CN105244523B - A kind of SOFC with anti-carbon function - Google Patents
A kind of SOFC with anti-carbon function Download PDFInfo
- Publication number
- CN105244523B CN105244523B CN201510540168.6A CN201510540168A CN105244523B CN 105244523 B CN105244523 B CN 105244523B CN 201510540168 A CN201510540168 A CN 201510540168A CN 105244523 B CN105244523 B CN 105244523B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- anode
- catalyst layer
- battery
- ysz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 claims abstract description 79
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000010453 quartz Substances 0.000 claims abstract description 7
- 239000003792 electrolyte Substances 0.000 claims abstract description 3
- 238000002360 preparation method Methods 0.000 claims description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 claims 3
- 239000003708 ampul Substances 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910000314 transition metal oxide Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 42
- 239000007787 solid Substances 0.000 abstract description 24
- 229910052799 carbon Inorganic materials 0.000 abstract description 11
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 abstract description 10
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 230000008021 deposition Effects 0.000 abstract description 7
- 239000010405 anode material Substances 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 238000005336 cracking Methods 0.000 abstract description 3
- 230000008961 swelling Effects 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 23
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000004471 Glycine Substances 0.000 description 8
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 8
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229910021645 metal ion Inorganic materials 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- -1 biological Biogas Substances 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002207 La0.8Sr0.2MnO3–δ Inorganic materials 0.000 description 1
- 229910002206 La0.8Sr0.2MnO3−δ Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8864—Extrusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
Abstract
本发明提供了一种具有抗积碳功能的固体氧化物燃料电池,属于基于镍阳极的固体氧化物燃料电池,包括阳极、电解质、阴极、石英导气管,特征是在阳极侧设置独立的催化剂层。所述的催化剂层由基底和催化剂构成;所述的基底材料为硬度高的氧化物材料;所述的催化剂为对碳氢燃料具有高的氧化催化活性的材料。本发明不仅解决了催化剂与阳极材料热膨胀性能不匹配而导致的电池涨裂问题,而且有效抑制了阳极积碳,大大提高了固体氧化物燃料电池的稳定性和可靠性。
The invention provides a solid oxide fuel cell with an anti-carbon deposition function, which belongs to a solid oxide fuel cell based on a nickel anode, including an anode, an electrolyte, a cathode, and a quartz gas guide tube, and is characterized in that an independent catalyst layer is arranged on the anode side . The catalyst layer is composed of a substrate and a catalyst; the substrate material is an oxide material with high hardness; the catalyst is a material with high oxidation catalytic activity for hydrocarbon fuels. The invention not only solves the problem of cell swelling and cracking caused by the thermal expansion mismatch between the catalyst and the anode material, but also effectively suppresses carbon deposition on the anode, and greatly improves the stability and reliability of the solid oxide fuel cell.
Description
技术领域technical field
本发明涉及化学电源,具体涉及基于镍阳极的固体氧化物燃料电池,更具体涉及一种具有抗积碳功能的固体氧化物燃料电池。The invention relates to a chemical power source, in particular to a nickel anode-based solid oxide fuel cell, and more particularly to a solid oxide fuel cell with anti-carbon deposition function.
背景技术Background technique
固体氧化物燃料电池(SOFC)具有能量转化效率高、燃料适用范围广,无污染等优点使其成为新一代可用于固定式电站、交通工具辅助式电源以及小型移动电源的燃料电池。镍基陶瓷复合阳极由于其具有高电化学活性、高电子电导、稳定性好、价格低廉等优点,在以氢气为燃料时表现出稳定的性能,迄今仍是最常用的阳极材料。然而鉴于在氢气的生产、储存和运输方面的技术限制,以氢气为燃料的SOFC在未来数年内不可能取得广泛的应用。由于SOFC是一种高温发电装置(500度-1000度),现行的碳基燃料原则上都可以在SOFC工作条件下生成可用于发电的氢气和CO,比如天然气、煤层气、页岩气,生物沼气、汽油,液化石油气等,因此这些物质都可以作为SOFC燃料。然而在SOFC高温工作条件下,碳氢燃料都不可避免会发生裂解生成积碳沉积在Ni阳极上,一方面堵塞了Ni表面活性位点,催化性能下降,另一方面由于积碳与阳极材料的热膨胀性能不匹配,随着积碳的增多,电池发生涨裂。目前许多课题组正在积极开展具有抗积碳性能的SOFC镍阳极的改进。其中一种方法是在阳极表面覆盖一层促进碳氢燃料重整的催化剂涂层使得碳氢燃料在到达Ni阳极发生电化学反应之前首先被催化重整为CO和氢气,然后氢气和CO在阳极三相界面区发生电化学氧化反应从而产生电能。然而多数催化剂材料与阳极材料的热膨胀性能不一致,如果把催化剂涂层利用喷涂或印刷方式直接覆盖在电池阳极表面,在电池升温过程中由于材料的热膨胀性能不匹配,常常导致还未升到所需温度电池就发生涨裂(图2a)。因此现行的采用喷涂或印刷方法制备的催化剂层使用的催化剂量必须很少,但是催化剂用量不足又引起燃料重整不充分的问题。另外,催化剂直接覆盖在阳极表面也堵塞了一部分阳极气孔,增大燃气扩散电阻。Solid oxide fuel cell (SOFC) has the advantages of high energy conversion efficiency, wide range of fuel application, and no pollution, making it a new generation of fuel cells that can be used in stationary power stations, auxiliary power supplies for vehicles, and small mobile power supplies. Nickel-based ceramic composite anodes are still the most commonly used anode materials so far due to their high electrochemical activity, high electronic conductivity, good stability, and low cost, which show stable performance when hydrogen is used as fuel. However, due to technical limitations in hydrogen production, storage, and transportation, hydrogen-fueled SOFCs are unlikely to be widely used in the next few years. Since SOFC is a high-temperature power generation device (500-1000 degrees), the current carbon-based fuels can in principle generate hydrogen and CO that can be used for power generation under SOFC working conditions, such as natural gas, coalbed methane, shale gas, biological Biogas, gasoline, liquefied petroleum gas, etc., so these substances can be used as SOFC fuel. However, under the high-temperature working conditions of SOFC, hydrocarbon fuels will inevitably be cracked to form carbon deposits deposited on the Ni anode. On the one hand, the active sites on the Ni surface are blocked, and the catalytic performance decreases. The thermal expansion performance does not match, and with the increase of carbon deposits, the battery cracks. At present, many research groups are actively improving SOFC nickel anodes with anti-carbon deposition properties. One of the methods is to cover the surface of the anode with a catalyst coating that promotes the reforming of hydrocarbon fuels so that the hydrocarbon fuels are first catalytically reformed into CO and hydrogen before reaching the Ni anode for electrochemical reactions, and then hydrogen and CO are released at the anode. The electrochemical oxidation reaction occurs in the three-phase interface region to generate electricity. However, the thermal expansion properties of most catalyst materials and anode materials are not consistent. If the catalyst coating is directly covered on the surface of the battery anode by spraying or printing, the thermal expansion properties of the materials often do not match during the heating process of the battery. The battery will burst when the temperature rises (Figure 2a). Therefore, the amount of catalyst used in the current catalyst layer prepared by spraying or printing must be very small, but the insufficient amount of catalyst will cause the problem of insufficient fuel reforming. In addition, the direct coverage of the catalyst on the surface of the anode also blocks a part of the anode pores and increases the gas diffusion resistance.
发明内容Contents of the invention
本发明的目的在于针对现有的基于镍阳极的固体氧化物燃料电池应用于碳氢燃料时容易产生阳极积碳的问题,提供一种稳定的可用于碳氢燃料并具有抗积碳功能的固体氧化物燃料电池。The object of the present invention is to provide a stable solid oxide fuel cell that can be used for hydrocarbon fuels and has an anti-carbon deposition function to solve the problem that the existing solid oxide fuel cell based on nickel anodes is easy to generate carbon deposits when it is applied to hydrocarbon fuels. Oxide fuel cells.
本发明提供的一种基于镍阳极的固体氧化物燃料电池,包括阴极、电解质、阳极、石英导气管,其特征在于,在阳极侧设置独立的催化剂层。The invention provides a solid oxide fuel cell based on a nickel anode, which includes a cathode, an electrolyte, an anode, and a quartz air duct, and is characterized in that an independent catalyst layer is arranged on the anode side.
所述的催化剂层通过包括如下步骤的方法制备得到:(1)将基底材料与少量造孔剂混合均匀,用压片机模压成薄片;(2)将催化剂与少量造孔剂混合均匀,铺洒在步骤(1)制成的薄片表面,共压成型,脱模,置于马弗炉中焙烧即成。The catalyst layer is prepared by a method comprising the following steps: (1) uniformly mixing the base material with a small amount of pore-forming agent, and molding it into a thin sheet with a tablet press; (2) uniformly mixing the catalyst with a small amount of pore-forming agent, laying Sprinkle on the surface of the sheet made in step (1), co-press to form, demould, and bake in a muffle furnace.
所述的基底材料为Al2O3、二氧化锆、二氧化硅等硬度高的氧化物材料。The base material is an oxide material with high hardness such as Al 2 O 3 , zirconium dioxide, and silicon dioxide.
所述的造孔剂如有机物、碳材料等高温可燃物。The pore formers are high-temperature combustibles such as organic matter and carbon materials.
所述的催化剂为对碳氢燃料具有高的氧化催化活性的材料,包括可以产生氧空穴的钙钛矿材料,如Sr2MoFeO6-δ,La0.6Sr0.4Co0.9Fe0.1O3-δ等;还包括含有过渡金属如镍、铜、铁、钴、钼、铈及其氧化物的材料,如NiO/BaO/CeO2/Al2O3,NiO/BaO/CeO2。The catalyst is a material with high oxidation catalytic activity for hydrocarbon fuels, including perovskite materials that can generate oxygen holes, such as Sr 2 MoFeO 6-δ , La 0.6 Sr 0.4 Co 0.9 Fe 0.1 O 3-δ etc.; also includes materials containing transition metals such as nickel, copper, iron, cobalt, molybdenum, cerium and their oxides, such as NiO/BaO/CeO 2 /Al 2 O 3 , NiO/BaO/CeO 2 .
本发明提供的一种基于镍阳极的固体氧化物燃料电池的制备方法,包括如下步骤:A kind of preparation method of solid oxide fuel cell based on nickel anode provided by the present invention comprises the following steps:
1)将高硬度的氧化物材料与少量造孔剂混合均匀,用压片机模压成薄片;1) Mix the high-hardness oxide material with a small amount of pore-forming agent evenly, and mold it into a thin sheet with a tablet press;
2)将催化剂与少量造孔剂混合均匀,铺洒在步骤1)制成的薄片表面,共压成型,脱模,置于马弗炉中焙烧,得到由基底和催化剂组成的催化剂层;2) mixing the catalyst with a small amount of pore-forming agent evenly, spreading it on the surface of the sheet made in step 1), co-pressing, demolding, and roasting in a muffle furnace to obtain a catalyst layer composed of a substrate and a catalyst;
3)将上述制备的催化剂层放置于石英导气管的上端,催化剂朝燃料侧,用银浆固定;3) Place the catalyst layer prepared above on the upper end of the quartz gas guide tube, with the catalyst facing the fuel side, and fix it with silver paste;
4)在电池的阴极和阳极分别粘接银导线,并按阳极侧朝催化剂层放置于催化剂层的上方,用高温导电银浆将电池和催化剂层一起密封于石英管上。4) Bond silver wires to the cathode and anode of the battery respectively, and place them on the catalyst layer according to the anode side towards the catalyst layer, and seal the battery and the catalyst layer together on the quartz tube with high-temperature conductive silver paste.
本发明提供的NiO/BaO/CeO2/Al2O3催化剂,按包括如下步骤的方法制备得到:按Ni:BaO:CeO2:Al2O3质量分数为13:2:42.5:42.5称取硝酸镍,硝酸钡,硝酸铈,硝酸铝,用去离子水溶解后加入甘氨酸,甘氨酸与金属离子的摩尔比(G/Mn+)比为3:1。置于电炉上加热搅拌,待水蒸干后会自燃获得初级粉体,放入烘箱中240℃烘干8小时。冷却后在马弗炉里850℃煅烧2h,升温速率为5℃min-1。The NiO/BaO/CeO 2 /Al 2 O 3 catalyst provided by the present invention is prepared by a method comprising the following steps: weighing according to the mass fraction of Ni:BaO:CeO 2 :Al 2 O 3 is 13:2:42.5:42.5 Nickel nitrate, barium nitrate, cerium nitrate, and aluminum nitrate are dissolved in deionized water and added to glycine. The molar ratio (G/M n+ ) of glycine to metal ions is 3:1. Place it on an electric furnace and heat and stir. After the water is evaporated to dryness, it will spontaneously ignite to obtain a primary powder. Put it in an oven and dry it at 240°C for 8 hours. After cooling, it was calcined at 850°C for 2h in a muffle furnace with a heating rate of 5°C min -1 .
本发明提供的NiO/BaO/CeO2催化剂,按包括如下步骤的方法制备得到:按Ni:BaO:CeO2质量分数为13:2:85分别称取硝酸镍,硝酸钡,硝酸铈,用去离子水溶解后加入甘氨酸,甘氨酸与总金属离子的摩尔比(G/Mn+)为3:1。置于电炉上加热搅拌,待水蒸干后自燃获得初级粉体,然后放入烘箱中240℃烘8小时。冷却后在马弗炉里850℃煅烧2h,升温速率为5℃min-1。The NiO/BaO/ CeO2 catalyst provided by the present invention is prepared by the method comprising the following steps: by Ni:BaO: CeO2 mass fraction is 13:2:85 and takes nickel nitrate, barium nitrate, cerium nitrate respectively, uses Glycine was added after the ionized water was dissolved, and the molar ratio of glycine to total metal ions (G/M n+ ) was 3:1. Place it on an electric furnace to heat and stir, and after the water is evaporated to dryness, it will spontaneously ignite to obtain a primary powder, and then put it in an oven for 8 hours at 240°C. After cooling, it was calcined at 850°C for 2h in a muffle furnace with a heating rate of 5°C min -1 .
与现有技术相比,本发明具有如下的有益效果:首先,催化剂层和阳极层之间没有实质性的紧密接触,独立于阳极层,不会发生由于催化剂和阳极材料的热膨胀性能不匹配而导致的电池涨裂(图2a),更重要的是电池放电性能良好。其次,燃料气先通过催化剂层进行催化重整反应生成CO和氢气,然后这两种气体通过催化剂基底到达电池阳极进行电化学反应产生电能。经过催化剂层的阻挡,Ni阳极表面的碳氢燃料浓度大大降低,减少了裂解的碳在阳极的沉积;第三,由于催化剂层与电池互不影响,可以增加催化剂的量提高对燃料的催化转化效率。尽管实施例以湿甲烷为燃料,考虑到不同碳氢燃料均有对应的重整催化剂,因而按照本发明方法制备的电池可适用于任意碳氢燃料。因此,本发明不仅解决了催化剂热膨胀导致的电池涨裂问题,而且有效抑制了阳极积碳,使得电池性能稳定。Compared with the prior art, the present invention has the following beneficial effects: firstly, there is no substantial close contact between the catalyst layer and the anode layer, independent of the anode layer, and the mismatch of the thermal expansion properties of the catalyst and anode materials will not occur. The resulting battery cracks (Figure 2a), and more importantly, the battery discharge performance is good. Secondly, the fuel gas first passes through the catalyst layer for catalytic reforming reaction to generate CO and hydrogen, and then these two gases pass through the catalyst substrate to reach the anode of the battery for electrochemical reaction to generate electricity. After being blocked by the catalyst layer, the concentration of hydrocarbon fuel on the surface of the Ni anode is greatly reduced, reducing the deposition of cracked carbon on the anode; third, because the catalyst layer and the battery do not affect each other, the amount of catalyst can be increased to improve the catalytic conversion of fuel efficiency. Although the embodiment uses wet methane as fuel, considering that different hydrocarbon fuels have corresponding reforming catalysts, the battery prepared according to the method of the present invention can be applied to any hydrocarbon fuel. Therefore, the invention not only solves the problem of battery swelling and cracking caused by the thermal expansion of the catalyst, but also effectively suppresses carbon deposition on the anode, so that the performance of the battery is stable.
附图说明Description of drawings
图1为所述的固体氧化物燃料电池结构示意图Fig. 1 is the structure schematic diagram of described solid oxide fuel cell
图2(a)为用美术喷枪将催化剂喷涂于电池阳极表面升温过程中由于热膨胀性能不匹配而导致的电池涨裂Figure 2(a) shows the battery swelling and cracking caused by the mismatch of thermal expansion performance during the process of spraying the catalyst on the surface of the battery anode with an art spray gun
图2(b)为用本发明的固体氧化物燃料电池经湿甲烷恒流放电测试40小时后的电池形貌Fig. 2 (b) is the cell morphology after 40 hours of wet methane constant current discharge test with solid oxide fuel cell of the present invention
图3为不加催化剂层的空白固体氧化物燃料电池同等条件下的放电性能寿命测试Figure 3 is the discharge performance life test of a blank solid oxide fuel cell without a catalyst layer under the same conditions
图4为实施例1制备的固体氧化物燃料电池放电性能寿命测试Fig. 4 is the discharge performance life test of the solid oxide fuel cell prepared in embodiment 1
图5为实施例2制备的固体氧化物燃料电池放电性能寿命测试Fig. 5 is the discharge performance life test of the solid oxide fuel cell prepared in embodiment 2
图6为实施例3制备的固体氧化物燃料电池放电性能寿命测试Fig. 6 is the discharge performance life test of the solid oxide fuel cell prepared in embodiment 3
图7为实施例4制备的固体氧化物燃料电池放电性能寿命测试Fig. 7 is the discharge performance life test of the solid oxide fuel cell prepared in embodiment 4
图8为实施例5制备的固体氧化物燃料电池放电性能寿命测试Fig. 8 is the discharge performance life test of the solid oxide fuel cell prepared in embodiment 5
图9为实施例6制备的固体氧化物燃料电池放电性能寿命测试Fig. 9 is the discharge performance life test of the solid oxide fuel cell prepared in Example 6
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明,以下实施例将有助于本领域的技术人员进一步了解本发明,但不限制本发明的保护范围。The present invention will be described in detail below in conjunction with specific examples. The following examples will help those skilled in the art to further understand the present invention, but do not limit the protection scope of the present invention.
以下实施例中YSZ指的是8%钇稳定的二氧化锆,LSM指的是La0.8Sr0.2MnO3-δ。造孔剂PVB指的是聚乙烯醇缩丁醛。In the following examples, YSZ refers to 8% yttrium-stabilized zirconia, and LSM refers to La 0.8 Sr 0.2 MnO 3-δ . The pore former PVB refers to polyvinyl butyral.
实施例1Example 1
以经典的NiO-YSZ/YSZ/LSM-YSZ作为单电池,Al2O3作为催化剂层的基底,按一定比例合成的NiO/BaO/CeO2混合物为催化剂:The classic NiO-YSZ/YSZ/LSM-YSZ is used as a single cell, Al 2 O 3 is used as the substrate of the catalyst layer, and the NiO/BaO/CeO 2 mixture synthesized in a certain proportion is used as the catalyst:
(1)催化剂粉体制备:按Ni:BaO:CeO2质量分数为13:2:85分别称取硝酸镍,硝酸钡,硝酸铈,用去离子水溶解后加入甘氨酸,甘氨酸与总金属离子的摩尔比(G/Mn+)为3:1。置于电炉上加热搅拌,待水蒸干后自燃获得初级粉体,然后放入烘箱中240℃烘8小时。冷却后在马弗炉里850℃煅烧2h,升温速率为5℃min-1。(1) Catalyst powder preparation: Weigh nickel nitrate, barium nitrate, cerium nitrate respectively according to Ni:BaO:CeO 2 mass fraction is 13:2:85, add glycine after dissolving with deionized water, glycine and total metal ion The molar ratio (G/M n+ ) was 3:1. Place it on an electric furnace to heat and stir, and after the water is evaporated to dryness, it will spontaneously ignite to obtain a primary powder, and then put it in an oven for 8 hours at 240°C. After cooling, it was calcined at 850°C for 2h in a muffle furnace with a heating rate of 5°C min -1 .
(2)催化剂层制备:称取0.3g质量比为9:1的Al2O3和PVB混合均匀的粉体,在144MPa下用压片模具压制催化剂层基底,再将0.03g混有10%PVB的催化剂粉体均匀分散在基底的表面,240MPa共压成型,脱模,900度焙烧4小时得到由基底和催化剂组成的催化剂层。(2) Catalyst layer preparation: Weigh 0.3g of Al 2 O 3 and PVB mixed uniform powder with a mass ratio of 9:1, press the catalyst layer base with a tablet die at 144MPa, and then mix 0.03g with 10% PVB catalyst powder is uniformly dispersed on the surface of the substrate, co-pressed at 240MPa, demolded, and calcined at 900°C for 4 hours to obtain a catalyst layer composed of the substrate and the catalyst.
(3)将上述制备的催化剂层放置于石英导气管的上端,催化剂朝燃料侧,用银浆固定;(3) The catalyst layer prepared above is placed on the upper end of the quartz gas guide tube, and the catalyst is fixed with silver paste towards the fuel side;
(4)在NiO-YSZ/YSZ/LSM-YSZ电池的阴极和阳极分别粘接银导线,并按阳极侧朝催化剂层放置于催化剂层的上方,用高温导电银浆将电池和催化剂层一起密封于石英管上。(4) Bond silver wires to the cathode and anode of the NiO-YSZ/YSZ/LSM-YSZ battery respectively, and place the anode side toward the catalyst layer above the catalyst layer, and seal the battery and the catalyst layer together with high-temperature conductive silver paste on the quartz tube.
以湿甲烷(97%甲烷,3%水蒸气)为燃料,按照常规固体氧化物燃料电池测试方法测试电化学性能以及电池放电寿命,电池在333mA/cm2负载电流下平稳放电13小时之后电压稳定(见图4),电池表面无破裂。Using wet methane (97% methane, 3% water vapor) as fuel, the electrochemical performance and battery discharge life were tested according to the conventional solid oxide fuel cell test method. The battery voltage stabilized after 13 hours of steady discharge at a load current of 333mA/ cm2 (see Figure 4), the battery surface has no cracks.
对照:采用美术喷枪喷涂法制备的同样催化剂层的电池,温度还未上升到所需温度电池即涨裂(图2(a)),无法测试。Control: The battery with the same catalyst layer prepared by the art spray gun spraying method, the battery bursts before the temperature rises to the required temperature (Figure 2(a)), and cannot be tested.
实施例2Example 2
以NiO-YSZ/YSZ/LSM-YSZ作为单电池,YSZ作为催化剂基底,合成的NiO/BaO/CeO2为催化剂:Using NiO-YSZ/YSZ/LSM-YSZ as a single cell, YSZ as a catalyst substrate, and synthesized NiO/BaO/ CeO2 as a catalyst:
制备方法同实施例1,不同之处在于将实施例1中的Al2O3替换为YSZ,电池的放电寿命见图5。The preparation method is the same as in Example 1, except that Al 2 O 3 in Example 1 is replaced by YSZ, and the discharge life of the battery is shown in FIG. 5 .
实施例3Example 3
以NiO-YSZ/YSZ/LSM-YSZ作为单电池,Al2O3作为催化剂基底,按一定比例合成的NiO/BaO/CeO2/Al2O3为催化剂:Using NiO-YSZ/YSZ/LSM-YSZ as a single cell, Al 2 O 3 as a catalyst substrate, and NiO/BaO/CeO 2 /Al 2 O 3 synthesized in a certain proportion as a catalyst:
(1)催化剂粉体制备:按Ni:BaO:CeO2:Al2O3质量分数为13:2:42.5:42.5称取硝酸镍,硝酸钡,硝酸铈,硝酸铝,用去离子水溶解后加入甘氨酸,甘氨酸与金属离子的摩尔比(G/Mn+)比为3:1。置于电炉上加热搅拌,待水蒸干后会自燃获得初级粉体,放入烘箱中240℃烘干8小时。冷却后在马弗炉里850℃煅烧2h,升温速率为5℃min-1。(1) Catalyst powder preparation: Weigh nickel nitrate, barium nitrate, cerium nitrate, aluminum nitrate according to the mass fraction of Ni:BaO:CeO 2 :Al 2 O 3 as 13:2:42.5:42.5, and dissolve them in deionized water Glycine is added, and the molar ratio (G/M n+ ) of glycine to metal ions is 3:1. Place it on an electric furnace and heat and stir. After the water is evaporated to dryness, it will spontaneously ignite to obtain a primary powder. Put it in an oven and dry it at 240°C for 8 hours. After cooling, it was calcined at 850°C for 2h in a muffle furnace with a heating rate of 5°C min -1 .
(2)-(5)同实施例1,电池的恒流放电寿命见图6。(2)-(5) Same as Example 1, the constant current discharge life of the battery is shown in FIG. 6 .
实施例4Example 4
以NiO-YSZ/YSZ/LSM作为单电池,YSZ作为催化剂基底,合成的NiO/BaO/CeO2/Al2O3为催化剂:Using NiO-YSZ/YSZ/LSM as a single cell, YSZ as a catalyst substrate, and the synthesized NiO/BaO/CeO 2 /Al 2 O 3 as a catalyst:
制备方法同实施例3,不同之处在于将实施例3中的Al2O3替换为YSZ,电池的恒流放电寿命见图7。The preparation method is the same as in Example 3, except that Al 2 O 3 in Example 3 is replaced by YSZ, and the constant current discharge life of the battery is shown in FIG. 7 .
实施例5Example 5
以NiO-YSZ/YSZ/LSM作为单电池,Al2O3作为催化剂基底,按一定比例合成的双钙钛矿材料Sr2MoFeO6-δ为催化剂:NiO-YSZ/YSZ/LSM is used as a single cell, Al 2 O 3 is used as a catalyst substrate, and the double perovskite material Sr 2 MoFeO 6-δ synthesized at a certain ratio is used as a catalyst:
(1)催化剂粉体制备:由SrMo0.5Fe0.5O3的化学式的计量比,取一定量的Sr(NO3)2、(NH4)6Mo7O24·4H2O和Fe(NO3)3,加入去离子水搅拌直至完全溶解。将乙二胺四乙酸(EDTA)的氨水溶液加入该金属离子溶液中,再加入一定量的柠檬酸,其中,EDTA:柠檬酸:金属离子:NH3·H2O=1:2:1:10(摩尔比)。微调适量的柠檬酸使得前驱体溶液的pH为弱酸性(pH=6~7)。加热除去多余水分后,将所得凝胶状前驱体放于鼓风干燥箱中,在250℃下经过8h干燥得到固态前驱体。最后将固态前驱体放入马弗炉中,在1100度空气气氛下煅烧2h即可得Sr2MoFeO6-δ粉体。粉体通过X-ray粉末衍射测试。(1) Catalyst powder preparation : take a certain amount of Sr(NO 3 ) 2 , (NH 4 ) 6 Mo 7 O 24 ·4H 2 O and Fe(NO 3 ) 3 , add deionized water and stir until completely dissolved. Add ammonia solution of ethylenediaminetetraacetic acid (EDTA) to the metal ion solution, and then add a certain amount of citric acid, wherein, EDTA:citric acid:metal ion:NH 3 ·H 2 O=1:2:1: 10 (molar ratio). Fine-tuning an appropriate amount of citric acid makes the pH of the precursor solution weakly acidic (pH=6-7). After heating to remove excess moisture, the obtained gel-like precursor was placed in a blast drying oven, and dried at 250° C. for 8 hours to obtain a solid precursor. Finally, put the solid precursor into a muffle furnace and calcinate for 2 hours at 1100 degrees in an air atmosphere to obtain Sr 2 MoFeO 6-δ powder. The powder is tested by X-ray powder diffraction.
(2)催化剂层制备:将氧化铝粉体和PVB粉末按质量比为25:3混合均匀后,称取0.3g该粉末装入Φ13mm钢质模具,通过压片机以144MPa压力先压制该基底粉末,得到基底粉体;再将Sr1Mo0.5Fe0.5粉体和PVB粉末按质量比为12:5混合均匀后,称取0.3g该催化剂粉体,并将其均匀铺在基底粉体上,通过压片机进行二次压膜(240MPa),保压1min,压制形成催化剂/基底双层生坯体,在900℃下煅烧4h,控制升温速率为5℃min-1,得到催化剂层。(2) Catalyst layer preparation: Mix alumina powder and PVB powder evenly at a mass ratio of 25:3, weigh 0.3g of the powder and put it into a Φ13mm steel mold, and press the substrate with a pressure of 144MPa through a tablet press powder to obtain the base powder; then mix the Sr 1 Mo 0.5 Fe 0.5 powder and PVB powder evenly at a mass ratio of 12:5, weigh 0.3g of the catalyst powder, and spread it evenly on the base powder , perform secondary film compression (240MPa) by a tablet press, hold the pressure for 1min, press to form a catalyst/substrate double-layer green body, calcinate at 900°C for 4h, and control the heating rate to 5°Cmin -1 to obtain a catalyst layer.
(3)-(5)制备方法同实施例1,电池的放电寿命见图8。(3)-(5) The preparation method is the same as in Example 1, and the discharge life of the battery is shown in FIG. 8 .
实施例6Example 6
以NiO-YSZ/YSZ/LSM作为单电池,Al2O3作为催化剂基底,按一定比例合成的钙钛矿材料La0.6Sr0.4Co0.9Fe0.1O3-δ为催化剂:Using NiO-YSZ/YSZ/LSM as a single cell, Al 2 O 3 as a catalyst substrate, and a perovskite material La 0.6 Sr 0.4 Co 0.9 Fe 0.1 O 3-δ synthesized in a certain proportion as a catalyst:
(1)催化剂粉体制备:由La0.6Sr0.4Co0.9Fe0.1O3-δ的化学式的计量比,取一定量的La(NO3)3、Sr(NO3)2、Co(NO3)3、和Fe(NO3)3,加入去离子水搅拌直至完全溶解。将乙二胺四乙酸(EDTA)的氨水溶液加入该金属离子溶液中,再加入一定量的柠檬酸,其中,EDTA:柠檬酸:金属离子:NH 3·H 2O=1:2:1:10(摩尔比)。微调适量的柠檬酸使得前驱体溶液的pH为弱酸性(pH=6~7)。加热除去多余水分后,将所得凝胶状前驱体放于鼓风干燥箱中,在250oC下经过8h干燥得到固态前驱体。最后将固态前驱体放入马弗炉中,在900度空气气氛下煅烧2h即可得La0.6Sr0.4Co0.9Fe0.1O3-δ粉体。粉体通过X-ray粉末衍射测试。(1) Catalyst powder preparation: take a certain amount of La(NO 3 ) 3 , Sr(NO 3 ) 2 , Co(NO 3 ) according to the stoichiometric ratio of the chemical formula of La 0.6 Sr 0.4 Co 0.9 Fe 0.1 O 3-δ 3. and Fe(NO 3 ) 3 , add deionized water and stir until completely dissolved. Add ammonia solution of ethylenediaminetetraacetic acid (EDTA) to the metal ion solution, and then add a certain amount of citric acid, wherein, EDTA:citric acid:metal ion:NH 3 ·H 2 O=1:2:1: 10 (molar ratio). Fine-tuning an appropriate amount of citric acid makes the pH of the precursor solution weakly acidic (pH=6-7). After heating to remove excess moisture, the obtained gel-like precursor was placed in a blast drying oven, and dried at 250 o C for 8 hours to obtain a solid precursor. Finally, put the solid precursor into a muffle furnace and calcinate it in an air atmosphere at 900 degrees for 2 hours to obtain La 0.6 Sr 0.4 Co 0.9 Fe 0.1 O 3-δ powder. The powder is tested by X-ray powder diffraction.
(2)-(5)制备方法同实施例1,电池的放电寿命见图9。(2)-(5) The preparation method is the same as in Example 1, and the discharge life of the battery is shown in FIG. 9 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510540168.6A CN105244523B (en) | 2015-08-28 | 2015-08-28 | A kind of SOFC with anti-carbon function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510540168.6A CN105244523B (en) | 2015-08-28 | 2015-08-28 | A kind of SOFC with anti-carbon function |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105244523A CN105244523A (en) | 2016-01-13 |
CN105244523B true CN105244523B (en) | 2018-04-03 |
Family
ID=55042082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510540168.6A Active CN105244523B (en) | 2015-08-28 | 2015-08-28 | A kind of SOFC with anti-carbon function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105244523B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107919485B (en) * | 2017-11-10 | 2021-04-09 | 北京英博新能源有限公司 | Fuel cell cooling assembly and fuel cell system |
CN108869017A (en) * | 2018-05-29 | 2018-11-23 | 薛平 | A kind of flameless combustion class hydrogen internal combustion engine |
CN108598494B (en) * | 2018-06-21 | 2020-09-22 | 西安科技大学 | A fuel cell anode and fuel cell using the same |
CN109904497B (en) * | 2019-01-09 | 2020-07-10 | 华中科技大学 | Anti-carbon-deposition metal-supported solid oxide fuel cell and preparation method thereof |
CN111883800A (en) * | 2020-06-19 | 2020-11-03 | 广东工业大学 | Processing equipment of solid oxide fuel cell |
CN114361471A (en) * | 2022-01-10 | 2022-04-15 | 国家能源集团新能源有限责任公司 | Integrated independent catalytic layer, preparation method and application |
CN118486868B (en) * | 2024-05-24 | 2025-01-24 | 太原工业学院 | Preparation of double-sided roughened solid oxide fuel cell electrolyte membranes by hydrolysis |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8435683B2 (en) * | 2007-07-19 | 2013-05-07 | Cp Sofc Ip, Llc | Internal reforming solid oxide fuel cells |
DK2031677T3 (en) * | 2007-08-31 | 2011-12-12 | Univ Denmark Tech Dtu | Removal of contamination phases from electrochemical devices |
CN101222050A (en) * | 2007-12-28 | 2008-07-16 | 中国科学院上海硅酸盐研究所 | Anti-carbon deposition anode film material and preparation method thereof |
CN100595952C (en) * | 2008-06-30 | 2010-03-24 | 南京工业大学 | A high-temperature fuel cell system using methane as the main fuel with an anode-loaded functional coating |
CN102364737A (en) * | 2011-10-12 | 2012-02-29 | 景德镇陶瓷学院 | Preparation method of a flat SOFC anti-carbon composite anode membrane material |
CN102610841A (en) * | 2012-03-28 | 2012-07-25 | 南京工业大学 | Single-cavity solid oxide fuel cell with controlled gas flow direction |
-
2015
- 2015-08-28 CN CN201510540168.6A patent/CN105244523B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105244523A (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105244523B (en) | A kind of SOFC with anti-carbon function | |
Marina et al. | A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance | |
Lv et al. | Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni–YSZ anodes | |
CN105940540B (en) | Electrochemical energy conversion device, battery, and positive electrode material for same | |
CN101339997B (en) | Membrane electrode component of medium temperature solid-oxide fuel cell and preparation thereof | |
CN101304092B (en) | A kind of intermediate temperature solid oxide fuel cell cathode material and its application | |
CN101295791B (en) | A ternary composite cathode material for medium and low temperature solid oxide fuel cells | |
Suzuki et al. | A functional layer for direct use of hydrocarbon fuel in low temperature solid-oxide fuel cells | |
CN113871636B (en) | A nanostructured composite cathode for solid oxide fuel cells that is resistant to chromium poisoning | |
Nowicki et al. | Characterisation of direct ammonia proton conducting tubular ceramic fuel cells for maritime applications | |
CN109921079A (en) | A kind of composite solid oxide fuel cell and preparation method thereof | |
Zhang et al. | Enhancement of electrochemical performance for proton conductive solid oxide fuel cell by 30% GDC-LSCF cathode | |
CN101771149A (en) | Composite anode of magnesium-modified and nickel-based solid-oxide fuel cell and preparation and application thereof | |
CN113745540B (en) | Anode reforming layer of direct alcohol fuel cell and preparation method and application thereof | |
Sun et al. | Direct electrolysis of CO2 in solid oxide cells supported on ceramic fuel electrodes with straight open pores and coated catalysts | |
Wang et al. | A NiMo-YSZ catalyst support layer for regenerable solid oxide fuel cells running on isooctane | |
CN104638277B (en) | Gradient functional anode electrode for carbon-based solid oxide fuel battery and preparation method of gradient functional anode electrode | |
Liu et al. | Enabling catalysis of Ru–CeO2 for propane oxidation in low temperature solid oxide fuel cells | |
CN110336041B (en) | Ruthenium-nickel composite electrode and preparation method and application thereof | |
CN111908512A (en) | O-site halogen element doped perovskite oxide and application thereof in symmetric battery | |
CN115020741A (en) | A kind of low temperature high performance solid oxide fuel cell and preparation method thereof | |
CN117039076B (en) | Framework-supported SOFC (solid oxide Fuel cell) suitable for hydrocarbon fuel and preparation method thereof | |
CN104037429B (en) | High-catalytic-activity anti-carbon-deposition anode material and preparation method thereof | |
CN102569823A (en) | Ni-based composite anode co-modified by Mg and rare earth elements of solid oxide fuel cell | |
CN113764710B (en) | Solid oxide electrolytic cell with CGO/DWSB double electrolyte layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |