CN105524936B - The trehalose synthase and its expressing gene of a kind of mutation and application - Google Patents
The trehalose synthase and its expressing gene of a kind of mutation and application Download PDFInfo
- Publication number
- CN105524936B CN105524936B CN201610073828.9A CN201610073828A CN105524936B CN 105524936 B CN105524936 B CN 105524936B CN 201610073828 A CN201610073828 A CN 201610073828A CN 105524936 B CN105524936 B CN 105524936B
- Authority
- CN
- China
- Prior art keywords
- trehalose
- trehalose synthase
- mutant
- synthase
- mutation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108010045348 trehalose synthase Proteins 0.000 title claims abstract description 66
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 33
- 230000035772 mutation Effects 0.000 title claims abstract description 11
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims abstract description 41
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims abstract description 41
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims abstract description 41
- 239000002773 nucleotide Substances 0.000 claims abstract description 5
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 5
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 2
- 239000013598 vector Substances 0.000 claims description 10
- 230000009261 transgenic effect Effects 0.000 claims description 4
- 239000013604 expression vector Substances 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 41
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 14
- 230000014509 gene expression Effects 0.000 abstract description 13
- 239000008103 glucose Substances 0.000 abstract description 13
- 239000006227 byproduct Substances 0.000 abstract description 9
- 241000589614 Pseudomonas stutzeri Species 0.000 abstract description 7
- 150000001413 amino acids Chemical class 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 108010021466 Mutant Proteins Proteins 0.000 abstract description 3
- 102000008300 Mutant Proteins Human genes 0.000 abstract description 3
- 102000004169 proteins and genes Human genes 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 15
- 108090000790 Enzymes Proteins 0.000 description 12
- 102000004190 Enzymes Human genes 0.000 description 12
- 230000001580 bacterial effect Effects 0.000 description 12
- 238000000746 purification Methods 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 9
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 7
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 7
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- BPHPUYQFMNQIOC-MBOVONDJSA-N (2r,3r,4s,5r)-2-(hydroxymethyl)-6-propan-2-ylsulfanyloxane-3,4,5-triol Chemical compound CC(C)SC1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-MBOVONDJSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- PZZOEXPDTYIBPI-UHFFFAOYSA-N 2-[[2-(4-hydroxyphenyl)ethylamino]methyl]-3,4-dihydro-2H-naphthalen-1-one Chemical compound C1=CC(O)=CC=C1CCNCC1C(=O)C2=CC=CC=C2CC1 PZZOEXPDTYIBPI-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000221751 Claviceps purpurea Species 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000013494 PH determination Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- LSEFFOPASZUSIU-UHFFFAOYSA-N benzoic acid;sulfuryl difluoride Chemical compound FS(F)(=O)=O.OC(=O)C1=CC=CC=C1 LSEFFOPASZUSIU-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 108010011035 endodeoxyribonuclease DpnI Proteins 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002840 non-reducing disaccharides Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000011218 seed culture Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/12—Disaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/24—Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及一种突变的海藻糖合酶及其表达基因与应用。突变的海藻糖合酶的表达基因,核苷酸序列如SEQ ID NO.1所示。突变的海藻糖合酶,氨基酸序列如SEQ ID NO.2所示。本发明首次根据(Pseudomonas stutzeri)Qlu3预测的三维结构为基础,对其活性中心进行关键氨基酸的定点突变,获得了海藻糖合酶的突变体蛋白,该突变的海藻糖合酶制备方法简便,产量大,纯度高,热稳定性好,较野生型海藻糖合酶,突变体的海藻糖转化率提高了4.5%,副产物葡萄糖的生成量降低了69.4%。The invention relates to a mutant trehalose synthase, its expression gene and application. The nucleotide sequence of the expression gene of the mutant trehalose synthase is shown in SEQ ID NO.1. The amino acid sequence of the mutant trehalose synthase is shown in SEQ ID NO.2. Based on the three-dimensional structure predicted by (Pseudomonas stutzeri) Qlu3 for the first time, the present invention conducts site-directed mutation of key amino acids in its active center to obtain a mutant protein of trehalose synthase. Large size, high purity, good thermal stability, compared with the wild-type trehalose synthase, the trehalose conversion rate of the mutant is increased by 4.5%, and the production of by-product glucose is reduced by 69.4%.
Description
技术领域technical field
本发明涉及一种突变的海藻糖合酶及其表达基因与应用,属于基因工程技术领域。The invention relates to a mutant trehalose synthase and its expression gene and application, belonging to the technical field of genetic engineering.
背景技术Background technique
海藻糖是一种十分安全可靠的非还原性双糖,费雷德里克率先应用核磁共振技术对其化学结构进行了探究,有2个吡喃型葡萄糖单体通过1,1糖苷键连结而成的双糖。十九世纪上半叶由威格斯从一种黑麦的麦角菌中把海藻糖第一次提取获得,并且已经证实了海藻糖对多种生物活性物质具有非特异性保护作用。又因为其耐干旱、抗低温、抗严寒等特性,被很多人称为“生命之糖”。海藻糖能使生物体忍受高温、高寒、高渗透压及干燥失水等恶劣的环境条件,原因是它能够产生一种膜附着在细胞表面,较好地维持蛋白分子不发生变性,进而使得动植物生命特性得以存在。这一独特的功能特性,使得海藻糖除了可以作为蛋白质药物、酶、疫苗和其他生物制品的优良活性保护剂以外,还是保持细胞活性、保湿类化妆品的重要成分,更可作为防止食品劣化、保持食品新鲜风味、提升食品品质的独特食品配料。因此海藻糖可广泛的应用到医药、化妆品业以及食品行业,具有诱人的开发应用前景和巨大的经济效益。Trehalose is a very safe and reliable non-reducing disaccharide. Frederick took the lead in exploring its chemical structure by using nuclear magnetic resonance technology. There are two glucopyranose monomers linked by 1,1 glycosidic bonds. of disaccharides. In the first half of the nineteenth century, trehalose was first extracted from a rye ergot fungus by Victrex, and it has been confirmed that trehalose has non-specific protective effects on various biologically active substances. And because of its drought resistance, low temperature resistance, and severe cold resistance, it is called "sugar of life" by many people. Trehalose can enable organisms to endure harsh environmental conditions such as high temperature, high cold, high osmotic pressure, and dehydration due to the fact that it can produce a membrane that attaches to the cell surface to better maintain protein molecules from denaturation, thereby making the animal The characteristics of plant life can exist. This unique functional property makes trehalose not only an excellent active protectant for protein drugs, enzymes, vaccines and other biological products, but also an important ingredient for maintaining cell activity and moisturizing cosmetics. Unique food ingredients for fresh flavor of food and improvement of food quality. Therefore, trehalose can be widely used in medicine, cosmetics and food industries, and has attractive development and application prospects and huge economic benefits.
鉴于海藻糖广泛而重要的应用价值,寻找海藻糖高效方便、低成本生产方法的研究被广泛重视。目前海藻糖的生产方法主要有酵母提取法、发酵法、酶合成法。其中酶法生产海藻糖具有较高的特异性和快速温和等特点,已经成为研发海藻糖工业化生产的热点并作为短期可见效的可行性途径之一。In view of the wide and important application value of trehalose, the research on finding efficient, convenient and low-cost production methods of trehalose has been widely valued. At present, the production methods of trehalose mainly include yeast extraction method, fermentation method and enzyme synthesis method. Among them, the enzymatic production of trehalose has the characteristics of high specificity, rapidity and mildness, and has become a hot spot in the research and development of trehalose industrial production and one of the feasible ways to achieve short-term results.
海藻糖合酶(Trehalose synthase,TreS)是一种分子内葡糖苷转移酶,它只需要一步反应就可以将麦芽糖的α-1,4糖苷键转化为α-1,1糖苷键生成海藻糖。该酶反应流程短,易调控,不需要消耗高能物质,不需要磷酸盐共存,只需要一种酶一步反应就能获得海藻糖,因此海藻糖合酶转化法是适宜工业化生产海藻糖的方法,有着良好的应用前景,受到广泛的关注。到目前为止,国内外有报道的能够产海藻糖合酶的微生物已经超过15种。不同微生物来源的海藻糖合酶的催化效率、酶学性质各有不同,但其在反应过程中均伴有副产物的产生,有的高达20%,一般为5%-10%左右,这对下游产物的分离纯化带来了难度,同时提高了海藻糖的生产成本。Trehalose synthase (TreS) is an intramolecular glucosidic transferase, which can convert the α-1,4 glycosidic bonds of maltose into α-1,1 glycosidic bonds to generate trehalose in only one step. The enzyme reaction process is short, easy to control, does not need to consume high-energy substances, does not require the coexistence of phosphate, and only needs one enzyme to react in one step to obtain trehalose. Therefore, the trehalose synthase conversion method is suitable for industrial production of trehalose. It has a good application prospect and has received extensive attention. So far, more than 15 kinds of microorganisms capable of producing trehalose synthase have been reported at home and abroad. The catalytic efficiency and enzymatic properties of trehalose synthase from different microbial sources are different, but they are all accompanied by the generation of by-products during the reaction process, some as high as 20%, generally about 5%-10%, which is very important The separation and purification of downstream products brings difficulties and increases the production cost of trehalose.
发明内容Contents of the invention
针对现有技术的不足,本发明提供了一种突变的海藻糖合酶及其表达基因与应用。该突变的海藻糖合酶副产物葡萄糖的生成量降低,海藻糖的转化率提高。该海藻糖合酶由来源于施氏假单胞菌(Pseudomonas stutzeri Qlu3)的海藻糖合酶经定点突变A309E获得。Aiming at the deficiencies of the prior art, the present invention provides a mutant trehalose synthase and its expression gene and application. The generation of by-product glucose of the mutant trehalose synthase is reduced, and the conversion rate of trehalose is increased. The trehalose synthase is obtained from the trehalose synthase derived from Pseudomonas stutzeri Qlu3 through site-directed mutation A309E.
本发明技术方案如下:Technical scheme of the present invention is as follows:
一种突变的海藻糖合酶的表达基因,核苷酸序列如SEQ ID N0.1所示。An expression gene of a mutant trehalose synthase, the nucleotide sequence of which is shown in SEQ ID No.1.
一种突变的海藻糖合酶,氨基酸序列如SEQ ID NO.2所示。A mutant trehalose synthase, the amino acid sequence is shown in SEQ ID NO.2.
本发明所述海藻糖合酶是通过Quick change定点突变的方法对关键氨基酸309位的丙氨酸突变为谷氨酸,然后转入大肠杆菌进行高效表达后,利用镍柱亲和层析,离子交换层析,分子筛等一系列纯化手段,最终获得高纯度的海藻糖合酶突变体蛋白。上述重组蛋白反应2h即可达到最大转化率,海藻糖转化率即可达到74.7%,副产物仅为1.1%。上述重组蛋白在50℃金属浴中放置30min海藻糖转化率依然可以达到51.2%。上述重组蛋白最适反应温度为35℃。上述重组蛋白最适反应pH为7.0-8.0。The trehalose synthase of the present invention mutates the alanine at position 309 of the key amino acid into glutamic acid by the method of Quick change site-directed mutation, and then transfers it into Escherichia coli for high-efficiency expression. A series of purification methods such as exchange chromatography and molecular sieve can finally obtain high-purity trehalose synthase mutant protein. The above-mentioned recombinant protein can reach the maximum conversion rate after reacting for 2 hours, the conversion rate of trehalose can reach 74.7%, and the by-product is only 1.1%. The trehalose conversion rate of the above-mentioned recombinant protein can still reach 51.2% when placed in a metal bath at 50°C for 30 minutes. The optimum reaction temperature of the above-mentioned recombinant protein is 35°C. The optimum reaction pH of the above-mentioned recombinant protein is 7.0-8.0.
一种插入上述突变的海藻糖合酶的表达基因的重组载体。A recombinant vector inserted into the expression gene of the above mutant trehalose synthase.
一种转基因细胞系,含有上述重组载体。A transgenic cell line containing the above-mentioned recombinant vector.
上述突变的海藻糖合酶的表达基因、重组载体或转基因细胞系在制备海藻糖合酶中的应用。Application of the expression gene, recombinant vector or transgenic cell line of the above mutant trehalose synthase in the preparation of trehalose synthase.
上述突变的海藻糖合酶在制备海藻糖中的应用。Application of the above mutant trehalose synthase in the preparation of trehalose.
本发明所述的海藻糖合酶,由施氏假单胞菌(Pseudomonas stutzeri)Qlu3中获得,具体方法为:对商品化的pET-15b载体的多克隆位点进行改造,删除掉多余的酶切位点,保留BamHI,XhoI,EcolI,HindIII酶切位点,并在其中加入了Prescission酶切位点,获得pGLO1载体。将该基因连接到pGLO1载体上构建成质粒,然后利用Quick change定点突变的方法对关键氨基酸309位的丙氨酸(A)突变谷氨酸(E),并转化到大肠杆菌BL21DE(3)中进行原核表达。然后通过镍柱亲和层析,Source-Q离子交换层析,Superdex-200分子筛层析的方法分离获得高纯度的突变体海藻糖合酶。The trehalose synthase described in the present invention is obtained from Pseudomonas stutzeri (Pseudomonas stutzeri) Qlu3, and the specific method is: transforming the multi-cloning site of the commercialized pET-15b vector, and deleting redundant enzymes Cutting site, keep the BamHI, XhoI, EcolI, HindIII restriction site, and add the Prescission restriction site to obtain the pGLO1 vector. The gene was connected to the pGLO1 vector to construct a plasmid, and then the alanine (A) at position 309 of the key amino acid was mutated to glutamic acid (E) by the method of Quick change site-directed mutagenesis, and transformed into Escherichia coli BL21DE (3) Perform prokaryotic expression. Then, high-purity mutant trehalose synthase is obtained by separating and obtaining high-purity mutant trehalose synthase through nickel column affinity chromatography, Source-Q ion exchange chromatography and Superdex-200 molecular sieve chromatography.
有益效果Beneficial effect
本发明首次根据(Pseudomonas stutzeri)Qlu3预测的三维结构为基础,对其活性中心进行关键氨基酸的定点突变,获得了海藻糖合酶的突变体蛋白,该突变的海藻糖合酶制备方法简便,产量大,纯度高,热稳定性好,并且海藻糖转化率由野生型的71.5%提高到74.7%,副产物由野生型的3.6%降低至1.1%,较野生型海藻糖合酶,突变体的海藻糖转化率提高了4.5%,副产物葡萄糖的生成量降低了69.4%。可以降低海藻糖与葡萄糖的分离成本,为海藻糖的工业化生产奠定了基础;也为其他相似蛋白提高转化率提供了可行性方法。Based on the three-dimensional structure predicted by (Pseudomonas stutzeri) Qlu3 for the first time, the present invention conducts site-directed mutation of key amino acids in its active center to obtain a mutant protein of trehalose synthase. Large, high purity, good thermal stability, and the conversion rate of trehalose increased from 71.5% of the wild type to 74.7%, and the by-products were reduced from 3.6% of the wild type to 1.1%. Compared with the wild type trehalose synthase, the mutant The conversion rate of trehalose increased by 4.5%, and the generation of by-product glucose decreased by 69.4%. The separation cost of trehalose and glucose can be reduced, which lays a foundation for the industrial production of trehalose; and also provides a feasible method for improving the conversion rate of other similar proteins.
附图说明Description of drawings
图1是PCR扩增及琼脂糖凝胶电泳结果照片;Fig. 1 is the photo of PCR amplification and agarose gel electrophoresis result;
图中:M、Marker,T为TreS-pET-15b的目的条带;In the figure: M, Marker, T is the target band of TreS-pET-15b;
图2为镍柱纯化后海藻糖合酶SDS-PAGE电泳结果图片;Figure 2 is a picture of the SDS-PAGE electrophoresis results of trehalose synthase after nickel column purification;
图中,ce:破碎后全菌液,s:高速离心后上清,elu:镍柱洗脱后蛋白;In the figure, ce: whole bacterial solution after crushing, s: supernatant after high-speed centrifugation, elu: protein after nickel column elution;
图3为通过高效液相测定的葡萄糖、麦芽糖和海藻糖的标样峰状结果图;Fig. 3 is the peak shape result figure of the standard sample of glucose, maltose and trehalose measured by high performance liquid phase;
图4为通过高效液相测定反应结束后葡萄糖、海藻糖和麦芽糖的峰状结果图;Fig. 4 is the peak shape result diagram of glucose, trehalose and maltose after the reaction is determined by high performance liquid phase;
图5A为纯化后海藻糖合酶酶活最适反应温度曲线图;Fig. 5A is a curve diagram of the optimal reaction temperature for trehalose synthase enzyme activity after purification;
图5B纯化后海藻糖合酶酶活温度稳定曲线图;Fig. 5B is a temperature stabilization curve of trehalose synthase enzyme activity after purification;
图6A为纯化后海藻糖合酶最适反应pH曲线图;Fig. 6A is a graph showing the optimal reaction pH curve of trehalose synthase after purification;
图6B纯化后海藻糖合酶pH稳定曲线图;Fig. 6B pH stability curve of trehalose synthase after purification;
图7A为纯化后海藻糖合酶与突变体反应时间对海藻糖转化率影响的曲线图;Fig. 7A is a graph showing the influence of the reaction time between the purified trehalose synthase and the mutant on the conversion rate of trehalose;
图中:TreS为野生型海藻糖合酶,TreSA309E为突变的海藻糖合酶;In the figure: TreS is the wild-type trehalose synthase, TreSA309E is the mutant trehalose synthase;
图7B为纯化后海藻糖合酶与突变体反应时间对葡萄糖转化率影响的曲线图;Fig. 7B is a graph showing the influence of the reaction time between the purified trehalose synthase and the mutant on the glucose conversion rate;
图中:TreS为野生型海藻糖合酶,TreSA309E为突变的海藻糖合酶。In the figure: TreS is the wild-type trehalose synthase, and TreSA309E is the mutant trehalose synthase.
具体实施方式Detailed ways
下面结合实施例对本发明的技术方案作进一步阐述,但本发明所保护范围不限于此。The technical solutions of the present invention will be further described below in conjunction with the examples, but the protection scope of the present invention is not limited thereto.
实施例1:克隆得到突变的海藻糖合酶基因。Example 1: Cloning the mutated trehalose synthase gene.
依据NCBI上公开的施氏假单胞菌(Pseudomonas stutzeri)海藻糖合酶全长核苷酸序列设计突变点处的引物,引物序列如下:The primers at the mutation point were designed according to the full-length nucleotide sequence of Pseudomonas stutzeri (Pseudomonas stutzeri) trehalose synthase published on NCBI, and the primer sequences were as follows:
上游引物:GTGGCCCTCCGACCAttcGGTGCCUpstream primer: GTGGCCCTCCGACCAttcGGTGCC
下游引物:CGTGCCGAGGGCACCgaaTGGTCGDownstream primer: CGTGCCGAGGGCACCgaaTGGTCG
以构建好的tres-pGLO1质粒为模板,利用上述引物进行PCR扩增,PCR反应体系如下:Using the constructed tres-pGLO1 plasmid as a template, use the above primers for PCR amplification. The PCR reaction system is as follows:
上述PCR反应按照如下程序进行:The above-mentioned PCR reaction is carried out according to the following procedures:
98℃预变性3min;98℃变性10s,58℃退火30s,72℃延伸4min,25个循环;72℃终延伸10min。Pre-denaturation at 98°C for 3min; denaturation at 98°C for 10s, annealing at 58°C for 30s, extension at 72°C for 4min, 25 cycles; final extension at 72°C for 10min.
PCR结束后通过1wt%的琼脂糖凝胶电泳分析片段长短。After PCR, the fragment length was analyzed by 1wt% agarose gel electrophoresis.
实施例2:将突变的海藻糖合酶基因转化到表达宿主中,获得阳性表达菌株。Example 2: Transforming the mutated trehalose synthase gene into an expression host to obtain a positive expression strain.
PCR产物经DpnI内切酶酶切反应,酶切反应体系如下:The PCR product was cleaved by DpnI endonuclease, and the enzyme cleavage reaction system was as follows:
PCR产物的酶切体系:Enzyme digestion system for PCR products:
充分混匀后离心数秒,将管壁液滴收到管底,37℃连接反应30min。Mix well and centrifuge for a few seconds, collect the droplet on the tube wall to the bottom of the tube, and react at 37°C for 30 minutes.
重组质粒的转化Transformation of recombinant plasmids
(1)感受态细胞的制备(1) Preparation of Competent Cells
①挑取大肠杆菌BL21(DE3)(购自上海前尘生物科技有限公司)单菌落(或挑取保存菌种)接种至10ml液体LB培养基中,37℃,210rpm过夜培养;①Pick a single colony of Escherichia coli BL21 (DE3) (purchased from Shanghai Qianchen Biotechnology Co., Ltd.) (or pick a preserved strain) and inoculate it into 10ml of liquid LB medium, culture overnight at 37°C and 210rpm;
②取5ml菌液接种于500ml LB培养基中,37℃,210rpm,摇70-80min至OD600达到0.375;② Inoculate 5ml of bacterial liquid into 500ml of LB medium, shake at 37°C, 210rpm for 70-80min until OD 600 reaches 0.375;
③将菌液放置于冰水混合物上10min,同时预冷50ml离心管;③ Place the bacterial solution on the ice-water mixture for 10 minutes, and pre-cool the 50ml centrifuge tube at the same time;
④将菌液转移到离心管中,4℃,3700rpm,10min收集菌体,弃上清;④ Transfer the bacterial solution to a centrifuge tube, collect the bacterial cells at 4°C, 3700 rpm, and 10 minutes, and discard the supernatant;
⑤每个离心管中加入大约10ml冰预冷的激活缓冲液(0.1M CaCl2),用灭过菌的5ml枪尖打散沉淀,然后再向每个管中加大约30ml冰预冷的激活缓冲液,颠倒混匀,冰上静置20min;⑤ Add about 10ml of ice-cold activation buffer (0.1M CaCl 2 ) to each centrifuge tube, break up the precipitate with a sterilized 5ml tip, and then add about 30ml of ice-cold activation buffer to each tube. Buffer, mix by inverting, let stand on ice for 20min;
⑥4℃,3700rpm,离心10min;弃上清,将残液倒净,按500ml菌液12ml冰预冷储存buffer(0.1M CaCl2,体积百分比15%甘油)的量,将沉淀打散,(分次转移,然后吹吸打散)。⑥Centrifuge at 4°C, 3700rpm for 10min; discard the supernatant, pour out the residual liquid, and break up the precipitate according to the amount of 500ml bacterial solution and 12ml ice-precooled storage buffer (0.1M CaCl 2 , 15% glycerol by volume). Transfer once, then blow to break up).
⑦将感受态细胞分装到冰预冷的灭菌EP中,每管100微升,置于冰上(0℃)30min。⑦ Aliquot the competent cells into ice-precooled sterilized EP, 100 microliters per tube, and place on ice (0°C) for 30 minutes.
⑧感受态-80℃冻存,制得感受态细胞BL21(DE3)。⑧ Competent cells were frozen at -80°C to obtain competent cells BL21(DE3).
注意:整个过程尽量让细胞处于低温,所用的枪尖,离心管,EP管和buffer等均要灭菌,整个过程都在超净台里操作,感受态细胞做完后要test其效率和是否染菌。Note: Try to keep the cells at low temperature during the whole process. The gun tip, centrifuge tube, EP tube and buffer used must be sterilized. The whole process is operated in an ultra-clean bench. After the competent cells are finished, test their efficiency and whether they are Bacteria.
(2)连接产物转化(2) Conversion of ligated products
①将15μL连接产物加入100μL新鲜制备的感受态细胞BL21DE(3)中,轻轻混匀,冰浴30min。① Add 15 μL of the ligation product to 100 μL of freshly prepared competent cells BL21DE(3), mix gently, and place on ice for 30 minutes.
②42℃热激90s,然后迅速置于冰浴中冷却3min。②Heat shock at 42°C for 90s, then quickly place in an ice bath to cool for 3min.
③加入200μL LB液体培养基,37℃,180rpm/min振荡培养60min,使细菌恢复正常生长状态,并表达质粒编码的抗生素抗性基因;③ Add 200 μL LB liquid medium, shake and culture at 37°C, 180 rpm/min for 60 min, so that the bacteria can return to normal growth state and express the antibiotic resistance gene encoded by the plasmid;
④取上述菌液200μL,涂布于带有抗性的LB固体培养基(氨苄青霉素100mg/L)。④Take 200 μL of the above bacterial solution and spread it on the resistant LB solid medium (ampicillin 100 mg/L).
⑤待菌液被吸干后,倒置平板于37℃培养12~16h。⑤ After the bacterial solution is blotted dry, invert the plate and incubate at 37°C for 12-16 hours.
LB液体培养基组分如下:The components of LB liquid medium are as follows:
5g酵母粉,10g蛋白胨,10g NaCl,加水至1L,121℃高压灭菌20min备用。5g yeast powder, 10g peptone, 10g NaCl, add water to 1L, and autoclave at 121°C for 20min for later use.
LB固体培养基组分如下:The components of LB solid medium are as follows:
5g酵母粉,10g蛋白胨,10g NaCl,2%琼脂粉,加水至1L,121℃高压灭菌20min备用。5g yeast powder, 10g peptone, 10g NaCl, 2% agar powder, add water to 1L, and autoclave at 121°C for 20min for later use.
阳性克隆的鉴定Identification of positive clones
(1)菌落PCR鉴定(1) Colony PCR identification
挑取单菌落,37℃振荡培养6~8h,吸取1μL菌液,按照15μLPCR反应体系,进行PCR鉴定。若为阳性克隆,通过琼脂糖凝胶电泳可检测到一条目的条带,如图1所示。Pick a single colony, shake and culture at 37°C for 6-8 hours, absorb 1 μL of the bacterial liquid, and carry out PCR identification according to the 15 μL PCR reaction system. If it is a positive clone, a band can be detected by agarose gel electrophoresis, as shown in Figure 1.
(2)蛋白表达及可溶性鉴定(2) Protein expression and solubility identification
将菌落PCR鉴定剩余菌液中加入终浓度为0.2mM的IPTG(异丙基硫代半乳糖苷),诱导表达1h,12000rpm/min,离心1min,弃上清,收集菌体。加入2倍上样缓冲液,用枪尖悬起沉淀,95℃变性10min。若为阳性克隆,通过SDS-PAGE可检测到有蛋白过表达。Add IPTG (isopropylthiogalactopyranoside) at a final concentration of 0.2mM to the remaining bacterial solution identified by colony PCR, induce expression for 1 hour, centrifuge at 12,000 rpm/min for 1 minute, discard the supernatant, and collect the bacteria. Add 2 times of loading buffer, suspend the pellet with a gun tip, and denature at 95°C for 10 minutes. If it is a positive clone, protein overexpression can be detected by SDS-PAGE.
(3)DNA测序(3) DNA sequencing
将用以上两种方法鉴定后的阳性克隆,经测序序列正确,得到的阳性克隆中所插入的核苷酸序列如SEQ ID NO.1所示。The positive clones identified by the above two methods were sequenced correctly, and the nucleotide sequence inserted in the positive clones obtained is shown in SEQ ID NO.1.
实施例3:发酵培养阳性表达菌株,分离纯化突变的海藻糖合酶重组蛋白Example 3: Fermentation and culture of positive expression strains, isolation and purification of mutated trehalose synthase recombinant protein
种子培养:以常规方法挑取实施例2制得的阳性克隆置于5mL的含有100μg/L氨苄青霉素的LB液体培养基中,在37℃振荡培养5-6h;Seed culture: Pick the positive clones prepared in Example 2 in a conventional way, place them in 5 mL of LB liquid medium containing 100 μg/L ampicillin, and culture them with shaking at 37°C for 5-6 hours;
菌体扩大培养:将种子接入1L含有100mg氨苄青霉素的液体培养基中,37℃振荡培养至菌浓OD600为1.0时,降温至16℃;1小时后加入终浓度为0.2mM的异丙基硫代半乳糖苷(IPTG),过夜诱导表达。Bacteria expansion culture: Inoculate the seeds into 1L of liquid medium containing 100mg of ampicillin, culture with shaking at 37°C until the bacterial concentration OD 600 is 1.0, then cool down to 16°C; add isopropanol with a final concentration of 0.2mM after 1 hour thiogalactoside (IPTG), induced overnight.
收集菌体:4200rpm,4℃离心15min,弃去上清,收获菌体;加入重悬溶液(25mMTris-HCl,pH8.0,200mM NaCl),振荡沉淀菌体细胞;加入蛋白酶抑制剂PMSF(Phenylmethylsulfonyl fluoride,苯甲酸磺酰氟)至终浓度为2mM。Collect bacteria: 4200rpm, centrifuge at 4°C for 15min, discard the supernatant, and harvest the bacteria; add resuspension solution (25mM Tris-HCl, pH8.0, 200mM NaCl), shake and precipitate the bacteria cells; add protease inhibitor PMSF (Phenylmethylsulfonyl fluoride, benzoic acid sulfonyl fluoride) to a final concentration of 2 mM.
超声破碎菌体细胞:超声3s,间隔6s,500W,工作60次。Ultrasonic disruption of bacterial cells: ultrasonic 3s, interval 6s, 500W, work 60 times.
超速离心:超声之后的细胞破碎液在14000rpm,4℃条件下离心45min,收集上清液,进行下一步的分离纯化。Ultracentrifugation: after sonication, the cell disruption solution was centrifuged at 14000rpm, 4°C for 45min, and the supernatant was collected for the next step of separation and purification.
Ni-NTA亲和层析:将收集的含有可溶性蛋白的上清液体倒入再生好的镍柱中;上清液流净后,以wash buffer(25mM Tris-HCl,pH8.0,100mMNaCl,15mM咪唑)冲洗10个柱体积,除去非特异性吸附的蛋白;最后使用elution buffer(25mM Tris-HCl,pH8.0,100mMNaCl,250mM咪唑)将目的蛋白洗脱下来,用干净预冷烧杯收集;使用SDS-PAGE电泳检测蛋白是否可溶,可溶的蛋白是否能够与Ni-NTA结合,是否能够被洗脱下来,及蛋白的浓度,结果如图2所示。Ni-NTA affinity chromatography: Pour the collected supernatant containing soluble protein into the regenerated nickel column; after the supernatant flows out, wash buffer (25mM Tris-HCl, pH8. imidazole) to wash 10 column volumes to remove non-specifically adsorbed proteins; finally use elution buffer (25mM Tris-HCl, pH8.0, 100mMNaCl, 250mM imidazole) to elute the target protein and collect it in a clean pre-cooled beaker; use SDS -PAGE electrophoresis to detect whether the protein is soluble, whether the soluble protein can be combined with Ni-NTA, whether it can be eluted, and the concentration of the protein. The results are shown in Figure 2.
阴离子交换层析纯化(Source-Q):将Ni-NTA亲和层析系脱下的可溶性蛋白用溶液A(25mM Tris-HCl,pH8.0)稀释3~4倍,然后上样到已使用溶液A平衡好的离子交换柱SourceQ上,使用溶液A与溶液B(25mM Tris-HCl,pH8.0,1M NaCl)进行线性梯度洗脱。观察280nm的吸光值(A280)变化情况,收集各个出峰位置附近的收集管,并进行SDS-PAGE电泳,以便得到目的蛋白质。Anion-exchange chromatography purification (Source-Q): Dilute the soluble protein removed by Ni-NTA affinity chromatography with solution A (25mM Tris-HCl, pH8.0) for 3 to 4 times, and then load the sample on the Solution A was equilibrated on the ion exchange column SourceQ, using solution A and solution B (25mM Tris-HCl, pH 8.0, 1M NaCl) for linear gradient elution. Observe the change of the absorbance value (A280) at 280nm, collect the collection tubes near each peak position, and perform SDS-PAGE electrophoresis in order to obtain the target protein.
分子筛纯化:根据离子交换柱蛋白质峰的形状,有无“肩膀”及是否对称、尖锐来判断蛋白质在离子交换柱上的性状。对于性状好的蛋白质进行超滤浓缩至2mL,上样到已经用溶液C(25mM Tris-HCl,pH8.0,100mM NaCl)平衡好的凝胶过滤层析柱Superdex-200上,流速为0.4mL/min。收集蛋白峰并进行SDS-PAGE电泳,检测蛋白质的纯度及性状。经测序,氨基酸序列如SEQ ID NO.2所示,即为突变的海藻糖合酶。Molecular sieve purification: Judging the properties of the protein on the ion exchange column according to the shape of the protein peak on the ion exchange column, whether there is a "shoulder" and whether it is symmetrical and sharp. Concentrate the protein with good properties to 2mL by ultrafiltration, and load it on the gel filtration chromatography column Superdex-200 that has been equilibrated with solution C (25mM Tris-HCl, pH8.0, 100mM NaCl), with a flow rate of 0.4mL /min. The protein peaks were collected and subjected to SDS-PAGE electrophoresis to detect the purity and properties of the protein. After sequencing, the amino acid sequence is shown as SEQ ID NO.2, which is the mutant trehalose synthase.
实施例4:突变的海藻糖合酶的酶活测定方法Example 4: Enzyme activity assay method of mutated trehalose synthase
在反应体系中加入150mM麦芽糖,20mM Na2HPO4-NaH2PO4缓冲溶液pH7.0,1μM实施例3制得的突变的海藻糖合,在37℃下反应2h。通过高压液相的方法测定海藻糖的转化率,测定过程中采用氨基柱;柱温为40℃流动相采用乙腈与水的混合溶液,二者体积比为3:1;流速为1mL/min;检测器为示差检测器;检测时间为25min。标准品检测结果见图3按照如下公式计算转化率:150 mM maltose, 20 mM Na2HPO 4 -NaH 2 PO 4 buffer solution pH 7.0, 1 μM of the mutated trehalose prepared in Example 3 were added to the reaction system, and reacted at 37° C. for 2 h. The conversion rate of trehalose was determined by the method of high-pressure liquid phase, and an amino column was used in the determination process; the column temperature was 40°C, and the mobile phase was a mixed solution of acetonitrile and water, and the volume ratio of the two was 3:1; the flow rate was 1mL/min; The detector is a differential detector; the detection time is 25min. Standard test results are shown in Figure 3 and the conversion rate is calculated according to the following formula:
根据图4所示的高效液相结果中麦芽糖峰面积,海藻糖峰面积及葡萄糖峰面积利用软件拟合得到曲线,计算三者的质量,其中m3为转化为海藻糖的质量,m2为转化为葡萄糖的质量,m1为剩余麦芽糖的质量。According to the high performance liquid phase results shown in Figure 4, the maltose peak area, trehalose peak area and glucose peak area are fitted to the curve by software, and the mass of the three is calculated, wherein m3 is the mass converted into trehalose, and m2 is the mass converted into The quality of glucose, m1 is the quality of remaining maltose.
实施例5:突变的海藻糖合酶的生化性质测定Example 5: Determination of Biochemical Properties of Mutant Trehalose Synthase
最适反应温度的测定:Determination of the optimum reaction temperature:
将酶液稀释合适的倍数后,于20℃,25℃,30℃,35℃,40℃,45℃,50℃,55℃,60℃中反应2h,利用高压液相的方法测定海藻糖合酶的转化率。结果如图5A所示。海藻糖合酶重组蛋白的最适反应温度为35℃。After diluting the enzyme solution to an appropriate multiple, react at 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C for 2 hours, and use the method of high pressure liquid phase to determine the concentration of trehalose Enzyme conversion rate. The results are shown in Figure 5A. The optimal reaction temperature of trehalose synthase recombinant protein is 35°C.
温度稳定性的测定:Determination of temperature stability:
将酶液稀释一定的倍数后,于20℃,25℃,30℃,35℃,40℃,45℃,45℃,50℃,55℃,60℃中保温30min,加入底物麦芽糖,然后反应2h,测定海藻糖转化率。结果见如图5B所示。海藻糖合酶在50℃金属浴中放置30min依然保持70%的酶活。After diluting the enzyme solution by a certain number of times, incubate at 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 45°C, 50°C, 55°C, 60°C for 30 minutes, add the substrate maltose, and then react 2h, measure the conversion rate of trehalose. The results are shown in Figure 5B. Trehalose synthase still maintains 70% of the enzyme activity when it is placed in a metal bath at 50°C for 30 minutes.
最适反应pH值的测定:Determination of the optimum reaction pH value:
用pH5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5,10,0.10.5,11。一系列的磷酸盐缓冲液稀释重组海藻糖合酶突变体。然后置于35℃反应2h,测定酶活。结果见如图6A所示。Use pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 0.10.5, 11. A series of phosphate buffer dilutions of recombinant trehalose synthase mutants. Then put it at 35°C for 2h to measure the enzyme activity. The results are shown in Figure 6A.
pH稳定性的测定:Determination of pH stability:
将酶液稀释一定的倍数后,用pH5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5,10,0.10.5,11一系列的磷酸盐缓冲液稀释重组海藻糖合酶突变体。35℃中保温30min,加入底物麦芽糖,然后反应2h,测定海藻糖转化率。结果见如图6B所示。海藻糖合酶突变体在pH7.0-8.0期间酶活保持95%以上。After diluting the enzyme solution by a certain number of times, dilute the recombinant trehalose with a series of phosphate buffers of pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 0.10.5, 11 Synthase mutants. Incubate at 35°C for 30 minutes, add the substrate maltose, then react for 2 hours, and measure the conversion rate of trehalose. The results are shown in Figure 6B. The trehalose synthase mutant maintains more than 95% of its enzyme activity during the pH7.0-8.0 period.
实施例6:突变的海藻糖合酶的最佳反应时间测定Example 6: Determination of optimal reaction time of mutated trehalose synthase
反应体系为150mM麦芽糖,20mM Na2HPO4-NaH2PO4pH7.2,1μM海藻糖合酶突变体重组蛋白,在37℃下反应,在5min,20min,40min,1h,2h,3h,4h不同时间进行取样,然后使用HPLC进行检测,检测方法同实施例4。通过计算得到转化率。海藻糖合酶突变体反应进行海藻糖转化率即可达到74.7%,葡萄糖转化率为1.1%。如图7所示。The reaction system is 150mM maltose, 20mM Na 2 HPO 4 -NaH 2 PO 4 pH7.2, 1μM trehalose synthase mutant recombinant protein, react at 37°C, at 5min, 20min, 40min, 1h, 2h, 3h, 4h Samples were taken at different times, and then detected by HPLC. The detection method was the same as in Example 4. The conversion rate is obtained by calculation. The conversion rate of trehalose can reach 74.7% and the conversion rate of glucose is 1.1% after the reaction of the mutant trehalose synthase. As shown in Figure 7.
对比实验Comparative Experiment
由于海藻糖合酶突变体使海藻糖合酶的转化率提高,副产物降低。将突变前后的海藻糖合酶酶液稀释合适倍数后,在37℃下反应,在5min,20min,40min,1h,2h,3h,4h不同时间进行取样,然后使用HPLC进行检测,检测方法同实施例4。通过计算得到转化率。该 海藻糖合酶蛋白制备方法简便,产量大,纯度高;实验验证其热稳定性好,并且海藻糖转化率由野生型的71.5%提高到74.7%,结果如图7A所示;并且副产物由野生型的葡萄糖转化率3.6%降低至1.1%,如图7B所示。较突变前海藻糖合酶,突变体的海藻糖转化率提高了4.5%,而副产物葡萄糖的产量降低了69.4%。可以降低海藻糖与葡萄糖的分离成本,为海藻糖的工业化生产奠定了基础;也为其他相似蛋白提高转化率提供了可行性方法。Since the trehalose synthase mutant improves the conversion rate of the trehalose synthase, the by-products are reduced. Dilute the trehalose synthase enzyme solution before and after the mutation to an appropriate multiple, react at 37°C, take samples at different times of 5min, 20min, 40min, 1h, 2h, 3h, and 4h, and then use HPLC for detection. The detection method is the same as the implementation Example 4. The conversion rate is obtained by calculation. The preparation method of the trehalose synthase protein is simple, the yield is large, and the purity is high; the experiment verifies that it has good thermal stability, and the conversion rate of trehalose is increased from 71.5% of the wild type to 74.7%, the result is shown in Figure 7A; and by-products The conversion rate of glucose from 3.6% in wild type decreased to 1.1%, as shown in Fig. 7B. Compared with trehalose synthase before mutation, the trehalose conversion rate of the mutant increased by 4.5%, while the production of by-product glucose decreased by 69.4%. The separation cost of trehalose and glucose can be reduced, which lays the foundation for the industrial production of trehalose; and also provides a feasible method for improving the conversion rate of other similar proteins.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610073828.9A CN105524936B (en) | 2016-02-02 | 2016-02-02 | The trehalose synthase and its expressing gene of a kind of mutation and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610073828.9A CN105524936B (en) | 2016-02-02 | 2016-02-02 | The trehalose synthase and its expressing gene of a kind of mutation and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105524936A CN105524936A (en) | 2016-04-27 |
CN105524936B true CN105524936B (en) | 2018-11-06 |
Family
ID=55767464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610073828.9A Active CN105524936B (en) | 2016-02-02 | 2016-02-02 | The trehalose synthase and its expressing gene of a kind of mutation and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105524936B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107384888B (en) * | 2017-08-04 | 2020-06-30 | 齐鲁工业大学 | A mutant-modified high temperature trehalose synthase and its application |
CN114395543B (en) * | 2022-01-19 | 2023-05-30 | 山东恒仁工贸有限公司 | Trehalose synthase mutant and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104789539A (en) * | 2015-04-28 | 2015-07-22 | 江南大学 | Mutant for trehalose synthase as well as preparation method and application of mutant |
CN104805104A (en) * | 2015-05-19 | 2015-07-29 | 齐鲁工业大学 | Trehalose synthase and coding gene and application thereof |
CN104877983A (en) * | 2015-04-28 | 2015-09-02 | 江南大学 | Trehalose synthase mutant and preparation method and application thereof |
CN104946610A (en) * | 2015-06-26 | 2015-09-30 | 齐鲁工业大学 | High-temperature-resistant trehalose synthase and expression gene and application thereof |
-
2016
- 2016-02-02 CN CN201610073828.9A patent/CN105524936B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104789539A (en) * | 2015-04-28 | 2015-07-22 | 江南大学 | Mutant for trehalose synthase as well as preparation method and application of mutant |
CN104877983A (en) * | 2015-04-28 | 2015-09-02 | 江南大学 | Trehalose synthase mutant and preparation method and application thereof |
CN104805104A (en) * | 2015-05-19 | 2015-07-29 | 齐鲁工业大学 | Trehalose synthase and coding gene and application thereof |
CN104946610A (en) * | 2015-06-26 | 2015-09-30 | 齐鲁工业大学 | High-temperature-resistant trehalose synthase and expression gene and application thereof |
Non-Patent Citations (1)
Title |
---|
Pseudomonas stutzeri strain Qlu3 trehalose synthase (treS) gene, complete cds;Li,Z.;《GenBank: KT359263.1》;20160120;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN105524936A (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113151201B (en) | High thermostability and high activity isoeugenol monooxygenase mutant and its application | |
CN104805104B (en) | Trehalose synthase and coding gene and application thereof | |
CN110029118B (en) | A kind of method for synthesizing quercetin-4'-glucoside | |
CN112063666A (en) | Application of a recombinant sucrose isomerase in converting sucrose to prepare isomaltulose | |
CN115960875A (en) | A mutant enzyme of alginate lyase with improved thermostability | |
CN105385700A (en) | Glucosyltransferase gene, preparation method of glucosyltransferase gene, recombinant engineering bacterium and construction method and application of recombinant engineering bacterium | |
CN109609524A (en) | A kind of Lactobacillus plantarum nitrite reductase gene and its encoded protein and application | |
CN105524936B (en) | The trehalose synthase and its expressing gene of a kind of mutation and application | |
CN102925423A (en) | Mutated cephalosporin C acylase | |
CN104017795B (en) | A kind of method of utilizing the rare aldose of aldolase biosynthesis 2-deoxidation | |
CN112358530B (en) | Peptide tags, highly soluble recombinant nitrilases and their applications in the synthesis of pharmaceutical chemicals | |
CN110004120B (en) | Recombinant aldone reductase mutant and application thereof | |
CN107586762A (en) | A kind of dehydrogenase mutant of 3 sterone Δ 1 and its application | |
WO2015054947A1 (en) | Application of n-acetylneuraminic acid lyase in catalyzed synthesis of n-acetylneuraminic acid | |
CN110592119A (en) | A novel pullulanase derived from Paenibacillus and its gene and application | |
CN104946610B (en) | High-temperature-resistant trehalose synthase and expression gene and application thereof | |
CN101603044A (en) | A kind of alcohol dehydrogenase and its gene and recombinase | |
CN113151240B (en) | Glucose isomerase, mutant and coding gene and application thereof | |
CN114317509A (en) | Cellobiose epimerase mutant and application thereof | |
CN104152430B (en) | A kind of mutant enzyme D478N being catalyzed the L-arabinose isomerase that activity improves and optimum pH reduces | |
CN104087604A (en) | Genetic expression sequence of inulin fructotransferase | |
CN108949707A (en) | A kind of Alcohol dehydrogenase mutant that thermal stability improves | |
CN113005045A (en) | Engineering bacterium containing mutant nattokinase recombinant gene and construction method and application thereof | |
CN104073481B (en) | The L-arabinose isomerase mutant that a kind of acid resistance improves | |
CN114958801B (en) | Product-tolerant nitrilase mutant and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210628 Address after: 201321 3rd floor, building 4, 789, 799, 855, Ziping Road, Pudong New Area, Shanghai Patentee after: Shanghai Changjin Biotechnology Co.,Ltd. Address before: 610017 No.13, 3rd floor, building 1, No.1, Tidu street, Qingyang District, Chengdu City, Sichuan Province Patentee before: Chengdu yishenrui Technology Co.,Ltd. Effective date of registration: 20210628 Address after: 610017 No.13, 3rd floor, building 1, No.1, Tidu street, Qingyang District, Chengdu City, Sichuan Province Patentee after: Chengdu yishenrui Technology Co.,Ltd. Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee before: Qilu University of Technology |