CN105186957A - Asynchronous motor speed sensorless rotor flux linkage estimation method - Google Patents
Asynchronous motor speed sensorless rotor flux linkage estimation method Download PDFInfo
- Publication number
- CN105186957A CN105186957A CN201510563804.7A CN201510563804A CN105186957A CN 105186957 A CN105186957 A CN 105186957A CN 201510563804 A CN201510563804 A CN 201510563804A CN 105186957 A CN105186957 A CN 105186957A
- Authority
- CN
- China
- Prior art keywords
- motor
- psi
- omega
- rotor
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
本发明公开了一种异步电机无速度传感器转子磁链估算方法,采用参数优化的方法,使得控制方案的相平面上只有一个稳定点,最终电机都会稳定在磁链建立的状态,电机在旋转状态时也可以起动,电机的转矩不会丢失,总能按照人们的要求输出转矩。
The invention discloses a method for estimating the flux linkage of the rotor without a speed sensor of an asynchronous motor. The parameter optimization method is adopted, so that there is only one stable point on the phase plane of the control scheme, and finally the motor will be stable in the state where the flux linkage is established, and the motor is in the rotating state. It can also be started when the motor is running, the torque of the motor will not be lost, and the torque can always be output according to people's requirements.
Description
技术领域technical field
本发明涉及异步电机磁链估算方法领域,具体是一种异步电机无速度传感器转子磁链估算方法。The invention relates to the field of estimation methods for asynchronous motor flux linkage, in particular to a method for estimating rotor flux linkage without a speed sensor of an asynchronous motor.
背景技术Background technique
异步电机的无速度传感器矢量控制技术在工业生产中应用广泛。在中高速段,无速度传感器控制性能可以和有速度传感器媲美,而在低速范围内,无速度传感器却存在着带载能力弱,速度辨识精度低等问题,关于其稳定性问题也是实际工程中急需解决的内容。现有的稳定性分析主要集中在电机静止起动的工况下。而在实际场合,同样存在着电机旋转状态起动的工况,例如多电机转速-转矩匹配,牵引列车的带速重投功能等。此类问题一直未被人们很好的解决。当今市场上的变频器多不具有这方面的功能,即使少数品牌的变频器声称具有其功能,但其实际效果也不理想。以日本安川公司生产的变频器A1000为例,其在无速度传感器模式(开环矢量控制模式)下,并不支持转矩模式功能,其原因就在于无法很好的解决异步电机的旋转状态起动问题。The speed sensorless vector control technology of asynchronous motor is widely used in industrial production. In the middle and high speed section, the control performance of the sensorless sensor can be compared with that of the sensor with the speed sensor, but in the low speed range, the sensorless sensor has the problems of weak loading capacity and low speed identification accuracy. Urgently need to solve the content. Existing stability analysis mainly focuses on the condition of static starting of the motor. In actual situations, there are also working conditions where the motors are started in rotation, such as multi-motor speed-torque matching, and the speed re-start function of traction trains. Such problems have not been well resolved by people. Most inverters on the market today do not have this function, even if a few brands of inverters claim to have this function, their actual effect is not ideal. Take the inverter A1000 produced by Yaskawa Corporation of Japan as an example, it does not support the torque mode function in the speed sensorless mode (open-loop vector control mode), the reason is that it cannot solve the problem of starting the asynchronous motor in the rotating state. question.
现有技术的异步电机无速度传感器控制转子磁链角估算方案,大多都可以在其相平面上找到两个或者两个以上的稳定点,其中只有一个稳定点是电机可以输出转矩的状态,称之为磁链建立的状态。其他的稳定点,往往是电机无法输出转矩的状态,称之为磁链崩溃状态。人们总是希望电机无论初始状态如何,最终都能稳定在磁链建立状态,以保证电机总是能够输出转矩。而不要稳定在磁链崩溃的状态,因为这个状态不能让电机输出转矩。然而,在电机旋转起动的时候,若采用传统的转子磁链角估算方案,电机总是会稳定磁链崩溃的状态,无法输出转矩。Most of the prior art asynchronous motor speed sensorless control rotor flux angle estimation schemes can find two or more stable points on its phase plane, of which only one stable point is the state where the motor can output torque. It is called the state where the magnetic link is established. Other stable points are often the state where the motor cannot output torque, which is called the state of flux linkage collapse. People always hope that no matter what the initial state of the motor is, it will eventually be stable in the state of flux linkage establishment, so as to ensure that the motor can always output torque. Instead of stabilizing in a state where the flux linkage collapses, because this state cannot allow the motor to output torque. However, when the motor rotates and starts, if the traditional rotor flux angle estimation scheme is used, the motor will always be in a state of stable flux collapse and cannot output torque.
发明内容Contents of the invention
本发明的目的是提供一种异步电机无速度传感器转子磁链估算方法,以实现电机在旋转状态时起动转矩不丢失。The purpose of the present invention is to provide a speed sensorless rotor flux linkage estimation method of an asynchronous motor, so as to realize that the starting torque is not lost when the motor is in a rotating state.
为了达到上述目的,本发明所采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种异步电机无速度传感器转子磁链估算方法,其特征在于:包括以下步骤:A method for estimating the rotor flux linkage without a speed sensor of an asynchronous motor, characterized in that it comprises the following steps:
(1)、首先计算出电机d-q轴的反电动势:(1), first calculate the counter electromotive force of the d-q axis of the motor:
ed:电机d轴反电动势e d : motor d-axis back electromotive force
eq:电机q轴反电动势e q : Motor q-axis back electromotive force
isd:电机d轴定子电流i sd : motor d-axis stator current
isq:电机q轴定子电流i sq : Motor q-axis stator current
Rr:电机转子电阻R r : motor rotor resistance
Lm:电机互感L m : Motor mutual inductance
ψrd:电机d轴转子磁链ψ rd : motor d-axis rotor flux linkage
ψrq:电机q轴转子磁链ψ rq : Motor q-axis rotor flux linkage
ω:电机转速,由步骤(4)算得,并代回步骤(1)ω: motor speed, calculated from step (4) and replaced by step (1)
(2)、根据步骤(1)的结果计算磁链的幅值:(2), calculate the magnitude of flux linkage according to the result of step (1):
ψr=∫ed,ψ r =∫e d ,
ed:电机d轴反电动势e d : motor d-axis back electromotive force
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(3)、根据步骤(2)的结果计算转子同步转速:(3), calculate rotor synchronous speed according to the result of step (2):
θs:转子磁链角度θ s : rotor flux angle
ωs:转子同步角速度ω s : rotor synchronous angular velocity
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
ed:电机d轴反电动势e d : motor d-axis back electromotive force
eq:电机q轴反电动势e q : Motor q-axis back electromotive force
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(4)、根据步骤(3)计算出电机实际转速(4) Calculate the actual speed of the motor according to step (3)
ω:电机实际转速ω: the actual speed of the motor
ωs:转子同步角速度ω s : rotor synchronous angular velocity
Rr:电机转子电阻R r : motor rotor resistance
isq:电机q轴定子电流i sq : Motor q-axis stator current
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(5)、将步骤(3)算出的转子同步转速代入电机的状态方程:(5), the rotor synchronous speed calculated by step (3) is substituted into the state equation of the motor:
ed:电机d轴反电动势e d : motor d-axis back electromotive force
eq:电机q轴反电动势e q : Motor q-axis back electromotive force
Rr:电机转子电阻R r : motor rotor resistance
isd:电机d轴定子电流i sd : motor d-axis stator current
isq:电机q轴定子电流i sq : Motor q-axis stator current
Lm:电机互感L m : Motor mutual inductance
ψrd:电机d轴转子磁链ψ rd : motor d-axis rotor flux linkage
ψrq:电机q轴转子磁链ψ rq : Motor q-axis rotor flux linkage
ω:电机转速ω: motor speed
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(6)、计算状态方程雅克布矩阵的特征多项式:(6), Calculate the characteristic polynomial of the Jacobian matrix of the state equation:
det(sI-J)=s3+a2s2+a1s+a0,det(sI-J)=s 3 +a 2 s 2 +a 1 s+a 0 ,
a0、a1、a2:特征多项式系数a 0 , a 1 , a 2 : characteristic polynomial coefficients
其中in
a0、a1、a2:特征多项式系数a 0 , a 1 , a 2 : characteristic polynomial coefficients
Rr:电机转子电阻R r : motor rotor resistance
Lm:电机互感L m : Motor mutual inductance
ω:电机转速ω: motor speed
ωs:转子同步角速度ω s : rotor synchronous angular velocity
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
(7)、根据劳斯稳定判据,选择合适的可调参数,使得状态方程具有全局渐近稳定性,相平面只有一个稳定点,最终选择可调参数为:(7) According to the Routh stability criterion, select the appropriate adjustable parameters, so that the state equation has a global asymptotic stability, and the phase plane has only one stable point, and finally select the adjustable parameters as:
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
ω:电机转速,由步骤(4)算得ω: motor speed, calculated from step (4)
sign(ω):转速的符号,正转为1,反转为-1sign(ω): the sign of the speed, forward rotation is 1, reverse rotation is -1
本发明采用参数优化的方法,使得控制方案的相平面上只有一个稳定点,而这个稳定点就是电机磁链建立的状态。即无论电机初始处于何种状态,因为没有其他的稳定点。最终电机都会稳定在磁链建立的状态,电机在旋转状态时也可以起动,电机的转矩不会丢失,总能按照人们的要求输出转矩。The present invention adopts the method of parameter optimization, so that there is only one stable point on the phase plane of the control scheme, and this stable point is the state where the flux linkage of the motor is established. That is, no matter what state the motor is in initially, because there is no other stable point. In the end, the motor will be stable in the state where the flux linkage is established, and the motor can also be started when it is rotating. The torque of the motor will not be lost, and the torque can always be output according to people's requirements.
附图说明Description of drawings
图1为本发明方法得到的相平面图。Fig. 1 is the phase plane diagram that the method of the present invention obtains.
图2为现有技术异步电机无速度传感器矢量控制方案图。Fig. 2 is a schematic diagram of a speed sensorless vector control scheme of an asynchronous motor in the prior art.
图3为本发明磁链估算方案图。Fig. 3 is a scheme diagram of flux linkage estimation in the present invention.
图4为具体实施方式中正反转切换逻辑流程框图。Fig. 4 is a logic block diagram of forward and reverse switching in a specific embodiment.
具体实施方式Detailed ways
一种异步电机无速度传感器转子磁链估算方法,包括以下步骤:A method for estimating the rotor flux linkage of an asynchronous motor without a speed sensor, comprising the following steps:
(1)、首先计算出电机d-q轴的反电动势:(1), first calculate the counter electromotive force of the d-q axis of the motor:
ed:电机d轴反电动势e d : motor d-axis back electromotive force
eq:电机q轴反电动势e q : Motor q-axis back electromotive force
Rr:电机转子电阻R r : motor rotor resistance
isd:电机d轴定子电流i sd : motor d-axis stator current
isq:电机q轴定子电流i sq : Motor q-axis stator current
Lm:电机互感L m : Motor mutual inductance
ψrd:电机d轴转子磁链ψ rd : motor d-axis rotor flux linkage
ψrq:电机q轴转子磁链ψ rq : Motor q-axis rotor flux linkage
ω:电机转速,由步骤(4)算得,并代回步骤(1)ω: motor speed, calculated from step (4) and replaced by step (1)
(2)、根据步骤(1)的结果计算磁链的幅值:(2), calculate the magnitude of flux linkage according to the result of step (1):
ψr=∫ed,ψ r =∫e d ,
ed:电机d轴反电动势e d : motor d-axis back electromotive force
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(3)、根据步骤(2)的结果计算转子同步转速:(3), calculate rotor synchronous speed according to the result of step (2):
θs:转子磁链角度θ s : rotor flux angle
ωs:转子同步角速度ω s : rotor synchronous angular velocity
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
ed:电机d轴反电动势e d : motor d-axis back electromotive force
eq:电机q轴反电动势e q : Motor q-axis back electromotive force
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(4)、根据步骤(3)计算出电机实际转速(4) Calculate the actual speed of the motor according to step (3)
ω:电机实际转速ω: the actual speed of the motor
ωs:转子同步角速度ω s : rotor synchronous angular velocity
Rr:电机转子电阻R r : motor rotor resistance
isq:电机q轴定子电流i sq : Motor q-axis stator current
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(5)、将步骤(3)算出的转子同步转速代入电机的状态方程:(5), the rotor synchronous speed calculated by step (3) is substituted into the state equation of the motor:
ed:电机d轴反电动势e d : motor d-axis back electromotive force
eq:电机q轴反电动势e q : Motor q-axis back electromotive force
Rr:电机转子电阻R r : motor rotor resistance
isd:电机d轴定子电流i sd : motor d-axis stator current
isq:电机q轴定子电流i sq : Motor q-axis stator current
Lm:电机互感L m : Motor mutual inductance
ψrd:电机d轴转子磁链ψ rd : motor d-axis rotor flux linkage
ψrq:电机q轴转子磁链ψ rq : Motor q-axis rotor flux linkage
ω:电机转速ω: motor speed
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
ψr:电机转子磁链幅值ψ r : Motor rotor flux amplitude
(6)、计算状态方程雅克布矩阵的特征多项式:(6), Calculate the characteristic polynomial of the Jacobian matrix of the state equation:
det(sI-J)=s3+a2s2+a1s+a0,det(sI-J)=s 3 +a 2 s 2 +a 1 s+a 0 ,
a0、a1、a2:特征多项式系数a 0 , a 1 , a 2 : characteristic polynomial coefficients
其中in
a0、a1、a2:特征多项式系数a 0 , a 1 , a 2 : characteristic polynomial coefficients
Rr:电机转子电阻R r : motor rotor resistance
Lm:电机互感L m : Motor mutual inductance
ω:电机转速ω: motor speed
ωs:转子同步角速度ω s : rotor synchronous angular velocity
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
(7)、根据劳斯稳定判据,选择合适的可调参数,使得状态方程具有全局渐近稳定性,相平面只有一个稳定点,最终选择可调参数为:(7) According to the Routh stability criterion, select the appropriate adjustable parameters, so that the state equation has a global asymptotic stability, and the phase plane has only one stable point, and finally select the adjustable parameters as:
δ:计算转子同步角速度所需的可调参数δ: An adjustable parameter required to calculate the synchronous angular velocity of the rotor
ω:电机转速,由步骤(4)算得ω: motor speed, calculated from step (4)
sign(ω):转速的符号,正转表示1,反转表示-1sign(ω): the sign of the speed, forward rotation means 1, reverse rotation means -1
选择合适的可调参数可使相平面图如图1所示。Selecting the appropriate adjustable parameters can make the phase plane diagram shown in Figure 1.
现有技术中的异步电机无速度传感器矢量控制方案如图2所示,图2中,1为转子磁链角估计方案,2为电机转速的PI调节器,3、4为电流的调节器,5为park变换装置,对应的6为park逆变换装置,7为SVPWM调制器,8为CLARK变换装置,9为逆变器,10是所控制的异步电机。The speed sensorless vector control scheme of asynchronous motors in the prior art is shown in Figure 2. In Figure 2, 1 is the rotor flux angle estimation scheme, 2 is the PI regulator of the motor speed, 3 and 4 are the current regulators, 5 is a park conversion device, the corresponding 6 is a park inverse conversion device, 7 is a SVPWM modulator, 8 is a CLARK conversion device, 9 is an inverter, and 10 is a controlled asynchronous motor.
应用本发明方法的转子磁链角估计方案如图3所示:The rotor flux angle estimation scheme applying the method of the present invention is as shown in Figure 3:
输入为异步电机在α-β坐标系下的电压vα、vβ,以及电流iα、iβ,输出为估算转子磁链角θ。iα、iβ乘以定子电阻Rs(1和2),与vα、vβ相减,得到反电动势eα、eβ,eα、eβ经过矢量回转器3,得到d-q坐标系下的反电动势ed、eq,ed经过积分器5得到电机转子磁链幅值ψR,同时,ed乘以参数δ与eq相减,再除以转子磁链幅值ψR,得到转子同步转速ωs,并根据ωs计算出电机实际转速ω,注意到ω和δ的计算互为影响,构成环路。将ωs经过积分器6得到转子磁链角度θs,而ω则用来计算下一时刻的参数δ。The input is the voltage v α , v β , and the current i α , i β of the asynchronous motor in the α-β coordinate system, and the output is the estimated rotor flux angle θ. i α and i β are multiplied by the stator resistance R s (1 and 2), and subtracted from v α and v β to obtain counter electromotive forces e α and e β , and e α and e β pass through the vector gyrator 3 to obtain the dq coordinate system The counter electromotive force ed and e q under the current condition, ed passes through the integrator 5 to obtain the motor rotor flux amplitude ψ R , and at the same time, ed is multiplied by the parameter δ Subtract it from e q , and then divide it by the rotor flux amplitude ψ R to get the rotor synchronous speed ω s , and calculate the actual motor speed ω according to ω s , and notice that the calculation of ω and δ influence each other to form a loop. Pass ω s through the integrator 6 to obtain the rotor flux angle θ s , and ω is used to calculate the parameter δ at the next moment.
采用本发明方法时,有一个需要注意的地方:在电机从正转到反转切换的过程中,有可能会导致参数δ的误动作,因此,采取了一个正反转切换逻辑进行改进。如图4所示,其步骤为:When adopting the method of the present invention, there is a point that needs attention: in the process of switching the motor from forward to reverse, it may cause a malfunction of the parameter δ. Therefore, a forward and reverse switching logic is adopted for improvement. As shown in Figure 4, the steps are:
1、若电机当前估算转速为正转,且数值较高(大于6rad/s),则δ为正。1. If the current estimated speed of the motor is forward rotation and the value is relatively high (greater than 6rad/s), then δ is positive.
2、若电机当前估算转速为反转,且数值较高(小于-6rad/s),则δ为负。3、若当前电机转速较低(大于-6rad/s且小于6rad/s),应根据iq来判断,若iq大于0,则δ为正,若iq小于0,则δ为负。2. If the current estimated speed of the motor is reverse and the value is relatively high (less than -6rad/s), then δ is negative. 3. If the current motor speed is low (greater than -6rad/s and less than 6rad/s), it should be judged according to i q , if i q is greater than 0, then δ is positive, if i q is less than 0, then δ is negative.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510563804.7A CN105186957A (en) | 2015-09-07 | 2015-09-07 | Asynchronous motor speed sensorless rotor flux linkage estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510563804.7A CN105186957A (en) | 2015-09-07 | 2015-09-07 | Asynchronous motor speed sensorless rotor flux linkage estimation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105186957A true CN105186957A (en) | 2015-12-23 |
Family
ID=54908850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510563804.7A Pending CN105186957A (en) | 2015-09-07 | 2015-09-07 | Asynchronous motor speed sensorless rotor flux linkage estimation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105186957A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108054974A (en) * | 2018-01-04 | 2018-05-18 | 湖南大学 | The magnetic linkage optimal control method and system of track traffic induction machine |
CN109995277A (en) * | 2019-03-22 | 2019-07-09 | 联创汽车电子有限公司 | Permanent-magnetic synchronous motor rotor zero-bit initial angle calibration system and its scaling method |
CN111208425A (en) * | 2020-01-13 | 2020-05-29 | 郑州轻工业大学 | Method for constructing high-precision asynchronous motor system state model and asynchronous motor state detection method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000102278A (en) * | 1998-09-29 | 2000-04-07 | Meidensha Corp | Vector control system for induction motor |
US20030146723A1 (en) * | 2002-01-30 | 2003-08-07 | Alexei Pavlov | Method for controlling torque in a rotational sensorless induction motor control system with speed and rotor flux estimation |
CN101237214A (en) * | 2006-12-27 | 2008-08-06 | 三洋电机株式会社 | Motor control device and motor drive system |
JP4238646B2 (en) * | 2003-06-16 | 2009-03-18 | 株式会社安川電機 | Speed sensorless vector controller for induction motor |
CN101674043A (en) * | 2008-09-10 | 2010-03-17 | 上海山宇电子设备有限公司 | Method for controlling vector frequency converter of rotor field-oriented speed sensor-less |
CN101809857A (en) * | 2007-09-27 | 2010-08-18 | 三菱电机株式会社 | Controller of rotary electric machine |
CN101931361A (en) * | 2010-02-25 | 2010-12-29 | 哈尔滨工业大学 | A Vector Control Device of Induction Motor |
-
2015
- 2015-09-07 CN CN201510563804.7A patent/CN105186957A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000102278A (en) * | 1998-09-29 | 2000-04-07 | Meidensha Corp | Vector control system for induction motor |
US20030146723A1 (en) * | 2002-01-30 | 2003-08-07 | Alexei Pavlov | Method for controlling torque in a rotational sensorless induction motor control system with speed and rotor flux estimation |
JP4238646B2 (en) * | 2003-06-16 | 2009-03-18 | 株式会社安川電機 | Speed sensorless vector controller for induction motor |
CN101237214A (en) * | 2006-12-27 | 2008-08-06 | 三洋电机株式会社 | Motor control device and motor drive system |
CN101809857A (en) * | 2007-09-27 | 2010-08-18 | 三菱电机株式会社 | Controller of rotary electric machine |
CN101674043A (en) * | 2008-09-10 | 2010-03-17 | 上海山宇电子设备有限公司 | Method for controlling vector frequency converter of rotor field-oriented speed sensor-less |
CN101931361A (en) * | 2010-02-25 | 2010-12-29 | 哈尔滨工业大学 | A Vector Control Device of Induction Motor |
Non-Patent Citations (3)
Title |
---|
WEI CHEN ET AL: "Stability analysis of speed adaptive flux observer for induction motor speedsensorless vector control", 《2010 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS》 * |
YUAN FANG ET AL: "Stabilization of Induction Motor with Sensorless Drives Based on Parameter Self-optimization", 《2015 IEEE 10TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA)》 * |
宋文祥等: "感应电机静态补偿电压模型及其稳定性分析", 《中国电机工程学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108054974A (en) * | 2018-01-04 | 2018-05-18 | 湖南大学 | The magnetic linkage optimal control method and system of track traffic induction machine |
CN109995277A (en) * | 2019-03-22 | 2019-07-09 | 联创汽车电子有限公司 | Permanent-magnetic synchronous motor rotor zero-bit initial angle calibration system and its scaling method |
CN111208425A (en) * | 2020-01-13 | 2020-05-29 | 郑州轻工业大学 | Method for constructing high-precision asynchronous motor system state model and asynchronous motor state detection method |
CN111208425B (en) * | 2020-01-13 | 2022-02-18 | 郑州轻工业大学 | Method for constructing high-precision asynchronous motor system state model and asynchronous motor state detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5155344B2 (en) | Electric motor magnetic pole position estimation device | |
CN103684182B (en) | A kind of permagnetic synchronous motor parameter identification method | |
CN102684592B (en) | Torque and flux linkage control method for permanent synchronous motor | |
CN102647134B (en) | Efficiency optimization control method without angle sensor for permanent magnet synchronous motor | |
JP5445892B2 (en) | Control device for permanent magnet type synchronous motor | |
JP5634620B2 (en) | Rotating machine control apparatus and inductance measuring method of rotating machine | |
CN104333273A (en) | Flux-weakening control method for variable frequency controller of permanent magnet synchronous motor | |
CN103904973B (en) | A kind of method realizing salient pole permanent magnet synchronous motor senseless control | |
CN103944482B (en) | Stator magnetic linkage, electromagnetic torque observation procedure and respectively apply two kinds of methods device | |
CN103296959A (en) | System and method for controlling speedless sensor of permanent-magnet synchronous motor | |
JP5267848B2 (en) | Motor control device | |
JP3914108B2 (en) | DC brushless motor control device | |
CN109194219A (en) | Based on model-free non-singular terminal sliding formwork control permanent magnet synchronous motor method and system | |
CN103269191A (en) | A direct torque/flux linkage control method for permanent magnet synchronous motor | |
CN104393815A (en) | Permanent magnet synchronous motor fault-tolerant control device based on composite speed estimated rotating speed | |
CN106026834A (en) | Speed sensorless control method of permanent magnet synchronous motor | |
CN104081651A (en) | Control device for AC motor | |
CN105186957A (en) | Asynchronous motor speed sensorless rotor flux linkage estimation method | |
CN107017807A (en) | A kind of stator permanent magnetic type memory electrical machine method for suppressing torque ripple | |
CN103888039B (en) | A Torque Estimation Based Correction Method for Induction Motor Rotor Field Orientation Deviation | |
JP5392530B2 (en) | Motor control device | |
CN105227022A (en) | Based on the time constant of rotor of asynchronous machine on-line identification method improving reactive power model | |
Sathikumar et al. | Digital simulation of field-oriented control of induction motor | |
Nguyen et al. | High-speed sensorless control of a synchronous reluctance motor based on an Extended Kalman Filter | |
CN111162712B (en) | Control method of direct-drive permanent magnet synchronous motor, traction controller and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151223 |
|
RJ01 | Rejection of invention patent application after publication |