貌,尽量减少光逃逸的几率。 Silicon solar cells use the photovoltaic effect of semiconductors to work. The light incident into the silicon is converted into electrical energy and collected and transmitted for use. The more light energy is converted into electrical energy, the better the performance of the battery and the higher the conversion efficiency. Generally speaking, there are two ways to improve the conversion efficiency of cells, the optical way and the electrical way. The purpose is to convert as much light as possible into hole-electron pairs inside the silicon, so that as many hole-electron pairs as possible can be collected separately and conducted to the outside. . A common optical approach is to make the silicon surface into a so-called "light-trapping" structure of the so-called suede and anti-reflection film to increase the incidence of light. For monocrystalline silicon cells, alkali is generally used to anisotropically etch silicon to form a micron-scale pyramid structure on the silicon surface. Some people use photolithography and reactive ion etching (RIE) to make more complex light-trapping structures on the surface of crystalline silicon, which essentially form rougher shapes on the surface of silicon wafers to minimize the chance of light escape. .
在仅电池片层面,单晶的金字塔结构绒面增加了光二次入射的几率,增强光吸收,反射率更低。而在电池组件层面,由于单晶金字塔结构绒面的大部分反射光线和入射光线所成的角度比较小,即大部分的反射光线靠近电池表面的法线。 At the cell level only, the monocrystalline pyramid-structured suede surface increases the probability of secondary incident light, enhances light absorption, and lowers reflectivity. At the level of battery components, since the angle formed by most of the reflected light and the incident light of the monocrystalline pyramid structure suede is relatively small, that is, most of the reflected light is close to the normal line of the battery surface.
用反应离子刻蚀(RIE)等方法在晶体硅表面形成更为粗糙,外观近似黑色,简称黑硅。微观上是带有较深的孔洞的深凹腔,光一旦入射进去,会经多次表面反射,很少的一部分能逃逸。但是黑硅的工艺目前比较复杂,和量产的差距比较大。而且黑硅表面过于粗糙,有缺陷态密度很高亚微米的结构,会对电池电性能带来不利影响。光刻的倒金字塔陷光效果很好,但是成本对传统的晶硅制造业来说显然是不现实的。 Using reactive ion etching (RIE) and other methods to form a rougher surface on the surface of crystalline silicon, the appearance is similar to black, referred to as black silicon. Microscopically, it is a deep concave cavity with deep holes. Once light enters, it will be reflected by the surface many times, and a small part can escape. However, the process of black silicon is relatively complicated at present, and the gap with mass production is relatively large. Moreover, the surface of black silicon is too rough and has a submicron structure with a high density of defect states, which will adversely affect the electrical performance of the battery. The light trapping effect of the inverted pyramid of lithography is very good, but the cost is obviously unrealistic for the traditional crystalline silicon manufacturing industry.
发明内容 Contents of the invention
针对上述问题,本发明的目的是提供一种单晶电池片的制绒方法、单晶电池片及单晶光伏组件,在单晶电池片表面形成漫反射型结构,可以更好的利用入射太阳光,提升电池的光生电流,进而显著提升单晶光伏组件的CTM。 In view of the above problems, the object of the present invention is to provide a texturing method for single crystal cells, single crystal cells and single crystal photovoltaic modules, which form a diffuse reflective structure on the surface of single crystal cells, which can make better use of incident sunlight. Light, improve the photo-generated current of the cell, and then significantly increase the CTM of the monocrystalline photovoltaic module.
为解决上述技术问题,本发明采用的一种技术方案为: In order to solve the problems of the technologies described above, a kind of technical scheme that the present invention adopts is:
一种单晶电池片的制绒方法,依次包括如下步骤: A method for making texturing of a monocrystalline cell, comprising the following steps in sequence:
S1、用10~30wt%的碱溶液对单晶硅进行处理; S1, treating single crystal silicon with 10-30wt% alkali solution;
S2、用1~5wt%的碱溶液对单晶硅的表面进行各向异性腐蚀; S2, carrying out anisotropic etching to the surface of single crystal silicon with 1~5wt% alkaline solution;
S3、用HNO3/HF混酸溶液对单晶硅的表面进行处理,在表面上形成多孔硅结构,所述HNO3/HF混酸溶液中HF、HNO3、H2O的重量比为1:(3~5):(2~4); S3. Treat the surface of single crystal silicon with HNO3/HF mixed acid solution to form a porous silicon structure on the surface. The weight ratio of HF, HNO3 and H2O in the HNO3/HF mixed acid solution is 1: (3~5): (2~4);
S4、清洗; S4, cleaning;
S5、风干或甩干。 S5, air drying or drying.
优选地,步骤S1中,所用的碱溶液为12~25wt%的NaOH或KOH溶液。 Preferably, in step S1, the alkali solution used is 12-25wt% NaOH or KOH solution.
更优选地,步骤S1中,处理时间为2~5min。 More preferably, in step S1, the processing time is 2-5 minutes.
优选地,步骤S2中,所用的碱溶液为1~3wt%的NaOH溶液。 Preferably, in step S2, the alkali solution used is 1-3 wt% NaOH solution.
更优选地,步骤S2中,各向异性腐蚀时间为1~3min。 More preferably, in step S2, the anisotropic etching time is 1-3 min.
优选地,步骤S3中,处理时间为10~30s。 Preferably, in step S3, the processing time is 10-30s.
优选地,步骤S4依次包括: Preferably, step S4 comprises in turn:
S41、用碱溶液对单晶硅进行处理以对多孔硅结构进行清洗; S41, treating the single crystal silicon with an alkaline solution to clean the porous silicon structure;
S42、用酸溶液对单晶硅进行处理以中和经步骤S41后残留在单晶硅上的碱并清洗表面; S42, treating the single crystal silicon with an acid solution to neutralize the alkali remaining on the single crystal silicon after step S41 and cleaning the surface;
S43、用去离子水对单晶硅进行润洗。 S43 , rinsing the single crystal silicon with deionized water.
更优选地,步骤S41中,采用的碱溶液为3~6wt%的NaOH溶液; More preferably, in step S41, the alkali solution used is 3~6wt% NaOH solution;
步骤S42中,采用的酸溶液为HF/HCl混合酸溶液。 In step S42, the acid solution used is HF/HCl mixed acid solution.
本发明采用的又一技术方案为: Another technical scheme adopted in the present invention is:
一种采用上述制绒方法制得的单晶电池片。 The invention relates to a monocrystalline battery sheet prepared by the above-mentioned texturing method.
本发明采用的又一技术方案为: Another technical scheme adopted in the present invention is:
一种单晶光伏组件,包括从上至下相层叠的玻璃、第一封装层、电池片、第二封装层及背板,所述电池片采用上述制绒方法制得。 A single crystal photovoltaic module, comprising glass laminated from top to bottom, a first encapsulation layer, a battery sheet, a second encapsulation layer and a back plate, and the battery sheet is made by the above-mentioned texturing method.
本发明采用上述技术方案,相比现有技术具有如下优点:本发明的方法制成的单晶电池片,由于表面是随机反射的表面织构,和现有技术中碱制绒形成的金字塔绒面相比,表面反射光近似漫反射,有很大部分反射光线偏离电池表面的法线的角度较大,用这种电池片封装的光伏组件,这部分反射光线易被EVA/玻璃、玻璃/空气界面的反射回电池片,增加了光的二次入射,在光伏组件中可以获得额外的陷光增益,降低封装损失,提升光伏组件的功率值。 The present invention adopts the above-mentioned technical scheme, and has the following advantages compared with the prior art: the monocrystalline battery sheet made by the method of the present invention, because the surface is the surface texture of random reflection, and the pyramid wool formed by alkali wool making in the prior art Compared with the surface, the reflected light on the surface is similar to diffuse reflection, and a large part of the reflected light deviates from the normal line of the battery surface at a relatively large angle. For photovoltaic modules packaged with such cells, this part of the reflected light is easily absorbed by EVA/glass, glass/air The reflection of the interface back to the battery sheet increases the secondary incidence of light, which can obtain additional light trapping gain in the photovoltaic module, reduce packaging loss, and increase the power value of the photovoltaic module.
附图说明 Description of drawings
附图1为本发明的制绒方法的流程示意图; Accompanying drawing 1 is the schematic flow sheet of the cashmere method of the present invention;
附图2为现有技术中的单晶电池片的反射示意图; Accompanying drawing 2 is the reflection schematic diagram of the monocrystalline solar cell in the prior art;
附图3为本发明的制绒方法制得的单晶电池片的反射示意图; Accompanying drawing 3 is the reflection schematic diagram of the monocrystalline battery sheet that the method for making texturing of the present invention makes;
附图4为现有技术中的单晶光伏组件的反射示意图; Accompanying drawing 4 is the reflection schematic diagram of single crystal photovoltaic module in the prior art;
附图5为采用本发明的制绒方法制得的单晶电池片的单晶光伏组件的反射示意图。 Accompanying drawing 5 is the reflection schematic diagram of the monocrystalline photovoltaic module of the monocrystalline solar cell that adopts the texturing method of the present invention to make.
上述附图中: In the above attached drawings:
1、玻璃;2、第一封装层;3、单晶电池片。 1. Glass; 2. The first encapsulation layer; 3. Monocrystalline cells.
具体实施方式 detailed description
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。本发明中的wt%表示质量百分比。 The preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, so that the advantages and features of the present invention can be more easily understood by those skilled in the art. The wt% in the present invention means mass percentage.
参照附图1所示,本发明的一种单晶电池片的制绒方法,依次包括如下步骤: With reference to shown in accompanying drawing 1, a kind of texturizing method of monocrystalline solar cell of the present invention, comprises the following steps successively:
S1、用10~30wt%的碱溶液对单晶硅进行处理; S1, treating single crystal silicon with 10-30wt% alkali solution;
S2、用1~5wt%的碱溶液对单晶硅的表面进行各向异性腐蚀; S2, carrying out anisotropic etching to the surface of single crystal silicon with 1~5wt% alkaline solution;
S3、用HNO3/HF混酸溶液对单晶硅的表面进行处理,在表面上形成多孔硅结构,所述HNO3/HF混酸溶液中HF、HNO3、H2O的重量比为1:(3~5):(2~4); S3. Treat the surface of single crystal silicon with HNO3/HF mixed acid solution to form a porous silicon structure on the surface. The weight ratio of HF, HNO3 and H2O in the HNO3 /HF mixed acid solution is 1: (3~5) : (2~4);
S4、清洗; S4, cleaning;
S5、风干或甩干。 S5, air drying or drying.
优选地,步骤S1中,用12~25wt%的NaOH或KOH溶液对单晶硅处理2~5min,去除单晶硅表面的切割损伤层。 Preferably, in step S1, the single crystal silicon is treated with 12-25wt% NaOH or KOH solution for 2-5 minutes to remove the cutting damage layer on the surface of the single crystal silicon.
步骤S2中,用1~3%的NaOH溶液对去损后的单晶硅表面进行初步的各向异性腐蚀,各向异性腐蚀的时间为1~3min,使得单晶硅的表面形成类似金字塔的结构。 In step S2, use 1 to 3% NaOH solution to perform preliminary anisotropic etching on the surface of the removed single crystal silicon, and the anisotropic etching time is 1 to 3 minutes, so that the surface of the single crystal silicon forms a pyramid-like pattern. structure.
步骤S3中,HNO3/HF混酸溶液的处理时间为10~30s,使得单晶硅的表面形成类似“虫洞”的多孔硅结构,即单晶硅表面上形成有多个微孔。 In step S3, the treatment time of the HNO3/HF mixed acid solution is 10-30s, so that a porous silicon structure similar to a "wormhole" is formed on the surface of the single crystal silicon, that is, a plurality of micropores are formed on the surface of the single crystal silicon.
步骤S4进一步依次包括: Step S4 further comprises in sequence:
S41、用3~6wt%的NaOH溶液对单晶硅进行处理以对酸腐蚀形成的多孔硅结构进行清洗; S41, treating the single crystal silicon with 3-6wt% NaOH solution to clean the porous silicon structure formed by acid corrosion;
S42、用HF/HCl混酸溶液对单晶硅进行处理以中和经步骤S41后残留在单晶硅上的碱并起到清洗表面的作用; S42, treating the single crystal silicon with HF/HCl mixed acid solution to neutralize the alkali remaining on the single crystal silicon after step S41 and to clean the surface;
S43、用去离子水对单晶硅进行润洗。 S43 , rinsing the single crystal silicon with deionized water.
一种采用上述的制绒方法制得的单晶电池片,在经步骤S1~S5进行制绒处理收后,再依次经过扩散、边缘刻蚀、镀减反射膜、印刷烧结等步骤制得最终的单晶电池片,扩散、边缘刻蚀、镀减反射膜、印刷烧结等步骤同现有技术中对单晶硅电池片的制备工艺。 A monocrystalline solar cell prepared by the above-mentioned texturizing method, after the texturing treatment in steps S1 to S5, and then sequentially undergoes steps such as diffusion, edge etching, anti-reflection coating, printing and sintering to obtain the final cell sheet. The steps of diffusion, edge etching, anti-reflection coating, printing and sintering are the same as the preparation process of single crystal silicon cells in the prior art.
一种单晶光伏组件,包括从上至下相层叠的玻璃1、第一封装层(EVA层)2、电池片3、第二封装层(EVA层)及背板,还包括边框及接线盒,边框处于外围,玻璃1、第一封装层2、电池片3、第二封装层及背板均设置于边框内,接线盒设于背板的背面。电池片采用上述的制绒方法制得。 A single crystal photovoltaic module, including glass 1, first encapsulation layer (EVA layer) 2, battery sheet 3, second encapsulation layer (EVA layer) and back plate stacked from top to bottom, and also includes a frame and a junction box , the frame is at the periphery, the glass 1 , the first encapsulation layer 2 , the battery sheet 3 , the second encapsulation layer and the back plate are all arranged in the frame, and the junction box is arranged on the back of the back plate. The battery sheet is made by the above-mentioned texturing method.
参见附图2至附图5所示,本发明的方法制成的单晶电池片,由于表面是随机反射的表面织构,和现有技术中碱制绒形成的金字塔绒面相比,表面的“虫洞”式绒面的反射光线的方向比较随机,更接近漫反射,很大一部分反射光线偏离法线的角度较大。和靠近法线的反射光线相比,偏离法线的角度较大的反射光线被EVA/玻璃、玻璃/空气界面全反射的几率较大,而被全反射回的光线又重新入射至电池表面被硅吸收,也就是说在电池片组件中,采用“虫洞”式绒面会获得更大的入射光增益,在电性能上采用采用“虫洞”式绒面的的CTM比金字塔结构绒面的单晶要高2~3个百分点。其中术语CTM是CelltoMoudle的缩写,指电池片制成的组件对电池片的效率的利用率,即(Pcell×N)/Pmoudle,其中Pcell表示单个电池片功率,N表示电池片个数,Pmoudle表示组件功率,一般情况下,常规电池片封装成组件后,由于组件有玻璃和EVA等覆盖,会阻挡一部分光,因此CTM值会小于100%。(1-CTM)成为封装损失,即CTMloss。 Referring to accompanying drawings 2 to 5, the monocrystalline solar cells made by the method of the present invention have a random reflective surface texture, compared with the pyramid texture formed by alkali texturing in the prior art, the surface The direction of the reflected light of the "wormhole" suede is relatively random, closer to diffuse reflection, and a large part of the reflected light deviates from the normal at a larger angle. Compared with the reflected light close to the normal, the reflected light with a larger angle away from the normal is more likely to be totally reflected by the EVA/glass, glass/air interface, and the light that is totally reflected back is incident on the surface of the battery again. Silicon absorption, that is to say, in the battery module, the use of "wormhole" suede will obtain greater incident light gain. In terms of electrical performance, the use of CTM with "wormhole" suede is better than that of pyramid structure suede. Single crystal is 2~3 percentage points higher. The term CTM is the abbreviation of CelltoMoudle, which refers to the utilization rate of the battery cell efficiency by the components made of cells, that is, (P cell × N)/P moudle , where P cell represents the power of a single cell, and N represents the number of cells , P moudle represents the power of the module. In general, after the conventional solar cell is packaged into a module, because the module is covered with glass and EVA, it will block part of the light, so the CTM value will be less than 100%. (1-CTM) becomes the encapsulation loss, that is, CTM loss .
由于本发明的制绒方法制得的单晶电池片的表面反射光近似漫反射,有很大部分反射光线偏离电池表面的法线的角度较大,用这种电池片封装的光伏组件,这部分反射光线易被EVA/玻璃、玻璃/空气界面的反射回电池片,增加了光的二次入射,在光伏组件中可以获得额外的陷光增益,降低封装损失,可以提升光伏组件的瓦数。单晶光伏组件的CTM值可以得到显著提高,进而提升了组件的功率值。 Because the reflected light on the surface of the monocrystalline battery sheet made by the texturing method of the present invention is approximately diffuse reflection, and the angle at which a large part of the reflected light deviates from the normal line of the battery surface is relatively large, the photovoltaic module packaged with this battery sheet, this Part of the reflected light is easily reflected back to the battery sheet by the EVA/glass, glass/air interface, which increases the secondary incidence of light, and can obtain additional light trapping gain in the photovoltaic module, reduce packaging loss, and increase the wattage of the photovoltaic module . The CTM value of monocrystalline photovoltaic modules can be significantly improved, thereby increasing the power value of the modules.
虽然RIE、光刻等复杂的制绒方法也可以得到低反射率的电池表面,但是上述方法工艺复杂,和现有设备难以兼容,大规模商用话投入较大。而且得到的表面的缺陷态很多,微观结构复杂,对后续的扩散等工艺有比较严重的影响。 Although complex texturing methods such as RIE and photolithography can also obtain a low-reflectance battery surface, the above-mentioned methods are complex in process, difficult to be compatible with existing equipment, and require large-scale commercial use. Moreover, there are many defect states on the obtained surface, and the microstructure is complex, which has a relatively serious impact on subsequent processes such as diffusion.
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。 The above-mentioned embodiment is only to illustrate the technical concept and characteristics of the present invention. It is a preferred embodiment, and its purpose is to allow those familiar with this technology to understand the content of the present invention and implement it accordingly, and it cannot limit the present invention. scope of protection. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610161757.8A CN105609572A (en) | 2016-03-22 | 2016-03-22 | Texturing method for monocrystalline cell, monocrystalline cell and monocrystalline photovoltaic module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610161757.8A CN105609572A (en) | 2016-03-22 | 2016-03-22 | Texturing method for monocrystalline cell, monocrystalline cell and monocrystalline photovoltaic module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105609572A true CN105609572A (en) | 2016-05-25 |
Family
ID=55989339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610161757.8A Pending CN105609572A (en) | 2016-03-22 | 2016-03-22 | Texturing method for monocrystalline cell, monocrystalline cell and monocrystalline photovoltaic module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105609572A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108615688A (en) * | 2018-05-08 | 2018-10-02 | 江苏汇成光电有限公司 | A kind of golden bumping manufacturing process of IC chip |
WO2020103195A1 (en) * | 2018-11-23 | 2020-05-28 | 成都晔凡科技有限公司 | Single crystal battery wafer cutting method , single crystal battery wafer, photovoltaic assembly and preparation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101661972A (en) * | 2009-09-28 | 2010-03-03 | 浙江大学 | Process for manufacturing monocrystalline silicon solar cell texture with low surface reflectivity |
CN102978710A (en) * | 2012-08-13 | 2013-03-20 | 杭州道乐太阳能技术有限公司 | Silicon solar cell surface light trapping structure and preparation method thereof |
WO2013055290A1 (en) * | 2011-10-14 | 2013-04-18 | Xu Shuyan | Alkaline solution for texturing monocrystalline silicon substrate |
CN103715981A (en) * | 2013-12-31 | 2014-04-09 | 浙江永升新能源科技有限公司 | Intelligent photovoltaic and photothermal integration component |
CN105060239A (en) * | 2015-08-24 | 2015-11-18 | 中国科学院上海光学精密机械研究所 | Preparation method of super-hydrophobic porous silicon |
-
2016
- 2016-03-22 CN CN201610161757.8A patent/CN105609572A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101661972A (en) * | 2009-09-28 | 2010-03-03 | 浙江大学 | Process for manufacturing monocrystalline silicon solar cell texture with low surface reflectivity |
WO2013055290A1 (en) * | 2011-10-14 | 2013-04-18 | Xu Shuyan | Alkaline solution for texturing monocrystalline silicon substrate |
CN102978710A (en) * | 2012-08-13 | 2013-03-20 | 杭州道乐太阳能技术有限公司 | Silicon solar cell surface light trapping structure and preparation method thereof |
CN103715981A (en) * | 2013-12-31 | 2014-04-09 | 浙江永升新能源科技有限公司 | Intelligent photovoltaic and photothermal integration component |
CN105060239A (en) * | 2015-08-24 | 2015-11-18 | 中国科学院上海光学精密机械研究所 | Preparation method of super-hydrophobic porous silicon |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108615688A (en) * | 2018-05-08 | 2018-10-02 | 江苏汇成光电有限公司 | A kind of golden bumping manufacturing process of IC chip |
WO2020103195A1 (en) * | 2018-11-23 | 2020-05-28 | 成都晔凡科技有限公司 | Single crystal battery wafer cutting method , single crystal battery wafer, photovoltaic assembly and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105226113B (en) | A kind of suede structure of crystal silicon solar energy battery and preparation method thereof | |
CN104992990B (en) | A kind of method for reducing surface light reflectivity of silicon chip | |
CN103531656B (en) | The preparation method of monocrystalline silicon chip of solar cell matte | |
CN103337560B (en) | For the preparation method of the three-dimensional silicon nano structure of solar cell | |
CN105070792B (en) | A kind of preparation method of polycrystalline solar cell based on solution method | |
TW201703277A (en) | Method for preparing partial back contact solar cell | |
CN104195645A (en) | Acidic texturing solution for etching solar cell silicon wafer, texturing method, solar cell silicon wafer and manufacturing method of solar cell silicon wafer | |
CN103647000B (en) | A kind of crystal-silicon solar cell Surface Texture metallization processes | |
CN109192809A (en) | A kind of full back electrode cell and its efficiently sunken light and selective doping manufacturing method | |
CN105070772A (en) | Wet chemical method of preparing uniform reverse pyramid textured structures on the surface of a monocrystalline silicon | |
CN101818348A (en) | Method for preparing texture of monocrystalline-silicon solar cell by one-step process | |
CN107919275A (en) | A kind of silicon chip that room temperature etching method and its making herbs into wool form, solar battery sheet and preparation method thereof | |
CN109473487B (en) | Crystalline silicon solar cell based on composite light trapping structure and preparation method thereof | |
CN105161553A (en) | Preparation method of novel all back electrode crystalline silicon solar cell | |
CN106098860A (en) | A kind of production technology of solar battery sheet | |
CN205194713U (en) | A silicon chip for solar cell | |
CN105609572A (en) | Texturing method for monocrystalline cell, monocrystalline cell and monocrystalline photovoltaic module | |
TWI650872B (en) | Solar cell and its manufacturing method, solar cell module and solar cell power generation system | |
CN105047758A (en) | Black silicon solar cell and preparation method thereof | |
CN105696083B (en) | A kind of preparation method of solar battery pile face | |
CN108550632A (en) | The preparation method and battery of N-type double-side cell | |
CN103746006A (en) | Passivating layer of crystalline silicon solar cell and passivating process thereof | |
CN107046066A (en) | With suede structure monocrystalline silicon piece and preparation method thereof and silicon solar cell | |
CN108682701B (en) | Solar cell and manufacturing process thereof | |
CN110265499A (en) | Silicon wafer and its preparation method and application with suede structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 215542 Jiangsu city of Suzhou province Changshou City Shajiabang Changkun Industrial Park Teng Hui Road No. 1 Applicant after: Suzhou Tenghui Photovoltaic Technology Co., Ltd. Address before: 215542 Jiangsu city of Suzhou province Changshou City Shajiabang Changkun Industrial Park Teng Hui Road No. 1 Applicant before: Zhongli Talesun Solar Technology Co., Ltd. |
|
CB02 | Change of applicant information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160525 |
|
RJ01 | Rejection of invention patent application after publication |