CN105206677A - Oxide semiconductor thin film transistor and manufacturing method thereof - Google Patents
Oxide semiconductor thin film transistor and manufacturing method thereof Download PDFInfo
- Publication number
- CN105206677A CN105206677A CN201510580206.0A CN201510580206A CN105206677A CN 105206677 A CN105206677 A CN 105206677A CN 201510580206 A CN201510580206 A CN 201510580206A CN 105206677 A CN105206677 A CN 105206677A
- Authority
- CN
- China
- Prior art keywords
- oxide semiconductor
- hydrogen
- layer
- patterned
- course
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 166
- 239000010409 thin film Substances 0.000 title claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 228
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 228
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 124
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 26
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000059 patterning Methods 0.000 claims description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims description 11
- 150000004706 metal oxides Chemical class 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 239000011787 zinc oxide Substances 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 4
- 229910003437 indium oxide Inorganic materials 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 239000000428 dust Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 98
- 239000010410 layer Substances 0.000 description 244
- 239000000463 material Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 3
- 229910001195 gallium oxide Inorganic materials 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- -1 alumina Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/18, H10D48/04 and H10D48/07, with or without impurities, e.g. doping materials
- H01L21/44—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
- H10D30/6739—Conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thin Film Transistor (AREA)
Abstract
一种氧化物半导体薄膜晶体管,包括图案化氧化物半导体层、图案化栅极介电层、栅极、氢扩散控制层、一氢来源层、源极以及漏极。图案化氧化物半导体层设置于一基板上。图案化栅极介电层设置于图案化氧化物半导体层上。栅极设置于图案化栅极介电层上。氢扩散控制层设置于栅极与图案化氧化物半导体层上,且氢扩散控制层包覆栅极与图案化栅极介电层。氢来源层设置于氢扩散控制层以及图案化氧化物半导体层上,源极漏极设置于氢来源层上,且氢来源层的含氢量大于氢扩散控制层的含氢量。
An oxide semiconductor thin film transistor includes a patterned oxide semiconductor layer, a patterned gate dielectric layer, a gate electrode, a hydrogen diffusion control layer, a hydrogen source layer, a source electrode and a drain electrode. The patterned oxide semiconductor layer is disposed on a substrate. The patterned gate dielectric layer is disposed on the patterned oxide semiconductor layer. The gate is disposed on the patterned gate dielectric layer. The hydrogen diffusion control layer is disposed on the gate electrode and the patterned oxide semiconductor layer, and the hydrogen diffusion control layer covers the gate electrode and the patterned gate dielectric layer. The hydrogen source layer is disposed on the hydrogen diffusion control layer and the patterned oxide semiconductor layer, the source and drain electrodes are disposed on the hydrogen source layer, and the hydrogen content of the hydrogen source layer is greater than the hydrogen content of the hydrogen diffusion control layer.
Description
技术领域technical field
本发明关于一种氧化物半导体薄膜晶体管及其制作方法,尤指一种利用氢扩散控制层来控制氢进入氧化物半导体层的状况的氧化物半导体薄膜晶体管及其制作方法。The present invention relates to an oxide semiconductor thin film transistor and a manufacturing method thereof, in particular to an oxide semiconductor thin film transistor and a manufacturing method thereof that use a hydrogen diffusion control layer to control the state of hydrogen entering an oxide semiconductor layer.
背景技术Background technique
近年来,各种显示器的应用发展迅速,而薄膜晶体管(thinfilmtransistor,TFT)一种广泛应用于显示器技术的半导体元件,例如应用在液晶显示器(liquidcrystaldisplay,LCD)、有机发光二极管(organiclightemittingdiode,OLED)显示器及电子纸(electronicpaper,E-paper)等显示器中。薄膜晶体管利用来提供电压或电流的切换,以使得各种显示器中的显示像素可呈现出亮、暗以及灰阶的显示效果。In recent years, the application of various displays has developed rapidly, and thin film transistor (thinfilmtransistor, TFT) is a semiconductor component widely used in display technology, such as in liquid crystal display (liquid crystal display, LCD), organic light emitting diode (organic light emitting diode, OLED) display and electronic paper (electronic paper, E-paper) and other displays. Thin film transistors are used to provide voltage or current switching, so that display pixels in various displays can display bright, dark and grayscale display effects.
目前显示器业界使用的薄膜晶体管可根据使用的半导体层材料来做区分,包括非晶硅薄膜晶体管(amorphoussiliconTFT,a-SiTFT)、多晶硅薄膜晶体管(polysiliconTFT)以及氧化物半导体薄膜晶体管(oxidesemiconductorTFT)。其中氧化物半导体薄膜晶体管是应用近年来新崛起的氧化物半导体材料,此类材料一般为非晶相(amorphous)结构,故较没有应用于大尺寸面板上均匀性不佳的问题,且可利用多种方式成膜,例如溅镀(sputter)、旋涂(spin-on)以及印刷(inkjetprinting)等方式。由于氧化物半导体薄膜晶体管的电子迁移率一般可较非晶硅薄膜晶体管高数倍以上且具有上述的制程优势,故目前市场上已逐渐有一些应用氧化物半导体薄膜晶体管的商品化产品上市。The thin film transistors currently used in the display industry can be distinguished according to the semiconductor layer materials used, including amorphous silicon thin film transistors (a-SiTFT), polysilicon thin film transistors (polysilicon TFT) and oxide semiconductor thin film transistors (oxide semiconductor TFT). Among them, the oxide semiconductor thin film transistor is an oxide semiconductor material that has emerged in recent years. This type of material is generally an amorphous phase (amorphous) structure, so there is no problem of poor uniformity when applied to large-size panels, and it can be used Various methods of film formation, such as sputtering (sputter), spin-on (spin-on) and printing (inkjetprinting) and other methods. Since the electron mobility of oxide semiconductor thin film transistors is generally several times higher than that of amorphous silicon thin film transistors and has the above-mentioned process advantages, some commercial products using oxide semiconductor thin film transistors have gradually been launched on the market.
在一般氧化物半导体薄膜晶体管的结构中,氧化物半导体层与源极/漏极的材料间的接触阻抗会明显影响氧化物半导体薄膜晶体管的整体电性表现。如图1所示,在薄膜晶体管的尺寸固定通道宽度(W)的情况下,通道长度(L)越来越小时,可发现当L缩小到15微米以下时,氧化物半导体薄膜晶体管电性表现将会产生偏移。因此,为了提升氧化物半导体薄膜晶体管的效能,需对氧化物半导体层与源极/漏极间的接触阻抗进行改善。目前一般的做法有使用等离子体处理(plasmatreatment)或使氧化物半导体层直接接触含氢量高的材料而产生氢扩散,以使部分预计与源极/漏极接触的氧化物半导体层的区域的电阻率降低。然而,上述的等离子体处理方式容易造成被处理后的氧化物半导体层的阻值状况不稳定,而直接接触含氢量高的材料以产生氢扩散的方式则不易控制其扩散范围,容易造成原本要当作传导区的氧化物半导体层易受到扩散影响而严重地影响到薄膜晶体管的元件特性,特别是在短通道的薄膜晶体管的设计下。In the structure of a general oxide semiconductor thin film transistor, the contact resistance between the oxide semiconductor layer and the material of the source/drain will obviously affect the overall electrical performance of the oxide semiconductor thin film transistor. As shown in Figure 1, when the channel width (W) of the thin film transistor is fixed, the channel length (L) becomes smaller and smaller. It can be found that when L is reduced to less than 15 microns, the electrical performance of the oxide semiconductor thin film transistor An offset will occur. Therefore, in order to improve the performance of the oxide semiconductor thin film transistor, it is necessary to improve the contact resistance between the oxide semiconductor layer and the source/drain. The current general practice is to use plasma treatment (plasmatreatment) or directly contact the oxide semiconductor layer with a material with a high hydrogen content to cause hydrogen diffusion, so that part of the region of the oxide semiconductor layer that is expected to be in contact with the source/drain Resistivity decreases. However, the above-mentioned plasma treatment method is likely to cause unstable resistance of the treated oxide semiconductor layer, and the method of directly contacting a material with high hydrogen content to generate hydrogen diffusion is difficult to control its diffusion range, which is likely to cause the original The oxide semiconductor layer to be used as the conduction region is easily affected by diffusion and seriously affects the device characteristics of the thin film transistor, especially in the design of a short-channel thin film transistor.
发明内容Contents of the invention
本发明的主要目的之一在于提供一种氧化物半导体薄膜晶体管及其制作方法,利用氢扩散控制层来控制氢进入氧化物半导体层的状况,避免氢进入氧化物半导体层的传导区中而影响到薄膜晶体管的元件特性,此处定义的传导区为氧化物半导体薄膜晶体管理想上电子移动最短距离。One of the main purposes of the present invention is to provide an oxide semiconductor thin film transistor and its manufacturing method, which uses the hydrogen diffusion control layer to control the entry of hydrogen into the oxide semiconductor layer, so as to avoid the influence of hydrogen entering the conduction region of the oxide semiconductor layer. Regarding the device characteristics of thin film transistors, the conduction region defined here is the shortest distance that electrons move ideally in oxide semiconductor thin film transistors.
本发明的一实施例提供一种氧化物半导体薄膜晶体管,包括一基板、一图案化氧化物半导体层、一图案化栅极介电层、一栅极、一氢扩散控制层、一氢来源层、一源极以及一漏极。图案化氧化物半导体层设置于基板上。图案化栅极介电层设置于图案化氧化物半导体层上。栅极设置于图案化栅极介电层上。氢扩散控制层设置于栅极与图案化氧化物半导体层上,且氢扩散控制层包覆栅极与图案化栅极介电层。氢来源层设置于氢扩散控制层以及图案化氧化物半导体层上,且氢来源层的含氢量大于氢扩散控制层的含氢量。源极与漏极设置于氢来源层上,且源极与漏极与图案化氧化物半导体层接触且电性连接。An embodiment of the present invention provides an oxide semiconductor thin film transistor, including a substrate, a patterned oxide semiconductor layer, a patterned gate dielectric layer, a gate, a hydrogen diffusion control layer, and a hydrogen source layer , a source and a drain. The patterned oxide semiconductor layer is disposed on the substrate. The patterned gate dielectric layer is disposed on the patterned oxide semiconductor layer. The gate is disposed on the patterned gate dielectric layer. The hydrogen diffusion control layer is disposed on the gate and the patterned oxide semiconductor layer, and the hydrogen diffusion control layer covers the gate and the patterned gate dielectric layer. The hydrogen source layer is disposed on the hydrogen diffusion control layer and the patterned oxide semiconductor layer, and the hydrogen content of the hydrogen source layer is greater than that of the hydrogen diffusion control layer. The source and the drain are disposed on the hydrogen source layer, and the source and the drain are in contact with and electrically connected to the patterned oxide semiconductor layer.
根据本发明的一实施方式,其中该氢扩散控制层直接接触该图案化氧化物半导体层,且该氢来源层直接接触该氢扩散控制层。According to an embodiment of the present invention, the hydrogen diffusion control layer directly contacts the patterned oxide semiconductor layer, and the hydrogen source layer directly contacts the hydrogen diffusion control layer.
根据本发明的另一实施方式,其中该氢来源层直接接触该图案化氧化物半导体层。According to another embodiment of the present invention, wherein the hydrogen source layer directly contacts the patterned oxide semiconductor layer.
根据本发明的另一实施方式,其中该氢扩散控制层覆盖该图案化栅极介电层与该栅极,该氢扩散控制层自该栅极的一顶面沿该栅极的一侧边向该图案化氧化物半导体层延伸,且延伸不超出该氢扩散控制层位于该顶面垂直投影于该基板的投影范围。According to another embodiment of the present invention, wherein the hydrogen diffusion control layer covers the patterned gate dielectric layer and the gate, the hydrogen diffusion control layer extends from a top surface of the gate along one side of the gate extending toward the patterned oxide semiconductor layer and not exceeding the projection range of the hydrogen diffusion control layer on the top surface vertically projected on the substrate.
根据本发明的另一实施方式,其中该氢扩散控制层于一水平方向上还具有一延伸部,该延伸部覆盖该图案化氧化物半导体层于该水平方向的两端。According to another embodiment of the present invention, the hydrogen diffusion control layer further has an extension portion in a horizontal direction, and the extension portion covers both ends of the patterned oxide semiconductor layer in the horizontal direction.
根据本发明的另一实施方式,所述的氧化物半导体薄膜晶体管还包括多个接触开孔,贯穿该氢来源层其中该源极与该漏极透过该等接触开孔与该图案化氧化物半导体层接触且电性连接。According to another embodiment of the present invention, the oxide semiconductor thin film transistor further includes a plurality of contact openings penetrating through the hydrogen source layer, wherein the source and the drain pass through the contact openings and the patterned oxide The material semiconductor layers are in contact and electrically connected.
根据本发明的另一实施方式,其中该等接触开孔还贯穿该氢扩散控制层。According to another embodiment of the present invention, the contact openings also penetrate through the hydrogen diffusion control layer.
根据本发明的另一实施方式,其中该氢扩散控制层包括金属氧化物、氮化硅、氧化硅或氮氧化硅。According to another embodiment of the present invention, wherein the hydrogen diffusion control layer comprises metal oxide, silicon nitride, silicon oxide or silicon oxynitride.
根据本发明的另一实施方式,其中该氢扩散控制层的厚度介于100埃(angstrom)至500埃。According to another embodiment of the present invention, the hydrogen diffusion control layer has a thickness ranging from 100 angstrom to 500 angstrom.
根据本发明的另一实施方式,其中该氢来源层包括氮化硅、氧化硅或氮氧化硅。According to another embodiment of the present invention, the hydrogen source layer comprises silicon nitride, silicon oxide or silicon oxynitride.
根据本发明的另一实施方式,其中该图案化氧化物半导体层包括氧化铟镓锌、氧化锌、氧化铟锌或氧化铟镓。According to another embodiment of the present invention, the patterned oxide semiconductor layer includes InGaZnO, ZnO, IZnO or InGaO.
根据本发明的另一实施方式,其中该氢来源层的该含氢量介于15atoms/cm3至27atoms/cm3之间。According to another embodiment of the present invention, wherein the hydrogen content of the hydrogen source layer is between 15 atoms/cm 3 and 27 atoms/cm 3 .
本发明的另一实施例提供一种氧化物半导体薄膜晶体管的制作方法,包括下列步骤。于一基板上形成一图案化氧化物半导体层;于图案化氧化物半导体层上形成一图案化栅极介电层;于图案化栅极介电层上形成一栅极;于栅极与图案化氧化物半导体层上形成一氢扩散控制层,其中氢扩散控制层包覆栅极与图案化栅极介电层;于氢扩散控制层以及图案化氧化物半导体层上形成一氢来源层,其中氢来源层的含氢量大于氢扩散控制层的含氢量;以及于氢来源层上形成一源极与一漏极,其中源极与漏极与图案化氧化物半导体层接触且电性连接。Another embodiment of the present invention provides a method for fabricating an oxide semiconductor thin film transistor, including the following steps. Forming a patterned oxide semiconductor layer on a substrate; forming a patterned gate dielectric layer on the patterned oxide semiconductor layer; forming a gate on the patterned gate dielectric layer; forming a hydrogen diffusion control layer on the oxide semiconductor layer, wherein the hydrogen diffusion control layer covers the gate and the patterned gate dielectric layer; forming a hydrogen source layer on the hydrogen diffusion control layer and the patterned oxide semiconductor layer, Wherein the hydrogen content of the hydrogen source layer is greater than the hydrogen content of the hydrogen diffusion control layer; and a source and a drain are formed on the hydrogen source layer, wherein the source and the drain are in contact with the patterned oxide semiconductor layer and are electrically connected connect.
根据本发明的一实施方式,该氢扩散控制层覆盖该图案化栅极介电层与该栅极,该氢扩散控制层自该栅极的一顶面沿该栅极的一侧边向该图案化氧化物半导体层延伸,且延伸不超出该氢扩散控制层位于该顶面垂直投影于该基板的投影范围。According to an embodiment of the present invention, the hydrogen diffusion control layer covers the patterned gate dielectric layer and the gate, and the hydrogen diffusion control layer extends from a top surface of the gate to the gate along one side of the gate. The patterned oxide semiconductor layer extends, and does not extend beyond the projection range of the hydrogen diffusion control layer on the top surface vertically projected on the substrate.
根据本发明的另一实施方式,其中该氢扩散控制层、该图案化栅极介电层与该栅极使用同一张掩模(mask)定义出图形。According to another embodiment of the present invention, the hydrogen diffusion control layer, the patterned gate dielectric layer and the gate use the same mask to define patterns.
根据本发明的另一实施方式,其中该氢扩散控制层包括金属氧化物、氮化硅、氧化硅或氮氧化硅。According to another embodiment of the present invention, wherein the hydrogen diffusion control layer comprises metal oxide, silicon nitride, silicon oxide or silicon oxynitride.
根据本发明的另一实施方式,其中该氢来源层的该含氢量介于15atoms/cm3至27atoms/cm3之间。According to another embodiment of the present invention, wherein the hydrogen content of the hydrogen source layer is between 15 atoms/cm 3 and 27 atoms/cm 3 .
本发明的氧化物半导体薄膜晶体管利用包覆栅极与图案化栅极介电层的氢扩散控制层来控制氢来源层中的氢扩散至图案化氧化物半导体层的状况,且可避免氢来源层中的氢通过图案化栅极介电层而扩散至图案化栅极介电层中的传导区,借此可在图案化氧化物半导体层中形成掺杂区的同时确保传导区的电性状况,进而可实现具有短通道设计的氧化物半导体薄膜晶体管。The oxide semiconductor thin film transistor of the present invention uses the hydrogen diffusion control layer covering the gate and the patterned gate dielectric layer to control the diffusion of hydrogen in the hydrogen source layer to the patterned oxide semiconductor layer, and can avoid the hydrogen source The hydrogen in the layer diffuses to the conduction region in the patterned gate dielectric layer through the patterned gate dielectric layer, whereby the electrical properties of the conduction region can be ensured while forming a doped region in the patterned oxide semiconductor layer. In this way, an oxide semiconductor thin film transistor with a short-channel design can be realized.
附图说明Description of drawings
图1绘示了现有技术的氧化物半导体薄膜晶体管的漏极电流-栅极电压关系图。FIG. 1 shows a drain current-gate voltage relationship diagram of an oxide semiconductor thin film transistor in the prior art.
图2至图6绘示了本发明第一实施例的氧化物半导体薄膜晶体管的制作方法示意图。2 to 6 illustrate schematic diagrams of the fabrication method of the oxide semiconductor thin film transistor according to the first embodiment of the present invention.
图7绘示了本发明第一实施例的氧化物半导体薄膜晶体管的漏极电流-栅极电压关系图。FIG. 7 is a graph showing the drain current-gate voltage relationship of the oxide semiconductor thin film transistor according to the first embodiment of the present invention.
图8绘示了一对照例的氧化物半导体薄膜晶体管的示意图。FIG. 8 is a schematic diagram of an oxide semiconductor thin film transistor of a comparative example.
图9绘示了对照例的氧化物半导体薄膜晶体管的漏极电流-栅极电压关系图。FIG. 9 is a graph showing the drain current-gate voltage relationship of the oxide semiconductor thin film transistor of the comparative example.
图10绘示了本发明第二实施例的氧化物半导体薄膜晶体管的示意图。FIG. 10 is a schematic diagram of an oxide semiconductor thin film transistor according to a second embodiment of the present invention.
图11绘示了本发明第三实施例的氧化物半导体薄膜晶体管的示意图。FIG. 11 is a schematic diagram of an oxide semiconductor thin film transistor according to a third embodiment of the present invention.
图12与图13绘示了本发明第四实施例的氧化物半导体薄膜晶体管的制作方法示意图。FIG. 12 and FIG. 13 are schematic diagrams illustrating a manufacturing method of an oxide semiconductor thin film transistor according to a fourth embodiment of the present invention.
图14绘示了本发明第四实施例的氧化物半导体薄膜晶体管的漏极电流-栅极电压关系图。FIG. 14 is a graph showing the drain current-gate voltage relationship of the oxide semiconductor thin film transistor according to the fourth embodiment of the present invention.
【符号说明】【Symbol Description】
10基板10 substrates
20图案化氧化物半导体层20 Patterning the oxide semiconductor layer
20A传导区20A conduction area
20B掺杂区20B doped region
30图案化栅极介电层30 Patterned gate dielectric layer
30F交界处30F Junction
30S侧边30S side
40栅极40 grid
50氢扩散控制层50 hydrogen diffusion control layer
50A延伸部50A extension
60氢来源层60 hydrogen source layer
70D漏极70D drain
70S源极70S source
101-104氧化物半导体薄膜晶体管101-104 Oxide Semiconductor Thin Film Transistors
200氧化物半导体薄膜晶体管200 oxide semiconductor thin film transistors
H水平方向Hhorizontal direction
S顶面Stop
V接触开孔V contact opening
W1第一宽度W1 first width
W2第二宽度W2 second width
W3第三宽度W3 third width
Z垂直方向Z vertical direction
具体实施方式Detailed ways
为使熟习本发明所属技术领域的一般技术人员能更进一步了解本发明,下文特列举本发明的较佳实施例,并配合所附附图,详细说明本发明的构成内容及所欲达成的效果。In order to enable those who are familiar with the technical field of the present invention to further understand the present invention, the preferred embodiments of the present invention are listed below, together with the accompanying drawings, to describe in detail the composition of the present invention and the desired effect .
请参考图2至图6。图2至图6绘示了本发明第一实施例的氧化物半导体薄膜晶体管的制作方法示意图。本实施例的氧化物半导体薄膜晶体管的制作方法包括下列步骤。首先,如图2所示,于基板10上形成图案化氧化物半导体层20。基板10可包括硬质基板例如玻璃基板与陶瓷基板、可挠式基板(flexiblesubstrate)例如塑胶基板或其他适合材料所形成的基板。图案化氧化物半导体层20的材料可包括氧化铟镓锌、氧化锌、氧化铟锌、氧化铟镓或其他适合的氧化物半导体材料,且图案化氧化物半导体层20可通过例如微影、蚀刻等制程达到图案化效果或直接以转印(rolltoroll)方式形成,但并不以此为限。接着,于图案化氧化物半导体层20上形成图案化栅极介电层30与栅极40。图案化栅极介电层30与栅极40可通过同一个光阻图案(未图示)来定义形成,借以使图案化栅极介电层30的图形与栅极40的图形于垂直方向Z上可达到自对准(self-aligned)的效果,但并不以此为限。图案化栅极介电层30可为单层或多层的介电材料层,且其材料可包括无机材料例如氮化硅(siliconnitride)、氧化硅(siliconoxide)、氮氧化硅(siliconoxynitride)、与金属氧化物(例如氧化铝)、有机材料例如丙烯酸类树脂(acrylicresin)或其它适合的介电材料。此外,栅极40可包括金属材料例如铝、铜、银、铬、钛、钼的其中至少一者、上述材料的复合层或上述材料的合金,但并不以此为限而可使用其他具有导电性质的材料。Please refer to Figure 2 to Figure 6. 2 to 6 illustrate schematic diagrams of the fabrication method of the oxide semiconductor thin film transistor according to the first embodiment of the present invention. The manufacturing method of the oxide semiconductor thin film transistor of this embodiment includes the following steps. First, as shown in FIG. 2 , a patterned oxide semiconductor layer 20 is formed on the substrate 10 . The substrate 10 may include a rigid substrate such as a glass substrate and a ceramic substrate, a flexible substrate such as a plastic substrate, or a substrate formed of other suitable materials. The material of the patterned oxide semiconductor layer 20 may include indium gallium zinc oxide, zinc oxide, indium zinc oxide, indium gallium oxide or other suitable oxide semiconductor materials, and the patterned oxide semiconductor layer 20 may be obtained by, for example, lithography, etching, etc. The patterning effect can be achieved through other processes or directly formed by rolltoroll, but not limited thereto. Next, a patterned gate dielectric layer 30 and a gate 40 are formed on the patterned oxide semiconductor layer 20 . The patterned gate dielectric layer 30 and the gate 40 can be defined and formed by the same photoresist pattern (not shown), so that the pattern of the patterned gate dielectric layer 30 and the pattern of the gate 40 are aligned in the vertical direction Z The self-aligned (self-aligned) effect can be achieved, but not limited thereto. The patterned gate dielectric layer 30 can be a single-layer or multi-layer dielectric material layer, and its material can include inorganic materials such as silicon nitride, silicon oxide, silicon oxynitride, and Metal oxides such as alumina, organic materials such as acrylic resins, or other suitable dielectric materials. In addition, the gate 40 may include metal materials such as at least one of aluminum, copper, silver, chromium, titanium, and molybdenum, a composite layer of the above materials, or an alloy of the above materials, but it is not limited thereto and other materials with Materials with conductive properties.
接着,如图3所示,于图案化栅极介电层30上形成氢扩散控制层50。并且如图4所示,图案化氢扩散控制层50,于此步骤中,氢扩散控制层50、图案化栅极介电层30与栅极40使用同一张掩模(mask)定义出图形,利用曝光量来决定氢扩散控制层50覆盖图案化栅极介电层30的大小。详细来说,氢扩散控制层50为ㄇ字形,完全覆盖图案化栅极介电层30与栅极40的侧边30S以及侧边30S与图案化氧化物半导体层20的交界处30F,氢扩散控制层50自栅极40的顶面S于垂直方向Z上沿侧边30S向图案化氧化物半导体层20延伸,且延伸不超出氢扩散控制层50位于顶面S垂直投影于基板10的投影范围。水平方向H较佳为与垂直方向Z正交,而垂直方向Z较佳为大体上与基板10的表面正交,但并不以此为限。在本实施例中,氢扩散控制层50除了包覆栅极40与图案化栅极介电层30之外,仅覆盖住图案化栅极介电层30的侧边30S与图案化氧化物半导体层20的交界处30F,故氢扩散控制层50未覆盖图案化氧化物半导体层20于水平方向H上的两端,但本发明并不以此为限。在本发明的其他实施例中亦可视需要使全面覆盖图案化氧化物半导体层20或至少覆盖图案化氧化物半导体层20于水平方向H上的两端。氢扩散控制层50可包括含氢量较氢来源层60低的绝缘材料,包括氮化硅、氧化硅、氮氧化硅或金属氧化物等,金属氧化物举例而言可为氧化铝(aluminiumoxide)、氧化钙(calciumoxide)、氧化钼(molybdenumoxide)、氧化锌(zincoxide)、氧化铟(indiumoxide)、氧化镓(galliumoxide)、氧化铟镓(indiumgalliumoxide)、氧化铟镓锌(indiumgalliumzincoxide)、氧化铟锌(indiumzincoxide)、氧化铟锡(indiumtinoxide)、氧化钛(titaniumoxide),氧化锡(tinoxide)、第三族金属氧化物、第四族金属氧化物或第五族金属氧化物,以及其它适合的金属氧化物材料。此处的含氢量,是制程处理后氢扩散控制层50的含氢量,而本实施例的氢扩散控制层50较佳为结构较为致密的氧化铝,借此达到较佳防止氢扩散的效果,但并不以此为限。氢扩散控制层50可利用化学气相沉积或物理气相沉积方式形成,并可通过制程时的制程环境以及参数调整来降低含氢量。此外,氢扩散控制层50的厚度介于100埃(angstrom)至1000埃之间,较佳为介于100埃至500埃之间,但并不此为限。值得说明的是,本实施例的氢扩散控制层50与栅极40以及图案化栅极介电层30对应设置,故可利用于栅极40的制程中所使用的同一掩模来对氢扩散控制层50形成图案化效果,即可利用同一掩模并搭配曝光量(exposuredose)的调整来形成对氢扩散控制层50进行图案化所需的对应光阻图案,借此达到减少掩模需求量并降低生产成本的效果,但并不以此为限。Next, as shown in FIG. 3 , a hydrogen diffusion control layer 50 is formed on the patterned gate dielectric layer 30 . And as shown in FIG. 4, the hydrogen diffusion control layer 50 is patterned. In this step, the hydrogen diffusion control layer 50, the patterned gate dielectric layer 30 and the gate 40 use the same mask (mask) to define a pattern, The exposure amount is used to determine the size of the hydrogen diffusion control layer 50 covering the patterned gate dielectric layer 30 . In detail, the hydrogen diffusion control layer 50 is U-shaped, completely covering the patterned gate dielectric layer 30 and the side 30S of the gate 40 and the junction 30F between the side 30S and the patterned oxide semiconductor layer 20, allowing hydrogen to diffuse The control layer 50 extends from the top surface S of the gate 40 to the patterned oxide semiconductor layer 20 along the side 30S in the vertical direction Z, and does not extend beyond the projection of the hydrogen diffusion control layer 50 on the top surface S vertically projected on the substrate 10 scope. The horizontal direction H is preferably perpendicular to the vertical direction Z, and the vertical direction Z is preferably substantially perpendicular to the surface of the substrate 10 , but not limited thereto. In this embodiment, the hydrogen diffusion control layer 50 only covers the side 30S of the patterned gate dielectric layer 30 and the patterned oxide semiconductor The junction 30F of the layer 20 , so the hydrogen diffusion control layer 50 does not cover both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H, but the invention is not limited thereto. In other embodiments of the present invention, the patterned oxide semiconductor layer 20 may be fully covered or at least both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H may be covered as required. The hydrogen diffusion control layer 50 may include an insulating material with a lower hydrogen content than the hydrogen source layer 60, including silicon nitride, silicon oxide, silicon oxynitride, or metal oxide, and the metal oxide may be, for example, aluminum oxide. , calcium oxide, molybdenum oxide, zinc oxide, indium oxide, gallium oxide, indium gallium oxide, indium gallium zinc oxide, indium zinc oxide ( indium zinc oxide), indium tin oxide, titanium oxide, tin oxide, Group III metal oxide, Group IV metal oxide or Group V metal oxide, and other suitable metal oxides Material. The hydrogen content here refers to the hydrogen content of the hydrogen diffusion control layer 50 after the process treatment, and the hydrogen diffusion control layer 50 in this embodiment is preferably aluminum oxide with a relatively dense structure, so as to better prevent hydrogen diffusion. effect, but not limited to this. The hydrogen diffusion control layer 50 can be formed by chemical vapor deposition or physical vapor deposition, and the hydrogen content can be reduced by adjusting the process environment and parameters during the process. In addition, the thickness of the hydrogen diffusion control layer 50 is between 100 angstrom to 1000 angstrom, preferably between 100 angstrom to 500 angstrom, but not limited thereto. It is worth noting that the hydrogen diffusion control layer 50 of this embodiment is provided correspondingly to the gate 40 and the patterned gate dielectric layer 30, so the same mask used in the manufacturing process of the gate 40 can be used to control the hydrogen diffusion. The patterning effect of the control layer 50 can be achieved by using the same mask and adjusting the exposure (exposuredose) to form the corresponding photoresist pattern required for patterning the hydrogen diffusion control layer 50, thereby reducing the mask demand And the effect of reducing the production cost, but not limited thereto.
的后,如图5所示,于基板10、图案化氧化物半导体层20以及氢扩散控制层50上形成一氢来源层60。氢来源层60的含氢量大于氢扩散控制层50的含氢量。氢来源层60的材料可包括氮化硅、氧化硅、氮氧化硅或其他适合的具有高含氢量的绝缘材料,氢来源层60可包含制程反应后含氢量较高的氮化硅或制程反应后含氢量较氢扩散控制层50高的氧化硅。氢来源层60亦可利用化学气相沉积或物理气相沉积方式形成,并可通过制程时的制程环境以及参数调整来提升含氢量。举例来说,当使用化学气相沉积来形成氮化硅的氢来源层60时,其制程温度可为280℃,而通入的反应气体可包括硅甲烷(SiH4)与氨气(NH3),且甲烷(SiH4)与氨气(NH3)的通入量可分别为200sccm与1200sccm,借此形成含氢量较氢扩散控制层50高的氮化硅,但并不以此为限。本实施例的氢来源层60的含氢量较佳为介于15atoms/cm3至27atoms/cm3之间,用以具有足够的氢可扩散至图案化氧化物半导体层20中来形成掺杂区20B,但并不以此为限。由于本实施例的氢扩散控制层50未覆盖图案化氧化物半导体层20于水平方向H上的两端,故图案化氧化物半导体层20于水平方向H上的两端暴露于氢扩散控制层50之外而直接与氢来源层60接触,借此可加强氢来源层60中的氢成分扩散至对应的图案化氧化物半导体层20的效果,进而降低掺杂区20B的电阻率。在本实施例中,图案化氧化物半导体层20与氢来源层60直接接触之处形成两个掺杂区20B,而与氢扩散控制层50、栅极40以及图案化栅极介电层30对应的区域仍维持具有半导体特性的传导区20A。换句话说,本实施例的图案化氧化物半导体层20于氢来源层60形成的后可包括传导区20A以及两个掺杂区20B,栅极40于垂直方向Z上与传导区20A重叠,两掺杂区20B于水平方向H上分别位于传导区20A的两侧,且掺杂区20B的电阻率小于传导区20A的电阻率。After that, as shown in FIG. 5 , a hydrogen source layer 60 is formed on the substrate 10 , the patterned oxide semiconductor layer 20 and the hydrogen diffusion control layer 50 . The hydrogen content of the hydrogen source layer 60 is greater than that of the hydrogen diffusion control layer 50 . The material of the hydrogen source layer 60 may include silicon nitride, silicon oxide, silicon oxynitride or other suitable insulating materials with high hydrogen content, and the hydrogen source layer 60 may include silicon nitride or silicon nitride with a higher hydrogen content after the process reaction. Silicon oxide with higher hydrogen content than the hydrogen diffusion control layer 50 after process reaction. The hydrogen source layer 60 can also be formed by chemical vapor deposition or physical vapor deposition, and the hydrogen content can be increased by adjusting the process environment and parameters during the process. For example, when chemical vapor deposition is used to form the hydrogen source layer 60 of silicon nitride, the process temperature may be 280° C., and the reaction gas may include silane (SiH 4 ) and ammonia (NH 3 ). , and the amount of methane (SiH 4 ) and ammonia (NH 3 ) can be respectively 200 sccm and 1200 sccm, thereby forming silicon nitride with a hydrogen content higher than that of the hydrogen diffusion control layer 50, but not limited thereto . The hydrogen content of the hydrogen source layer 60 in this embodiment is preferably between 15 atoms/cm 3 and 27 atoms/cm 3 , so as to have enough hydrogen to diffuse into the patterned oxide semiconductor layer 20 to form doping District 20B, but not limited thereto. Since the hydrogen diffusion control layer 50 of this embodiment does not cover both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H, both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H are exposed to the hydrogen diffusion control layer. 50 and is in direct contact with the hydrogen source layer 60, thereby enhancing the effect of the hydrogen component in the hydrogen source layer 60 diffusing to the corresponding patterned oxide semiconductor layer 20, thereby reducing the resistivity of the doped region 20B. In this embodiment, two doped regions 20B are formed where the patterned oxide semiconductor layer 20 is in direct contact with the hydrogen source layer 60 , and are connected to the hydrogen diffusion control layer 50 , the gate 40 and the patterned gate dielectric layer 30 The corresponding region still maintains the conductive region 20A with semiconductor characteristics. In other words, the patterned oxide semiconductor layer 20 of this embodiment may include a conduction region 20A and two doped regions 20B after the hydrogen source layer 60 is formed, the gate 40 overlaps the conduction region 20A in the vertical direction Z, The two doped regions 20B are respectively located on two sides of the conduction region 20A in the horizontal direction H, and the resistivity of the doped regions 20B is smaller than the resistivity of the conduction region 20A.
值得说明的是,由于本实施例的氢扩散控制层50包覆图案化栅极介电层30,故可避免氢来源层60中的氢由侧向穿过图案化栅极介电层30而影响到传导区20A的电性状况。覆盖于图案化栅极介电层30的侧边30S与图案化氧化物半导体层20的交界处30F的氢扩散控制层50亦可用以控制掺杂区20B的范围,避免使掺杂区20B的范围过大而使整个图案化氧化物半导体层20呈现电性导通的状态。在本实施例中,设置于栅极40上且包覆栅极40与图案化栅极介电层30的氢扩散控制层50于水平方向H上具有第一宽度W1,栅极40于水平方向H上具有第二宽度W2,传导区20A于水平方向H上具有第三宽度W3,而氢扩散控制层50的第一宽度W1大于或等于传导区20A的第三宽度W3。通过调整氢来源层60的氢的扩散状况可对传导区20A的宽度进行控制,例如当氢来源层60的氢的扩散状况较强时,传导区20A的第三宽度W3亦可能小于栅极40的第二宽度W2。此外,本实施例的制作方法可视需要选择性地还包括加热处理制程,用以辅助氢来源层60的氢的扩散效果,但并不以此为限。It is worth noting that, since the hydrogen diffusion control layer 50 of this embodiment covers the patterned gate dielectric layer 30, it is possible to prevent the hydrogen in the hydrogen source layer 60 from passing through the patterned gate dielectric layer 30 laterally. Affects the electrical condition of the conductive region 20A. The hydrogen diffusion control layer 50 covering the junction 30F between the side 30S of the patterned gate dielectric layer 30 and the patterned oxide semiconductor layer 20 can also be used to control the range of the doped region 20B to avoid making the doped region 20B If the range is too large, the entire patterned oxide semiconductor layer 20 is in an electrically conductive state. In this embodiment, the hydrogen diffusion control layer 50 disposed on the gate 40 and covering the gate 40 and the patterned gate dielectric layer 30 has a first width W1 in the horizontal direction H, and the gate 40 in the horizontal direction H has a second width W2, the conduction region 20A has a third width W3 in the horizontal direction H, and the first width W1 of the hydrogen diffusion control layer 50 is greater than or equal to the third width W3 of the conduction region 20A. The width of the conduction region 20A can be controlled by adjusting the hydrogen diffusion condition of the hydrogen source layer 60. For example, when the hydrogen diffusion condition of the hydrogen source layer 60 is strong, the third width W3 of the conduction region 20A may also be smaller than the gate 40. The second width W2. In addition, the manufacturing method of this embodiment may optionally further include a heat treatment process to assist the hydrogen diffusion effect of the hydrogen source layer 60 , but it is not limited thereto.
然后,如图6所示,于氢来源层60中形成多个接触开孔V,接触开孔V贯穿氢来源层60而暴露出部分的掺杂区20B。的后,于氢来源层60上形成一源极70S以及一漏极70D,借此完成如图5所示的氧化物半导体薄膜晶体管101。源极70S与漏极70D透过接触开孔V与两掺杂区20B接触且电性连接,源极70S与漏极70D可分别包括金属材料例如铝、铜、银、铬、钛、钼的其中至少一者、上述材料的复合层或上述材料的合金,但并不以此为限而可使用其他具有导电性质的材料。Then, as shown in FIG. 6 , a plurality of contact holes V are formed in the hydrogen source layer 60 , and the contact holes V penetrate the hydrogen source layer 60 to expose a part of the doped region 20B. Afterwards, a source 70S and a drain 70D are formed on the hydrogen source layer 60 , thereby completing the oxide semiconductor thin film transistor 101 shown in FIG. 5 . The source 70S and the drain 70D are in contact with and electrically connected to the two doped regions 20B through the contact opening V. The source 70S and the drain 70D may respectively include metal materials such as aluminum, copper, silver, chromium, titanium, and molybdenum. At least one of them is a composite layer of the above materials or an alloy of the above materials, but it is not limited thereto and other materials with conductive properties can be used.
如图6所示,本实施例的氧化物半导体薄膜晶体管101包括图案化氧化物半导体层20、图案化栅极介电层30、栅极40、氢扩散控制层50、氢来源层60、源极70S以及漏极70D。图案化氧化物半导体层20设置于基板10上。图案化栅极介电层30设置于图案化氧化物半导体层20上。栅极40设置于图案化栅极介电层30上。氢扩散控制层50设置于栅极40与图案化氧化物半导体层20上,且氢扩散控制层50包覆栅极40与图案化栅极介电层30。氢来源层60设置于氢扩散控制层50以及图案化氧化物半导体层20上,且氢来源层60的含氢量大于氢扩散控制层50的含氢量。源极70S与漏极70D设置于氢来源层60上,源极70S与漏极70D透过接触开孔V与两掺杂区20B接触且电性连接。氧化物半导体薄膜晶体管101中各元件的材料特性已于上述制作方法中说明,故在此并不再赘述。值得注意的是,本实施例的氢扩散控制层50较佳为直接接触图案化氧化物半导体层20,氢来源层60较佳为直接接触氢扩散控制层50,且氢来源层60直接接触掺杂区20B,但并不以此为限。通过本实施例的氢扩散控制层50可控制氢来源层60中的氢扩散至图案化氧化物半导体层20的状况,并同时可避免氢来源层60中的氢通过图案化栅极介电层30而扩散至图案化氧化物半导体层20中的传导区20A。在此设计下,即使栅极40以及图案化栅极介电层30因短通道设计而需缩小,仍可通过氢扩散控制层50来控制掺杂区20B的范围大小并避免传导区20A的电性受到影响,借此提升氧化物半导体薄膜晶体管101的元件特性。As shown in FIG. 6, the oxide semiconductor thin film transistor 101 of this embodiment includes a patterned oxide semiconductor layer 20, a patterned gate dielectric layer 30, a gate 40, a hydrogen diffusion control layer 50, a hydrogen source layer 60, a source pole 70S and drain 70D. The patterned oxide semiconductor layer 20 is disposed on the substrate 10 . The patterned gate dielectric layer 30 is disposed on the patterned oxide semiconductor layer 20 . The gate 40 is disposed on the patterned gate dielectric layer 30 . The hydrogen diffusion control layer 50 is disposed on the gate 40 and the patterned oxide semiconductor layer 20 , and the hydrogen diffusion control layer 50 covers the gate 40 and the patterned gate dielectric layer 30 . The hydrogen source layer 60 is disposed on the hydrogen diffusion control layer 50 and the patterned oxide semiconductor layer 20 , and the hydrogen content of the hydrogen source layer 60 is greater than that of the hydrogen diffusion control layer 50 . The source 70S and the drain 70D are disposed on the hydrogen source layer 60 , and the source 70S and the drain 70D are in contact with and electrically connected to the two doped regions 20B through the contact opening V. The material characteristics of each element in the oxide semiconductor thin film transistor 101 have been described in the above-mentioned manufacturing method, so they will not be repeated here. It should be noted that the hydrogen diffusion control layer 50 of this embodiment is preferably in direct contact with the patterned oxide semiconductor layer 20, the hydrogen source layer 60 is preferably in direct contact with the hydrogen diffusion control layer 50, and the hydrogen source layer 60 is in direct contact with the doped oxide semiconductor layer 20. impurity region 20B, but not limited thereto. The hydrogen diffusion control layer 50 of this embodiment can control the diffusion of hydrogen in the hydrogen source layer 60 to the patterned oxide semiconductor layer 20, and at the same time prevent the hydrogen in the hydrogen source layer 60 from passing through the patterned gate dielectric layer 30 to diffuse into the conductive region 20A in the patterned oxide semiconductor layer 20 . Under this design, even if the gate 40 and the patterned gate dielectric layer 30 need to be reduced due to the short-channel design, the hydrogen diffusion control layer 50 can still be used to control the size of the doped region 20B and avoid the conductive region 20A. performance is affected, thereby improving the device characteristics of the oxide semiconductor thin film transistor 101 .
举例来说,请参考图6至图9。图7绘示了第一实施例的氧化物半导体薄膜晶体管101的通道宽度(W)与通道长度(L)均为5微米的设计状况下的漏极电流-栅极电压的关系图。图8绘示了一对照例的氧化物半导体薄膜晶体管200的示意图。图9绘示了对照例的氧化物半导体薄膜晶体管200于通道宽度与通道长度均为5微米的设计状况下的漏极电流-栅极电压关系图。此对照例的氧化物半导体薄膜晶体管200除了未包括第一实施例的氢扩散控制层50,其余部件均与氧化物半导体薄膜晶体管101相似。如图6与图7所示,第一实施例的氧化物半导体薄膜晶体管101在设置有氢扩散控制层50的状况下可于通道宽度与通道长度比值相对较高的状况下仍具有良好的薄膜晶体管特性,且其载子迁移率(mobility)可达约22cm2/VS。相对来说,如图8与图9所示,由于未设置氢扩散控制层,故在通道宽度与通道长度比值相对较高的状况下此对照例的氧化物半导体薄膜晶体管会偏向导通而不具有薄膜晶体管特性。For example, please refer to FIG. 6 to FIG. 9 . FIG. 7 shows the relationship between the drain current and the gate voltage of the oxide semiconductor thin film transistor 101 according to the first embodiment when the channel width (W) and the channel length (L) are both 5 μm. FIG. 8 is a schematic diagram of an oxide semiconductor thin film transistor 200 of a comparative example. FIG. 9 shows the relationship between the drain current and the gate voltage of the oxide semiconductor thin film transistor 200 of the comparative example under the design condition that both the channel width and the channel length are 5 μm. The oxide semiconductor thin film transistor 200 of this comparative example is similar to the oxide semiconductor thin film transistor 101 except that it does not include the hydrogen diffusion control layer 50 of the first embodiment. As shown in FIG. 6 and FIG. 7 , the oxide semiconductor thin film transistor 101 of the first embodiment can still have a good thin film when the ratio of the channel width to the channel length is relatively high when the hydrogen diffusion control layer 50 is provided. Transistor characteristics, and its carrier mobility (mobility) can reach about 22cm 2 /VS. Relatively speaking, as shown in FIG. 8 and FIG. 9 , since the hydrogen diffusion control layer is not provided, the oxide semiconductor thin film transistor of this comparative example will be biased to conduction under the condition that the ratio of the channel width to the channel length is relatively high. With thin film transistor characteristics.
下文将针对本发明的不同实施例进行说明,且为简化说明,以下说明主要针对各实施例不同之处进行详述,而不再对相同之处作重复赘述。此外,本发明的各实施例中相同的元件以相同的标号进行标示,以利于各实施例间互相对照。Different embodiments of the present invention will be described below, and to simplify the description, the following description mainly focuses on the differences of the embodiments, and the similarities will not be repeated. In addition, the same elements in the various embodiments of the present invention are marked with the same symbols, so as to facilitate mutual comparison between the various embodiments.
请参考图10。图10绘示了本发明第二实施例的氧化物半导体薄膜晶体管102的示意图。与上述第一实施例不同的地方在于,本实施例的传导区20A的第三宽度W3小于氢扩散控制层50的第一宽度W1,且传导区20A的第三宽度W3大体上与栅极40的第二宽度W2相同,但并不以此为限。Please refer to Figure 10. FIG. 10 shows a schematic diagram of an oxide semiconductor thin film transistor 102 according to a second embodiment of the present invention. The difference from the first embodiment above is that the third width W3 of the conduction region 20A in this embodiment is smaller than the first width W1 of the hydrogen diffusion control layer 50 , and the third width W3 of the conduction region 20A is substantially the same as the gate 40 The second width W2 is the same, but not limited thereto.
请参考图11。图11绘示了本发明第三实施例的氧化物半导体薄膜晶体管103的示意图。与上述第一实施例不同的地方在于,本实施例可通过加强氢来源层60中氢的扩散效应来使得传导区20A的第三宽度W3小于栅极40的第二宽度W2,借此达到更进一步缩短氧化物半导体薄膜晶体管103的通道宽度的目的。上述的加强氢来源层60中氢扩散效应的方式可包括提高强氢来源层60中氢的浓度(例如于沉积氢来源层60时额外通入氢气)、施加一辅助处理例如加热处理或其他适合可用来加强氢扩散效应的方式。Please refer to Figure 11. FIG. 11 shows a schematic diagram of an oxide semiconductor thin film transistor 103 according to a third embodiment of the present invention. The difference from the above-mentioned first embodiment is that this embodiment can make the third width W3 of the conduction region 20A smaller than the second width W2 of the gate 40 by strengthening the diffusion effect of hydrogen in the hydrogen source layer 60, thereby achieving more The purpose of further shortening the channel width of the oxide semiconductor thin film transistor 103 . The above-mentioned method of strengthening the hydrogen diffusion effect in the hydrogen source layer 60 may include increasing the concentration of hydrogen in the strong hydrogen source layer 60 (for example, additionally injecting hydrogen gas when depositing the hydrogen source layer 60), applying an auxiliary treatment such as heat treatment or other suitable A method that can be used to enhance the hydrogen diffusion effect.
请参考图12与图13。图12与图13绘示了本发明第四实施例的氧化物半导体薄膜晶体管的制作方法示意图。与上述第一实施例不同的地方在于,如图12所示,本实施例的氢扩散控制层50可完全覆盖图案化氧化物半导体层20、图案化栅极介电层30以及栅极40,故氢扩散控制层50覆盖图案化氧化物半导体层20于水平方向H上的两端,而氢来源层60则未直接接触图案化氧化物半导体层20以及后续形成的掺杂区20B。借此方式可避免当氢来源层60中的氢扩散效应过强而使得对应形成的掺杂区20B的范围过大,并因此影响到传导区20A的电性状况。如图13所示,在形成本实施例的氧化物半导体薄膜晶体管104时,由于掺杂区20B被氢扩散控制层50以及氢来源层60所覆盖,故接触开孔V需贯穿氢来源层60与氢扩散控制层50以部分暴露出两掺杂区20B,并使得源极70S与漏极70D可通过接触开孔V与掺杂区20B接触而形成电性连接。此外,本实施例的氢扩散控制层50还具有一延伸部50A,延伸部50A覆盖图案化氧化物半导体层20于水平方向H的两端。Please refer to Figure 12 and Figure 13. FIG. 12 and FIG. 13 are schematic diagrams illustrating a manufacturing method of an oxide semiconductor thin film transistor according to a fourth embodiment of the present invention. The difference from the first embodiment above is that, as shown in FIG. 12 , the hydrogen diffusion control layer 50 of this embodiment can completely cover the patterned oxide semiconductor layer 20 , the patterned gate dielectric layer 30 and the gate 40 , Therefore, the hydrogen diffusion control layer 50 covers both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H, while the hydrogen source layer 60 does not directly contact the patterned oxide semiconductor layer 20 and the subsequently formed doped region 20B. In this manner, it is possible to avoid the excessively strong hydrogen diffusion effect in the hydrogen source layer 60 from causing the correspondingly formed doped region 20B to be too large, thereby affecting the electrical properties of the conduction region 20A. As shown in FIG. 13, when forming the oxide semiconductor thin film transistor 104 of this embodiment, since the doped region 20B is covered by the hydrogen diffusion control layer 50 and the hydrogen source layer 60, the contact opening V needs to penetrate the hydrogen source layer 60. The hydrogen diffusion control layer 50 partially exposes the two doped regions 20B, so that the source 70S and the drain 70D can contact the doped regions 20B through the contact opening V to form an electrical connection. In addition, the hydrogen diffusion control layer 50 of this embodiment further has an extension portion 50A, and the extension portion 50A covers both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H.
请参考图14,并请一并参考图13。图14绘示了本实施例的氧化物半导体薄膜晶体管104于通道宽度与通道长度均为5微米的设计状况下的漏极电流-栅极电压的关系图。如图14与图13所示,本实施例的氧化物半导体薄膜晶体管104在设置有氢扩散控制层50的状况下可于通道宽度与通道长度比值相对较高的状况下仍具有良好的薄膜晶体管特性,且其载子迁移率(mobility)可达约13cm2/VS。虽然本实施例的氧化物半导体薄膜晶体管104的载子迁移率较上述第一实施例低,但由于本实施例的氢扩散控制层50覆盖图案化氧化物半导体层20而使氢来源层60未直接接触图案化氧化物半导体层20,故对于氢来源层60的氢浓度控制精准度上可相对较为宽松而有利于制程的进行。相对来说,如图8与图9所示,由于未设置氢扩散控制层,故在通道宽度与通道长度比值相对较高的状况下此对照例的氧化物半导体薄膜晶体管会偏向导通而不具有薄膜晶体管特性。Please refer to Figure 14, and please refer to Figure 13 as well. FIG. 14 shows the relationship between the drain current and the gate voltage of the oxide semiconductor thin film transistor 104 of the present embodiment under the design condition that both the channel width and the channel length are 5 μm. As shown in FIG. 14 and FIG. 13 , the oxide semiconductor thin film transistor 104 of this embodiment can still have a good thin film transistor under the condition that the ratio of the channel width to the channel length is relatively high when the hydrogen diffusion control layer 50 is provided. characteristics, and its carrier mobility (mobility) can reach about 13cm 2 /VS. Although the carrier mobility of the oxide semiconductor thin film transistor 104 of this embodiment is lower than that of the above-mentioned first embodiment, since the hydrogen diffusion control layer 50 of this embodiment covers the patterned oxide semiconductor layer 20, the hydrogen source layer 60 does not The patterned oxide semiconductor layer 20 is directly in contact with, so the control accuracy of the hydrogen concentration of the hydrogen source layer 60 can be relatively relaxed, which is beneficial to the progress of the manufacturing process. Relatively speaking, as shown in FIG. 8 and FIG. 9 , since no hydrogen diffusion control layer is provided, the oxide semiconductor thin film transistor of this comparative example will be biased to conduction under the condition that the ratio of the channel width to the channel length is relatively high. With thin film transistor characteristics.
综上所述,本发明的氧化物半导体薄膜晶体管利用氢扩散控制层来控制氢来源层中的氢扩散至图案化氧化物半导体层的状况,并同时避免氢来源层中的氢通过图案化栅极介电层而扩散至图案化栅极介电层中的传导区而影响到传导区的电性状况。因此,即使氧化物半导体薄膜晶体管中的栅极以及图案化栅极介电层为了符合短通道设计而需缩小,仍可通过氢扩散控制层来控制掺杂区的形成范围并避免传导区的电性受到影响,故可达到提升氧化物半导体薄膜晶体管的元件特性的目的。此外,本发明的氧化物半导体薄膜晶体管的制作方法可利用同一张掩模定义氢扩散控制层、图案化栅极介电层与栅极的图形,借此达到降低制作成本的目的。In summary, the oxide semiconductor thin film transistor of the present invention uses the hydrogen diffusion control layer to control the diffusion of hydrogen in the hydrogen source layer to the patterned oxide semiconductor layer, and at the same time prevent the hydrogen in the hydrogen source layer from passing through the patterned gate. The electrode dielectric layer diffuses into the conduction region in the patterned gate dielectric layer to affect the electrical properties of the conduction region. Therefore, even if the gate and the patterned gate dielectric layer in the oxide semiconductor thin film transistor need to be reduced in order to comply with the short channel design, the hydrogen diffusion control layer can still be used to control the formation range of the doped region and avoid the conductive region. performance is affected, so the purpose of improving the device characteristics of the oxide semiconductor thin film transistor can be achieved. In addition, the manufacturing method of the oxide semiconductor thin film transistor of the present invention can use the same mask to define the hydrogen diffusion control layer, the patterned gate dielectric layer and the pattern of the gate, thereby achieving the purpose of reducing the manufacturing cost.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104121643A TWI613706B (en) | 2015-07-03 | 2015-07-03 | Oxide semiconductor thin film transistor and manufacturing method thereof |
TW104121643 | 2015-07-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105206677A true CN105206677A (en) | 2015-12-30 |
CN105206677B CN105206677B (en) | 2018-10-12 |
Family
ID=54954235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510580206.0A Active CN105206677B (en) | 2015-07-03 | 2015-09-14 | Oxide semiconductor thin film transistor and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105206677B (en) |
TW (1) | TWI613706B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104183650A (en) * | 2014-09-10 | 2014-12-03 | 六安市华海电子器材科技有限公司 | Oxide semiconductor thin film transistor |
CN105977306A (en) * | 2016-06-21 | 2016-09-28 | 北京大学深圳研究生院 | Self-aligned thin-film transistor and preparation method thereof |
WO2017124686A1 (en) * | 2016-01-21 | 2017-07-27 | 武汉华星光电技术有限公司 | Tft array substrate structure and manufacturing method thereof |
US10861733B2 (en) | 2016-08-09 | 2020-12-08 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
CN113497155A (en) * | 2020-06-23 | 2021-10-12 | 台湾积体电路制造股份有限公司 | Transistor and forming method thereof |
CN115101542A (en) * | 2021-12-09 | 2022-09-23 | 友达光电股份有限公司 | Semiconductor device and method for manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111937161A (en) * | 2018-04-04 | 2020-11-13 | 株式会社半导体能源研究所 | Semiconductor device and method of manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08242000A (en) * | 1995-03-03 | 1996-09-17 | Sharp Corp | Semiconductor device and fabrication thereof |
CN101884109A (en) * | 2007-12-04 | 2010-11-10 | 佳能株式会社 | Oxide semiconductor device including insulating layer and display apparatus using the same |
US20140001468A1 (en) * | 2012-06-29 | 2014-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing semiconductor device |
CN104465783A (en) * | 2013-09-23 | 2015-03-25 | 三星显示有限公司 | Thin film transistor and method of manufacturing same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012015436A (en) * | 2010-07-05 | 2012-01-19 | Sony Corp | Thin film transistor and display device |
TW201322341A (en) * | 2011-11-21 | 2013-06-01 | Ind Tech Res Inst | Semiconductor component and method of manufacturing the same |
WO2015010825A1 (en) * | 2013-07-24 | 2015-01-29 | Imec Vzw | Method for improving the electrical conductivity of metal oxide semiconductor layers |
TWI528564B (en) * | 2013-09-23 | 2016-04-01 | 友達光電股份有限公司 | Thin film transistor and manufacturing method thereof |
TWI527201B (en) * | 2013-11-06 | 2016-03-21 | 友達光電股份有限公司 | Pixel structure and its manufacturing method |
-
2015
- 2015-07-03 TW TW104121643A patent/TWI613706B/en active
- 2015-09-14 CN CN201510580206.0A patent/CN105206677B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08242000A (en) * | 1995-03-03 | 1996-09-17 | Sharp Corp | Semiconductor device and fabrication thereof |
CN101884109A (en) * | 2007-12-04 | 2010-11-10 | 佳能株式会社 | Oxide semiconductor device including insulating layer and display apparatus using the same |
US20140001468A1 (en) * | 2012-06-29 | 2014-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing semiconductor device |
CN104465783A (en) * | 2013-09-23 | 2015-03-25 | 三星显示有限公司 | Thin film transistor and method of manufacturing same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104183650A (en) * | 2014-09-10 | 2014-12-03 | 六安市华海电子器材科技有限公司 | Oxide semiconductor thin film transistor |
WO2017124686A1 (en) * | 2016-01-21 | 2017-07-27 | 武汉华星光电技术有限公司 | Tft array substrate structure and manufacturing method thereof |
CN105977306A (en) * | 2016-06-21 | 2016-09-28 | 北京大学深圳研究生院 | Self-aligned thin-film transistor and preparation method thereof |
US10861733B2 (en) | 2016-08-09 | 2020-12-08 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
CN113497155A (en) * | 2020-06-23 | 2021-10-12 | 台湾积体电路制造股份有限公司 | Transistor and forming method thereof |
CN115101542A (en) * | 2021-12-09 | 2022-09-23 | 友达光电股份有限公司 | Semiconductor device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN105206677B (en) | 2018-10-12 |
TWI613706B (en) | 2018-02-01 |
TW201703120A (en) | 2017-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105206677B (en) | Oxide semiconductor thin film transistor and manufacturing method thereof | |
US10707236B2 (en) | Array substrate, manufacturing method therefor and display device | |
US10615266B2 (en) | Thin-film transistor, manufacturing method thereof, and array substrate | |
CN103403873B (en) | offset electrode TFT structure | |
KR101015338B1 (en) | Manufacturing Method of Thin Film Transistor | |
US8299460B2 (en) | Pixel structure, organic electro-luminescence display unit, and fabricating method thereof | |
JP2010041058A (en) | Thin film transistor, substrate and manufacturing method thereof | |
US9842915B2 (en) | Array substrate for liquid crystal display device and method of manufacturing the same | |
US20140110702A1 (en) | Oxide Thin Film Transistor And Method For Manufacturing The Same, Array Substrate, And Display Apparatus | |
CN103383989B (en) | Manufacturing method of pixel structure and structure thereof | |
WO2016008226A1 (en) | Thin film transistor and preparation method for same, array substrate and display device | |
WO2017173712A1 (en) | Thin-film transistor, production method thereof, array substrate and display device | |
CN103296058B (en) | Display panel and manufacturing method thereof | |
CN110993610A (en) | Array substrate, preparation method thereof and display panel | |
WO2017008347A1 (en) | Array substrate, manufacturing method for array substrate, and display device | |
US20190051713A1 (en) | Manufacturing method of tft substrate, tft substrate, and oled display panel | |
CN113140637A (en) | Display device, array substrate, thin film transistor and manufacturing method thereof | |
KR20200003143A (en) | OLED display panel and its manufacturing method | |
CN106876280A (en) | Thin film transistor (TFT) and preparation method thereof | |
CN104362180B (en) | Thin-film transistor, manufacturing method of thin-film transistor, display substrate and display device | |
US10283533B2 (en) | Transistor array panel including transistor with top electrode being electrically connected to source electrode and manufacturing method thereof | |
CN114284299B (en) | Display panel and manufacturing method thereof, and mobile terminal | |
US20150069401A1 (en) | Thin film transistor substrate and method of manufacturing the thin film transistor substrate | |
CN106997903A (en) | Thin film transistor and manufacturing method thereof | |
CN114203730A (en) | Display panel and method of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |