CN105576231A - High-voltage lithium oil battery positive electrode material with spinel structure and preparation method of high-voltage lithium oil battery positive electrode material - Google Patents
High-voltage lithium oil battery positive electrode material with spinel structure and preparation method of high-voltage lithium oil battery positive electrode material Download PDFInfo
- Publication number
- CN105576231A CN105576231A CN201610105577.8A CN201610105577A CN105576231A CN 105576231 A CN105576231 A CN 105576231A CN 201610105577 A CN201610105577 A CN 201610105577A CN 105576231 A CN105576231 A CN 105576231A
- Authority
- CN
- China
- Prior art keywords
- salt
- lithium
- preparation
- spinel structure
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052596 spinel Inorganic materials 0.000 title claims abstract description 29
- 239000011029 spinel Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 18
- 239000007774 positive electrode material Substances 0.000 title abstract description 30
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 30
- 239000010406 cathode material Substances 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 3
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 229940071125 manganese acetate Drugs 0.000 claims description 10
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 10
- 239000011259 mixed solution Substances 0.000 claims description 10
- 229940078494 nickel acetate Drugs 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910003002 lithium salt Inorganic materials 0.000 claims description 8
- 159000000002 lithium salts Chemical class 0.000 claims description 8
- 150000002696 manganese Chemical class 0.000 claims description 8
- 150000002815 nickel Chemical class 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 claims description 7
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 6
- 239000004570 mortar (masonry) Substances 0.000 claims description 6
- 239000010405 anode material Substances 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 4
- 150000001868 cobalt Chemical class 0.000 claims description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 4
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 4
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 claims description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 4
- 159000000003 magnesium salts Chemical class 0.000 claims description 4
- 150000003751 zinc Chemical class 0.000 claims description 4
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 4
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 2
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 claims description 2
- XHFVDZNDZCNTLT-UHFFFAOYSA-H chromium(3+);tricarbonate Chemical compound [Cr+3].[Cr+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O XHFVDZNDZCNTLT-UHFFFAOYSA-H 0.000 claims description 2
- 229940011182 cobalt acetate Drugs 0.000 claims description 2
- 229910021446 cobalt carbonate Inorganic materials 0.000 claims description 2
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 claims description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 2
- 238000003837 high-temperature calcination Methods 0.000 claims description 2
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 claims description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 claims description 2
- 239000011654 magnesium acetate Substances 0.000 claims description 2
- 235000011285 magnesium acetate Nutrition 0.000 claims description 2
- 229940069446 magnesium acetate Drugs 0.000 claims description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 2
- 239000001095 magnesium carbonate Substances 0.000 claims description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 2
- 239000011656 manganese carbonate Substances 0.000 claims description 2
- 235000006748 manganese carbonate Nutrition 0.000 claims description 2
- 229940093474 manganese carbonate Drugs 0.000 claims description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 2
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims description 2
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 claims description 2
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000004246 zinc acetate Substances 0.000 claims description 2
- 239000011667 zinc carbonate Substances 0.000 claims description 2
- 235000004416 zinc carbonate Nutrition 0.000 claims description 2
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 2
- 159000000013 aluminium salts Chemical class 0.000 claims 2
- 229910000329 aluminium sulfate Inorganic materials 0.000 claims 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- WCOATMADISNSBV-UHFFFAOYSA-K diacetyloxyalumanyl acetate Chemical compound [Al+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WCOATMADISNSBV-UHFFFAOYSA-K 0.000 claims 1
- YPJCVYYCWSFGRM-UHFFFAOYSA-H iron(3+);tricarbonate Chemical compound [Fe+3].[Fe+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O YPJCVYYCWSFGRM-UHFFFAOYSA-H 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 26
- 239000011572 manganese Substances 0.000 abstract description 19
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 16
- 239000002243 precursor Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 10
- 238000003756 stirring Methods 0.000 description 9
- 239000002033 PVDF binder Substances 0.000 description 8
- 238000001354 calcination Methods 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000007888 film coating Substances 0.000 description 4
- 238000009501 film coating Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012982 microporous membrane Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000005536 Jahn Teller effect Effects 0.000 description 1
- 229910018584 Mn 2-x O 4 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 229940118662 aluminum carbonate Drugs 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明涉及一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法,锂离子电池正极材料的化学通式为Li[M1aNibM2cMn1.5]O4,其中0.025≤a≤0.05,0.4≤b≤0.45,0.025≤c≤0.05,M1和M2为Mg、Zn、Fe、Li、Al、Cr、Co中的一种或多种,制备时首先按照摩尔比称取可溶性锂源、镍源、锰源、M1盐和M2盐,制备出凝胶,然后将凝胶加热干燥后,经过两次灼烧,冷却至室温后得到锂离子电池正极材料。本发明制备方法简单,步骤易于操作,使用Li及其它金属元素掺杂而形成的富锂型LiNi0.5Mn1.5O4正极材料,制备得到的正极材料颗粒均匀,为尖晶石结构,结晶度高,材料的稳定性提高,引入的掺杂元素能有效的提高材料的循环和倍率性能,镍含量降低,降低了生产成本的同时更减少了对环境的污染。
The invention relates to a high-voltage lithium-ion battery cathode material with a spinel structure and a preparation method thereof. The general chemical formula of the lithium-ion battery cathode material is Li[M1 a Ni b M2 c Mn 1.5 ]O 4 , where 0.025≤ a≤0.05, 0.4≤b≤0.45, 0.025≤c≤0.05, M1 and M2 are one or more of Mg, Zn, Fe, Li, Al, Cr, Co, first weigh the soluble Lithium source, nickel source, manganese source, M1 salt and M2 salt to prepare a gel, then heat and dry the gel, burn twice, and cool to room temperature to obtain a lithium ion battery positive electrode material. The preparation method of the present invention is simple, and the steps are easy to operate. The lithium-rich LiNi 0.5 Mn 1.5 O 4 positive electrode material formed by doping Li and other metal elements is used. The prepared positive electrode material has uniform particles, a spinel structure, and high crystallinity. , The stability of the material is improved, the introduced doping elements can effectively improve the cycle and rate performance of the material, the nickel content is reduced, the production cost is reduced, and the pollution to the environment is also reduced.
Description
技术领域technical field
本发明涉及一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法,属于锂离子电池技术领域。The invention relates to a high-voltage lithium-ion battery cathode material with a spinel structure and a preparation method thereof, belonging to the technical field of lithium-ion batteries.
背景技术Background technique
锂离子电池因其具有比能量大、自放电小、循环寿命长、安全性能好等优点,已被广泛应用于各种可移动电子设备和高能量设备,如智能手机、笔记本和电动汽车等。Lithium-ion batteries have been widely used in various mobile electronic devices and high-energy devices, such as smartphones, notebooks, and electric vehicles, due to their advantages such as large specific energy, low self-discharge, long cycle life, and good safety performance.
在众多正极材料中,LiCoO2已成功商业化并且被广泛使用,而钴却是一种比较贫乏且价格昂贵的资源,并且对环境产生污染。相比于LiCoO2,尖晶石LiMn2O4正极材料则具有资源丰富、成本低、无环境污染、安全性能好等优点,被认为是最有希望代替LiCoO2的正极材料。但是经过近几年来的研究表明,在充放电过程中,LiMn2O4材料存在Jahn-Teller效应,导致其循环性能较差、比容量衰减以及高温性能差。为克服这些缺陷,SigalaC等提出用其他金属元素部分取代锰元素来合成LiMxMn2-xO4(M=Co,Cr,Ni,Fe,Cu等)改善尖晶石LiMn2O4的性能。其中,5V高电压尖晶石LiNi0.5Mn1.5O4备受关注。电池的能量密度约为电池放电电压和容量的乘积,高电压尖晶石LiNi0.5Mn1.5O4具有约4.7V的放电电势和约147mAh/g的理论容量,其能量密度达到686Wh/kg,具有极高的开发潜力。Among many cathode materials, LiCoO 2 has been successfully commercialized and widely used, while cobalt is a relatively poor and expensive resource, and it pollutes the environment. Compared with LiCoO 2 , spinel LiMn 2 O 4 cathode material has the advantages of abundant resources, low cost, no environmental pollution, and good safety performance, and is considered to be the most promising cathode material to replace LiCoO 2 . However, studies in recent years have shown that there is a Jahn-Teller effect in the LiMn 2 O 4 material during charge and discharge, resulting in poor cycle performance, specific capacity fading, and poor high temperature performance. In order to overcome these defects, SigalaC et al. proposed to use other metal elements to partially replace manganese to synthesize LiM x Mn 2-x O 4 (M=Co, Cr, Ni, Fe, Cu, etc.) to improve the performance of spinel LiMn 2 O 4 . Among them, the 5V high-voltage spinel LiNi 0.5 Mn 1.5 O 4 has attracted much attention. The energy density of the battery is about the product of the discharge voltage and capacity of the battery. The high-voltage spinel LiNi 0.5 Mn 1.5 O 4 has a discharge potential of about 4.7V and a theoretical capacity of about 147mAh/g, and its energy density reaches 686Wh/kg. High development potential.
虽然高电压尖晶石LiNi0.5Mn1.5O4具有极高的放电电势和能量密度,但是LiNi0.5Mn1.5O4在充放电过程中,其电解液在高电压下极易被氧化,在材料表面形成固体电解质界面层,阻碍了锂离子的脱嵌,使其容量大大降低,其循环性能变差,高温下此情况更严重。除此之外,在材料的合成制备中,其煅烧温度高于600℃时,其容易形成如LixNi1-xO和NiO等杂质,导致其电化学性能恶化。Although the high-voltage spinel LiNi 0.5 Mn 1.5 O 4 has extremely high discharge potential and energy density, the electrolyte of LiNi 0.5 Mn 1.5 O 4 is easily oxidized at high voltage during the charging and discharging process. The formation of a solid electrolyte interface layer hinders the deintercalation of lithium ions, greatly reduces its capacity, and deteriorates its cycle performance, especially at high temperatures. In addition, in the synthesis and preparation of the material, when the calcination temperature is higher than 600 °C, it is easy to form impurities such as Li x Ni 1-x O and NiO, which leads to the deterioration of its electrochemical performance.
发明内容Contents of the invention
本发明的目的是解决现有高电压尖晶石LiNi0.5Mn1.5O4正极材料首次库伦效率低、循环性能和倍率性能差的问题,提供一种具有高性能低成本的高电压尖晶石型锂离子电池正极材料及其制备方法,并且使用Li掺杂,形成富锂型LiNi0.5Mn1.5O4正极材料,提高了化学性能。The purpose of the present invention is to solve the problems of the existing high-voltage spinel LiNi 0.5 Mn 1.5 O 4 cathode material for the first time with low Coulombic efficiency, poor cycle performance and rate performance, and provide a high-voltage spinel type with high performance and low cost Lithium-ion battery positive electrode material and preparation method thereof, and use Li doping to form lithium-rich LiNi 0.5 Mn 1.5 O 4 positive electrode material, which improves chemical performance.
本发明采用如下技术方案:一种具有尖晶石结构的高电压锂离子电池正极材料,所述正极材料的化学通式为Li[M1aNibM2cMn1.5]O4,其中0.025≤a≤0.05,0.4≤b≤0.45,0.025≤c≤0.05且a+b+c=0.5,M1和M2为Mg、Zn、Fe、Li、Al、Cr、Co中的一种或多种.The present invention adopts the following technical scheme: a high-voltage lithium-ion battery cathode material with a spinel structure, the general chemical formula of the cathode material is Li[M1 a Ni b M2 c Mn 1.5 ]O 4 , where 0.025≤a ≤0.05, 0.4≤b≤0.45, 0.025≤c≤0.05 and a+b+c=0.5, M1 and M2 are one or more of Mg, Zn, Fe, Li, Al, Cr, Co.
具有尖晶石结构的高电压锂离子电池正极材料的制备方法,包括如下步骤:A preparation method of a high-voltage lithium-ion battery cathode material with a spinel structure, comprising the steps of:
(1)按摩尔比将锂盐、锰盐、镍盐、M1盐、M2盐和柠檬酸在搅拌条件下溶于去离子水中,然后调节溶液pH至中性或弱碱性;(1) Lithium salt, manganese salt, nickel salt, M1 salt, M2 salt and citric acid are dissolved in deionized water under stirring conditions according to molar ratio, and then the pH of the solution is adjusted to neutral or slightly alkaline;
(2)在70~90℃的条件下,对步骤(1)得到的混合溶液在搅拌速度200~500转/分钟的条件下进行恒温蒸发8~10小时,得到溶胶;(2) Under the condition of 70-90°C, the mixed solution obtained in step (1) was evaporated at a constant temperature for 8-10 hours at a stirring speed of 200-500 rpm to obtain a sol;
(3)将溶胶置于鼓风干燥箱中于80~120℃条件下干燥10~20小时,以蒸发驱除水分,得到干凝胶;(3) Put the sol in a blast drying oven and dry it at 80-120°C for 10-20 hours to remove water by evaporation to obtain a xerogel;
(4)将干凝胶置于马弗炉中进行煅烧,升温速度为5℃/min,升温至500℃,煅烧10~28小时,得到前驱体;(4) Put the xerogel in a muffle furnace for calcination at a heating rate of 5°C/min, raise the temperature to 500°C, and calcine for 10 to 28 hours to obtain a precursor;
(5)前驱体冷却至室温后在研钵机中研磨0.5~1小时,将研磨后的前驱体压实后置于马弗炉中,在富氧条件或空气气氛中在下进行煅烧,升温速度为3~8℃/min,升温至700到900℃,煅烧12~28小时,冷却至室温后即得到所述的锂离子电池正极材料Li[M1aNibM2cMn1.5]O4。(5) After the precursor is cooled to room temperature, grind it in a mortar for 0.5 to 1 hour, compact the ground precursor and place it in a muffle furnace, and calcine it under oxygen-enriched conditions or in an air atmosphere. 3-8°C/min, heating up to 700-900°C, calcining for 12-28 hours, and cooling to room temperature to obtain the Li[M1 a Ni b M2 c Mn 1.5 ]O 4 anode material for lithium ion batteries.
进一步的,所述锂盐、锰盐、镍盐、M1盐和M2盐的摩尔比为1.05:1.5:b:a:c,其中0.025≤a≤0.05,0.4≤b≤0.45,0.025≤c≤0.05且a+b+c=0.5,其中为了防止高温煅烧下锂的少量挥发,锂的物质的量过量5%,M1和M2为镁盐、锌盐、铁盐、锂盐、铝盐、铬盐、钴盐中的一种或多种。Further, the molar ratio of lithium salt, manganese salt, nickel salt, M1 salt and M2 salt is 1.05:1.5:b:a:c, wherein 0.025≤a≤0.05, 0.4≤b≤0.45, 0.025≤c≤ 0.05 and a+b+c=0.5, wherein in order to prevent a small amount of volatilization of lithium under high temperature calcination, the amount of lithium substance is excessive 5%, M1 and M2 are magnesium salt, zinc salt, iron salt, lithium salt, aluminum salt, chromium One or more of salt and cobalt salt.
进一步的,所述锂盐为碳酸锂、硝酸锂、乙酸锂、氢氧化锂中的一种或多种。Further, the lithium salt is one or more of lithium carbonate, lithium nitrate, lithium acetate, and lithium hydroxide.
进一步的,所述锰盐为碳酸锰、硝酸锰、乙酸锰中的一种或多种。Further, the manganese salt is one or more of manganese carbonate, manganese nitrate and manganese acetate.
进一步的,所述镍盐为碳酸镍、硝酸镍、乙酸镍中的一种或多种。Further, the nickel salt is one or more of nickel carbonate, nickel nitrate, and nickel acetate.
进一步的,所述镁盐为碳酸镁、硝酸镁和乙酸镁中的一种或多种;所述锌盐为碳酸锌、硝酸锌和乙酸锌中的一种或多种;所述铁盐为碳酸铁、硝酸铁和乙酸铁中的一种或多种;所述钴盐为碳酸钴、硝酸钴、乙酸钴中的一种或多种,所述铝盐为碳酸铝、硝酸铝和乙酸铝中的一种或多种;所述铬盐为碳酸铬、硝酸铬和乙酸铬中的一种或多种。Further, the magnesium salt is one or more of magnesium carbonate, magnesium nitrate and magnesium acetate; the zinc salt is one or more of zinc carbonate, zinc nitrate and zinc acetate; the iron salt is One or more of iron carbonate, iron nitrate and iron acetate; the cobalt salt is one or more of cobalt carbonate, cobalt nitrate and cobalt acetate, and the aluminum salt is aluminum carbonate, aluminum nitrate and aluminum acetate One or more of; the chromium salt is one or more of chromium carbonate, chromium nitrate and chromium acetate.
进一步的,所述镍盐、锰盐、M1盐和M2盐的总摩尔量与柠檬酸的摩尔比为1:1~1:2。Further, the molar ratio of the total molar weight of nickel salt, manganese salt, M1 salt and M2 salt to citric acid is 1:1˜1:2.
进一步的,所述步骤(1)中用氨水将溶液pH调节至7~8。Further, in the step (1), the pH of the solution is adjusted to 7-8 with ammonia water.
进一步的,所述步骤(5)中,所述富氧条件为氧气浓度为18~28%。Further, in the step (5), the oxygen-enriched condition is that the oxygen concentration is 18-28%.
本发明制备方法简单,步骤易于操作,使用Li及其它金属元素掺杂而形成的富锂型LiNi0.5Mn1.5O4正极材料,制备得到的正极材料颗粒均匀,为尖晶石结构,结晶度高,材料的稳定性提高,降低了镍含量,从而降低了生产成本的同时更减少了对环境的污染,本发明引入的掺杂元素能有效的提高材料的循环和倍率性能。The preparation method of the present invention is simple, and the steps are easy to operate. The lithium-rich LiNi 0.5 Mn 1.5 O 4 positive electrode material formed by doping Li and other metal elements is used. The prepared positive electrode material has uniform particles, a spinel structure, and high crystallinity. , the stability of the material is improved, and the nickel content is reduced, thereby reducing the production cost and reducing the pollution to the environment. The doping elements introduced in the invention can effectively improve the cycle and rate performance of the material.
附图说明Description of drawings
图1为本发明实施例一制备的正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4的XRD图。其中横坐标为扫描范围2θ(10~90°),纵坐标为峰的强度。FIG. 1 is an XRD pattern of the cathode material Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 prepared in Example 1 of the present invention. The abscissa is the scanning range 2θ (10-90°), and the ordinate is the intensity of the peak.
图2为本发明实施例二制备的正极材料Li[Li0.05Ni0.4Al0.05Mn1.5]O4的SEM图。放大倍数是10000倍。Fig. 2 is a SEM image of the cathode material Li[Li 0.05 Ni 0.4 Al 0.05 Mn 1.5 ]O 4 prepared in Example 2 of the present invention. The magnification is 10000 times.
图3为本发明实施例一制备的正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4的首次充放电曲线(3.0~5.1V,0.2C,室温)。图中,横坐标为比容量,mAh/g,纵坐标为电压,单位是V,曲线A是指充电曲线,曲线B是指放电曲线。Fig. 3 is the first charge and discharge curve (3.0-5.1V, 0.2C, room temperature) of the positive electrode material Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 prepared in Example 1 of the present invention. In the figure, the abscissa is the specific capacity, mAh/g, the ordinate is the voltage, the unit is V, curve A refers to the charging curve, and curve B refers to the discharging curve.
图4为本发明实施例二制备的正极材料Li[Li0.05Ni0.4Al0.05Mn1.5]O4的首次充放电曲线(3.0~5.1V,0.1C,55℃)。横坐标为比容量,mAh/g,纵坐标为电压,单位是V,图4中曲线A是指充电曲线,曲线B是指放电曲线。Fig. 4 is the first charge-discharge curve (3.0-5.1V, 0.1C, 55°C) of the positive electrode material Li[Li 0.05 Ni 0.4 Al 0.05 Mn 1.5 ]O 4 prepared in Example 2 of the present invention. The abscissa is the specific capacity, mAh/g, and the ordinate is the voltage, the unit is V. Curve A in Fig. 4 refers to the charge curve, and curve B refers to the discharge curve.
图5为本发明实施例一制备的正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4在不同倍率下的首次放电曲线(3.0~5.1V,室温)。图中,横坐标为比容量,mAh/g,纵坐标为电压,单位是V。Fig. 5 is the first discharge curves (3.0-5.1V, room temperature) of the cathode material Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 prepared in Example 1 of the present invention at different rates. In the figure, the abscissa is the specific capacity, mAh/g, and the ordinate is the voltage, the unit is V.
具体实施方式detailed description
下面将结合具体实施例对本发明作进一步的描述。The present invention will be further described below in conjunction with specific embodiments.
实施例一:具有尖晶石结构的高电压锂离子电池正极材料的制备方法,包括如下步骤:Embodiment one: the preparation method of the positive electrode material of high-voltage lithium-ion battery with spinel structure, comprises the steps:
(1)将硝酸锂、乙酸镍、乙酸锰和硝酸铝按摩尔比为1.076:0.45:1.5:0.025,分别用去离子水充分溶解,将溶解后的各溶液混合在一个干净的大烧杯中,其中为了防止高温环境下锂的少量挥发,硝酸锂过量5%,最后混入柠檬酸不断搅拌并加入氨水调节pH在7~8,乙酸镍、乙酸锰和硝酸铝的总量与柠檬酸的摩尔比为1:1;(1) Lithium nitrate, nickel acetate, manganese acetate and aluminum nitrate are 1.076:0.45:1.5:0.025 in molar ratio, fully dissolved with deionized water respectively, each solution after dissolving is mixed in a clean large beaker, Among them, in order to prevent a small amount of volatilization of lithium under high temperature environment, the excess of lithium nitrate is 5%, and finally mixed with citric acid and continuously stirred and added ammonia water to adjust the pH at 7-8, the molar ratio of the total amount of nickel acetate, manganese acetate and aluminum nitrate to citric acid 1:1;
(2)在80℃的条件下,对步骤(1)得到的混合溶液在搅拌速度200转/分钟的条件下进行恒温蒸发10小时,得到溶胶;(2) Under the condition of 80° C., the mixed solution obtained in step (1) was evaporated at a constant temperature for 10 hours at a stirring speed of 200 rpm to obtain a sol;
(3)将溶胶置于鼓风干燥箱中于80℃条件下干燥12小时,以蒸发驱除水分,得到干凝胶;(3) Place the sol in an air blast drying oven and dry it at 80°C for 12 hours to remove water by evaporation to obtain a xerogel;
(4)将干凝胶置于马弗炉中进行煅烧,升温速度为5℃/min,升温至500℃,煅烧20小时,得到前驱体;(4) Put the xerogel in a muffle furnace for calcination at a heating rate of 5°C/min, raise the temperature to 500°C, and calcine for 20 hours to obtain a precursor;
(5)前驱体冷却至室温后在研钵机中研磨0.5小时,将研磨后的前驱体压实后置于马弗炉中,在富氧条件或空气气氛中在下进行煅烧,升温速度为3℃/min,升温至800℃,煅烧15小时,冷却至室温后即得到所述的锂离子电池正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4。(5) After the precursor is cooled to room temperature, it is ground in a mortar for 0.5 hours, and the ground precursor is compacted and placed in a muffle furnace, and calcined under oxygen-enriched conditions or in an air atmosphere, and the heating rate is 3 °C/min, the temperature was raised to 800 °C, calcined for 15 hours, and cooled to room temperature to obtain the Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 cathode material for lithium ion batteries.
由图1可知,实施例一制备出的正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4的XRD图谱中在18°、36°和44°处具有尖晶石的特征峰,为尖晶石结构;主峰尖锐,说明本实施例一制备的正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4晶体结构完整。It can be seen from Figure 1 that the positive electrode material Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 prepared in Example 1 has characteristic peaks of spinel at 18°, 36° and 44° in the XRD spectrum, which is Crystal structure; the main peak is sharp, indicating that the positive electrode material Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 crystal structure prepared in Example 1 is complete.
将实施例一得到的正极材料组装成CR2032型纽扣电池进行充放电循环测试。采用涂膜法制备电极,以N-甲基-2-吡咯烷酮(NMP)为溶剂,按质量比80:12:8分别称取正极材料、乙炔黑和聚偏四氟乙烯(PVDF),研磨混合均匀后,涂在预处理过的铝箔上,放入真空干燥箱中在80℃干燥得到正极片。纯金属锂片作负极,聚丙烯微孔膜Celgard2325为隔膜,LB315[m(DMC):m(EMC):m(EC)=1:1:1]的混合溶液作为电解液,在充满氩气手套箱内(H2O含量<1ppm)组装成模拟电池。用LAND电池测试系统对纽扣电池进行恒电流循环充放电测试;在测试电压3.0~5.1V,0.2C的充放电条件下,室温首次放电比容量为137.5mAh/g,首次库伦效率为93.0%,80次充放电循环后容量保持率为92.9%;在测试电压3.0~5.1V,10C的充放电条件下,室温首次放电比容量为103.1mAh/g。The positive electrode material obtained in Example 1 was assembled into a CR2032 button battery for charge and discharge cycle test. The electrode was prepared by the film coating method, and N-methyl-2-pyrrolidone (NMP) was used as the solvent, and the positive electrode material, acetylene black and polyvinylidene fluoride (PVDF) were weighed at a mass ratio of 80:12:8, and ground and mixed After uniformity, it is coated on a pretreated aluminum foil, and put into a vacuum drying oven to dry at 80° C. to obtain a positive electrode sheet. The pure metal lithium sheet is used as the negative electrode, the polypropylene microporous membrane Celgard2325 is used as the diaphragm, and the mixed solution of LB315 [m(DMC):m(EMC):m(EC)=1:1:1] is used as the electrolyte solution. A simulated battery was assembled in a glove box (H 2 O content <1ppm). Use the LAND battery test system to carry out the constant current cycle charge and discharge test on the button battery; under the test voltage 3.0 ~ 5.1V, 0.2C charge and discharge conditions, the specific capacity of the first discharge at room temperature is 137.5mAh/g, the first coulombic efficiency is 93.0%, After 80 charge-discharge cycles, the capacity retention rate is 92.9%. Under the test voltage of 3.0-5.1V and 10C charge-discharge conditions, the specific capacity of the first discharge at room temperature is 103.1mAh/g.
由图3可知,实施例一制备的正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4的首次充放电曲线,在3.0~5.1V,0.2C,室温条件下,正极材料具有较好的充电平台较好和放电平台也很好,放电容量较高。It can be seen from Figure 3 that the first charge and discharge curve of the positive electrode material Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 prepared in Example 1 has a good The charging platform is better and the discharging platform is also very good, and the discharge capacity is higher.
图5为实施例一制备的正极材料Li[Li0.025Ni0.45Al0.025Mn1.5]O4分别在0.1C、0.2C、1C、5C、10C倍率下的首次放电曲线,在0.1C、0.2C、1C倍率下均具有较好的放电平台,在10C的高倍率下,仍然有很高的放电容量。Figure 5 is the first discharge curves of the positive electrode material Li[Li 0.025 Ni 0.45 Al 0.025 Mn 1.5 ]O 4 prepared in Example 1 at 0.1C, 0.2C, 1C, 5C, and 10C rates respectively, at 0.1C, 0.2C, It has a good discharge platform at a rate of 1C, and still has a high discharge capacity at a high rate of 10C.
实施例二:具有尖晶石结构的高电压锂离子电池正极材料的制备方法,包括如下步骤:Embodiment two: the preparation method of the positive electrode material of high-voltage lithium-ion battery with spinel structure, comprises the following steps:
(1)将硝酸锂、乙酸镍、乙酸锰和硝酸铝按摩尔比为1.10:0.4:1.5:0.05分别用去离子水充分溶解,将溶解后的各溶液混合在一个干净的大烧杯中,且柠檬酸最后混入,其中为了防止高温环境下锂的少量挥发,硝酸锂过量5%,不断搅拌并加入氨水调节pH在7~8,乙酸镍、乙酸锰和硝酸铝的总量与柠檬酸的摩尔比为1:1;(1) Lithium nitrate, nickel acetate, manganese acetate and aluminum nitrate are fully dissolved with deionized water respectively in a molar ratio of 1.10:0.4:1.5:0.05, each solution after dissolving is mixed in a clean large beaker, and Finally, citric acid is mixed in, wherein in order to prevent a small amount of volatilization of lithium under high temperature environment, lithium nitrate is excessively 5%, stirring continuously and adding ammonia water to adjust the pH at 7-8, the total amount of nickel acetate, manganese acetate and aluminum nitrate and the mole of citric acid The ratio is 1:1;
(2)在80℃的条件下,对步骤(1)得到的混合溶液在搅拌速度300转/分钟的条件下进行恒温蒸发9小时,得到溶胶;(2) Under the condition of 80°C, the mixed solution obtained in step (1) was evaporated at a constant temperature for 9 hours under the condition of a stirring speed of 300 rpm to obtain a sol;
(3)将溶胶置于鼓风干燥箱中于90℃条件下干燥11小时,以蒸发驱除水分,得到干凝胶;(3) Put the sol in a blast drying oven and dry it at 90°C for 11 hours to drive off the water by evaporation to obtain a xerogel;
(4)将干凝胶置于马弗炉中进行煅烧,升温速度为5℃/min,升温至500℃,煅烧20小时,得到前驱体;(4) Put the xerogel in a muffle furnace for calcination at a heating rate of 5°C/min, raise the temperature to 500°C, and calcine for 20 hours to obtain a precursor;
(5)前驱体冷却至室温后在研钵机中研磨0.5小时,将研磨后的前驱体压实后置于马弗炉中,在富氧条件或空气气氛中在下进行煅烧,升温速度为3℃/min,升温至800℃,煅烧16小时,冷却至室温后即得到所述的锂离子电池正极材料Li[Li0.05Ni0.4Al0.05Mn1.5]O4。(5) After the precursor is cooled to room temperature, it is ground in a mortar for 0.5 hours, and the ground precursor is compacted and placed in a muffle furnace, and calcined under oxygen-enriched conditions or in an air atmosphere, and the heating rate is 3 °C/min, the temperature was raised to 800 °C, calcined for 16 hours, and cooled to room temperature to obtain the Li[Li 0.05 Ni 0.4 Al 0.05 Mn 1.5 ]O 4 anode material for lithium ion batteries.
由图2可知,实施例二制备得到的正极材料Li[Li0.05Ni0.4Al0.05Mn1.5]O4在放大倍数是10000倍的SEM观察下颗粒分布均匀,晶体形状较为统一。It can be seen from Fig. 2 that the positive electrode material Li[Li 0.05 Ni 0.4 Al 0.05 Mn 1.5 ]O 4 prepared in Example 2 has uniform particle distribution and uniform crystal shape under SEM observation with a magnification of 10,000.
将实施例二得到的正极材料组装成CR2032型纽扣电池进行充放电循环测试。采用涂膜法制备电极,以N-甲基-2-吡咯烷酮(NMP)为溶剂,按质量比80:12:8分别称取正极材料、乙炔黑和聚偏四氟乙烯(PVDF),研磨混合均匀后,涂在预处理过的铝箔上,放入真空干燥箱中在80℃干燥得到正极片。纯金属锂片作负极,聚丙烯微孔膜Celgard2325为隔膜,LB315[m(DMC):m(EMC):m(EC)=1:1:1]的混合溶液作为电解液,在充满氩气手套箱内(H2O含量<1ppm)组装成模拟电池。用LAND电池测试系统对扣式电池进行恒电流循环充放电测试;在测试电压3.0~5.1V,0.2C的充放电条件下,室温首次放电比容量为132.2mAh/g,首次库伦效率为95.3%,80次充放电循环后容量保持率可高于91.3%;在测试电压3.0~5.1V,0.1C的充放电条件下,55℃首次放电比容量为131.1mAh/g,首次库伦效率为92.1%。The positive electrode material obtained in Example 2 was assembled into a CR2032 button battery for charge and discharge cycle test. The electrode was prepared by the film coating method, and N-methyl-2-pyrrolidone (NMP) was used as the solvent, and the positive electrode material, acetylene black, and polyvinylidene fluoride (PVDF) were weighed at a mass ratio of 80:12:8, and ground and mixed. After uniformity, it is coated on a pretreated aluminum foil, and put into a vacuum drying oven to dry at 80° C. to obtain a positive electrode sheet. The pure metal lithium sheet is used as the negative electrode, the polypropylene microporous membrane Celgard2325 is used as the diaphragm, and the mixed solution of LB315 [m(DMC):m(EMC):m(EC)=1:1:1] is used as the electrolyte solution. A simulated battery was assembled in a glove box (H 2 O content <1ppm). Use the LAND battery test system to conduct a constant current cycle charge and discharge test on the button battery; under the test voltage of 3.0-5.1V, 0.2C charge and discharge conditions, the specific capacity of the first discharge at room temperature is 132.2mAh/g, and the first Coulombic efficiency is 95.3%. , after 80 charge-discharge cycles, the capacity retention rate can be higher than 91.3%; under the test voltage of 3.0-5.1V, 0.1C charge-discharge conditions, the specific capacity of the first discharge at 55°C is 131.1mAh/g, and the first Coulombic efficiency is 92.1%. .
图4为实施例二制备的正极材料Li[Li0.05Ni0.4Al0.05Mn1.5]O4的首次充放电曲线,在3.0~5.1V,0.1C,55℃条件下,正极材料具有较好充电平台,放电平台也很好,放电容量较高。Figure 4 is the first charge and discharge curve of the positive electrode material Li[Li 0.05 Ni 0.4 Al 0.05 Mn 1.5 ]O 4 prepared in Example 2. Under the conditions of 3.0-5.1V, 0.1C, and 55°C, the positive electrode material has a better charging platform , The discharge platform is also very good, and the discharge capacity is high.
实施例三:具有尖晶石结构的高电压锂离子电池正极材料的制备方法,包括如下步骤:Embodiment three: the preparation method of the positive electrode material of high-voltage lithium-ion battery with spinel structure, comprises the following steps:
(1)将硝酸锂、乙酸镍、乙酸锰和硝酸铬按摩尔比为1.10:0.4:1.5:0.05(其中为了防止高温环境下锂的少量挥发,硝酸锂过量5%),分别用去离子水充分溶解,将溶解后的各溶液混合在一个干净的大烧杯中,且柠檬酸最后混入,不断搅拌并加入氨水调节pH在7~8,所述乙酸镍、乙酸锰和硝酸铬的总量与柠檬酸的摩尔比为1:1;(1) The molar ratio of lithium nitrate, nickel acetate, manganese acetate and chromium nitrate is 1.10:0.4:1.5:0.05 (wherein in order to prevent a small amount of volatilization of lithium under high temperature environment, lithium nitrate is excessive 5%), respectively with deionized water Dissolve fully, mix each solution after dissolving in a clean large beaker, and finally mix in citric acid, stir constantly and add ammonia water to adjust pH at 7~8, the total amount of described nickel acetate, manganese acetate and chromium nitrate and The molar ratio of citric acid is 1:1;
(2)在80℃的条件下,对步骤(1)得到的混合溶液在搅拌速度400转/分钟的条件下进行恒温蒸发9小时,得到溶胶;(2) Under the condition of 80°C, the mixed solution obtained in step (1) was evaporated at a constant temperature for 9 hours under the condition of a stirring speed of 400 rpm to obtain a sol;
(3)将溶胶置于鼓风干燥箱中于90℃条件下干燥11小时,以蒸发驱除水分,得到干凝胶;(3) Put the sol in a blast drying oven and dry it at 90°C for 11 hours to drive off the water by evaporation to obtain a xerogel;
(4)将干凝胶置于马弗炉中进行煅烧,升温速度为5℃/min,升温至500℃,煅烧20小时,得到前驱体;(4) Put the xerogel in a muffle furnace for calcination at a heating rate of 5°C/min, raise the temperature to 500°C, and calcine for 20 hours to obtain a precursor;
(5)前驱体冷却至室温后在研钵机中研磨0.5小时,将研磨后的前驱体压实后置于马弗炉中,在富氧条件或空气气氛中进行煅烧,升温速度为3℃/min,升温至800℃,煅烧18小时,冷却至室温后即得到锂离子电池正极材料Li[Li0.05Ni0.4Cr0.05Mn1.5]O4。(5) After the precursor is cooled to room temperature, it is ground in a mortar for 0.5 hours. The ground precursor is compacted and placed in a muffle furnace for calcination in an oxygen-enriched condition or an air atmosphere. The heating rate is 3°C /min, heated up to 800°C, calcined for 18 hours, and cooled to room temperature to obtain Li[Li 0.05 Ni 0.4 Cr0.05Mn 1.5 ]O 4 anode material for lithium ion batteries.
将实施例三得到的正极材料组装成CR2032型纽扣电池进行充放电循环测试。采用涂膜法制备电极,以N-甲基-2-吡咯烷酮(NMP)为溶剂,按质量比80:12:8分别称取正极材料、乙炔黑和聚偏四氟乙烯(PVDF),研磨混合均匀后,涂在预处理过的铝箔上,放入真空干燥箱中在80℃干燥得到正极片。纯金属锂片作负极,聚丙烯微孔膜Celgard2325为隔膜,LB315[m(DMC):m(EMC):m(EC)=1:1:1]的混合溶液作为电解液,在充满氩气手套箱内(H2O含量<1ppm)组装成模拟电池。用LAND电池测试系统对纽扣电池进行恒电流循环充放电测试;在测试电压3.0~5.1V,0.2C的充放电条件下,室温首次放电比容量为134.8mAh/g,首次库伦效率为90.7%,80次充放电循环后容量保持率可高于90.2%。The positive electrode material obtained in Example 3 was assembled into a CR2032 button battery for charge and discharge cycle test. The electrode was prepared by the film coating method, and N-methyl-2-pyrrolidone (NMP) was used as the solvent, and the positive electrode material, acetylene black, and polyvinylidene fluoride (PVDF) were weighed at a mass ratio of 80:12:8, and ground and mixed. After uniformity, it is coated on a pretreated aluminum foil, and put into a vacuum drying oven to dry at 80° C. to obtain a positive electrode sheet. The pure metal lithium sheet is used as the negative electrode, the polypropylene microporous membrane Celgard2325 is used as the diaphragm, and the mixed solution of LB315 [m(DMC):m(EMC):m(EC)=1:1:1] is used as the electrolyte solution. A simulated battery was assembled in a glove box (H 2 O content <1ppm). Use the LAND battery test system to carry out the constant current cycle charge and discharge test on the button battery; under the test voltage of 3.0 ~ 5.1V, 0.2C charge and discharge conditions, the specific capacity of the first discharge at room temperature is 134.8mAh/g, and the first Coulombic efficiency is 90.7%. After 80 charge-discharge cycles, the capacity retention rate can be higher than 90.2%.
实施例四:具有尖晶石结构的高电压锂离子电池正极材料的制备方法,包括如下步骤:Embodiment four: the preparation method of the positive electrode material of high-voltage lithium-ion battery with spinel structure, comprises the following steps:
(1)将硝酸锂、乙酸镍、乙酸锰和硝酸钴按摩尔比为1.10:0.4:1.5:0.05(其中为了防止高温环境下锂的少量挥发,硝酸锂过量5%),分别用去离子水充分溶解,将溶解后的各溶液混合在一个干净的大烧杯中,且柠檬酸最后混入,不断搅拌并加入氨水调节pH在7~8,所述乙酸镍、乙酸锰和硝酸钴的总量与柠檬酸的摩尔比为1:1;(1) The molar ratio of lithium nitrate, nickel acetate, manganese acetate and cobalt nitrate is 1.10:0.4:1.5:0.05 (wherein in order to prevent a small amount of volatilization of lithium under high temperature environment, lithium nitrate is excessive 5%), use deionized water respectively fully dissolve, each solution after dissolving is mixed in a clean large beaker, and citric acid is finally mixed in, constantly stirring and adding ammonia water to adjust pH at 7~8, the total amount of described nickel acetate, manganese acetate and cobalt nitrate and The molar ratio of citric acid is 1:1;
(2)在80℃的条件下,对步骤(1)得到的混合溶液在搅拌速度500转/分钟的条件下进行恒温蒸发8小时,得到溶胶;(2) Under the condition of 80° C., the mixed solution obtained in step (1) was evaporated at a constant temperature for 8 hours at a stirring speed of 500 rpm to obtain a sol;
(3)将溶胶置于鼓风干燥箱中于120℃条件下干燥10小时,以蒸发驱除水分,得到干凝胶;(3) Place the sol in an air blast drying oven and dry it at 120°C for 10 hours to remove water by evaporation to obtain a xerogel;
(4)将干凝胶置于马弗炉中进行煅烧,升温速度为5℃/min,升温至500℃,煅烧20小时,得到前驱体;(4) Put the xerogel in a muffle furnace for calcination at a heating rate of 5°C/min, raise the temperature to 500°C, and calcine for 20 hours to obtain a precursor;
(5)前驱体冷却至室温后在研钵机中研磨0.5小时,将研磨后的前驱体压实后置于马弗炉中,在富氧条件或空气气氛中在下进行煅烧,升温速度为3℃/min,升温至800℃,煅烧20小时,冷却至室温后即得到所述的锂离子电池正极材料Li[Li0.05Ni0.4Co0.05Mn1.5]O4。(5) After the precursor is cooled to room temperature, it is ground in a mortar for 0.5 hours, and the ground precursor is compacted and placed in a muffle furnace, and calcined under oxygen-enriched conditions or in an air atmosphere, and the heating rate is 3 °C/min, the temperature was raised to 800 °C, calcined for 20 hours, and cooled to room temperature to obtain the Li[Li 0.05 Ni 0.4 Co 0.05 Mn 1.5 ]O 4 anode material for lithium ion batteries.
将实施例四得到的正极材料组装成CR2032型纽扣电池进行充放电循环测试。采用涂膜法制备电极,以N-甲基-2-吡咯烷酮(NMP)为溶剂,按质量比80:12:8分别称取正极材料、乙炔黑和聚偏四氟乙烯(PVDF),研磨混合均匀后,涂在预处理过的铝箔上,放入真空干燥箱中在80℃干燥得到正极片。纯金属锂片作负极,聚丙烯微孔膜Celgard2325为隔膜,LB315[m(DMC):m(EMC):m(EC)=1:1:1]的混合溶液作为电解液,在充满氩气手套箱内(H2O含量<1ppm)组装成模拟电池。用LAND电池测试系统对纽扣电池进行恒电流循环充放电测试;在测试电压3.0~5.1V,0.2C的充放电条件下,室温首次放电比容量为126.2mAh/g,首次库伦效率为95.7%,80次充放电循环后容量保持率可高于94.3%。The positive electrode material obtained in Example 4 was assembled into a CR2032 button battery for charge and discharge cycle test. The electrode was prepared by the film coating method, and N-methyl-2-pyrrolidone (NMP) was used as the solvent, and the positive electrode material, acetylene black, and polyvinylidene fluoride (PVDF) were weighed at a mass ratio of 80:12:8, and ground and mixed. After uniformity, it is coated on a pretreated aluminum foil, and put into a vacuum drying oven to dry at 80° C. to obtain a positive electrode sheet. The pure metal lithium sheet is used as the negative electrode, the polypropylene microporous membrane Celgard2325 is used as the diaphragm, and the mixed solution of LB315 [m(DMC):m(EMC):m(EC)=1:1:1] is used as the electrolyte solution. A simulated battery was assembled in a glove box (H 2 O content <1ppm). Use the LAND battery test system to carry out the constant current cycle charge and discharge test on the button battery; under the test voltage 3.0 ~ 5.1V, 0.2C charge and discharge conditions, the specific capacity of the first discharge at room temperature is 126.2mAh/g, and the first coulombic efficiency is 95.7%. After 80 charge-discharge cycles, the capacity retention rate can be higher than 94.3%.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610105577.8A CN105576231A (en) | 2016-02-25 | 2016-02-25 | High-voltage lithium oil battery positive electrode material with spinel structure and preparation method of high-voltage lithium oil battery positive electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610105577.8A CN105576231A (en) | 2016-02-25 | 2016-02-25 | High-voltage lithium oil battery positive electrode material with spinel structure and preparation method of high-voltage lithium oil battery positive electrode material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105576231A true CN105576231A (en) | 2016-05-11 |
Family
ID=55886127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610105577.8A Pending CN105576231A (en) | 2016-02-25 | 2016-02-25 | High-voltage lithium oil battery positive electrode material with spinel structure and preparation method of high-voltage lithium oil battery positive electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105576231A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106711438A (en) * | 2016-12-30 | 2017-05-24 | 绍兴文理学院 | Method for measuring and improving lithium ion battery performance |
CN107910516A (en) * | 2017-11-07 | 2018-04-13 | 山东德朗能新能源科技有限公司 | A kind of lithium battery high voltage lithium nickel manganese oxygen composite cathode material and its preparation process, lithium battery anode and lithium battery |
CN109037607A (en) * | 2018-06-22 | 2018-12-18 | 南京理工大学 | A kind of preparation method coating LiMn2O4 composite material |
CN110931770A (en) * | 2019-12-03 | 2020-03-27 | 江南大学 | A kind of Cr-doped modified high-voltage spinel cathode material and preparation method thereof |
CN111018005A (en) * | 2019-12-06 | 2020-04-17 | 贵州大龙汇成新材料有限公司 | A kind of spinel type lithium nickel manganate material and preparation method thereof |
WO2020127526A1 (en) * | 2018-12-19 | 2020-06-25 | Haldor Topsøe A/S | Lithium positive electrode active material |
CN113149610A (en) * | 2021-04-07 | 2021-07-23 | 北京高压科学研究中心 | Preparation method of spinel type lithium battery positive electrode ceramic material based on interface regulation |
CN113461070A (en) * | 2021-06-07 | 2021-10-01 | 四川启睿克科技有限公司 | Lithium ion battery anode material, preparation method thereof and lithium ion battery |
CN114105209A (en) * | 2021-11-22 | 2022-03-01 | 江南大学 | Doped modified lithium manganate lithium ion battery positive electrode material and preparation method thereof |
CN114665086A (en) * | 2022-02-18 | 2022-06-24 | 中国科学院青海盐湖研究所 | Lithium-rich manganese-based positive electrode material and preparation method thereof |
CN116102077A (en) * | 2022-10-25 | 2023-05-12 | 格林美股份有限公司 | Doped precursor and preparation method and application thereof |
CN116553620A (en) * | 2023-04-19 | 2023-08-08 | 武汉理工大学 | A kind of high entropy spinel oxide material and its preparation method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569776A (en) * | 2011-12-30 | 2012-07-11 | 合肥国轩高科动力能源有限公司 | Preparation method of spinel lithium nickel manganese oxide serving as spherical high-voltage cathode material |
CN102730764A (en) * | 2012-06-27 | 2012-10-17 | 江南大学 | Modified spinel lithium manganate material and preparation method thereof |
JP2013082581A (en) * | 2011-10-11 | 2013-05-09 | Toyota Industries Corp | Lithium-containing composite oxide powder and method for producing the same |
WO2014024075A1 (en) * | 2012-08-10 | 2014-02-13 | Csir | Production of a spinel material |
JP2014110176A (en) * | 2012-12-03 | 2014-06-12 | Jgc Catalysts & Chemicals Ltd | Lithium complex oxide, manufacturing method thereof, secondary battery positive electrode active material including lithium complex oxide, secondary battery positive electrode including positive electrode active material, and lithium ion secondary battery using the same |
-
2016
- 2016-02-25 CN CN201610105577.8A patent/CN105576231A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013082581A (en) * | 2011-10-11 | 2013-05-09 | Toyota Industries Corp | Lithium-containing composite oxide powder and method for producing the same |
CN102569776A (en) * | 2011-12-30 | 2012-07-11 | 合肥国轩高科动力能源有限公司 | Preparation method of spinel lithium nickel manganese oxide serving as spherical high-voltage cathode material |
CN102730764A (en) * | 2012-06-27 | 2012-10-17 | 江南大学 | Modified spinel lithium manganate material and preparation method thereof |
WO2014024075A1 (en) * | 2012-08-10 | 2014-02-13 | Csir | Production of a spinel material |
JP2014110176A (en) * | 2012-12-03 | 2014-06-12 | Jgc Catalysts & Chemicals Ltd | Lithium complex oxide, manufacturing method thereof, secondary battery positive electrode active material including lithium complex oxide, secondary battery positive electrode including positive electrode active material, and lithium ion secondary battery using the same |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106711438A (en) * | 2016-12-30 | 2017-05-24 | 绍兴文理学院 | Method for measuring and improving lithium ion battery performance |
CN107910516A (en) * | 2017-11-07 | 2018-04-13 | 山东德朗能新能源科技有限公司 | A kind of lithium battery high voltage lithium nickel manganese oxygen composite cathode material and its preparation process, lithium battery anode and lithium battery |
CN107910516B (en) * | 2017-11-07 | 2020-12-22 | 山东德朗能新能源科技有限公司 | High-voltage lithium nickel manganese oxide composite positive electrode material for lithium battery, preparation process of high-voltage lithium nickel manganese oxide composite positive electrode material, lithium battery positive electrode and lithium battery |
CN109037607A (en) * | 2018-06-22 | 2018-12-18 | 南京理工大学 | A kind of preparation method coating LiMn2O4 composite material |
CN109037607B (en) * | 2018-06-22 | 2021-07-13 | 南京理工大学 | A kind of preparation method of coated lithium manganate composite material |
CN113165905B (en) * | 2018-12-19 | 2023-12-29 | 托普索公司 | Lithium positive electrode active material |
WO2020127526A1 (en) * | 2018-12-19 | 2020-06-25 | Haldor Topsøe A/S | Lithium positive electrode active material |
CN113165905A (en) * | 2018-12-19 | 2021-07-23 | 托普索公司 | Lithium positive electrode active material |
CN110931770A (en) * | 2019-12-03 | 2020-03-27 | 江南大学 | A kind of Cr-doped modified high-voltage spinel cathode material and preparation method thereof |
CN111018005A (en) * | 2019-12-06 | 2020-04-17 | 贵州大龙汇成新材料有限公司 | A kind of spinel type lithium nickel manganate material and preparation method thereof |
CN113149610A (en) * | 2021-04-07 | 2021-07-23 | 北京高压科学研究中心 | Preparation method of spinel type lithium battery positive electrode ceramic material based on interface regulation |
CN113461070A (en) * | 2021-06-07 | 2021-10-01 | 四川启睿克科技有限公司 | Lithium ion battery anode material, preparation method thereof and lithium ion battery |
CN114105209A (en) * | 2021-11-22 | 2022-03-01 | 江南大学 | Doped modified lithium manganate lithium ion battery positive electrode material and preparation method thereof |
CN114665086A (en) * | 2022-02-18 | 2022-06-24 | 中国科学院青海盐湖研究所 | Lithium-rich manganese-based positive electrode material and preparation method thereof |
CN116102077A (en) * | 2022-10-25 | 2023-05-12 | 格林美股份有限公司 | Doped precursor and preparation method and application thereof |
CN116553620A (en) * | 2023-04-19 | 2023-08-08 | 武汉理工大学 | A kind of high entropy spinel oxide material and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102437323B (en) | Anode material of lithium ion battery and preparation method thereof | |
CN102916169B (en) | Lithium-rich manganese-based anode material and method for manufacturing same | |
CN105576231A (en) | High-voltage lithium oil battery positive electrode material with spinel structure and preparation method of high-voltage lithium oil battery positive electrode material | |
CN103227323B (en) | Preparation method of positive pole material (spinel type lithium nickel manganese oxide) of high-voltage lithium ion battery | |
CN105185954B (en) | A kind of LiAlO2Coat LiNi1-xCoxO2Anode material for lithium-ion batteries and preparation method thereof | |
CN103078100B (en) | A kind of lithium sodium manganate cathode material and preparation method thereof | |
CN104868122A (en) | Preparation method of single-crystal Li(NiCoMn)O2 ternary cathode material | |
CN105742622A (en) | A kind of olivine structure LiMPO4 surface modified layered lithium-rich manganese-based positive electrode material and preparation method thereof | |
CN110323432A (en) | A kind of miscellaneous modification lithium-ion battery anode material of cation-anion co-doping and preparation method thereof | |
CN103762354B (en) | A kind of LiNi0.5Mn1.5O4 material, its preparation method and lithium ion battery | |
CN108091854A (en) | A kind of high-voltage spinel type anode material for lithium-ion batteries of Anion-cation multiple dope and preparation method thereof | |
CN104134797B (en) | A kind of high-capacity lithium-rich cathode material and preparation method thereof | |
CN114420920B (en) | Fluorine ion gradient doped lithium-rich manganese-based positive electrode material, and preparation method and application thereof | |
CN103474646B (en) | A kind of mesh structural porous lithium-rich manganese-based anode material for lithium-ion batteries and preparation method thereof | |
CN106711441B (en) | A kind of 5V anode material for lithium-ion batteries and preparation method thereof, a kind of lithium ion battery | |
CN111463428A (en) | A kind of sodium ion doped ternary cathode material and preparation method thereof | |
CN104253273A (en) | Anion/cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof | |
CN106910887A (en) | A kind of lithium-rich manganese-based anode material, its preparation method and the lithium ion battery comprising the positive electrode | |
CN108448109A (en) | A kind of layered lithium-rich manganese-based positive electrode material and preparation method thereof | |
CN104253265A (en) | Cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof | |
CN111204813B (en) | Preparation method of vanadium-doped lithium-rich manganese-based positive electrode material | |
CN107204426A (en) | A kind of cobalt nickel oxide manganses lithium/titanate composite anode material for lithium of zirconium doping vario-property | |
CN104112849A (en) | Light metal element-doped ternary lithium ion battery positive electrode material and synthesis method thereof | |
CN111463427A (en) | Chloride ion doped modified lithium-rich layered cathode material and preparation method thereof | |
CN107968195A (en) | Lithium-rich cathode material coated by lithium iron phosphate and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160511 |