[go: up one dir, main page]

CN106026834A - Speed sensorless control method of permanent magnet synchronous motor - Google Patents

Speed sensorless control method of permanent magnet synchronous motor Download PDF

Info

Publication number
CN106026834A
CN106026834A CN201610620917.0A CN201610620917A CN106026834A CN 106026834 A CN106026834 A CN 106026834A CN 201610620917 A CN201610620917 A CN 201610620917A CN 106026834 A CN106026834 A CN 106026834A
Authority
CN
China
Prior art keywords
motor
axis component
phase
coordinate system
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610620917.0A
Other languages
Chinese (zh)
Inventor
史旺旺
杜佳玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201610620917.0A priority Critical patent/CN106026834A/en
Publication of CN106026834A publication Critical patent/CN106026834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了永磁电机领域内的一种永磁同步电机的无速度传感器控制方法,以常规假定旋转坐标法为基础,结合模型电机法,采用滑模控制方法将估计转速直接作为控制量,再通过Lyapunov非线性设计法得到估计转速的自适应律,大大简化算法,提高系统响应速度快,同时能实现电机正反转,可用于永磁同步电机中。

The invention discloses a speed sensorless control method of a permanent magnet synchronous motor in the field of permanent magnet motors, which is based on a conventional assumed rotating coordinate method, combined with a model motor method, and uses a sliding mode control method to directly use the estimated rotational speed as a control quantity, Then the adaptive law of the estimated speed is obtained through the Lyapunov nonlinear design method, which greatly simplifies the algorithm, improves the fast response speed of the system, and can realize the positive and negative rotation of the motor at the same time, which can be used in the permanent magnet synchronous motor.

Description

一种永磁同步电机的无速度传感器控制方法A speed sensorless control method for permanent magnet synchronous motor

技术领域technical field

本发明涉及一种永磁电机,特别涉及一种永磁同步电机。The invention relates to a permanent magnet motor, in particular to a permanent magnet synchronous motor.

背景技术Background technique

在高性能永磁同步电机伺服系统中,通常需要安装速度传感器来反馈转速信号,从而实现闭环控制。但是,随着对控制精度的要求越来越高,使用速度传感器所带来的成本升高、安装困难、系统体积变大、无法适应恶劣环境等问题极大地制约了永磁同步电机的应用。In the high-performance permanent magnet synchronous motor servo system, it is usually necessary to install a speed sensor to feed back the speed signal, so as to realize closed-loop control. However, as the requirements for control accuracy become higher and higher, problems such as increased cost, difficult installation, larger system size, and inability to adapt to harsh environments brought about by the use of speed sensors have greatly restricted the application of permanent magnet synchronous motors.

到目前为止,全世界的研究人员提出了很多无速度传感器的控制方法,大多是从电机的数学模型角度出发来设计辨识算法,算法复杂、计算量大、无法实现电机的正反转控制,而且没有考虑电力电子逆变器的死区时间对估计算法的影响。So far, researchers around the world have proposed many speed sensorless control methods, most of which are based on the mathematical model of the motor to design the identification algorithm. The algorithm is complex, the calculation is large, and the forward and reverse control of the motor cannot be realized. The influence of the dead time of the power electronic inverter on the estimation algorithm is not considered.

发明内容Contents of the invention

本发明的目的是提供一种永磁同步电机的无速度传感器控制方法,提高永磁同步电机检测转速的精度。The purpose of the present invention is to provide a speed sensorless control method of a permanent magnet synchronous motor, which improves the detection accuracy of the permanent magnet synchronous motor.

本发明的目的是这样实现的:一种永磁同步电机的无速度传感器控制方法,包括以下步骤:The object of the present invention is achieved like this: a kind of speed sensorless control method of permanent magnet synchronous motor, comprises the following steps:

1)采集电机定子A相、B相电流和逆变器直流母线电压,并计算对应C相电流;1) Collect the A-phase and B-phase currents of the motor stator and the DC bus voltage of the inverter, and calculate the corresponding C-phase current;

2)将A相、B相和C相电流进行Clark变换,得到永磁同步电机定子电流在αβ坐标系下的α轴分量和β轴分量;2) Perform Clark transformation on the A-phase, B-phase and C-phase currents to obtain the α-axis component and β-axis component of the permanent magnet synchronous motor stator current in the αβ coordinate system;

3)建立基于旋转坐标系的自适应滑模观测器;3) Establish an adaptive sliding mode observer based on the rotating coordinate system;

4)利用公式(1)求得考虑死区的电机估计转速的自适应律;4) Utilize the formula (1) to obtain the adaptive law of the estimated rotational speed of the motor considering the dead zone;

其中,为电流误差,Rs为电机定子相电阻,Ls为电机同步电感,ψf为转子励磁磁链,k为滑模增益,ki为电流观测误差积分项系数,sig(x)为sigmoid函数,Δuq为由于死区而损失的电机定子三相电压在dq坐标系下的q轴分量;in, is the current error, R s is the stator phase resistance of the motor, L s is the synchronous inductance of the motor, ψ f is the rotor excitation flux linkage, k is the sliding mode gain, ki is the coefficient of the integral term of the current observation error, sig(x) is the sigmoid function , Δu q is the q-axis component of the motor stator three-phase voltage lost due to the dead zone in the dq coordinate system;

5)对由公式(1)求得的估计转速积分,求得电机转子位置角的估计值;5) obtain the estimated value of the rotor position angle of the motor to the estimated rotational speed integral obtained by formula (1);

6)将转速设定值与估计转速相减,求得电机转速的差值,并作为转速外环PI控制器的输入,求得电机定子电流在dq坐标系下d轴分量和q轴分量的设定值;6) Subtract the speed setting value from the estimated speed to obtain the difference of the motor speed, and use it as the input of the PI controller of the speed outer loop to obtain the d-axis component and q-axis component of the motor stator current in the dq coordinate system set value;

7)利用电机转子位置角估计值,将电机定子电流在αβ坐标系下的α轴分量和β轴分量进行Park变换,求得电机定子电流在dq坐标系下d轴分量和q轴分量的实际值;7) Using the estimated value of the motor rotor position angle, the α-axis component and β-axis component of the motor stator current in the αβ coordinate system are subjected to Park transformation, and the actual values of the d-axis component and q-axis component of the motor stator current in the dq coordinate system are obtained. value;

8)将电机定子电流在dq坐标系下d轴分量和q轴分量的实际值进行低通滤波,进行Park反变换和Clark反变换,求得滤波后的A相、B相和C相电流;8) Perform low-pass filtering on the actual values of the d-axis component and q-axis component of the stator current of the motor in the dq coordinate system, perform Park inverse transformation and Clark inverse transformation, and obtain the filtered A-phase, B-phase and C-phase currents;

9)对滤波后的A相、B相和C相电流进行电流极性判断,并根据电流极性求得由于死区而损失的定子三相电压;9) Judging the current polarity of the filtered A-phase, B-phase and C-phase currents, and obtaining the stator three-phase voltage lost due to the dead zone according to the current polarity;

10)将损失的定子三相电压进行Clark变换和Park变换,求得损失的定子三相电压在dq坐标系下d轴分量和q轴分量;10) Carry out Clark transformation and Park transformation to the lost stator three-phase voltage, obtain the d-axis component and the q-axis component of the lost stator three-phase voltage under the dq coordinate system;

11)将得到的电机定子电流在dq坐标系下d轴分量和q轴分量的设定值和实际值作为内环电流控制器的输入,求得实际控制量在dq坐标系下d轴分 量和q轴分量;11) Use the obtained set value and actual value of the d-axis component and q-axis component of the motor stator current in the dq coordinate system as the input of the inner loop current controller, and obtain the d-axis component and the actual control quantity in the dq coordinate system q-axis component;

12)将实际控制量在dq坐标系下d轴分量和q轴分量进行Park反变换,求得实际控制量在αβ坐标系下的α轴分量和β轴分量;12) Perform Park inverse transformation on the d-axis component and q-axis component of the actual control quantity in the dq coordinate system to obtain the α-axis component and β-axis component of the actual control quantity in the αβ coordinate system;

13)将实际控制量在αβ坐标系下的α轴分量和β轴分量进行SVPWM,求得六路PWM信号;13) Perform SVPWM on the α-axis component and β-axis component of the actual control quantity in the αβ coordinate system to obtain six PWM signals;

14)计算电机定子电流在dq坐标系下d轴分量和q轴分量的估计值,返回步骤1),进行循环控制。14) Calculate the estimated value of the d-axis component and q-axis component of the motor stator current in the dq coordinate system, return to step 1), and perform loop control.

作为本发明的进一步限定,步骤3)中基于旋转坐标系自适应滑模观测器中的模型电机的数学模型满足公式(2);As a further limitation of the present invention, in step 3), the mathematical model based on the model motor in the rotating coordinate system adaptive sliding mode observer satisfies formula (2);

其中,为转子估计旋转角速度;ωr为转子实际旋转角速度;ud、uq为定子电压在d轴和q轴上的分量;id、iq为定子实际电流在d轴和q轴上的分量;为定子估计电流在d轴和q轴上的分量;ψf为转子励磁磁链;Δθ为模型电机所在假定旋转坐标系和实际PMSM所在dq坐标系之间的相位差;Rs为电机定子相电阻;Ls为电机同步电感;Δud、Δuq为逆变器死区引起的ud、uq损失电压;u为模型电机的控制量,同时,将也看成模型电机的控制量。in, Estimated rotational angular velocity of the rotor; ω r is the actual rotational angular velocity of the rotor; u d , u q are the components of the stator voltage on the d-axis and q-axis; id and i q are the components of the actual stator current on the d-axis and q-axis ; ψ f is the rotor excitation flux linkage; Δθ is the phase difference between the assumed rotating coordinate system where the model motor is located and the dq coordinate system where the actual PMSM is located; R s is the stator phase of the motor resistance; L s is the synchronous inductance of the motor; Δu d and Δu q are the loss voltage of u d and u q caused by the dead zone of the inverter; u is the control value of the model motor, and at the same time, the It can also be regarded as the control quantity of the model motor.

作为本发明的进一步限定,步骤4)中的sigmoid函数满足公式(3);As a further limitation of the present invention, the sigmoid function in step 4) satisfies formula (3);

其中,a为sigmoid常数。Among them, a is the sigmoid constant.

作为本发明的进一步限定,步骤8)中的电流内环控制器采用Lyapunov 直接法进行设计,所选取的Lyapunov函数满足公式(4);As a further limitation of the present invention, the current inner loop controller in step 8) adopts Lyapunov direct method to design, and the selected Lyapunov function satisfies formula (4);

其中,Ki为积分系数,为电流设定值在d轴上的分量,为电流设定值在q轴上的分量。Among them, K i is the integral coefficient, is the component of the current setting value on the d-axis, is the component of the current setting value on the q-axis.

作为本发明的进一步限定,步骤9)中的损失的定子三相电压满足公式(5);As a further limitation of the present invention, the stator three-phase voltage of loss in step 9) satisfies formula (5);

其中,Td为死去时间,Ts为PWM波周期,sign(x)为符号函数,iA、iB、iC为滤波后的A相、B相和C相电流,udc为逆变器直流侧母线电压。Among them, T d is the dead time, T s is the PWM wave period, sign(x) is the sign function, i A , i B , i C are the filtered A-phase, B-phase and C-phase currents, u dc is the inverter DC side bus voltage of the converter.

作为本发明的进一步限定,sign函数满足公式(6);As a further limitation of the present invention, the sign function satisfies formula (6);

与现有技术相比,本发明的有益效果在于,本发明利用考虑死区的基于旋转坐标系的自适应滑模观测器来估计永磁同步电机的转速信息,以常规假定旋转坐标法为基础,结合模型电机的电流控制,在dq坐标系中进行滑模辨识,再利用Lyapunov非线性控制设计法直接得到估计转速的自适应律,电机电流控制采用Lyapunov法进行,保证全局收敛,在模型电机中考虑了逆变器死区引起的电压变化,消除了存在死区时间情况下的相位辨识误差,响应速度快,并能实现电机的正反转,提高了转速检测的精度。本发明可用于 永磁同步电机中。Compared with the prior art, the beneficial effect of the present invention is that the present invention uses the adaptive sliding mode observer based on the rotating coordinate system considering the dead zone to estimate the rotational speed information of the permanent magnet synchronous motor, based on the conventional assumed rotating coordinate method , combined with the current control of the model motor, the sliding mode identification is carried out in the dq coordinate system, and then the adaptive law of the estimated speed is directly obtained by using the Lyapunov nonlinear control design method. The motor current control is carried out using the Lyapunov method to ensure global convergence. In the model motor Considering the voltage change caused by the dead zone of the inverter, the phase identification error in the presence of the dead zone is eliminated, the response speed is fast, and the positive and negative rotation of the motor can be realized, which improves the accuracy of the speed detection. The invention can be used in permanent magnet synchronous motors.

附图说明Description of drawings

图1为本发明控制原理框图。Fig. 1 is a block diagram of the control principle of the present invention.

图2为本发明控制流程图。Fig. 2 is a control flow chart of the present invention.

图3为本发明工作时转速曲线图。Fig. 3 is a curve diagram of the rotational speed when the present invention works.

图4为本发明中转子位置角曲线图。Fig. 4 is a graph of rotor position angle in the present invention.

具体实施方式detailed description

下面结合具体实施例对本发明做进一步说明。The present invention will be further described below in conjunction with specific embodiments.

一种永磁同步电机的无速度传感器控制方法,包括以下步骤:A speed sensorless control method for a permanent magnet synchronous motor, comprising the following steps:

1)设计自适应滑模观测器1) Design an adaptive sliding mode observer

建立实际电机模型:Build the actual motor model:

建立估计电机模型:Build an estimated motor model:

其中,为转子估计旋转角速度;ωr为转子实际旋转角速度;ud、uq为定子电压在d轴和q轴上的分量;id、iq为定子实际电流在d轴和q轴上的分量;为定子估计电流在d轴和q轴上的分量;ψf为转子励磁磁链;Δθ为模型电机所在假定旋转坐标系和实际所在dq坐标系之间的相位差;Rs为电机定子相电阻;Ls为电机同步电感;Δud、Δuq为逆变器死区引起的ud、uq损失电压;u为模型电机的控制量,同时,将也看成模型电机的控制量。in, Estimated rotational angular velocity of the rotor; ω r is the actual rotational angular velocity of the rotor; u d , u q are the components of the stator voltage on the d-axis and q-axis; id and i q are the components of the actual stator current on the d-axis and q-axis ; ψ f is the rotor excitation flux linkage; Δθ is the phase difference between the assumed rotating coordinate system of the model motor and the actual dq coordinate system; R s is the phase resistance of the motor stator ; L s is the synchronous inductance of the motor; Δu d and Δu q are the loss voltages of u d and u q caused by the dead zone of the inverter; u is the control value of the model motor, and at the same time, the It can also be regarded as the control quantity of the model motor.

用式(1)减去式(2),如果两式中电机参数完全一致,得电流误差方程:Subtract formula (2) from formula (1), if the motor parameters in the two formulas are exactly the same, the current error equation is obtained:

其中,为电流误差,in, is the current error,

为保证式(3)中的电流误差为0,引入电流观测误差积分项,取Lyapunov函数:In order to ensure that the current error in formula (3) is 0, the integral term of the current observation error is introduced, and the Lyapunov function is taken:

式中,ki为电流观测误差积分项系数。In the formula, ki is the coefficient of the integral term of the current observation error.

对式(4)求导,得:Deriving formula (4), we get:

将式(3)代入式(5),得:Substituting formula (3) into formula (5), we get:

令:make:

式中,k为滑模增益。In the formula, k is the sliding mode gain.

比较式(1)和式(2),同时由式(3)可知,当系统稳定时,由于引入了电流误差积分项,因此式(7)中u 的平均值将等于0,从而Δθ=0,两电机完全同步,此时,式(3)满足:Comparing formula (1) and formula (2), at the same time, it can be known from formula (3) that when the system is stable, and Due to the introduction of the current error integral term, the The average value of u in formula (7) will be equal to 0, thus Δθ=0, the two motors are completely synchronized, at this time, formula (3) satisfies:

于是,由式(8)可得估计转速的自适应律为:Therefore, the adaptive law of the estimated rotational speed can be obtained from formula (8):

则,估计转子位置角即为:Then, the estimated rotor position angle is:

2)设计电流内环控制器2) Design the current inner loop controller

整个控制系统的目标是使收敛到设定值id *收敛到设定值iq *,为消除稳态误差,引入误差积分项,于是,定义Lyapunov函数:The goal of the whole control system is to make converges to the set value i d * , Converge to the set value i q * , in order to eliminate the steady-state error, the error integral term is introduced, so the Lyapunov function is defined:

由式(2)可知,若将用来进行控制,由于的状态方程中含有控制量,而控制量采用滑模控制,因此,势必会将抖振引入控制器,影响控制器的稳定性。It can be seen from formula (2) that if the and used to control the and The state equation contains the control quantity, and the control quantity adopts sliding mode control, so chattering is bound to be introduced into the controller, which will affect the stability of the controller.

但是,一旦模型电机和实际PMSM完全同步,即和id、iq完全相同,那么,控制器中的就可以用实际id、iq来代替,因此,式(12)定义的Lyapunov函数即变为:However, once the model motor and the actual PMSM are fully synchronized, i.e. is exactly the same as i d and i q , then, the can be replaced by the actual i d and i q , therefore, the Lyapunov function defined in formula (12) becomes:

其中,Ki为积分系数,为电流设定值在d轴上的分量,为电流设定值在q轴上的分量。Among them, K i is the integral coefficient, is the component of the current setting value on the d-axis, is the component of the current setting value on the q-axis.

对式(13)求导,得:Deriving formula (13), we get:

由于两电机完全同步时,有Δθ=0、因此,式(1)变成:Since the two motors are fully synchronized, there is Δθ=0, Therefore, formula (1) becomes:

将式(15)代入式(14),得:Substituting formula (15) into formula (14), we get:

令:make:

其中,Kp为比例系数。Among them, K p is the proportional coefficient.

则,式(14)变为:Then, formula (14) becomes:

显然,当x≠0时,满足Lyapunov意义下的稳定。同时,将式(17)变形可得到实际控制律为:Obviously, when x≠0, Stability in the Lyapunov sense is satisfied. At the same time, the actual control law can be obtained by transforming the formula (17):

本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范 围内。The present invention is not limited to the above-mentioned embodiments. On the basis of the technical solutions disclosed in the present invention, those skilled in the art can make some replacements and modifications to some of the technical features according to the disclosed technical content without creative work. Deformation, these replacements and deformations are all within the protection scope of the present invention.

Claims (6)

1.一种永磁同步电机的无速度传感器控制方法,其特征在于,包括以下步骤:1. a speed sensorless control method of permanent magnet synchronous motor, is characterized in that, comprises the following steps: 1)采集电机定子A相、B相电流和逆变器直流母线电压,并计算对应C相电流;1) Collect the A-phase and B-phase currents of the motor stator and the DC bus voltage of the inverter, and calculate the corresponding C-phase current; 2)将A相、B相和C相电流进行Clark变换,得到永磁同步电机定子电流在αβ坐标系下的α轴分量和β轴分量;2) Perform Clark transformation on the A-phase, B-phase and C-phase currents to obtain the α-axis component and β-axis component of the permanent magnet synchronous motor stator current in the αβ coordinate system; 3)建立基于旋转坐标系的自适应滑模观测器;3) Establish an adaptive sliding mode observer based on the rotating coordinate system; 4)利用公式(1)求得考虑死区的电机估计转速的自适应律;4) Utilize the formula (1) to obtain the adaptive law of the estimated rotational speed of the motor considering the dead zone; &omega;&omega; ^^ rr == RR sthe s ii ~~ qq -- LL sthe s &CenterDot;&Center Dot; kk ii &Integral;&Integral; ii ~~ qq dd tt -- LL sthe s &CenterDot;&Center Dot; kk &CenterDot;&Center Dot; sthe s ii gg (( ii ~~ qq )) -- &Delta;u&Delta;u qq &psi;&psi; ff -- LL sthe s ii ~~ dd -- -- -- (( 11 )) 其中,为电流误差,id、iq为定子实际电流在d轴和q轴上的分量;为定子估计电流在d轴和q轴上的分量,Rs为电机定子相电阻,Ls为电机同步电感,ψf为转子励磁磁链,k为滑模增益,ki为电流观测误差积分项系数,sig(x)为sigmoid函数,Δuq为由于死区而损失的电机定子三相电压在dq坐标系下的q轴分量;in, is the current error, i d and i q are the components of the actual stator current on the d-axis and q-axis; is the component of the stator estimated current on the d-axis and q-axis, R s is the stator phase resistance of the motor, L s is the synchronous inductance of the motor, ψ f is the rotor excitation flux linkage, k is the sliding mode gain, and ki is the current observation error integral Term coefficient, sig(x) is a sigmoid function, Δu q is the q-axis component of the motor stator three-phase voltage lost due to the dead zone in the dq coordinate system; 5)对由公式(1)求得的估计转速积分,求得电机转子位置角的估计值;5) obtain the estimated value of the rotor position angle of the motor to the estimated rotational speed integral obtained by formula (1); 6)将转速设定值与估计转速相减,求得电机转速的差值,并作为转速外环PI控制器的输入,求得电机定子电流在dq坐标系下d轴分量和q轴分量的设定值;6) Subtract the speed setting value from the estimated speed to obtain the difference of the motor speed, and use it as the input of the PI controller of the speed outer loop to obtain the d-axis component and q-axis component of the motor stator current in the dq coordinate system set value; 7)利用电机转子位置角估计值,将电机定子电流在αβ坐标系下的α轴分量和β轴分量进行Park变换,求得电机定子电流在dq坐标系下d轴分量和q轴分量的实际值;7) Using the estimated value of the motor rotor position angle, the α-axis component and β-axis component of the motor stator current in the αβ coordinate system are subjected to Park transformation, and the actual values of the d-axis component and q-axis component of the motor stator current in the dq coordinate system are obtained. value; 8)将电机定子电流在dq坐标系下d轴分量和q轴分量的实际值进行低通滤波,进行Park反变换和Clark反变换,求得滤波后的A相、B相和C相电流;8) Perform low-pass filtering on the actual values of the d-axis component and q-axis component of the stator current of the motor in the dq coordinate system, perform Park inverse transformation and Clark inverse transformation, and obtain the filtered A-phase, B-phase and C-phase currents; 9)对滤波后的A相、B相和C相电流进行电流极性判断,并根据电流极性求得由于死区而损失的定子三相电压;9) Judging the current polarity of the filtered A-phase, B-phase and C-phase currents, and obtaining the stator three-phase voltage lost due to the dead zone according to the current polarity; 10)将损失的定子三相电压进行Clark变换和Park变换,求得损失的定子三相电压在dq坐标系下d轴分量和q轴分量;10) Carry out Clark transformation and Park transformation to the lost stator three-phase voltage, obtain the d-axis component and the q-axis component of the lost stator three-phase voltage under the dq coordinate system; 11)将得到的电机定子电流在dq坐标系下d轴分量和q轴分量的设定值和实际值作为内环电流控制器的输入,求得实际控制量在dq坐标系下d轴分量和q轴分量;11) Use the obtained set value and actual value of the d-axis component and q-axis component of the motor stator current in the dq coordinate system as the input of the inner loop current controller, and obtain the d-axis component and the actual control quantity in the dq coordinate system q-axis component; 12)将实际控制量在dq坐标系下d轴分量和q轴分量进行Park反变换,求得实际控制量在αβ坐标系下的α轴分量和β轴分量;12) Perform Park inverse transformation on the d-axis component and q-axis component of the actual control quantity in the dq coordinate system to obtain the α-axis component and β-axis component of the actual control quantity in the αβ coordinate system; 13)将实际控制量在αβ坐标系下的α轴分量和β轴分量进行SVPWM,求得六路PWM信号;13) Perform SVPWM on the α-axis component and β-axis component of the actual control quantity in the αβ coordinate system to obtain six PWM signals; 14)计算电机定子电流在dq坐标系下d轴分量和q轴分量的估计值,返回步骤1),进行循环控制。14) Calculate the estimated value of the d-axis component and q-axis component of the motor stator current in the dq coordinate system, return to step 1), and perform loop control. 2.根据权利要求1所述的一种永磁同步电机的无速度传感器控制方法,其特征在于,步骤3)中基于旋转坐标系自适应滑模观测器中的模型电机的数学模型满足公式(2);2. the speed sensorless control method of a kind of permanent magnet synchronous motor according to claim 1, is characterized in that, in step 3) based on the mathematical model of the model motor in the rotating coordinate system adaptive sliding mode observer satisfies formula ( 2); dd ii ^^ dd dd tt == 11 LL sthe s uu dd -- RR sthe s LL sthe s ii ^^ dd ++ &omega;&omega; ^^ rr ii ^^ qq -- uu -- 11 LL sthe s &Delta;u&Delta;u dd dd ii ^^ qq dd tt == 11 LL sthe s uu qq -- RR sthe s LL sthe s ii ^^ qq -- &omega;&omega; ^^ rr ii ^^ dd -- 11 LL sthe s &omega;&omega; ^^ rr &psi;&psi; ff -- 11 LL sthe s &Delta;u&Delta; u qq -- -- -- (( 22 )) 其中,为转子估计旋转角速度;ωr为转子实际旋转角速度;ud、uq为定子电压在d轴和q轴上的分量;id、iq为定子实际电流在d轴和q轴上的分量;为定子估计电流在d轴和q轴上的分量;ψf为转子励磁磁链;Δθ为模型电机所在假定旋转坐标系和实际PMSM所在dq坐标系之间的相位差;Rs为电机定子相电阻;Ls为电机同步电感;Δud、Δuq为逆变器死区引起的ud、uq损失电压;u为模型电机的控制量,同时,将也看成模型电机的控制量。in, Estimated rotational angular velocity of the rotor; ω r is the actual rotational angular velocity of the rotor; u d , u q are the components of the stator voltage on the d-axis and q-axis; id and i q are the components of the actual stator current on the d-axis and q-axis ; ψ f is the rotor excitation flux linkage; Δθ is the phase difference between the assumed rotating coordinate system where the model motor is located and the dq coordinate system where the actual PMSM is located; R s is the stator phase of the motor resistance; L s is the synchronous inductance of the motor; Δu d and Δu q are the loss voltage of u d and u q caused by the dead zone of the inverter; u is the control value of the model motor, and at the same time, the It can also be regarded as the control quantity of the model motor. 3.根据权利要求1或2所述的一种永磁同步电机的无速度传感器控制方法,其特征在于,步骤4)中的sigmoid函数满足公式(3);3. the speed sensorless control method of a kind of permanent magnet synchronous motor according to claim 1 or 2, is characterized in that, the sigmoid function in step 4) satisfies formula (3); sthe s ii gg (( xx )) == 11 -- ee -- aa xx 11 ++ ee -- aa xx -- -- -- (( 33 )) 其中,a为sigmoid常数。Among them, a is the sigmoid constant. 4.根据权利要求1或2所述的一种永磁同步电机的无速度传感器控制方法,其特征在于,步骤8)中的电流内环控制器采用Lyapunov直接法进行设计,所选取的Lyapunov函数满足公式(4);4. the speed sensorless control method of a kind of permanent magnet synchronous motor according to claim 1 or 2, is characterized in that, the current inner loop controller in step 8) adopts Lyapunov direct method to design, and the selected Lyapunov function Satisfy the formula (4); VV (( xx )) == 11 22 LL sthe s (( ii dd -- ii dd ** )) 22 ++ 11 22 LL sthe s (( ii qq -- ii qq ** )) 22 ++ 11 22 KK ii &lsqb;&lsqb; &Integral;&Integral; (( ii dd -- ii dd ** )) dd tt &rsqb;&rsqb; 22 ++ 11 22 KK ii &lsqb;&lsqb; &Integral;&Integral; (( ii qq -- ii qq ** )) dd tt &rsqb;&rsqb; 22 -- -- -- (( 44 )) 其中,Ki为积分系数,为电流设定值在d轴上的分量,为电流Among them, K i is the integral coefficient, is the component of the current setting value on the d-axis, for current 设定值在q轴上的分量。Sets the component of the value on the q-axis. 5.根据权利要求1或2所述的一种永磁同步电机的无速度传感器控制方法,其特征在于,步骤9)中的损失的定子三相电压满足公式(5);5. the speed sensorless control method of a kind of permanent magnet synchronous motor according to claim 1 or 2, is characterized in that, the stator three-phase voltage of loss in step 9) satisfies formula (5); &Delta;u&Delta;u AA == TT dd TT sthe s uu dd cc &CenterDot;&Center Dot; sthe s ii gg nno (( ii AA )) &Delta;u&Delta;u BB == TT dd TT sthe s uu dd cc &CenterDot;&Center Dot; sthe s ii gg nno (( ii BB )) &Delta;u&Delta;u CC == TT dd TT sthe s uu dd cc &CenterDot;&Center Dot; sthe s ii gg nno (( ii CC )) -- -- -- (( 55 )) 其中,Td为死去时间,Ts为PWM波周期,sign(x)为符号函数,iA、iB、iC为滤波后的A相、B相和C相电流,udc为逆变器直流侧母线电压。Among them, T d is the dead time, T s is the PWM wave period, sign(x) is the sign function, i A , i B , i C are the filtered A-phase, B-phase and C-phase currents, u dc is the inverter DC side bus voltage of the converter. 6.根据权利要求5所述的一种永磁同步电机的无速度传感器控制方法,其特征在于,sign函数满足公式(6);6. the speed sensorless control method of a kind of permanent magnet synchronous motor according to claim 5, is characterized in that, sign function satisfies formula (6); sthe s ii gg nno (( xx )) == 11 xx >> 00 00 xx == 00 -- 11 xx << 00 -- -- -- (( 66 )) ..
CN201610620917.0A 2016-07-29 2016-07-29 Speed sensorless control method of permanent magnet synchronous motor Pending CN106026834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610620917.0A CN106026834A (en) 2016-07-29 2016-07-29 Speed sensorless control method of permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610620917.0A CN106026834A (en) 2016-07-29 2016-07-29 Speed sensorless control method of permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
CN106026834A true CN106026834A (en) 2016-10-12

Family

ID=57133504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610620917.0A Pending CN106026834A (en) 2016-07-29 2016-07-29 Speed sensorless control method of permanent magnet synchronous motor

Country Status (1)

Country Link
CN (1) CN106026834A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106330038A (en) * 2016-10-31 2017-01-11 中国矿业大学 A PMLSM Sensorless Control Method Based on Adaptive Gain Sliding Mode Observer
CN107017814A (en) * 2017-06-08 2017-08-04 深圳市英威腾电气股份有限公司 A kind of generator control method, device and Shaft-Generator
CN107733310A (en) * 2017-08-31 2018-02-23 扬州大学 A kind of Speed Sensorless Control Method started suitable for the big torque of asynchronous machine
CN108258946A (en) * 2018-03-08 2018-07-06 青岛大学 A kind of Speed Sensorless Control Method of permanent magnetic linear synchronous motor
CN108964556A (en) * 2018-08-10 2018-12-07 长沙威克电力技术科技有限公司 For driving the senseless control device of permanent magnetic synchronous electrical motor
CN111552264A (en) * 2020-04-13 2020-08-18 吉利汽车研究院(宁波)有限公司 Electric automobile control simulation test platform
CN116317726A (en) * 2023-02-28 2023-06-23 扬州大学 A low-noise position sensorless control method for a dual-three-phase permanent magnet motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769425A (en) * 2012-07-16 2012-11-07 电子科技大学 A Control Method of Permanent Magnet Synchronous Motor Based on MRAS and Fuzzy Control
US20150311844A1 (en) * 2013-02-06 2015-10-29 Texas Instruments Incorporated Motor controller for position sensorless drives
CN105356812A (en) * 2015-10-23 2016-02-24 杭州娃哈哈精密机械有限公司 Starting circuit and starting method of permanent magnet synchronous motor
CN105429545A (en) * 2015-11-30 2016-03-23 张碧陶 Soft measurement-based control method for sensorless permanent magnet synchronous motor
CN103904973B (en) * 2014-03-24 2016-04-20 合肥工业大学 A kind of method realizing salient pole permanent magnet synchronous motor senseless control
CN105763119A (en) * 2016-04-20 2016-07-13 北京控制工程研究所 Control system and control method for CMG framework permanent magnet synchronous motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769425A (en) * 2012-07-16 2012-11-07 电子科技大学 A Control Method of Permanent Magnet Synchronous Motor Based on MRAS and Fuzzy Control
US20150311844A1 (en) * 2013-02-06 2015-10-29 Texas Instruments Incorporated Motor controller for position sensorless drives
CN103904973B (en) * 2014-03-24 2016-04-20 合肥工业大学 A kind of method realizing salient pole permanent magnet synchronous motor senseless control
CN105356812A (en) * 2015-10-23 2016-02-24 杭州娃哈哈精密机械有限公司 Starting circuit and starting method of permanent magnet synchronous motor
CN105429545A (en) * 2015-11-30 2016-03-23 张碧陶 Soft measurement-based control method for sensorless permanent magnet synchronous motor
CN105763119A (en) * 2016-04-20 2016-07-13 北京控制工程研究所 Control system and control method for CMG framework permanent magnet synchronous motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜佳玮: "永磁同步电机的无速度传感器控制研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106330038A (en) * 2016-10-31 2017-01-11 中国矿业大学 A PMLSM Sensorless Control Method Based on Adaptive Gain Sliding Mode Observer
CN106330038B (en) * 2016-10-31 2019-04-26 中国矿业大学 A Sensorless Control Method for PMLSM Based on Adaptive Gain Sliding Mode Observer
CN107017814A (en) * 2017-06-08 2017-08-04 深圳市英威腾电气股份有限公司 A kind of generator control method, device and Shaft-Generator
CN107733310A (en) * 2017-08-31 2018-02-23 扬州大学 A kind of Speed Sensorless Control Method started suitable for the big torque of asynchronous machine
CN107733310B (en) * 2017-08-31 2019-12-10 扬州大学 A speed sensorless control method suitable for high torque start of asynchronous motor
CN108258946A (en) * 2018-03-08 2018-07-06 青岛大学 A kind of Speed Sensorless Control Method of permanent magnetic linear synchronous motor
CN108964556A (en) * 2018-08-10 2018-12-07 长沙威克电力技术科技有限公司 For driving the senseless control device of permanent magnetic synchronous electrical motor
CN111552264A (en) * 2020-04-13 2020-08-18 吉利汽车研究院(宁波)有限公司 Electric automobile control simulation test platform
CN116317726A (en) * 2023-02-28 2023-06-23 扬州大学 A low-noise position sensorless control method for a dual-three-phase permanent magnet motor

Similar Documents

Publication Publication Date Title
CN110350835B (en) A position sensorless control method for permanent magnet synchronous motor
CN106026834A (en) Speed sensorless control method of permanent magnet synchronous motor
CN102326329B (en) The control device of alternating current machine and AC machine drive system
CN109194219B (en) A method and system for permanent magnet synchronous motor control based on model-free non-singular terminal sliding mode
CN107994826B (en) A Full-Order Observer Velocity Sensorless Control System Based on Error Weighting
CN103414423A (en) Surface-mounted permanent magnet synchronous motor sensorless direct torque control method
CN103532464B (en) The vector control system without sensor of permagnetic synchronous motor and control method
CN102684592B (en) Torque and flux linkage control method for permanent synchronous motor
CN103199788B (en) Permanent magnet synchronous motor rotor position observer
CN102201779A (en) Control method for detecting maximum torque current ratio of electromagnetic torque by using stator flux of permanent magnetic synchronous motor
CN101951211A (en) Brushless direct current motor electromagnetic torque observation method based on self-adapting slipform observer
CN112886880A (en) Three-level permanent magnet synchronous motor position sensorless model prediction current control method
CN102647134B (en) Efficiency optimization control method without angle sensor for permanent magnet synchronous motor
CN103414424B (en) AC motor stator flux linkage estimation method
CN106026803A (en) Speed sensorless control method based on sliding-mode observer
CN108377117B (en) Compound current control system and method for permanent magnet synchronous motor based on predictive control
CN102361430B (en) Position sensor-free vector control device for built-in permanent magnetic synchronous motor
CN104901600A (en) Sensorless control method of permanent magnet synchronous motor in wide rotating speed scope
CN108306570A (en) Direct torque control method for permanent magnetic synchronous electric machine and system
CN104836504A (en) Adaptive fault tolerant control method with salient pole permanent magnet synchronous motor precise torque output
CN106788049B (en) Speed sensor-free torque control system and method based on cascading sliding mode observer
CN106059424A (en) Improved Kalman observer based control method free of speed sensor
CN108574444A (en) A method for detecting the initial position of the permanent magnet synchronous motor rotor
CN106059435B (en) A method of improving permanent-magnet synchronous motor rotor position estimated accuracy
CN113676088A (en) Speed sensorless control method of permanent magnet synchronous motor with harmonic suppression

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161012