CN104253265A - Cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof - Google Patents
Cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof Download PDFInfo
- Publication number
- CN104253265A CN104253265A CN201310264937.5A CN201310264937A CN104253265A CN 104253265 A CN104253265 A CN 104253265A CN 201310264937 A CN201310264937 A CN 201310264937A CN 104253265 A CN104253265 A CN 104253265A
- Authority
- CN
- China
- Prior art keywords
- salt
- ion battery
- cathode material
- lithium ion
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010406 cathode material Substances 0.000 title claims abstract description 28
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical class [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000011572 manganese Substances 0.000 claims abstract description 34
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 16
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 14
- 239000008367 deionised water Substances 0.000 claims abstract description 14
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 14
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 13
- 229910013716 LiNi Inorganic materials 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 8
- 239000010941 cobalt Substances 0.000 claims abstract description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 238000003756 stirring Methods 0.000 claims description 13
- 150000001768 cations Chemical class 0.000 claims description 12
- 230000004048 modification Effects 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 9
- 229910001428 transition metal ion Inorganic materials 0.000 claims description 8
- 238000000227 grinding Methods 0.000 claims description 7
- 229910013553 LiNO Inorganic materials 0.000 claims description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910003002 lithium salt Inorganic materials 0.000 claims description 2
- 159000000002 lithium salts Chemical class 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims 3
- 238000001704 evaporation Methods 0.000 claims 2
- 230000008020 evaporation Effects 0.000 claims 2
- 150000001868 cobalt Chemical class 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000008236 heating water Substances 0.000 claims 1
- 150000002696 manganese Chemical class 0.000 claims 1
- 150000002815 nickel Chemical class 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000007774 positive electrode material Substances 0.000 abstract description 21
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract description 12
- 239000002245 particle Substances 0.000 abstract description 7
- 150000003839 salts Chemical class 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 description 34
- 239000000463 material Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 8
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 5
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910012516 LiNi0.4Co0.2Mn0.4O2 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 1
- 230000005536 Jahn Teller effect Effects 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 description 1
- 229910019427 Mg(NO3)2-6H2O Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料及其制备方法,属于锂离子电池领域。所述正极材料的化学通式为LiNi0.4-xM1 xCo0.2-yM2 yMn0.4-zM3 zO2,M1为Mg、Zn或Cu;M2为Al或Cr;M3为Ti、Zr或Mo,0≤x≤0.15;0≤y≤0.15;0≤z≤0.15;按照摩尔比称取可溶性锂源、镍源、锰源、钴源和金属M1盐、M2盐、M3盐,分别用去离子水溶解后,加入柠檬酸溶液混合搅拌均匀,用浓氨水调节pH后加热蒸发得到凝胶。凝胶加热干燥后,经过两次灼烧研磨得到产品阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料。本发明的锂离子电池三元正极材料,颗粒细小均匀达到了纳米级水平,因而具有高放电容量、优秀的循环稳定性和倍率性并且性能在高低温条件下均能保持,便于大规模工业化生产,实用化程度高。
The invention relates to a cation-doped and modified lithium-ion battery (4:4:2) type ternary cathode material and a preparation method thereof, belonging to the field of lithium-ion batteries. The general chemical formula of the cathode material is LiNi 0.4-x M 1 x Co 0.2-y M 2 y Mn 0.4-z M 3 z O 2 , M 1 is Mg, Zn or Cu; M 2 is Al or Cr; M 3 is Ti, Zr or Mo, 0≤x≤0.15; 0≤y≤0.15; 0≤z≤0.15; weigh soluble lithium source, nickel source, manganese source, cobalt source and metal M according to molar ratio 1 salt, M 2 salt and M 3 salt were dissolved in deionized water respectively, then mixed with citric acid solution and stirred evenly, the pH was adjusted with concentrated ammonia water, and then heated and evaporated to obtain a gel. After the gel is heated and dried, it is burned and ground twice to obtain a cation-doped modified lithium-ion battery (4:4:2) type ternary positive electrode material. The ternary positive electrode material for lithium ion batteries of the present invention has fine and uniform particles reaching the nanoscale level, so it has high discharge capacity, excellent cycle stability and rate capability, and its performance can be maintained under high and low temperature conditions, which is convenient for large-scale industrial production , high degree of practicality.
Description
技术领域technical field
本发明涉及一种阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料及其制备方法,属于锂离子电池领域。The invention relates to a cation-doped and modified lithium-ion battery (4:4:2) type ternary cathode material and a preparation method thereof, belonging to the field of lithium-ion batteries.
背景技术Background technique
目前,LiCoO2因其具有工作电压高、容量大、放电平稳、适合大电流放电及循环性能好等特点,成为商业中应用最广泛的正极材料。但钴是稀有金属,价格昂贵,对环境有一定的污染。因此,人们的研究热点转为用廉价的、对环境友好的其他过渡金属化合物来替代LiCoO2材料。LiNiO2具有与LiCoO2相似的结构,拥有更高的实际放电容量,并且镍储量比钴丰富且价格便宜的多。但其制备困难,制备过程中易生成非计量比产物,且在充放电过程中会发生晶体结构的转变,导致其容量衰减很快,循环性能和热稳定性均较差。这些原因使LiNiO2的应用领域受到很大限制。LiMn2O4具有尖晶石的晶体结构,与LiCoO2和LiNiO2相比,LiMn2O4具有诸多优点:锰储量大,成本低廉,对环境友好,制备较容易。但其放电容量较低(约为120mAh/g),Mn3+的Jahn-Teller效应引起的晶格的畸变,导致充放电过程中晶体结构发生不可逆相变,使LiMn2O4在充放电循环时容量衰减较快,尤其在高于45℃的高温条件下容量衰减剧烈。这减缓了其产业化的进程。At present, LiCoO 2 has become the most widely used cathode material in commerce because of its high operating voltage, large capacity, stable discharge, suitable for high current discharge, and good cycle performance. However, cobalt is a rare metal, which is expensive and pollutes the environment to a certain extent. Therefore, people's research focus turns to replace LiCoO2 materials with cheap and environmentally friendly other transition metal compounds. LiNiO 2 has a similar structure to LiCoO 2 , has a higher actual discharge capacity, and nickel reserves are much more abundant and cheaper than cobalt. However, its preparation is difficult, non-stoichiometric products are easily generated during the preparation process, and the crystal structure will change during the charge and discharge process, resulting in rapid capacity decay, poor cycle performance and thermal stability. For these reasons, the application fields of LiNiO 2 are greatly limited. LiMn 2 O 4 has a spinel crystal structure. Compared with LiCoO 2 and LiNiO 2 , LiMn 2 O 4 has many advantages: large manganese reserves, low cost, environmental friendliness, and easy preparation. However, its discharge capacity is low (about 120mAh/g), and the distortion of the crystal lattice caused by the Jahn-Teller effect of Mn 3+ leads to an irreversible phase change in the crystal structure during charge and discharge, which makes LiMn 2 O 4 The capacity fades quickly, especially at high temperatures higher than 45°C. This slows down the process of its industrialization.
LiNixCoyMn1-x-yO2三元正极材料综合LiCoO2、LiNiO2、LiMn2O4三类材料的特点,具备容量高、结构稳定、安全性好、成本低等优点从而成为了成为最有商品化潜力的正极材料之一。本发明专利选择摩尔比n(Ni)∶n(Co)∶n(Mn)=4∶2∶4为研究体系,在发挥原LiNi1/3Mn1/3Co1/3O2材料优势的前提下,降低了昂贵的Co的含量,可在一定程度上降低材料的成本和生产过程对环境的污染。Ni对容量贡献最大,Ni含量的相对增加可使材料具有更高的理论比容量。同时,增加Mn的含量可以进一步提高其安全性能。因而LiNi0.4Co0.2Mn0.4O2是更具有研究价值的一种三元正极材料。但是,目前三元材料还尚存循环性能以及倍率性能不足等缺点。掺杂是改善锂离子电池正极材料性能的一种重要手段,并且这种手段已经广泛应用于LiNiO2、LiMn2O4等材料上。本发明专利,在阳离子掺杂的基础上,采用溶胶凝胶法合成纳米级改性的锂离子电池(4:4:2)型三元正极材料,改善其颗粒形貌及电化学性能。LiNi x Co y Mn 1-xy O 2 ternary cathode material combines the characteristics of LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 materials, and has the advantages of high capacity, stable structure, good safety, and low cost. One of the cathode materials with the most potential for commercialization. The patent of the present invention selects the molar ratio n(Ni):n(Co):n(Mn)=4:2:4 as the research system, in the advantage of the original LiNi 1/3 Mn 1/3 Co 1/3 O 2 material Under the premise, the content of expensive Co is reduced, which can reduce the cost of materials and the environmental pollution of the production process to a certain extent. Ni contributes the most to the capacity, and the relative increase of Ni content can make the material have higher theoretical specific capacity. At the same time, increasing the content of Mn can further improve its safety performance. Therefore LiNi 0.4 Co 0.2 Mn 0.4 O 2 is a ternary cathode material with more research value. However, the current ternary materials still have shortcomings such as insufficient cycle performance and insufficient rate performance. Doping is an important means to improve the performance of lithium-ion battery cathode materials, and this means has been widely used in LiNiO 2 , LiMn 2 O 4 and other materials. The invention patent, on the basis of cation doping, adopts sol-gel method to synthesize nano-scale modified lithium-ion battery (4:4:2) type ternary positive electrode material, and improves its particle morphology and electrochemical performance.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的不足,提供一种纳米级阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料制备方法,该正极材料颗粒小而均匀,表面光滑,结晶性能好,具有容量高,库伦效率高,高低温条件下循环性能好,倍率性能好等优点。The purpose of the present invention is to overcome the deficiencies in the prior art, to provide a nano-scale cation doping modified lithium ion battery (4:4:2) type ternary positive electrode material preparation method, the positive electrode material particles are small and uniform , smooth surface, good crystallization performance, high capacity, high Coulombic efficiency, good cycle performance under high and low temperature conditions, and good rate performance.
按照本发明提供的技术方案,一种阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料,所述正极材料的化学通式为LiNi0.4-xM1 xCo0.2-yM2 yMn0.4-zM3 zO2,M1为Mg、Zn或Cu;M2为Al或Cr;M3为Ti、Zr或Mo,0≤x≤0.15;0≤y≤0.15;0≤z≤0.15;According to the technical scheme provided by the present invention, a cation-doped modified lithium-ion battery (4:4:2) type ternary positive electrode material, the chemical general formula of the positive electrode material is LiNi 0.4-x M 1 x Co 0.2 -y M 2 y Mn 0.4-z M 3 z O 2 , M 1 is Mg, Zn or Cu; M 2 is Al or Cr; M 3 is Ti, Zr or Mo, 0≤x≤0.15; 0≤y≤ 0.15; 0≤z≤0.15;
按照摩尔比称取可溶性锂源、镍源、锰源、钴源和金属M1盐、M2盐、M3盐,分别用去离子水溶解后,加入柠檬酸溶液混合搅拌均匀,用浓氨水调节pH后加热蒸发得到凝胶。凝胶加热干燥后,经过两次灼烧研磨得到产品阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料。Weigh soluble lithium source, nickel source, manganese source, cobalt source and metal M 1 salt, M 2 salt, M 3 salt according to the molar ratio, dissolve them in deionized water respectively, add citric acid solution and mix well, then use concentrated ammonia water After adjusting the pH, the product was heated and evaporated to obtain a gel. After the gel is heated and dried, it is burned and ground twice to obtain a cation-doped modified lithium-ion battery (4:4:2) type ternary positive electrode material.
一种阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料,步骤如下:A cation-doped modified lithium-ion battery (4:4:2) type ternary positive electrode material, the steps are as follows:
(1)凝胶的制备:按照化学计量比(1.05∶0.4∶0.4∶0.2∶x∶y∶z)称取分析纯的锂源、镍源、锰源、钴源和金属M1盐、M2盐、M3盐,分别溶解于去离子水中,加入柠檬酸溶液,加入量等于过渡金属离子的摩尔量之和,混合搅拌均匀,用浓氨水调节pH值至7-8,60-100℃水浴加热蒸发,并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure lithium source, nickel source, manganese source, cobalt source and metal M 1 salt, M 2 salt, M 3 salt, respectively dissolved in deionized water, add citric acid solution, the amount added is equal to the sum of molar amounts of transition metal ions, mix and stir evenly, adjust the pH value to 7-8 with concentrated ammonia water, 60-100°C Evaporate by heating in a water bath, and keep stirring until a dark purple gel is obtained;
(2)灼烧:取步骤(1)制备的凝胶在80-150℃下干燥8-15小时,而后置于300-600℃预灼烧处理4-8小时;自然冷却至室温研磨得到前驱体;研磨后的粉末置于700-1000℃条件下焙烧10-20小时,冷却后继续研磨得到产品阳离子掺杂改性的锂离子电池(4:4:2)型三元正极材料。(2) Ignition: take the gel prepared in step (1) and dry it at 80-150°C for 8-15 hours, then place it at 300-600°C for pre-burning treatment for 4-8 hours; naturally cool to room temperature and grind to obtain the precursor body; the ground powder is baked at 700-1000°C for 10-20 hours, and then ground after cooling to obtain the product cation-doped modified lithium-ion battery (4:4:2) type ternary positive electrode material.
进一步,所述锂源为LiNO3、CH3COOLi、LiOH中的一种或多种,所述镍源为Ni(NO3)2、Ni(CH3COO)2中的一种或两种,所述锰源为Mn(NO3)2、Mn(CH3COO)2中的一种或两种,所述钴源为Co(NO3)2、Co(CH3COO)2中的一种或两种,所述金属M1盐为Mg(NO3)2·6H2O、Zn(NO3)2·6H2O或Cu(NO3)2·3H2O,所述金属M2盐为Al(NO3)2·9H2O或Cr(NO3)2·9H2O;所述金属M3盐为C16H36O4Ti、Zr(NO3)2·5H2O或MoO3。Further, the lithium source is one or more of LiNO 3 , CH 3 COOLi, and LiOH, and the nickel source is one or more of Ni(NO 3 ) 2 and Ni(CH 3 COO) 2 , The manganese source is one or both of Mn(NO 3 ) 2 and Mn(CH 3 COO) 2 , and the cobalt source is one of Co(NO 3 ) 2 and Co(CH 3 COO) 2 or two, the metal M 1 salt is Mg(NO 3 ) 2 ·6H 2 O, Zn(NO 3 ) 2 ·6H 2 O or Cu(NO 3 ) 2 ·3H 2 O, the metal M 2 salt Al(NO 3 ) 2 ·9H 2 O or Cr(NO 3 ) 2 ·9H 2 O; the metal M 3 salt is C 16 H 36 O 4 Ti, Zr(NO 3 ) 2 ·5H 2 O or MoO 3 .
本发明具有如下优点:The present invention has the following advantages:
(1)本发明所制备正极材料粒径分布均匀,结晶度高,表面光滑,颗粒分散度好;(1) The particle size distribution of the positive electrode material prepared by the present invention is uniform, the crystallinity is high, the surface is smooth, and the particle dispersion is good;
(2)本发明所提供的正极材料,由于阳离子的掺杂改性,材料结构更加稳定。从而使材料高低温条件下均具备较高的放电容量、优异的循环性能及倍率性能。并且掺杂改性所需的原料价格便宜,进一步降低了正极材料生产所需的成本,有利于推进商品化的进程。(2) The positive electrode material provided by the present invention has a more stable material structure due to the doping modification of cations. As a result, the material has high discharge capacity, excellent cycle performance and rate performance under high and low temperature conditions. Moreover, the raw materials required for doping modification are cheap, which further reduces the cost required for the production of positive electrode materials, and is conducive to promoting the process of commercialization.
附图说明Description of drawings
图1为对比例和实施例1、5制备的正极材料的X-射线衍射图。Fig. 1 is the X-ray diffraction pattern of the positive electrode materials prepared in Comparative Example and Examples 1 and 5.
图2为实施例1、5、6、7制备的正极材料的扫描电镜图(图中a为实施例1,b为实施例5,c为实施例6,d为实施例7)。Fig. 2 is the scanning electron micrograph of the anode material prepared in Examples 1, 5, 6, and 7 (a in the figure is Example 1, b is Example 5, c is Example 6, and d is Example 7).
图3为对比例和实施例1、5制备的正极材料,常温时0.2C电流下的循环曲线图,充放电电压范围为2.0-4.6V。Fig. 3 is a cycle graph of positive electrode materials prepared in Comparative Example and Examples 1 and 5 at room temperature under a current of 0.2C, and the charging and discharging voltage range is 2.0-4.6V.
图4为对比例和实施例1、5制备的正极材料,55℃时不同倍率下的循环曲线图,充放电电压范围为2.0-4.6V。Fig. 4 is the cycle curves of positive electrode materials prepared in Comparative Example and Examples 1 and 5 at different rates at 55°C, and the charge and discharge voltage range is 2.0-4.6V.
具体实施方式Detailed ways
下面结合实施例对本发明的技术方案做进一步的说明,但本发明的实施方式不限于此。The technical solutions of the present invention will be further described below in conjunction with examples, but the embodiments of the present invention are not limited thereto.
对比实施例未掺杂LiNi0.4Co0.2Mn0.4O2正极材料的制备。Comparative Example Preparation of undoped LiNi 0.4 Co 0.2 Mn 0.4 O 2 cathode material.
按照化学计量比(1.05∶0.4∶0.2∶0.4)称取分析纯的CH3COOLi·2H2O、Ni(CH3COO)2·4H2O、Co(CH3COO)2·4H2O、Mn(CH3COO)·4H2O,分别用去离子水充分溶解,加入柠檬酸溶液,加入量等于过渡金属离子的摩尔量之和,混合均匀后用浓氨水将溶液pH值调至7.5左右,80℃水浴加热搅拌,使各种离子充分络合,并使水分蒸发至形成深紫色凝胶;将凝胶在120℃条件下干燥10小时,而后置于500℃下预处理6小时,冷却后研磨,再于850℃焙烧20小时得到所需产品。Weigh analytically pure CH 3 COOLi·2H 2 O, Ni(CH 3 COO) 2 ·4H 2 O, Co(CH 3 COO) 2 ·4H 2 O, Mn(CH 3 COO)·4H 2 O, fully dissolved in deionized water, add citric acid solution, the amount added is equal to the sum of molar amounts of transition metal ions, mix well and adjust the pH value of the solution to about 7.5 with concentrated ammonia water , heated and stirred in a water bath at 80°C to fully complex the various ions and evaporate the water to form a deep purple gel; dry the gel at 120°C for 10 hours, then pretreat it at 500°C for 6 hours, and cool Grinding afterward, and then roasting at 850°C for 20 hours to obtain the desired product.
实施例1Example 1
(1)凝胶的制备:按照化学计量比(1.05∶0.35∶0.2∶0.4∶0.05)称取分析纯的CH3COOLi·2H2O、Ni(CH3COO)2·4H2O、Co(CH3COO)2·4H2O、Mn(CH3COO)·4H2O、Mg(NO3)2·6H2O,分别用去离子水溶解完全,加入柠檬酸溶液,加入量等于过渡金属离子的摩尔量之和,混合均匀后用浓氨水将PH值调节至7左右,在60℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure CH 3 COOLi·2H 2 O, Ni(CH 3 COO) 2 ·4H 2 O, Co( CH 3 COO) 2 4H 2 O, Mn(CH 3 COO) 4H 2 O, Mg(NO 3 ) 2 6H 2 O were completely dissolved in deionized water respectively, and then added citric acid solution in an amount equal to the transition metal The sum of the molar amounts of ions, after mixing evenly, adjust the pH value to about 7 with concentrated ammonia water, heat in a water bath at 60°C and keep stirring until a deep purple gel is obtained;
(2)灼烧:取步骤(1)制备的凝胶在80℃下加热干燥8小时,将所得产物在300℃下预烧4小时后冷却研磨,再在700℃下煅烧10小时后冷却研磨,得到产品LiNi0.35Co0.2Mn0.4Mg0.05O2正极材料。(2) Burning: take the gel prepared in step (1) and heat and dry at 80°C for 8 hours, pre-burn the resulting product at 300°C for 4 hours, cool and grind, then calcinate at 700°C for 10 hours, cool and grind , to obtain the product LiNi 0.35 Co 0.2 Mn 0.4 Mg 0.05 O 2 cathode material.
实施例2Example 2
(1)凝胶的制备:按照化学计量比(1.05∶0.3∶0.2∶0.4∶0.1)称取分析纯的LiNO3、Ni(NO3)2·6H2O、Co(NO3)2·6H2O、Mn(NO3)2·4H2O、Cu(NO3)2·3H2O,分别用去离子水溶解完全,加入柠檬酸溶液,加入量等于过渡金属离子的摩尔量之和,混合均匀后用浓氨水将PH值调节至7.5左右,在80℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure LiNO 3 , Ni(NO 3 ) 2 ·6H 2 O, Co(NO 3 ) 2 ·6H according to the stoichiometric ratio (1.05:0.3:0.2:0.4:0.1) 2 O, Mn(NO 3 ) 2 4H 2 O, Cu(NO 3 ) 2 3H 2 O were completely dissolved in deionized water respectively, and then citric acid solution was added in an amount equal to the sum of molar amounts of transition metal ions. After mixing evenly, adjust the pH value to about 7.5 with concentrated ammonia water, heat in a water bath at 80°C and keep stirring until a dark purple gel is obtained;
(2)灼烧:灼烧:取步骤(1)制备的凝胶在100℃下加热干燥10小时,将所得产物在400℃下预烧5小时后冷却研磨,再在850℃下煅烧15小时后冷却研磨,得到产品LiNi0.3Co0.2Mn0.4Cu0.1O2正极材料。(2) Burning: Burning: Take the gel prepared in step (1) and heat and dry at 100°C for 10 hours, pre-burn the resulting product at 400°C for 5 hours, cool and grind, and then calcinate at 850°C for 15 hours After cooling and grinding, the product LiNi 0.3 Co 0.2 Mn 0.4 Cu 0.1 O 2 cathode material was obtained.
实施例3Example 3
(1)凝胶的制备:按照化学计量比(1.05∶0.25∶0.2∶0.4∶0.15)称取分析纯的LiOH·H2O、Ni(NO3)2·6H2O、Co(NO3)2·6H2O、Mn(NO3)2·4H2O、Zn(NO3)2·6H2O,分别用去离子水溶解完全,加入柠檬酸溶液,入量等于过渡金属离子的摩尔量之和,混合均匀后用浓氨水将PH值调节至8左右,在90℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure LiOH·H 2 O, Ni(NO 3 ) 2 ·6H 2 O, Co(NO 3 ) according to the stoichiometric ratio (1.05:0.25:0.2:0.4:0.15) 2 · 6H 2 O, Mn(NO 3 ) 2 · 4H 2 O, Zn(NO 3 ) 2 · 6H 2 O, dissolve completely with deionized water respectively, add citric acid solution, the amount equal to the molar amount of transition metal ions After mixing evenly, adjust the pH value to about 8 with concentrated ammonia water, heat in a water bath at 90°C and keep stirring until a deep purple gel is obtained;
(2)灼烧:2)灼烧:取步骤(1)制备的凝胶在120℃下加热干燥12小时,将所得产物在500℃下预烧6小时后冷却研磨,再在900℃下煅烧18小时后冷却研磨,得到产品LiNi0.25Co0.2Mn0.4Zn0.15O2正极材料。(2) Burning: 2) Burning: take the gel prepared in step (1) and heat and dry at 120°C for 12 hours, pre-burn the resulting product at 500°C for 6 hours, then cool and grind, and then calcined at 900°C After cooling and grinding for 18 hours, the product LiNi 0.25 Co 0.2 Mn 0.4 Zn 0.15 O 2 cathode material was obtained.
实施例4Example 4
(1)凝胶的制备:按照化学计量比(1.05∶0.4∶0.1∶0.4∶0.1)称取分析纯的CH3COOLi·2H2O、Ni(CH3COO)2·4H2O、Co(CH3COO)2·4H2O、Mn(CH3COO)·4H2O、Al(NO3)2·9H2O,分别用去离子水溶解完全,加入柠檬酸溶液,入量等于过渡金属离子的摩尔量之和,混合均匀后用浓氨水将PH值调节至7.5左右,在100℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure CH 3 COOLi·2H 2 O, Ni(CH 3 COO) 2 ·4H 2 O, Co( CH 3 COO) 2 4H 2 O, Mn(CH 3 COO) 4H 2 O, Al(NO 3 ) 2 9H 2 O were completely dissolved in deionized water respectively, then added citric acid solution, the amount equal to transition metal The sum of molar amounts of ions, after mixing evenly, adjust the pH value to about 7.5 with concentrated ammonia water, heat in a water bath at 100°C and keep stirring until a deep purple gel is obtained;
(2)灼烧:取步骤(1)制备的凝胶在150℃下加热干燥15小时,将所得产物在600℃下预烧8小时后冷却研磨,再在1000℃下煅烧20小时后冷却研磨,得到产品LiNi0.4Co0.1Mn0.4Al0.1O2正极材料。(2) Burning: take the gel prepared in step (1) and heat and dry at 150°C for 15 hours, pre-burn the resulting product at 600°C for 8 hours, cool and grind, then calcinate at 1000°C for 20 hours, cool and grind , to obtain the product LiNi 0.4 Co 0.1 Mn 0.4 Al 0.1 O 2 cathode material.
实施例5Example 5
(1)凝胶的制备:按照化学计量比(1.05∶0.35∶0.15∶0.4∶0.05∶0.05)称取分析纯的LiNO3、Ni(NO3)2·6H2O、Co(NO3)2·6H2O、Mn(NO3)2·4H2O、Mg(CH3COO)·4H2O、Cr(NO3)2·9H2O,分别用去离子水溶解完全,加入柠檬酸溶液,入量等于过渡金属离子的摩尔量之和,混合均匀后用浓氨水将PH值调节至7.5左右,在90℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure LiNO 3 , Ni(NO 3 ) 2 ·6H 2 O, Co(NO 3 ) 2 according to the stoichiometric ratio (1.05:0.35:0.15:0.4:0.05:0.05) · 6H 2 O, Mn(NO 3 ) 2 · 4H 2 O, Mg(CH 3 COO) · 4H 2 O, Cr(NO 3 ) 2 · 9H 2 O, respectively dissolved completely in deionized water, add citric acid solution , the input amount is equal to the sum of the molar amounts of transition metal ions, after mixing evenly, adjust the pH value to about 7.5 with concentrated ammonia water, heat in a water bath at 90°C and keep stirring until a deep purple gel is obtained;
(2)灼烧:取步骤(1)制备的凝胶在100℃下加热干燥14小时,将所得产物在600℃下预烧8小时后冷却研磨,再在950℃下煅烧20小时后冷却研磨,得到产品LiNi0.35Co0.15Mn0.4Mg0.05Cr0.05O2正极材料。(2) Burning: Take the gel prepared in step (1) and heat and dry at 100°C for 14 hours, pre-burn the resulting product at 600°C for 8 hours, cool and grind, then calcinate at 950°C for 20 hours, cool and grind , to obtain the product LiNi 0.35 Co 0.15 Mn 0.4 Mg 0.05 Cr 0.05 O 2 cathode material.
实施例6Example 6
(1)凝胶的制备:按照化学计量比(1.05∶0.37∶0.17∶0.37∶0.03∶0.03∶0.03)称取分析纯的LiNO3、Ni(NO3)2·6H2O、Co(NO3)2·6H2O、Mn(NO3)2·4H2O、Zn(NO3)2·6H2O、Cr(NO3)2·9H2O,分别用去离子水溶解完全,加入柠檬酸溶液,加入量等于过渡金属离子的摩尔量之和,之后加入化学计量比的正钛酸正丁酯,混合均匀后用浓氨水将PH值调节至7.5左右,在80℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure LiNO 3 , Ni(NO 3 ) 2 ·6H 2 O, Co(NO 3 ) 2 6H 2 O, Mn(NO 3 ) 2 4H 2 O, Zn(NO 3 ) 2 6H 2 O, Cr(NO 3 ) 2 9H 2 O, respectively dissolved in deionized water completely, add lemon Acid solution, the addition amount is equal to the sum of the molar amounts of transition metal ions, then add the stoichiometric ratio of n-butyl orthotitanate, mix well, adjust the pH value to about 7.5 with concentrated ammonia water, heat in a water bath at 80°C and Stir continuously until a dark purple gel is obtained;
(2)灼烧:制备的凝胶在100℃下加热干燥14小时,将所得产物在600℃下预烧6小时后冷却研磨,再在850℃下煅烧18小时后冷却研磨,得到产品LiNi0.37Co0.17Mn0.37Zn0.03Cr0.03Ti0.03O2正极材料。(2) Burning: The prepared gel was heated and dried at 100°C for 14 hours, the product obtained was pre-fired at 600°C for 6 hours, cooled and ground, then calcined at 850°C for 18 hours, cooled and ground to obtain the product LiNi 0.37 Co 0.17 Mn 0.37 Zn 0.03 Cr 0.03 Ti 0.03 O 2 cathode material.
实施例7Example 7
(1)凝胶的制备:按照化学计量比(1.05∶0.4∶0.2∶0.3∶0.1)称取分析纯的CH3COOLi·2H2O、Ni(CH3COO)2·4H2O、Co(CH3COO)2·4H2O、Mn(CH3COO)·4H2O、Zr(NO3)2·5H2O,分别用去离子水溶解完全,加入柠檬酸溶液,入量等于过渡金属离子的摩尔量之和,混合均匀后用浓氨水将PH值调节至7.5左右,在70℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure CH 3 COOLi·2H 2 O, Ni(CH 3 COO) 2 ·4H 2 O, Co( CH 3 COO) 2 4H 2 O, Mn(CH 3 COO) 4H 2 O, Zr(NO 3 ) 2 5H 2 O were completely dissolved in deionized water, and then added citric acid solution, the amount of which was equal to the transition metal The sum of the molar amounts of ions, after mixing evenly, adjust the pH value to about 7.5 with concentrated ammonia water, heat in a water bath at 70°C and keep stirring until a deep purple gel is obtained;
(2)灼烧:取步骤(1)制备的凝胶在120℃下加热干燥13小时,将所得产物在600℃下预烧8小时后冷却研磨,再在900℃下煅烧20小时后冷却研磨,得到产品LiNi0.4Co0.2Mn0.3Zr0.1O2正极材料。(2) Burning: take the gel prepared in step (1) and heat and dry it at 120°C for 13 hours, pre-burn the product at 600°C for 8 hours, then cool and grind it, then calcinate it at 900°C for 20 hours, then cool and grind it , to obtain the product LiNi 0.4 Co 0.2 Mn 0.3 Zr 0.1 O 2 cathode material.
实施例8Example 8
(1)凝胶的制备:按照化学计量比(1.05∶0.4∶0.2∶0.25∶0.15)称取分析纯的LiNO3、Ni(NO3)2·6H2O、Co(NO3)2·6H2O、Mn(NO3)2·4H2O,分别用去离子水溶解完全,加入柠檬酸溶液,入量等于过渡金属离子的摩尔量之和,而后将MoO3溶于NH4OH并加入上面得到的混合液中,混合均匀后用浓氨水将PH值调节至8左右,在90℃条件下水浴加热并不断搅拌,直到得到深紫色凝胶;(1) Preparation of gel: Weigh analytically pure LiNO 3 , Ni(NO 3 ) 2 ·6H 2 O, Co(NO 3 ) 2 ·6H according to the stoichiometric ratio (1.05:0.4:0.2:0.25:0.15) 2 O and Mn(NO 3 ) 2 ·4H 2 O were dissolved completely in deionized water respectively, then added citric acid solution, the amount of which was equal to the sum of the molar amounts of transition metal ions, then dissolved MoO 3 in NH 4 OH and added In the mixed solution obtained above, after mixing evenly, adjust the pH value to about 8 with concentrated ammonia water, heat in a water bath at 90°C and keep stirring until a dark purple gel is obtained;
(2)灼烧:取步骤(1)制备的凝胶在100℃下加热干燥15小时,将所得产物在500℃下预烧6小时后冷却研磨,再在850℃下煅烧15小时后冷却研磨,得到产品LiNi0.4Co0.2Mn0.25Mo0.15O2正极材料。(2) Burning: take the gel prepared in step (1) and heat and dry at 100°C for 15 hours, pre-burn the resulting product at 500°C for 6 hours, cool and grind, then calcinate at 850°C for 15 hours, cool and grind , to obtain the product LiNi 0.4 Co 0.2 Mn 0.25 Mo 0.15 O 2 cathode material.
从附图1中对比例和实施例1、5的X-射线衍射图谱中可知,实施例1、5中合成的正极材料具有高度有序的二维六边形层状结构,并没有出现属于掺杂元素的杂质峰,说明掺杂并没有引起材料晶体结构的变化。As can be seen from the X-ray diffraction patterns of the comparative example in the accompanying drawing 1 and the examples 1 and 5, the positive electrode material synthesized in the examples 1 and 5 has a highly ordered two-dimensional hexagonal layered structure, and no The impurity peaks of doping elements indicate that doping does not cause changes in the crystal structure of the material.
从附图2中实施例1-4的扫描电镜图中可知(图中a为实施例1中合成的材料,b为实施例2中合成的材料,c为实施例3中合成的材料,d为实施例4中合成的材料),实施例中合成的材料均具有颗粒较细小且粒径分布均匀,并且表面光滑,结晶度较好的优点。As can be seen from the scanning electron microscope figure of embodiment 1-4 in accompanying drawing 2 (a among the figure is the material synthesized in embodiment 1, and b is the material synthesized in embodiment 2, and c is the material synthesized in embodiment 3, d It is the material synthesized in the embodiment 4), and the materials synthesized in the embodiment all have the advantages of finer particles and uniform particle size distribution, smooth surface and better crystallinity.
应用实施例1Application Example 1
将实施例1-8中合成的正极材料粉末、乙炔黑、聚偏四氟乙烯(PVDF)按质量分数比80∶12∶8混合,加入适量吡咯烷酮后研磨成均匀浆料,均匀涂布于铝箔上,100℃下烘干,铳切(直径14mm),3MPa碾压,制成极片,经80℃真空干燥12小时后使用,于充满氩气的手套箱中装配扣式(CR2032)测试电池,负电极为锂片,电解液为LB315[m(DMC)∶m(EMC)∶m(EC)=1∶1∶1]溶液,隔膜为Celgard2325孔薄膜。将组装好的电池用LAND-CT2001A进行充放电测试。充放电区间为2.0-4.6V。Mix the positive electrode material powder, acetylene black, and polyvinylidene fluoride (PVDF) synthesized in Examples 1-8 at a mass fraction ratio of 80:12:8, add an appropriate amount of pyrrolidone, grind it into a uniform slurry, and evenly coat it on aluminum foil On, dry at 100°C, gun-cut (diameter 14mm), roll at 3MPa to make a pole piece, vacuum-dry at 80°C for 12 hours before use, assemble a button-type (CR2032) test battery in a glove box filled with argon , the negative electrode is a lithium sheet, the electrolyte is LB315[m(DMC):m(EMC):m(EC)=1:1:1] solution, and the separator is a Celgard2325 porous film. The assembled battery is charged and discharged with LAND-CT2001A. The charging and discharging range is 2.0-4.6V.
需要说明的是,具体实施本发明时,由于得到的正极材料中Li元素在高温煅烧时易挥发,会有5%左右的Li损失,因此锂盐的实际摩尔用量较理论量要高5%左右。It should be noted that when the present invention is implemented in practice, since the Li element in the obtained positive electrode material is volatile during high-temperature calcination, about 5% of Li will be lost, so the actual molar amount of lithium salt is about 5% higher than the theoretical amount. .
对比例和实施例1-8合成的正极材料所组装成的电池在的0.2C电流密度下分在常温与55℃的电化学性能表征结果如表1所示。Table 1 shows the electrochemical performance characterization results of batteries assembled from the cathode materials synthesized in Comparative Examples and Examples 1-8 at a current density of 0.2C at room temperature and at 55°C.
对比例和实施例1、5的正极材料所组装的电池,在常温时0.2C电流下的循环曲线图如图3所示;对比例和实施例1、5的正极材料所组装的电池,在55℃时不同倍率电流下的循环曲线图如图4所示。The assembled battery of the positive electrode material of comparative example and embodiment 1,5, the cycle curve graph under 0.2C electric current when normal temperature is as shown in Figure 3; The battery assembled of the positive electrode material of comparative example and embodiment 1,5, in The cycle curves at different rate currents at 55°C are shown in Figure 4.
表10.2C电流密度下,各实施例充放电性能测试结果如下表所示:Table 10.2 Under the current density of 2C, the test results of charge and discharge performance of each embodiment are shown in the following table:
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310264937.5A CN104253265A (en) | 2013-06-28 | 2013-06-28 | Cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310264937.5A CN104253265A (en) | 2013-06-28 | 2013-06-28 | Cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104253265A true CN104253265A (en) | 2014-12-31 |
Family
ID=52187963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310264937.5A Pending CN104253265A (en) | 2013-06-28 | 2013-06-28 | Cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104253265A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105489842A (en) * | 2015-12-18 | 2016-04-13 | 浙江天能能源科技有限公司 | Lithium-rich manganese-based cathode material and preparation method thereof |
CN106410183A (en) * | 2016-10-21 | 2017-02-15 | 中国科学院长春应用化学研究所 | Low-temperature lithium ion battery anode material and method for preparing same |
CN106784801A (en) * | 2016-12-30 | 2017-05-31 | 惠州龙为科技有限公司 | A kind of preparation method of the modified NCA positive electrodes of power type, high power capacity |
CN106784786A (en) * | 2016-12-16 | 2017-05-31 | 欣旺达电子股份有限公司 | Ternary anode material precursor, synthetic method and lithium ion battery |
CN107293721A (en) * | 2017-07-07 | 2017-10-24 | 淮安新能源材料技术研究院 | A kind of 523 type nickel-cobalt-manganternary ternary anode material method for preparing solid phase and products thereof |
CN107689451A (en) * | 2016-08-04 | 2018-02-13 | 中信国安盟固利动力科技有限公司 | A kind of ternary material and preparation method thereof of synthesized-power type, nanofiber |
CN108539159A (en) * | 2018-04-04 | 2018-09-14 | 南京理工大学 | The preparation method of multielement codope LiMn2O4 composite material |
CN112340785A (en) * | 2020-10-26 | 2021-02-09 | 广东邦普循环科技有限公司 | Doped high-nickel ternary material and preparation method thereof |
CN114105209A (en) * | 2021-11-22 | 2022-03-01 | 江南大学 | Doped modified lithium manganate lithium ion battery positive electrode material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0925612B1 (en) * | 1996-03-29 | 2000-09-13 | Consiglio Nazionale Delle Ricerche | GALLIUM DOPED LITHIUM MANGANESE OXIDE SPINELS (LiGaxMn2-xO4) AS ACTIVE CATHODE MATERIAL FOR LITHIUM OR LITHIUM-ION RECHARGEABLE BATTERIES WITH IMPROVED CYCLING PERFORMANCE |
CN1458705A (en) * | 2002-05-13 | 2003-11-26 | 三星Sdi株式会社 | Method for preparing positive active matter of lithium secondary battery |
-
2013
- 2013-06-28 CN CN201310264937.5A patent/CN104253265A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0925612B1 (en) * | 1996-03-29 | 2000-09-13 | Consiglio Nazionale Delle Ricerche | GALLIUM DOPED LITHIUM MANGANESE OXIDE SPINELS (LiGaxMn2-xO4) AS ACTIVE CATHODE MATERIAL FOR LITHIUM OR LITHIUM-ION RECHARGEABLE BATTERIES WITH IMPROVED CYCLING PERFORMANCE |
CN1458705A (en) * | 2002-05-13 | 2003-11-26 | 三星Sdi株式会社 | Method for preparing positive active matter of lithium secondary battery |
Non-Patent Citations (1)
Title |
---|
乔敏: ""锂离子电池正极材料LiNixCo1-2xMnxO2的制备与改性研究"", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, no. 05, 15 May 2010 (2010-05-15), pages 042 - 236 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105489842A (en) * | 2015-12-18 | 2016-04-13 | 浙江天能能源科技有限公司 | Lithium-rich manganese-based cathode material and preparation method thereof |
CN105489842B (en) * | 2015-12-18 | 2018-03-23 | 浙江天能能源科技股份有限公司 | A kind of lithium-rich manganese-based anode material and preparation method thereof |
CN107689451A (en) * | 2016-08-04 | 2018-02-13 | 中信国安盟固利动力科技有限公司 | A kind of ternary material and preparation method thereof of synthesized-power type, nanofiber |
CN106410183A (en) * | 2016-10-21 | 2017-02-15 | 中国科学院长春应用化学研究所 | Low-temperature lithium ion battery anode material and method for preparing same |
CN106784786A (en) * | 2016-12-16 | 2017-05-31 | 欣旺达电子股份有限公司 | Ternary anode material precursor, synthetic method and lithium ion battery |
CN106784801A (en) * | 2016-12-30 | 2017-05-31 | 惠州龙为科技有限公司 | A kind of preparation method of the modified NCA positive electrodes of power type, high power capacity |
WO2018121100A1 (en) * | 2016-12-30 | 2018-07-05 | 徐茂龙 | Method for preparing power-type and high-capacity modified nca anode material |
CN107293721A (en) * | 2017-07-07 | 2017-10-24 | 淮安新能源材料技术研究院 | A kind of 523 type nickel-cobalt-manganternary ternary anode material method for preparing solid phase and products thereof |
CN108539159A (en) * | 2018-04-04 | 2018-09-14 | 南京理工大学 | The preparation method of multielement codope LiMn2O4 composite material |
CN112340785A (en) * | 2020-10-26 | 2021-02-09 | 广东邦普循环科技有限公司 | Doped high-nickel ternary material and preparation method thereof |
CN112340785B (en) * | 2020-10-26 | 2022-11-15 | 广东邦普循环科技有限公司 | Doped high-nickel ternary material and preparation method thereof |
CN114105209A (en) * | 2021-11-22 | 2022-03-01 | 江南大学 | Doped modified lithium manganate lithium ion battery positive electrode material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113060776B (en) | A kind of layered cobalt-free cathode material, its preparation method and lithium ion battery | |
CN102916169B (en) | Lithium-rich manganese-based anode material and method for manufacturing same | |
CN104393277B (en) | Ternary material coated with metal oxide on surface and used for lithium ion battery, and preparation method of ternary material | |
CN104253265A (en) | Cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof | |
CN105810934B (en) | A kind of stabilizing lithium rich layered oxide material crystalline domain structure method | |
CN112701273B (en) | Preparation method of fluorine-doped lithium-rich manganese-based positive electrode material | |
CN104253273A (en) | Anion/cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof | |
CN110323432A (en) | A kind of miscellaneous modification lithium-ion battery anode material of cation-anion co-doping and preparation method thereof | |
CN105118983B (en) | Method for preparing lithium nickel manganese oxide anode material | |
CN114420920B (en) | Fluorine ion gradient doped lithium-rich manganese-based positive electrode material, and preparation method and application thereof | |
CN102956883B (en) | AnodePositive electrode material of lithium ion battery with porous laminated structure and preparation method thereof | |
CN105576231A (en) | High-voltage lithium oil battery positive electrode material with spinel structure and preparation method of high-voltage lithium oil battery positive electrode material | |
CN104134797B (en) | A kind of high-capacity lithium-rich cathode material and preparation method thereof | |
CN105024067B (en) | Lithium ion battery, composite doped modified positive active material thereof and preparation method | |
CN107910543A (en) | A kind of high-capacity lithium ion cell tertiary cathode modified material and preparation method thereof | |
CN106711414A (en) | 811-type ternary positive modified material for lithium ion batteries and preparation method thereof | |
CN103606663B (en) | A kind of Multiplying-power lithium-rich composite anode material and preparation method thereof | |
CN106207158B (en) | The preparation method of rich lithium manganate cathode material for lithium | |
CN104600285A (en) | Method for preparing spherical lithium nickel manganese oxide positive pole material | |
CN106910887A (en) | A kind of lithium-rich manganese-based anode material, its preparation method and the lithium ion battery comprising the positive electrode | |
CN108091854A (en) | A kind of high-voltage spinel type anode material for lithium-ion batteries of Anion-cation multiple dope and preparation method thereof | |
CN106920959A (en) | A kind of lithium-rich manganese-based polynary positive pole material of monocrystalline and preparation method thereof | |
CN104112849A (en) | Light metal element-doped ternary lithium ion battery positive electrode material and synthesis method thereof | |
CN106299295A (en) | A kind of porous micro-nano structure lithium-enriched cathodic material of lithium ion battery with fusiformis pattern and preparation method thereof | |
CN103943841A (en) | Anion doped modified lithium ion battery (4:4:2) type ternary cathode material and preparing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141231 |