CN105383130B - 一种纳米吸波薄膜功能化改性复合材料层压板的方法 - Google Patents
一种纳米吸波薄膜功能化改性复合材料层压板的方法 Download PDFInfo
- Publication number
- CN105383130B CN105383130B CN201510768811.0A CN201510768811A CN105383130B CN 105383130 B CN105383130 B CN 105383130B CN 201510768811 A CN201510768811 A CN 201510768811A CN 105383130 B CN105383130 B CN 105383130B
- Authority
- CN
- China
- Prior art keywords
- composite material
- nano
- wave
- resin
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims abstract description 82
- 238000010521 absorption reaction Methods 0.000 title claims description 20
- 230000004048 modification Effects 0.000 title claims description 8
- 238000012986 modification Methods 0.000 title claims description 8
- 229920005989 resin Polymers 0.000 claims abstract description 118
- 239000011347 resin Substances 0.000 claims abstract description 118
- 230000008569 process Effects 0.000 claims abstract description 53
- 239000000835 fiber Substances 0.000 claims abstract description 32
- 239000002105 nanoparticle Substances 0.000 claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 229920000090 poly(aryl ether) Polymers 0.000 claims abstract description 16
- 238000002360 preparation method Methods 0.000 claims abstract description 14
- 239000004744 fabric Substances 0.000 claims abstract description 13
- 239000010408 film Substances 0.000 claims description 64
- 239000002904 solvent Substances 0.000 claims description 58
- 238000000465 moulding Methods 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 29
- 239000003822 epoxy resin Substances 0.000 claims description 23
- 229920000647 polyepoxide Polymers 0.000 claims description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- 239000002121 nanofiber Substances 0.000 claims description 17
- 229920006260 polyaryletherketone Polymers 0.000 claims description 17
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 12
- 239000004917 carbon fiber Substances 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 12
- 239000003365 glass fiber Substances 0.000 claims description 10
- 229920006231 aramid fiber Polymers 0.000 claims description 9
- 150000002576 ketones Chemical class 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000010041 electrostatic spinning Methods 0.000 claims 3
- 238000009987 spinning Methods 0.000 claims 3
- 238000010345 tape casting Methods 0.000 claims 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 239000005030 aluminium foil Substances 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000000428 dust Substances 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- 230000010354 integration Effects 0.000 claims 1
- 239000002362 mulch Substances 0.000 claims 1
- 239000004745 nonwoven fabric Substances 0.000 claims 1
- 239000002985 plastic film Substances 0.000 claims 1
- 229920006255 plastic film Polymers 0.000 claims 1
- -1 poly (aryl ether sulfone ketone Chemical class 0.000 claims 1
- 229920000570 polyether Polymers 0.000 claims 1
- 239000013557 residual solvent Substances 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 125000001174 sulfone group Chemical group 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- 230000009977 dual effect Effects 0.000 abstract description 10
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 15
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 13
- 229920003192 poly(bis maleimide) Polymers 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000002041 carbon nanotube Substances 0.000 description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 238000001523 electrospinning Methods 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- 229920000110 poly(aryl ether sulfone) Polymers 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 8
- 238000009210 therapy by ultrasound Methods 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000412 polyarylene Polymers 0.000 description 2
- 239000011157 advanced composite material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229920003253 poly(benzobisoxazole) Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/285—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/10—Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/212—Electromagnetic interference shielding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Reinforced Plastic Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
一种纳米吸波薄膜功能化改性复合材料层压板的方法,按以下步骤进行:一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:(1)将纳米粒子与聚芳醚树脂配制成均一稳定的树脂溶液;(2)采用薄膜制备工艺将配制好的树脂溶液制备成纳米吸波薄膜;(3)将连续纤维或纤维织物与树脂基体充分浸渍制备复合材料预浸料;(4)将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板。本发明所达到的有益效果是:将吸波功能层集成于复合材料层压板的制备过程中,大幅度而又低成本地同步提升复合材料整体的吸波功能和力学性能。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
Description
技术领域
本发明涉及一种隐身复合材料的制备方法,具体涉及一种纳米吸波薄膜功能化改性复合材料层压板的制备方法,属于隐身材料科学技术领域。
背景技术
隐身技术的快速发展对雷达吸波材料提出了薄、宽、轻、强的综合要求,研制具有高效吸波性能且力学性能优异的隐身复合材料是满足这一要求的技术突破点之一。结构型吸波复合材料是在先进复合材料基础上发展起来的兼具承载和吸波双重功能的复合材料,其优点是可大量减轻飞行器的质量,结构具有可设计性,且可成型各种形状复杂的部件,有效克服了涂覆型吸波材料普遍存在的吸收频带窄,增加飞行器自重,与壳体粘结强度低、容易剥落或开裂,需要频繁修复等缺点,因而在实际应用中尤其是在航空航天领域受到越来越多的关注,成为吸波隐身材料的主要发展方向之一。
结构型吸波复合材料通常是将纳米吸波剂分散在纤维增强树脂基复合材料中来实现其隐身功能的。目前,国内外主要是利用共混法将纳米粒子填充于复合材料的连续树脂基体相中进行功能化改性,对改性后的树脂基体与纤维复合过程中形成的多种细观尺度材料缺陷,以及对纤维复合材料的力学性能、承载潜力及制备工艺等方面产生的消极影响却极少关注。
纳米吸波复合材料的制备过程往往是多种细观尺度材料缺陷产生的主要来源。首先,吸波剂的填充会引起树脂基体粘度提高、流动性变差,导致树脂基体对纤维的微观浸润与宏观流动速度不匹配,从而引发纤维束内及纤维层间形成密集孔隙和分层缺陷;其次,纳米吸波剂在树脂基体中的分散性及稳定性较差,在与纤维复合过程中极易发生团聚,因此使复合材料的吸波性能受到制备工艺的影响较大,存在性能的不稳定性及不可控性。
发明内容
本发明将纳米吸波剂与复合材料的连续相树脂基体组分分离,通过间接引入的方式以聚芳醚树脂膜为载体插入到复合材料预浸料的层间,并集成在复合材料层压板的制备过程中。该方法不仅使复合材料原有树脂体系的基本性能得到保持,而且在基本工艺制度不需要做较大改变的前提下,实现对复合材料吸波隐身功能的可控性优化设计,克服了传统共混法电磁改性复合材料的不足。
为实现上述目的,本发明采用的技术方案是:一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:(1) 将纳米粒子与聚芳醚树脂配制成均一稳定的树脂溶液;(2) 采用薄膜制备工艺将配制好的树脂溶液制备成纳米吸波薄膜;(3) 将连续纤维或纤维织物与树脂基体充分浸渍制备复合材料预浸料;(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板。
所述的第 (1) 步中,聚芳醚树脂是聚芳醚酮、聚芳醚砜或聚芳醚砜酮。
第 (1) 步中,配置树脂溶液所用的溶剂是N, N-二甲基乙酰胺、N-甲基吡咯烷酮、氯仿或二氯甲烷。
所述的第 (1) 步中,纳米粒子是碳纳米管、羰基铁粉、铁氧体、铁、钴、镍及其合金中的一种或一种以上,粒径为5-60 nm。
第 (2) 步中,所述的薄膜制备工艺是指流延法工艺或静电纺丝工艺。
第 (3) 步中,所述的连续纤维是指玻璃纤维、碳纤维、芳纶纤维或PBO纤维,纤维织物是上述纤维编织而成的平纹布或斜纹布。
第 (3) 步中,所述的树脂基体是环氧树脂体系或双马来酰亚胺树脂。
第 (4) 步中,所述的成型工艺是指模压成型工艺或热压罐成型工艺。
所述的第 (1) 步具体为:在溶剂中添加质量百分比为5-10%的纳米粒子,进行0.5-2h的超声分散处理,超声处理功率为300-1000W,频率为20-40KHz,然后加入聚芳醚树脂,树脂用量为溶剂用量的15-30%,在40-80℃下机械搅拌1-3h后,再进行10-40min的超声分散处理、静置,待温度降至室温后继续搅拌1-2h后,利用均质分散仪在10000-18000转/分的转速下处理10-30min,制得纳米粒子分散均匀的树脂溶液;
所述的第 (3) 步具体为:将连续纤维或其织物与质量百分含量为5-50%的树脂基体溶液充分浸渍后,在30-50℃的温度下除去溶剂得到复合材料预浸料;
所述的第 (4) 步具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,按设定的铺层方式置入磨具中,采用成型工艺制备隐身复合材料层压板,成型的温度为80-230℃,压强为0.5-5MPa。
所述的第 (2) 步中流延法工艺包括下列步骤:将纳米粒子分散均匀的树脂溶液倒在光滑的金属板上铺膜,然后将薄膜置于适当的溶剂浴中浸泡脱除剩余溶剂后,再移至鼓风干燥箱中在50-170℃的温度下烘干,制得纳米吸波薄膜。
所述的第 (2) 步中静电纺丝工艺包括下列步骤:将配制好的均一稳定的树脂溶液注入静电纺丝装置的注射器中,注射器喷丝头内径为0.5-1.6mm,采用不锈钢板或铝箔为接收器,喷丝头至接收器距离为5-30cm,在喷丝头和收集器之间加上10-30KV的直流电压,即可连续不断地产生纳米纤维,将从接收器上收集到纳米纤维无纺布置于适当的溶剂浴中浸泡以脱除剩余的溶剂,再移至鼓风干燥箱中在50-170℃的温度下烘干,制得纳米纤维吸波薄膜。
本发明所达到的有益效果是:该方法充分发挥了复合材料叠层可设计的独特结构优势,在基本不改变复合材料传统成型工艺的前提下,将吸波功能层集成于复合材料层压板的制备过程中,大幅度而又低成本地同步提升复合材料整体的吸波功能和力学性能。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
附图说明
图1:纳米吸波薄膜功能化改性复合材料层压板的结构示意图;
图2:纳米吸波薄膜功能化改性复合材料层压板的反射率曲线图。
具体实施方式
下面结合实施例对本发明作进一步的说明。
实施例中
环氧树脂为市购产品,选用E51、E44、E54、E20中的任一种;
双马来酰亚胺树脂为市购产品,选用QY8911-Ⅰ、Ⅱ、Ⅲ和5405中的任一种;
所述的玻璃纤维、碳纤维、PBO纤维、芳纶纤维及其平纹布或斜纹布为市购产品;
所述的碳纳米管、羰基铁粉、铁氧体、铁、钴、镍及其合金为市购产品;
所述的聚芳醚酮、聚芳醚砜、聚芳醚砜酮树脂为市购产品;
所述的N, N-二甲基乙酰胺、N-甲基吡咯烷酮、氯仿、二氯甲烷为市购产品。
实施例1
纳米粒子选用:羰基铁粉和铁氧体的共混物,粒径为20 nm;
聚芳醚树脂选用:聚芳醚酮;
配置树脂溶液所用的溶剂选用:N, N-二甲基乙酰胺;
连续纤维选用:碳纤维;
树脂基体选用:双马来酰亚胺树脂;
成型工艺选用:模压成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将纳米羰基铁粉和铁氧体的共混物与聚芳醚酮配制成均一稳定的树脂溶液
具体为:以N, N-二甲基乙酰胺为溶剂,添加质量百分比浓度为10%的纳米羰基铁粉和铁氧体的共混物,进行2h的超声分散处理,超声处理功率为1000W,频率为40KHz,然后加入聚芳醚酮树脂,树脂用量为溶剂用量的30%,在40℃下机械搅拌3h后,再进行40min的超声分散处理、静置,待温度降至室温后继续搅拌1h后,利用均质分散仪在18000转/分的转速下处理30min,制得羰基铁粉和铁氧体共混物分散均匀的树脂溶液;
(2) 采用流延法工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将纳米羰基铁粉和铁氧体共混物分散均匀的树脂溶液倒在光滑的金属板上铺膜,然后将薄膜置于适当的溶剂浴中浸泡脱除剩余溶剂后,再移至鼓风干燥箱中在170℃的温度下烘干,制得纳米吸波薄膜;
(3) 将连续碳纤维与双马树脂溶液充分浸渍制备复合材料预浸料
具体为:将连续碳纤维与质量百分含量为50%的双马来酰亚胺树脂/丙酮溶液充分浸渍后,在50℃的温度下除去溶剂得到复合材料预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,采用模压成型工艺制备隐身复合材料层压板,模压成型的温度为230℃,压强为5MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在5-8GHz波段雷达波吸收值-5dB以下,在8-18GHz波段雷达波吸收值-10dB以下,最高可达-18dB,如图2所示。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
实施例2
本实施例中
纳米粒子选用:碳纳米管,粒径为5nm;
聚芳醚树脂选用:聚芳醚酮;
配置树脂溶液所用的溶剂选用:二氯甲烷;
连续纤维选用:玻璃纤维;
树脂基体选用:环氧树脂体系;
成型工艺选用:模压成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将碳纳米管与聚芳醚酮配制成均一稳定的树脂溶液
具体为:以二氯甲烷为溶剂,添加质量百分比为5%的碳纳米管,进行0.5h的超声分散处理,超声处理功率为300W,频率为20KHz,然后加入聚芳醚酮树脂,树脂用量为溶剂用量的15%,在40℃下机械搅拌1h后,再进行10min的超声分散处理、静置,待温度降至室温后继续搅拌1h后,利用均质分散仪在10000转/分的转速下处理10min,制得碳纳米管分散均匀的树脂溶液;
(2) 采用流延法工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将碳纳米管分散均匀的树脂溶液倒在光滑的金属板上铺膜,然后将薄膜置于适当的溶剂浴中浸泡脱除剩余溶剂后,再移至鼓风干燥箱中在50℃的温度下烘干,制得纳米吸波薄膜。
(3) 将连续玻璃纤维与环氧树脂体系充分浸渍制备复合材料预浸料
具体为:将连续玻璃纤维与环氧树脂体系(环氧树脂、固化剂二氨基二苯基甲烷及稀释剂聚乙二醇二缩水甘油醚共混物,质量比为1: 0.2: 0.2)充分浸渍后,制备玻璃纤维增强环氧树脂预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,采用模压成型工艺制备隐身复合材料层压板,模压成型的温度为80℃,压强为0.5MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在6-10GHz波段雷达波吸收值-5dB以下,最高可达-8dB。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
实施例3
纳米粒子选用:羰基铁粉,粒径为60 nm;
聚芳醚树脂选用:聚芳醚砜;
配置树脂溶液所用的溶剂选用:N-甲基吡咯烷酮;
连续纤维选用:碳纤维;
树脂基体选用:双马来酰亚胺树脂;
成型工艺选用:热压罐成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将纳米羰基铁粉与聚芳醚砜制成均一稳定的树脂溶液
具体为:N-甲基吡咯烷酮为溶剂,添加质量百分比为10%的纳米羰基铁粉,进行2h的超声分散处理,超声处理功率为1000W,频率为40KHz,然后加入聚芳醚砜,树脂用量为溶剂用量的30%,在80℃下机械搅拌3h后,再进行40min的超声分散处理、静置,待温度降至室温后继续搅拌2h后,利用均质分散仪在18000转/分的转速下处理30min,制得羰基铁粉分散均匀的树脂溶液;
(2) 采用静电纺丝工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将配制好的羰基铁粉分散均匀的树脂溶液注入静电纺丝装置的注射器中,注射器喷丝头内径为1.6mm,采用不锈钢板或铝箔为接收器,喷丝头至接收器距离为30cm,在喷丝头和收集器之间加上30KV的直流电压,即可连续不断地产生纳米纤维,将从接收器上收集到纳米纤维无纺布置于适当的溶剂浴中浸泡以脱除剩余的溶剂,再移至鼓风干燥箱中在140℃的温度下烘干,制得纳米纤维吸波薄膜。
(3) 将连续碳纤维与双马来酰亚胺树脂溶液充分浸渍制备复合材料预浸料
具体为:将连续碳纤维与质量百分含量为50%的双马来酰亚胺树脂溶液充分浸渍后,在50℃的温度下除去溶剂得到复合材料预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,并密封在真空袋中然后放入热压罐里,成型温度为200℃,压强为3MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在8-15GHz波段雷达波吸收值-8dB以下,最高可达-11dB。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
实施例4
纳米粒子选用:铁氧体,粒径为40nm;
聚芳醚树脂选用:聚芳醚砜酮;
配置树脂溶液所用的溶剂选用:N, N-二甲基乙酰胺;
连续纤维选用:芳纶纤维;
树脂基体选用:环氧树脂体系;
成型工艺选用:模压成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将纳米铁氧体与聚芳醚砜酮配制成均一稳定的树脂溶液
具体为:以N, N-二甲基乙酰胺为溶剂,添加质量百分比为8%的纳米铁氧体,进行1.5h的超声分散处理,超声处理功率为700W,频率为30KHz,然后加入聚芳醚砜酮,树脂用量为溶剂用量的20%,在60℃下机械搅拌2h后,再进行30min的超声分散处理、静置,待温度降至室温后继续搅拌1.5h后,利用均质分散仪在15000转/分的转速下处理20min,制得铁氧体分散均匀的树脂溶液;
(2) 采用流延法工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将铁氧体分散均匀的树脂溶液倒在光滑的金属板上铺膜,然后将薄膜置于适当的溶剂浴中浸泡脱除剩余溶剂后,再移至鼓风干燥箱中在100℃的温度下烘干,制得纳米吸波薄膜。
(3) 将连续芳纶纤维与环氧树脂体系充分浸渍制备复合材料预浸料
具体为:将连续芳纶纤维与环氧树脂体系(环氧树脂、固化剂二氨基二苯基甲烷及稀释剂聚乙二醇二缩水甘油醚共混物,质量比为1: 0.2: 0.2)充分浸渍后,制备纤维增强环氧树脂预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,采用模压成型工艺制备隐身复合材料层压板,模压成型的温度为90℃,压强为3MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在14-18GHz波段雷达波吸收值-10dB以下,最高可达-13dB。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
实施例5
纳米粒子选用:铁粒子,粒径为20nm;
聚芳醚树脂选用:聚芳醚酮;
配置树脂溶液所用的溶剂选用:氯仿;
连续纤维选用:PBO纤维;
树脂基体选用:双马来酰亚胺树脂;
成型工艺选用:模压成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将纳米铁粒子与聚芳醚酮配制成均一稳定的树脂溶液
具体为:以氯仿为溶剂,添加质量百分比为6%的纳米铁粒子,进行1h的超声分散处理,超声处理功率为500W,频率为25KHz,然后加入聚芳醚酮,树脂用量为溶剂用量的18%,在50℃下机械搅拌1.5h后,再进行20min的超声分散处理、静置,待温度降至室温后继续搅拌1.8h后,利用均质分散仪在12000转/分的转速下处理15min,制得铁粒子分散均匀的树脂溶液;
(2) 采用静电纺丝工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将配制好的铁粒子分散均匀的树脂溶液注入静电纺丝装置的注射器中,注射器喷丝头内径为1.6mm,采用不锈钢板或铝箔为接收器,喷丝头至接收器距离为30cm,在喷丝头和收集器之间加上30KV的直流电压,即可连续不断地产生纳米纤维,将从接收器上收集到纳米纤维无纺布置于适当的溶剂浴中浸泡以脱除剩余的溶剂,再移至鼓风干燥箱中在80℃的温度下烘干,制得纳米纤维吸波薄膜。
(3) 将连续PBO纤维与双马来酰亚胺树脂溶液充分浸渍制备复合材料预浸料
具体为:将连续PBO纤维与质量百分含量为50%的双马来酰亚胺树脂溶液充分浸渍后,在35℃的温度下除去溶剂得到复合材料预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,采用模压成型工艺制备隐身复合材料层压板,模压成型的温度为230℃,压强为4MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在12-14GHz波段雷达波吸收值-10dB以下,最高可达-12dB。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
实施例6
纳米粒子选用:钴粒子,粒径为50nm;
聚芳醚树脂选用:聚芳醚酮;
配置树脂溶液所用的溶剂选用:N-甲基吡咯烷酮;
纤维织物选用:芳纶纤维平纹布;
树脂基体选用:环氧树脂体系;
成型工艺选用:模压成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将纳米钴粒子与聚芳醚酮配制成均一稳定的树脂溶液
具体为:以N-甲基吡咯烷酮为溶剂,添加质量百分比为8%的纳米钴粒子,进行0.8h的超声分散处理,超声处理功率为900W,频率为35KHz,然后加入聚芳醚酮,树脂用量为溶剂用量的28%,在70℃下机械搅拌2.5h后,再进行15min的超声分散处理、静置,待温度降至室温后继续搅拌1.1h后,利用均质分散仪在11000转/分的转速下处理12min,制得钴粒子分散均匀的树脂溶液;
(2) 采用流延法工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将纳米钴分散均匀的树脂溶液倒在光滑的金属板上铺膜,然后将薄膜置于适当的溶剂浴中浸泡脱除剩余溶剂后,再移至鼓风干燥箱中在140℃的温度下烘干,制得纳米吸波薄膜。
(3) 将芳纶纤维平纹布与环氧树脂体系充分浸渍制备复合材料预浸料
具体为:将芳纶纤维平纹布与环氧树脂体系(环氧树脂、固化剂二氨基二苯基甲烷及稀释剂聚乙二醇二缩水甘油醚共混物,质量比为1: 0.2: 0.2)充分浸渍后,制备纤维增强环氧树脂预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,采用模压成型工艺制备隐身复合材料层压板,模压成型的温度为100℃,压强为4.5MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在6-15GHz波段雷达波吸收值-5dB以下,最高可达-10dB。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
实施例7
纳米粒子选用:镍粒子,粒径为50 nm;
聚芳醚树脂选用:聚芳醚酮;
配置树脂溶液所用的溶剂选用:N, N-二甲基乙酰胺;
纤维织物选用:玻璃纤维斜纹布;
树脂基体选用:双马来酰亚胺树脂;
成型工艺选用:热压罐成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将纳米镍粒子与聚芳醚酮配制成均一稳定的树脂溶液;、
具体为:以N, N-二甲基乙酰胺为溶剂,添加质量百分比为9%的纳米镍粒子,进行1.6h的超声分散处理,超声处理功率为400W,频率为25KHz,然后加入聚芳醚酮树脂,树脂用量为溶剂用量的28%,在70℃下机械搅拌2.2h后,再进行35min的超声分散处理、静置,待温度降至室温后继续搅拌1.8h后,利用均质分散仪在17000转/分的转速下处理20min,制得镍粒子分散均匀的树脂溶液;
(2) 采用静电纺丝工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将配制好的镍粒子分散均匀的树脂溶液注入静电纺丝装置的注射器中,注射器喷丝头内径为1.2mm,采用不锈钢板或铝箔为接收器,喷丝头至接收器距离为25cm,在喷丝头和收集器之间加上27KV的直流电压,即可连续不断地产生纳米纤维,将从接收器上收集到纳米纤维无纺布置于适当的溶剂浴中浸泡以脱除剩余的溶剂,再移至鼓风干燥箱中在170℃的温度下烘干,制得纳米纤维吸波薄膜。
(3) 将玻璃纤维斜纹布与双马来酰亚胺树脂溶液充分浸渍制备复合材料预浸料
具体为:将玻璃纤维斜纹布与质量百分含量为30%的双马来酰亚胺树脂溶液充分浸渍后,在35℃的温度下除去溶剂得到复合材料预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,并密封在真空袋中然后放入热压罐里,成型温度为180℃,压强为3MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在7-14GHz波段雷达波吸收值-5dB以下,最高可达-10dB。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
实施例8
纳米粒子选用:铁镍合金粒子和碳纳米管共混物,粒径为20 nm;
聚芳醚树脂选用:聚芳醚砜酮;
配置树脂溶液所用的溶剂选用:氯仿;
连续纤维选用:碳纤维;
树脂基体选用:环氧树脂体系;
成型工艺选用:模压成型工艺;
如附图1所示,一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:
(1) 将纳米铁镍合金粒子和碳纳米管共混物与聚芳醚砜酮配制成均一稳定的树脂溶液
具体为:以氯仿为溶剂,添加质量百分比为8%的纳米铁镍合金粒子和碳纳米管共混物,进行0.6h的超声分散处理,超声处理功率为600W,频率为39KHz,然后加入聚芳醚砜酮树脂,树脂用量为溶剂用量的22%,在77℃下机械搅拌2.8h后,再进行30min的超声分散处理、静置,待温度降至室温后继续搅拌1.6h后,利用均质分散仪在16000转/分的转速下处理29min,制得铁镍合金粒子和碳纳米管粒子共混物分散均匀的树脂溶液;
(2) 采用静电纺丝工艺将配制好的树脂溶液制备成纳米吸波薄膜
具体为:将配制好的纳米铁镍合金粒子和碳纳米管共混物分散均匀的树脂溶液注入静电纺丝装置的注射器中,注射器喷丝头内径为1.5mm,采用不锈钢板或铝箔为接收器,喷丝头至接收器距离为26cm,在喷丝头和收集器之间加上15KV的直流电压,即可连续不断地产生纳米纤维,将从接收器上收集到纳米纤维无纺布置于适当的溶剂浴中浸泡以脱除剩余的溶剂,再移至鼓风干燥箱中在80℃的温度下烘干,制得纳米纤维吸波薄膜。
(3) 将连续碳纤维与环氧树脂体系充分浸渍制备复合材料预浸料
具体为:将连续碳纤维与环氧树脂体系(环氧树脂、固化剂二氨基二苯基甲烷及稀释剂聚乙二醇二缩水甘油醚共混物,质量比为1: 0.2: 0.2)充分浸渍后,制备纤维增强环氧树脂预浸料;
(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板
具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,交替铺设于磨具中,采用模压成型工艺制备隐身复合材料层压板,模压成型的温度为100℃,压强为3MPa。
制得的结构/功能一体化隐身复合材料层压板吸波性能优异,在6-14GHz波段雷达波吸收值-8dB以下,最高可达-12dB。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
Claims (6)
1.一种纳米吸波薄膜功能化改性复合材料层压板的方法,其特征在于: 包括如下步骤:(1) 将纳米粒子与聚芳醚树脂配制成均一稳定的树脂溶液;(2) 采用薄膜制备工艺将配制好的树脂溶液制备成纳米吸波薄膜;(3) 将连续纤维或纤维织物与树脂基体充分浸渍制备复合材料预浸料;(4) 将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板;
所述的第(1)步具体为:在溶剂中添加质量百分比为5-10%的纳米粒子,进行0.5-2h的超声分散处理,超声处理功率为300-1000W,频率为20-40KHz,然后加入聚芳醚树脂,树脂用量为溶剂用量的15-30%,在40-80℃下机械搅拌1-3h后,再进行10-40min的超声分散处理、静置,待温度降至室温后继续搅拌1-2h后,利用均质分散仪在10000-18000转/分的转速下处理10-30min,制得纳米粒子均匀分散的树脂溶液;
所述的第(3)步具体为:将连续纤维或其织物与质量百分含量为5-50%的树脂基体溶液充分浸渍后,在30-50℃的温度下除去溶剂得到复合材料预浸料;
所述的第(4)步具体为:将纳米吸波薄膜与复合材料预浸料按照磨具尺寸裁切后,按设定的铺层方式置入磨具中,采用成型工艺制备隐身复合材料层压板,成型的温度为80-230℃,压强为0.5-5MPa;
所述的第(2)步中,薄膜制备工艺是指流延法工艺或静电纺丝工艺;流延法工艺包括下列步骤:将纳米粒子均匀分散的树脂溶液倒在光滑的金属板上铺膜,然后将薄膜置于适当的溶剂浴中浸泡脱除剩余溶剂后,再移至鼓风干燥箱中在50-170℃的温度下烘干,制得纳米吸波薄膜;
静电纺丝工艺包括下列步骤:将配制好的均一稳定的树脂溶液注入静电纺丝装置的注射器中,注射器喷丝头内径为0.5-1.6mm,采用不锈钢板或铝箔为接收器,喷丝头至接收器距离为5-30cm,在喷丝头和收集器之间加上10-30KV的直流电压,即可连续不断地产生纳米纤维,将从接收器上收集到纳米纤维无纺布置于适当的溶剂浴中浸泡以脱除剩余的溶剂,再移至鼓风干燥箱中在50-170℃的温度下烘干,制得纳米纤维吸波薄膜。
2.根据权利要求1所述的纳米吸波薄膜功能化改性复合材料层压板的方法,其特征在于: 所述的第 (1) 步中,聚芳醚树脂是聚芳醚酮、聚芳醚砜或聚芳醚砜酮。
3.根据权利要求1所述的纳米吸波薄膜功能化改性复合材料层压板的方法,其特征在于: 所述的第 (1) 步中,配置树脂溶液所用的溶剂是N, N-二甲基乙酰胺、N-甲基吡咯烷酮、氯仿或二氯甲烷。
4.根据权利要求1所述的纳米吸波薄膜功能化改性复合材料层压板的方法,其特征在于: 所述的第 (1) 步中,纳米粒子是碳纳米管、羰基铁粉、铁氧体、铁、钴、镍及其合金中的一种或一种以上,粒径为5-60 nm。
5.根据权利要求1所述的纳米吸波薄膜功能化改性复合材料层压板的方法,其特征在于:所述的第 (3) 步中,所述的连续纤维是指玻璃纤维、碳纤维、芳纶纤维或PBO纤维,纤维织物是上述纤维编织而成的平纹布或斜纹布;所述的树脂基体是环氧树脂或双马来酰亚胺树脂。
6.根据权利要求1所述的纳米吸波薄膜功能化改性复合材料层压板的方法,其特征在于: 所述的第 (4) 步中,所述的成型工艺是指模压成型工艺或热压罐成型工艺。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510768811.0A CN105383130B (zh) | 2014-12-15 | 2015-11-12 | 一种纳米吸波薄膜功能化改性复合材料层压板的方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2014107698692 | 2014-12-15 | ||
CN201410769869.2A CN104527175A (zh) | 2014-12-15 | 2014-12-15 | 一种纳米吸波薄膜功能化改性复合材料层压板的方法 |
CN201510768811.0A CN105383130B (zh) | 2014-12-15 | 2015-11-12 | 一种纳米吸波薄膜功能化改性复合材料层压板的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105383130A CN105383130A (zh) | 2016-03-09 |
CN105383130B true CN105383130B (zh) | 2017-11-10 |
Family
ID=52842895
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410769869.2A Pending CN104527175A (zh) | 2014-12-15 | 2014-12-15 | 一种纳米吸波薄膜功能化改性复合材料层压板的方法 |
CN201510768811.0A Expired - Fee Related CN105383130B (zh) | 2014-12-15 | 2015-11-12 | 一种纳米吸波薄膜功能化改性复合材料层压板的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410769869.2A Pending CN104527175A (zh) | 2014-12-15 | 2014-12-15 | 一种纳米吸波薄膜功能化改性复合材料层压板的方法 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN104527175A (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106317773A (zh) * | 2015-07-10 | 2017-01-11 | 深圳光启创新技术有限公司 | 胶膜及其制作方法、吸波预浸料及其制作方法、吸波超材料和方舱壁板 |
CN106336614A (zh) * | 2015-07-10 | 2017-01-18 | 深圳光启创新技术有限公司 | 胶膜及其制作方法、吸波预浸料及其制作方法、吸波超材料和方舱壁板 |
CN106336613A (zh) * | 2015-07-10 | 2017-01-18 | 深圳光启创新技术有限公司 | 胶膜、胶膜的制作方法、吸波预浸料及其制作方法和应用 |
CN106317775A (zh) * | 2015-07-10 | 2017-01-11 | 深圳光启创新技术有限公司 | 胶膜及其制作方法、吸波预浸料及其制作方法、吸波超材料和方舱壁板 |
CN105907062B (zh) * | 2016-05-10 | 2018-01-02 | 中南林业科技大学 | 高强低密度天然植物纤维增强聚己内酯复合材料及其制备方法 |
CN106363989A (zh) * | 2016-08-24 | 2017-02-01 | 梁丽珍 | 一种吸波消波材料 |
CN107059154A (zh) * | 2017-06-07 | 2017-08-18 | 福州大学 | 一种磁性环氧树脂复合纤维的制备方法 |
CN107813399B (zh) * | 2017-10-10 | 2019-08-06 | 中南林业科技大学 | 一种草本植物基耐候隐身板材及其制备方法 |
JP7245408B2 (ja) * | 2018-03-28 | 2023-03-24 | 大豊精機株式会社 | 導電性ナノファイバー、製造方法、燃料電池用部材、及び燃料電池 |
CN109438980B (zh) * | 2018-09-26 | 2021-06-25 | 南京大学 | 一种光吸收器及其制备方法 |
CN109942854B (zh) * | 2019-03-26 | 2022-03-01 | 中国人民解放军国防科技大学 | 一种含碳纳米管的弱浸渍预浸料及其制备方法 |
CN113263820A (zh) * | 2021-05-19 | 2021-08-17 | 曹健 | 一种复合结构铁粉芯胚体堆叠均匀压制装置 |
CN113400736A (zh) * | 2021-06-30 | 2021-09-17 | 航天特种材料及工艺技术研究所 | 一种多层吸波复合材料及其制备方法 |
CN113715369B (zh) * | 2021-07-19 | 2023-03-10 | 航天特种材料及工艺技术研究所 | 一种磁性吸波胶膜与金属表面固化成型的金属基吸波材料制备方法 |
CN113681942A (zh) * | 2021-08-24 | 2021-11-23 | 航天特种材料及工艺技术研究所 | 一种共固化吸波复合材料及其制备方法 |
CN113708086B (zh) * | 2021-08-31 | 2023-12-22 | 河北科技大学 | 一种过渡金属纳米粉体/碳纳米管复合材料及其制备方法和应用 |
CN114350135A (zh) * | 2022-01-07 | 2022-04-15 | 中盾科技(深圳)有限公司 | 用于人防密闭门的骨架材料及其制备方法与应用 |
CN117549584B (zh) * | 2023-12-25 | 2025-01-28 | 武汉理工大学三亚科教创新园 | 一种聚合物基吸波材料的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141916A2 (en) * | 2011-12-23 | 2013-09-26 | Cytec Technology Corp. | Composite materials comprising conductive nano-fillers |
CN104202446A (zh) * | 2014-08-11 | 2014-12-10 | 太仓欧锐智能化工程有限公司 | 一种具有吸波散热功能的七彩变色手机壳及其加工方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2772520B1 (fr) * | 1997-12-11 | 2000-01-14 | Giat Ind Sa | Materiau composite structural absorbant les ondes radar et utilisation d'un tel materiau |
CN1260277C (zh) * | 2003-10-21 | 2006-06-21 | 中国航空工业第一集团公司北京航空材料研究院 | 热塑性共混树脂基复合材料的制备方法 |
CN100532085C (zh) * | 2005-07-20 | 2009-08-26 | 同济大学 | 一种夹层复合材料及其制备方法 |
US20070065676A1 (en) * | 2005-09-16 | 2007-03-22 | Bacalski Carlos F | Inert processing of oxide ceramic matrix composites and oxidation sensitive ceramic materials and intermediate structures and articles incorporating same |
CN101792588B (zh) * | 2010-02-10 | 2011-09-28 | 吉林大学 | 聚芳醚酮/碳纳米管高介电性能复合材料及其制备方法 |
CN102480909B (zh) * | 2011-03-31 | 2013-03-13 | 深圳光启高等理工研究院 | 一种吸波超材料 |
CN102480024B (zh) * | 2011-07-26 | 2013-03-13 | 深圳光启高等理工研究院 | 一种后馈式雷达天线 |
-
2014
- 2014-12-15 CN CN201410769869.2A patent/CN104527175A/zh active Pending
-
2015
- 2015-11-12 CN CN201510768811.0A patent/CN105383130B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141916A2 (en) * | 2011-12-23 | 2013-09-26 | Cytec Technology Corp. | Composite materials comprising conductive nano-fillers |
CN104202446A (zh) * | 2014-08-11 | 2014-12-10 | 太仓欧锐智能化工程有限公司 | 一种具有吸波散热功能的七彩变色手机壳及其加工方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105383130A (zh) | 2016-03-09 |
CN104527175A (zh) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105383130B (zh) | 一种纳米吸波薄膜功能化改性复合材料层压板的方法 | |
CN103554530A (zh) | 导电连续纤维增强织物或预浸料及导电化处理方法 | |
CN102794952B (zh) | 一种具有高度取向MWNTs的杂化纳米纤维同步增强增韧CFRP复合材料的制备方法 | |
CN104385627B (zh) | 带有抗雷击表面功能层的先进树脂基复合材料及制备方法 | |
CN103254572A (zh) | 一种氧化石墨烯/碳纳米管协同改性玻璃纤维增强环氧基复合材料及其制备方法 | |
CN104647760A (zh) | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 | |
CN1923506A (zh) | 一种增韧的复合材料层合板及其制备方法 | |
CN108316056A (zh) | 一种芳纶纳米纤维薄膜复合芳纶纸及其制备方法 | |
CN103770431B (zh) | 一种纳米添加层层间改性纤维金属复合材料的制备方法 | |
CN108794979A (zh) | 一种高压缩强度和高压拉比碳纤维复合材料及其制备方法 | |
CN110588015A (zh) | 一种无机纳米粒子/热塑性颗粒协同增韧树脂基复合材料及其制备方法 | |
CN106967276A (zh) | 纳米吸收剂‑碳化硅纤维多尺度增强体增强树脂基结构吸波材料及其制备方法 | |
CN104513404A (zh) | 环氧化合物包覆碳纳米管静电喷涂碳纤维预浸料的制备 | |
CN105713234B (zh) | 一种碳纤维增强高分子基复合材料的制备方法及应用 | |
CN104844816A (zh) | 一种氰酸酯网格预浸片及其制备方法 | |
CN114634685A (zh) | 微纳米粒子增韧的预浸料用环氧树脂及其制备方法 | |
CN107880494A (zh) | 一种碳纤维预浸布及其制备方法及金属纤维复合材料 | |
CN110181917B (zh) | 一种杂化薄膜改性的碳纤维复合材料及其制备方法 | |
CN107033544A (zh) | 一种纳米吸收剂‑碳化硅纤维多尺度增强体增强树脂基结构吸波材料及其制备方法 | |
CN105086363B (zh) | 基于共固化和反应诱导相分离的复合材料功能改性方法 | |
CN107163559A (zh) | 一种sls用玻璃纤维粉增强尼龙粉末制备工艺 | |
CN115558238A (zh) | 超混杂导电树脂、预浸料、复合材料及材料的制备方法 | |
CN114932724A (zh) | 一种高强度的电磁屏蔽纤维复合材料及其制备方法与应用 | |
CN109080235B (zh) | 一种低/负热膨胀复合材料2.5d多尺度预制体及其制备方法 | |
CN116512692A (zh) | 一种含纤维预浸料的功能结构一体化复合材料的制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171110 Termination date: 20191112 |
|
CF01 | Termination of patent right due to non-payment of annual fee |