CN105305979A - Distributed amplifier circuit for perfecting linearity - Google Patents
Distributed amplifier circuit for perfecting linearity Download PDFInfo
- Publication number
- CN105305979A CN105305979A CN201510737532.8A CN201510737532A CN105305979A CN 105305979 A CN105305979 A CN 105305979A CN 201510737532 A CN201510737532 A CN 201510737532A CN 105305979 A CN105305979 A CN 105305979A
- Authority
- CN
- China
- Prior art keywords
- input
- gain unit
- nmos transistor
- gain
- distributed amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 4
- 230000003068 static effect Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Landscapes
- Amplifiers (AREA)
Abstract
本发明公开了一种改善线性度的分布式放大器电路,包括若干个增益单元和连接在每个增益单元输入端的输入片上电感、连接在每个增益单元输出端的输出片上电感,在至少一个所述输入片上电感之前或之后设有级间匹配电容,每个所述增益单元的输入端连有偏置电阻,从所述偏置电阻的另一端施加偏置电压。本发明通过采用不同电路结构的增益单元,以及施加不同的偏置电压能够改变各个增益单元的静态工作点,从而可以改善它们的线性度,级间匹配电容的引入将各增益单元输入端的直流偏置隔离开,从而可以对各个增益单元的输入端施加不同的偏置电压,从而增加了设计与调试的自由度。
The invention discloses a distributed amplifier circuit for improving linearity, which comprises several gain units, an input on-chip inductor connected to the input end of each gain unit, an output on-chip inductance connected to the output end of each gain unit, and at least one of the An interstage matching capacitor is arranged before or after the input on-chip inductor, and a bias resistor is connected to the input end of each gain unit, and a bias voltage is applied from the other end of the bias resistor. The present invention can change the static operating point of each gain unit by adopting gain units with different circuit structures and applying different bias voltages, thereby improving their linearity. The devices are isolated, so that different bias voltages can be applied to the input terminals of each gain unit, thereby increasing the degree of freedom in design and debugging.
Description
技术领域technical field
本发明属于集成电路技术领域,特别涉及一种改善线性度的分布式放大器电路。The invention belongs to the technical field of integrated circuits, in particular to a distributed amplifier circuit with improved linearity.
背景技术Background technique
无线通信技术的飞速发展对通信系统的数据传输率和带宽提出了更高要求。通常采用的宽带放大器设计技术包括负反馈、平衡放大器、电阻匹配以及有源匹配等等,然而这些技术均无法有效提升放大器的增益带宽积。分布式放大器由于其结构上的特性,能够突破放大器增益带宽积的限制,实现更宽频带的信号放大,在包括微波功率放大器在内的超宽带MMIC(MonolithicMicrowaveIntegratedCircuit,单片微波集成电路)领域里得到了广泛的应用。目前的分布式放大器已出现各种类型的结构,包括非均匀结构、分布-级联结构等等,但它们都是采用低通结构的人工传输线形式,此时所有增益单元都必须工作在同一种偏置状态下,因此设计自由度较低,无法通过设置不同的工作点来改善分布式放大器的线性度等性能。The rapid development of wireless communication technology puts forward higher requirements on the data transmission rate and bandwidth of the communication system. Commonly used broadband amplifier design techniques include negative feedback, balanced amplifiers, resistor matching, and active matching, etc., but none of these techniques can effectively improve the gain-bandwidth product of the amplifier. Due to its structural characteristics, the distributed amplifier can break through the limitation of the gain-bandwidth product of the amplifier and realize wider-band signal amplification. a wide range of applications. Various types of structures have appeared in the current distributed amplifiers, including non-uniform structures, distribution-cascaded structures, etc., but they are all in the form of artificial transmission lines with low-pass structures. At this time, all gain units must work in the same In the bias state, the degree of design freedom is low, and it is impossible to improve the linearity and other performance of the distributed amplifier by setting different operating points.
分布式放大器的基本原理是将晶体管的寄生电容与电感元件构成人工传输线,从而克服寄生电容造成的增益滚降,其电路原理图如图1所示,其中VDD为电源电压,VG为直流偏置电压,片上电感LGi和增益单元的输入阻抗构成了输入人工传输线,片上电感LDi和增益单元的输出阻抗构成了输出人工传输线,显然输入/输出人工传输线均为低通滤波器结构。传统的分布式放大器由于各级增益单元采用直接耦合方式,因此各个增益单元必须工作在同样的直流偏置条件下。The basic principle of the distributed amplifier is to form an artificial transmission line with the parasitic capacitance of the transistor and the inductance element, so as to overcome the gain roll-off caused by the parasitic capacitance. The on-chip inductor L Gi and the input impedance of the gain unit form the input artificial transmission line, and the on-chip inductor L Di and the output impedance of the gain unit form the output artificial transmission line. Obviously, the input/output artificial transmission lines are all low-pass filter structures. In traditional distributed amplifiers, each gain unit must work under the same DC bias condition because the gain units at all levels are directly coupled.
发明内容Contents of the invention
鉴于现有技术中的上述不足,本发明提出一种改善线性度的分布式放大器电路,其技术方案是:In view of the above-mentioned deficiencies in the prior art, the present invention proposes a distributed amplifier circuit that improves linearity, and its technical solution is:
一种改善线性度的分布式放大器电路,包括若干个增益单元和连接在每个所述增益单元输入端的输入片上电感、连接在每个所述增益单元输出端的输出片上电感,在至少一个所述输入片上电感之前或之后设有级间匹配电容,每个所述增益单元的输入端连有偏置电阻,从所述偏置电阻的另一端施加偏置电压。A distributed amplifier circuit for improving linearity, comprising several gain units and an input on-chip inductance connected to the input end of each gain unit, an output on-chip inductance connected to the output end of each gain unit, and at least one of the gain units An interstage matching capacitor is arranged before or after the input on-chip inductor, and a bias resistor is connected to the input end of each gain unit, and a bias voltage is applied from the other end of the bias resistor.
优选的,在每个所述输入片上电感之前设有级间匹配电容。Preferably, an inter-stage matching capacitor is provided before each input on-chip inductor.
在第一个所述输出片上电感之前和最后一个输出片上电感分别串联有一个耦合电容。A coupling capacitor is respectively connected in series before the first output on-chip inductor and the last output on-chip inductor.
所述增益单元为一NMOS管,其栅极为输入端,漏极为输出端。The gain unit is an NMOS transistor, the gate of which is an input terminal, and the drain is an output terminal.
所述增益单元由两个连接的NMOS管组成,第一NMOS管的源极与第二NMOS管的漏极连接,第二NMOS管的栅极为输入端,第一NMOS管的漏极为输出端。The gain unit is composed of two connected NMOS transistors, the source of the first NMOS transistor is connected to the drain of the second NMOS transistor, the gate of the second NMOS transistor is an input terminal, and the drain of the first NMOS transistor is an output terminal.
所述增益单元由两个NMOS管和一个电感组成,第一NMOS管的源极与所述电感一端连接,所述电感的另一端连接第二NMOS管的漏极,第二NMOS管的栅极为输入端,第一NMOS管的漏极为输出端。The gain unit is composed of two NMOS transistors and an inductor, the source of the first NMOS transistor is connected to one end of the inductor, the other end of the inductor is connected to the drain of the second NMOS transistor, and the gate of the second NMOS transistor is The input terminal, the drain of the first NMOS transistor is the output terminal.
本发明通过采用不同电路结构的增益单元,以及施加不同的偏置电压能够改变各个增益单元的静态工作点,从而可以改善它们的线性度,级间匹配电容的引入将各增益单元输入端的直流偏置隔离开,从而可以对各个增益单元的输入端施加不同的偏置电压,从而增加了设计与调试的自由度。The present invention can change the static operating point of each gain unit by adopting gain units with different circuit structures and applying different bias voltages, thereby improving their linearity. The devices are isolated, so that different bias voltages can be applied to the input terminals of each gain unit, thereby increasing the degree of freedom in design and debugging.
附图说明Description of drawings
图1为传统的分布式放大器电路结构图;Fig. 1 is a traditional distributed amplifier circuit structure diagram;
图2为本发明实施例分布式放大器电路结构图;Fig. 2 is a circuit structure diagram of a distributed amplifier according to an embodiment of the present invention;
图3为图2中增益单元的一个实施例结构图;Fig. 3 is a structural diagram of an embodiment of the gain unit in Fig. 2;
图4为图2中增益单元的另一个实施例结构图;FIG. 4 is a structural diagram of another embodiment of the gain unit in FIG. 2;
图5为图2中增益单元的又一个实施例结构图;FIG. 5 is a structural diagram of another embodiment of the gain unit in FIG. 2;
图6为图3实施例的输出电流、跨导增益及各阶导数与输入电压的关系;Fig. 6 is the relation of output current, transconductance gain and each order derivative and input voltage of Fig. 3 embodiment;
图7为图4和图5实施例的输出电流、跨导增益及各阶导数与输入电压的关系。FIG. 7 shows the relationship between the output current, transconductance gain and derivatives of each order and the input voltage of the embodiment shown in FIG. 4 and FIG. 5 .
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明分布式放大器电路结构如图2所示,与图1所示的传统分布式放大器相比,存在以下三处改进:The distributed amplifier circuit structure of the present invention is shown in Figure 2, compared with the traditional distributed amplifier shown in Figure 1, there are the following three improvements:
(1)在至少一个输入片上电感之前或之后设有级间匹配电容,与LGi共同构成带通匹配网络,图2中在每个输入片上电感LGi前连有电容CGi,实际上CGi也可放在LGi之后;CGi的数量为[1,N];(1) There is an interstage matching capacitor before or after at least one input on-chip inductor, which forms a bandpass matching network with L Gi . In Figure 2, a capacitor C Gi is connected before each input on-chip inductor L Gi . In fact, C Gi can also be placed after L Gi ; the number of C Gi is [1,N];
(2)在设有级间匹配电容的增益单元的输入端采用了独立的偏置结构RGi,以此可以对增益单元的输入端施加不同的偏置电压VGi;(2) An independent bias structure R Gi is adopted at the input end of the gain unit provided with an inter-stage matching capacitor, so that different bias voltages V Gi can be applied to the input end of the gain unit;
(3)增益单元可以采用如图3到图5中所示的任一种电路结构,但同一电路中一般均采用相同的电路结构。(3) The gain unit can adopt any circuit structure as shown in Fig. 3 to Fig. 5, but the same circuit structure is generally adopted in the same circuit.
本发明分布式放大器电路的原理如下:The principle of the distributed amplifier circuit of the present invention is as follows:
增益单元的输出电流io和输入偏置电压vin之间总是存在如下的关系式There is always the following relationship between the output current i o of the gain unit and the input bias voltage v in
其中gm表示增益单元的跨导增益,g′m为io关于vin的二阶导数,g″m为io关于vin的三阶导数。Where g m represents the transconductance gain of the gain unit, g′ m is the second derivative of i o with respect to v in , and g″ m is the third derivative of i o with respect to v in .
根据射频电路理论,g″m对放大器的线性度性能影响最大,gm一定的情况下,g″m越小则放大器的线性度越好。不同结构的增益单元的跨导特性和输入偏置电压之间的关系如图6和图7所示。According to the theory of radio frequency circuits, g″ m has the greatest influence on the linearity performance of the amplifier. When g m is constant, the smaller g″ m is, the better the linearity of the amplifier is. The relationship between the transconductance characteristics and the input bias voltage of gain units with different structures is shown in Figure 6 and Figure 7 .
如图3所示,增益单元的一种结构为一NMOS管,其栅极为输入端,漏极为输出端,采用这种结构的分布式放大器电路输出电流、跨导增益及各阶导数与输入电压的关系如图6所示。由图6(b)可以看出增益单元呈现出严重的非线性,即跨导增益gm不是恒定的值,而是随着输入偏置电压vin的变化而变化,因此当放大器的输入信号幅度增大时,输出信号将出现非线性失真。As shown in Figure 3, one structure of the gain unit is an NMOS transistor, the gate of which is the input terminal, and the drain is the output terminal. The distributed amplifier circuit with this structure outputs current, transconductance gain and derivatives of each order and input voltage The relationship is shown in Figure 6. It can be seen from Figure 6(b) that the gain unit presents serious nonlinearity, that is, the transconductance gain g m is not a constant value, but changes with the input bias voltage v in , so when the input signal of the amplifier As the amplitude increases, the output signal will appear nonlinearly distorted.
如图4所示,增益单元的另一种结构为:增益单元由两个连接的NMOS管组成,第一NMOS管的源极与第二NMOS管的漏极连接,第二NMOS管的栅极为输入端,第一NMOS管的漏极为输出端。As shown in Figure 4, another structure of the gain unit is: the gain unit is composed of two connected NMOS transistors, the source of the first NMOS transistor is connected to the drain of the second NMOS transistor, and the gate of the second NMOS transistor is The input terminal, the drain of the first NMOS transistor is the output terminal.
如图5所示,增益单元的又一种结构为:增益单元由两个NMOS管和一个电感组成,第一NMOS管的源极与电感一端连接,电感的另一端连接第二NMOS管的漏极,第二NMOS管的栅极为输入端,第一NMOS管的漏极为输出端,该电感为峰值电感。采用图4和图5两种结构的分布式放大器电路输出电流、跨导增益及各阶导数与输入电压的关系如图7所示。由图7(a)(b)同样可以看出增益单元呈现出严重的非线性,即跨导增益gm不是恒定的值,而是随着输入偏置电压vin的变化而变化,因此当放大器的输入信号幅度增大时,输出信号将出现非线性失真。As shown in Figure 5, another structure of the gain unit is: the gain unit is composed of two NMOS transistors and an inductor, the source of the first NMOS transistor is connected to one end of the inductor, and the other end of the inductor is connected to the drain of the second NMOS transistor pole, the gate of the second NMOS transistor is the input terminal, the drain of the first NMOS transistor is the output terminal, and the inductance is the peak inductance. Figure 7 shows the relationship between the output current, transconductance gain and each order derivative of the distributed amplifier circuit with the two structures shown in Figure 4 and Figure 5, and the input voltage. It can also be seen from Figure 7(a)(b) that the gain unit presents serious nonlinearity, that is, the transconductance gain g m is not a constant value, but changes with the input bias voltage v in , so when When the input signal amplitude of the amplifier increases, the output signal will appear non-linear distortion.
根据分布式放大器的工作原理,其前向跨导增益为各个增益单元跨导增益的叠加,因此由图6(d)和图7(d)可以看出,当各增益单元采用相同(或不同)的电路结构并处于不同的输入偏置电压时,g″m可以取正值也可以取负值,因此只需要通过调节各个增益单元的偏置电压就可以使得分布式放大器的总的跨导增益的二阶偏导趋近于零,从而获得良好的线性度。According to the working principle of the distributed amplifier, its forward transconductance gain is the superposition of the transconductance gains of each gain unit, so it can be seen from Figure 6(d) and Figure 7(d) that when each gain unit adopts the same (or different ) circuit structure and at different input bias voltages, g″ m can take positive or negative values, so it is only necessary to adjust the bias voltage of each gain unit to make the total transconductance of the distributed amplifier The second-order partial derivative of the gain approaches zero, resulting in good linearity.
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。The technical means disclosed in the solutions of the present invention are not limited to the technical means disclosed in the above embodiments, but also include technical solutions composed of any combination of the above technical features.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510737532.8A CN105305979B (en) | 2015-11-03 | 2015-11-03 | A kind of distributed amplifier circuit for improving the linearity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510737532.8A CN105305979B (en) | 2015-11-03 | 2015-11-03 | A kind of distributed amplifier circuit for improving the linearity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105305979A true CN105305979A (en) | 2016-02-03 |
CN105305979B CN105305979B (en) | 2018-03-06 |
Family
ID=55202841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510737532.8A Expired - Fee Related CN105305979B (en) | 2015-11-03 | 2015-11-03 | A kind of distributed amplifier circuit for improving the linearity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105305979B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105978513A (en) * | 2016-04-28 | 2016-09-28 | 南京邮电大学 | Distributed power amplifier |
CN106936397A (en) * | 2017-03-14 | 2017-07-07 | 中国电子科技集团公司第二十四研究所 | High flat degree broad band amplifier |
CN107528555A (en) * | 2017-08-09 | 2017-12-29 | 四川九洲电器集团有限责任公司 | A kind of distributed amplifier |
CN108336978A (en) * | 2018-01-10 | 2018-07-27 | 南京邮电大学 | A kind of cascade distributed low noise amplifier |
CN109150122A (en) * | 2018-08-01 | 2019-01-04 | 南京邮电大学 | A kind of restructural distributed amplifier circuit |
CN109474242A (en) * | 2018-09-26 | 2019-03-15 | 安徽矽芯微电子科技有限公司 | A kind of millimeter wave amplifier circuit in low noise |
CN110311638A (en) * | 2019-07-24 | 2019-10-08 | 南京邮电大学 | A kind of multi-ary modulation amplifier circuit |
CN112234945A (en) * | 2020-10-14 | 2021-01-15 | 联合微电子中心有限责任公司 | Distributed amplifier circuit, gain cell and electronic device |
CN113824409A (en) * | 2021-09-02 | 2021-12-21 | 郑州中科集成电路与系统应用研究院 | Broadband reconfigurable multifunctional power amplifier system based on reconfigurable broadband impedance transformation network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050285680A1 (en) * | 2004-06-25 | 2005-12-29 | Makoto Kosugi | Distributed amplifier |
US20080152037A1 (en) * | 2006-12-26 | 2008-06-26 | Dali System Co., Ltd. | Method and System for Baseband Predistortion Linearization in Multi-Channel Wideband Communication Systems |
CN101997489A (en) * | 2010-10-15 | 2011-03-30 | 中兴通讯股份有限公司 | Amplifier and implementation method thereof |
CN103595359A (en) * | 2013-10-17 | 2014-02-19 | 天津大学 | 0.1-5GHz CMOS (complementary metal oxide semiconductor) power amplifier |
-
2015
- 2015-11-03 CN CN201510737532.8A patent/CN105305979B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050285680A1 (en) * | 2004-06-25 | 2005-12-29 | Makoto Kosugi | Distributed amplifier |
US20080152037A1 (en) * | 2006-12-26 | 2008-06-26 | Dali System Co., Ltd. | Method and System for Baseband Predistortion Linearization in Multi-Channel Wideband Communication Systems |
CN101997489A (en) * | 2010-10-15 | 2011-03-30 | 中兴通讯股份有限公司 | Amplifier and implementation method thereof |
CN103595359A (en) * | 2013-10-17 | 2014-02-19 | 天津大学 | 0.1-5GHz CMOS (complementary metal oxide semiconductor) power amplifier |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105978513A (en) * | 2016-04-28 | 2016-09-28 | 南京邮电大学 | Distributed power amplifier |
CN106936397A (en) * | 2017-03-14 | 2017-07-07 | 中国电子科技集团公司第二十四研究所 | High flat degree broad band amplifier |
CN107528555B (en) * | 2017-08-09 | 2020-10-27 | 四川九洲电器集团有限责任公司 | Distributed amplifier |
CN107528555A (en) * | 2017-08-09 | 2017-12-29 | 四川九洲电器集团有限责任公司 | A kind of distributed amplifier |
CN108336978B (en) * | 2018-01-10 | 2021-07-20 | 南京邮电大学 | A Cascaded Distributed Low Noise Amplifier |
CN108336978A (en) * | 2018-01-10 | 2018-07-27 | 南京邮电大学 | A kind of cascade distributed low noise amplifier |
CN109150122A (en) * | 2018-08-01 | 2019-01-04 | 南京邮电大学 | A kind of restructural distributed amplifier circuit |
CN109150122B (en) * | 2018-08-01 | 2023-01-31 | 南京邮电大学 | Reconfigurable distributed amplifier circuit |
CN109474242A (en) * | 2018-09-26 | 2019-03-15 | 安徽矽芯微电子科技有限公司 | A kind of millimeter wave amplifier circuit in low noise |
CN110311638A (en) * | 2019-07-24 | 2019-10-08 | 南京邮电大学 | A kind of multi-ary modulation amplifier circuit |
CN112234945A (en) * | 2020-10-14 | 2021-01-15 | 联合微电子中心有限责任公司 | Distributed amplifier circuit, gain cell and electronic device |
CN112234945B (en) * | 2020-10-14 | 2024-02-27 | 联合微电子中心有限责任公司 | Distributed amplifier circuit, gain unit and electronic device |
CN113824409A (en) * | 2021-09-02 | 2021-12-21 | 郑州中科集成电路与系统应用研究院 | Broadband reconfigurable multifunctional power amplifier system based on reconfigurable broadband impedance transformation network |
CN113824409B (en) * | 2021-09-02 | 2023-08-15 | 郑州中科集成电路与系统应用研究院 | Broadband reconfigurable multifunctional power amplifier system based on reconfigurable broadband impedance transformation network |
Also Published As
Publication number | Publication date |
---|---|
CN105305979B (en) | 2018-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105305979B (en) | A kind of distributed amplifier circuit for improving the linearity | |
US9467106B2 (en) | Wideband bias circuits and methods | |
CN105356855B (en) | A kind of adjustable distributed amplifier circuit | |
CN108336978B (en) | A Cascaded Distributed Low Noise Amplifier | |
CN105305981B (en) | One kind linearisation wideband low noise amplifier | |
CN102412790B (en) | Broadband low noise amplifier for compensating PVT (line-voltage variation) | |
US9369091B2 (en) | Dual feedback low noise amplifier | |
CN109274340A (en) | Wideband limiting amplifier circuit | |
CN102723917B (en) | A kind of power amplifier | |
CN105099393A (en) | Linear equalizer and method thereof | |
CN103281038B (en) | Wideband low noise amplifier | |
JP2012114914A5 (en) | ||
US20050035819A1 (en) | CMOS differential buffer circuit | |
CN111193477B (en) | Composite amplifier | |
CN106899272B (en) | A transconductance amplifier and filter | |
CN104244138B (en) | Current Amplifier and Transmitter Using the Current Amplifier | |
CN103633954A (en) | Two-stage operational amplifier | |
CN104348429B (en) | DC Drift Cancellation Circuit | |
CN104617890B (en) | Adjust the circuit design of the radio frequency amplifier linearity | |
CN210745089U (en) | Radio frequency ultra-wideband driving amplifier chip | |
JP2019036839A (en) | Transimpedance amplifier | |
US20240056031A1 (en) | Active balun design | |
EP4391373A1 (en) | Power amplification circuit, power amplifier, and transmitter | |
CN110798162A (en) | Radio frequency ultra-wideband driving amplifier chip | |
CN206698188U (en) | The amplifier of low-voltage high linearity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180306 |