CN105137409B - 基于幅相约束的目标信号稳健空时自适应处理方法 - Google Patents
基于幅相约束的目标信号稳健空时自适应处理方法 Download PDFInfo
- Publication number
- CN105137409B CN105137409B CN201510443435.8A CN201510443435A CN105137409B CN 105137409 B CN105137409 B CN 105137409B CN 201510443435 A CN201510443435 A CN 201510443435A CN 105137409 B CN105137409 B CN 105137409B
- Authority
- CN
- China
- Prior art keywords
- mrow
- space
- time
- amplitude
- msup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 105
- 238000003672 processing method Methods 0.000 title claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims abstract description 220
- 239000013598 vector Substances 0.000 claims abstract description 168
- 230000004044 response Effects 0.000 claims abstract description 37
- 238000012545 processing Methods 0.000 claims abstract description 30
- 238000012937 correction Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 36
- 230000014509 gene expression Effects 0.000 claims description 14
- 238000005457 optimization Methods 0.000 claims description 14
- 230000002123 temporal effect Effects 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 12
- 238000012549 training Methods 0.000 description 12
- 238000004088 simulation Methods 0.000 description 10
- 230000006872 improvement Effects 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000002939 conjugate gradient method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于幅相约束的雷达目标信号稳健空时自适应处理方法,其思路是:设定目标信号为雷达空时数据矩阵,并得到该雷达空时数据矩阵的第一空时自适应权值矩阵,进而得到最优化条件等式,然后根据该最优化条件等式,计算该雷达空时数据矩阵的第二空时自适应权值矩阵,并构建基于幅相约束的线性约束最小方差波束形成器的复响应矢量,进而计算得到基于幅相约束的波束形成器的空时自适应权值矩阵后,计算得到基于幅相约束的波束形成器的无约束代价函数,并分别计算稳健时间协方差矩阵和稳健空间协方差矩阵,再分别计算稳健校正空间导向矢量和稳健校正时间导向矢量,进而得到稳健校正空时导向矢量,最后计算得到经过空时处理的最终目标信号。
Description
技术领域
本发明属于雷达空时自适应处理技术领域,特别涉及一种基于幅相约束的目标信号稳健空时自适应处理方法,即基于幅相约束的迭代优化稳健空时自适应处理(Spacetimeadaptive processing,STAP)方法,适用于小样本场景下获得更好的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
背景技术
空时自适应处理(STAP)方法作为解决运动平台杂波抑制的一种有力工具,广泛应用于机载雷达系统中。当能够较为精确的估计出运动平台的杂波-脉冲-噪声协方差矩阵时,空时自适应处理(STAP)方法就具有较好的杂波抑制性能。由于运动平台的杂波-脉冲-噪声协方差矩阵在距离向上的杂波相互独立,使得运动平台的杂波-脉冲-噪声协方差矩阵通常由机载侧视雷达(Side Looking Airborne Radar,SLAR)产生的大量二次距离元样本所决定。但在非正侧视机载雷达(non-SLAR)中,运动平台的杂波-脉冲-噪声协方差矩阵的非均匀杂波是统计独立的,使得非正侧视机载雷达(non-SLAR)产生的大量二次距离元样本无法为测试单元(UT)提供同样的杂波特性,进而造成该非均匀杂波无法得到很好的抑制。
当所需的二次距离元样本有限时,所求信号的实际阵列与假定阵列均会相应出现误匹配,产生近程杂波,使得采用空时自适应处理(STAP)方法抑制该近程杂波时,其性能出现严重退化。而稳健空时自适应处理(STAP)方法的实质,是在空时区域中采用稳健的自适应波束形成雷达阵列,并通过使用对角加载技术来避免由训练样本有限、信号误匹配或非均匀杂波所产生的高旁瓣和主瓣波形失真现象。但在实际应用中,稳健空时区域中产生的误匹配信息各不相同,如多普勒频率误匹配与阵列天线误匹配均不相同,使得其产生的高旁瓣和主瓣波形失真现象严重,得到最终信号的信号与干扰加噪声比(SINR)低,进而影响该稳健空时自适应处理(STAP)方法的稳健性。
发明内容
针对以上现有技术的不足,本发明的目的在于提出一种基于幅相约束的目标信号稳健空时自适应处理方法,实现在小样本场景下获得更好的最终目标信号,进而提高该最终目标信号的信号与干扰加噪声比(SINR)。
本发明的主要思路是:设定目标信号为雷达空时数据矩阵,并得到该雷达空时数据矩阵的第一空时自适应权值矩阵,进而得到最优化条件等式,然后根据该最优化条件等式,计算该雷达空时数据矩阵的第二空时自适应权值矩阵,并构建基于幅相约束的线性约束最小方差波束形成器的复响应矢量,进而计算得到基于幅相约束的线性约束最小方差(LCMV)波束形成器的空时自适应权值矩阵,根据得到的基于幅相约束的线性约束最小方差(LCMV)波束形成器的空时自适应权值矩阵,计算得到基于幅相约束的线性约束最小方差波束形成器的无约束代价函数,并分别计算时间协方差矩阵和空间协方差矩阵,再计算得到稳健校正空间导向矢量和稳健校正时间导向矢量,进而得到稳健校正空时导向矢量,并结合雷达空时数据矩阵,计算经过空时处理的最终目标信号,实现在小样本场景下获得比传统线性约束最小方差空时自适应处理(LCMV STAP)更好的信号与干扰加噪声比(SINR)。
为达到上述技术目的,本发明采用如下技术方案予以实现。
一种基于幅相约束的目标信号稳健空时自适应处理方法,其特征在于,包括以下步骤:
步骤1,设定目标信号为雷达空时数据矩阵X,并设定该雷达空时数据矩阵X的第一空时自适应权值矩阵进而设定该雷达空时数据矩阵X的最优化条件等式,其具体表达式为:
其中,E{·}表示求取数学期望,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,v*表示雷达空时数据矩阵X设定的M×1维时间权矢量v的共轭,上标H表示共轭转置,X表示雷达空时数据矩阵,s.t.表示约束条件,min表示求取最小值,a表示空间导向矢量,b表示时间导向矢量;
步骤2,根据步骤1得到的最优化条件等式,计算雷达空时数据矩阵X的第二空时自适应权值矩阵W,并构建基于幅相约束的线性约束最小方差波束形成器的复响应矢量进而计算得到基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵
步骤3,根据步骤2得到的基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵得到基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2),并分别计算稳健时间协方差矩阵和稳健空间协方差矩阵分别得到稳健校正空间导向矢量和稳健校正时间导向矢量进而得到稳健校正空时导向矢量s;其中,λ1和λ2均表示拉格朗日倍乘数,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量;
步骤4,将稳健校正空时导向矢量s与雷达空时数据矩阵X进行Kronecker积,得到经过空时处理的雷达空时数据矩阵,即得到经过空时处理的最终目标信号。
本发明的有益效果包括:1)通过优化迭代获得了分离的空域与时域幅相约束;2)在实际应用中对目标信号的波达方向(Direction of Arrival,DOA)和多普勒频率误匹配均具有较好稳健性;3)在小样本场景下具有较好性能。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为本发明的一种基于幅相约束的迭代优化稳健空时自适应处理方法流程图;
图2(a)为目标信号在波达方向(Direction of Arrival,DOA)的误差示意图,
图2(b)为目标信号的多普勒频率误差示意图;
图3为关于正规化多普勒频率的改善因子曲线示意图;
图4为关于迭代次数的改善因子对比曲线示意图;
图5为关于样本数量的改善因子曲线示意图;
图6为关于训练数据数量的改善因子曲线示意图。
具体实施方式
参照图1,为本发明的一种基于幅相约束的目标信号稳健空时自适应处理方法流程图,该种基于幅相约束的迭代优化稳健空时自适应处理方法,包括以下步骤:
步骤1,设定目标信号为雷达空时数据矩阵X,并设定该雷达空时数据矩阵X的第一空时自适应权值矩阵进而设定该雷达空时数据矩阵X的最优化条件等式,其具体表达式为:
其中,E{·}表示求取数学期望,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,v*表示雷达空时数据矩阵X设定的M×1维时间权矢量v的共轭,上标H表示共轭转置,X表示雷达空时数据矩阵,s.t.表示约束条件,min表示求取最小值,a表示空间导向矢量,b表示时间导向矢量;
具体地,稳健空时自适应处理(STAP)方法通常包括角度-多普勒域的空间/慢时间信息。设定雷达空时数据矩阵X,则该雷达空时数据矩阵X接收数据的向量形式为且
其中,xs(k)表示第k个脉冲的接收数据,且xs(k)=[x(1,k) x(2,k) …x(n,k)… x(N,k)]T,x(n,k)表示第n个阵元的第k个脉冲的接收数据,n∈{1,2,…,N},N表示雷达空时数据矩阵X中的阵元个数,每个阵元接收M个脉冲,k∈{1,2,…,M}。
进而得到雷达空时数据矩阵X可表示为:
设定雷达空时数据矩阵X的第一空时自适应权值矩阵为:
其中,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,N表示雷达空时数据矩阵X中的阵元个数,每个阵元接收M个脉冲。
因此,可以设定该雷达空时数据矩阵X的最优化条件等式,其具体表达式为:
其中,E{·}表示求取数学期望,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,v*表示雷达空时数据矩阵X设定的M×1维时间权矢量v的共轭,上标H表示共轭转置,X表示雷达空时数据矩阵,s.t.表示约束条件,min表示求取最小值,a表示空间导向矢量,b表示时间导向矢量。
式(4)中的约束条件包括两个矢量约束,即空间导向矢量约束uHa=1和时间导向矢量约束vHb=1;此外,式(4)也表征一个空时分离滤波器,但却不是优化的空时2-D滤波器,它是一个降维滤波器。
步骤2,根据步骤1设定的最优化条件等式,计算雷达空时数据矩阵X的第二空时自适应权值矩阵W,并构建基于幅相约束的线性约束最小方差(LCMV)波束形成器的复响应矢量进而计算得到基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵
步骤2的子步骤为:
2.1根据步骤1设定的最优化条件等式,计算雷达空时数据矩阵X的第二空时自适应权值矩阵W,并构建基于幅相约束的线性约束最小方差(LCMV)波束形成器的复响应矢量
具体地,线性约束最小方差(LCMV)波束形成器是通过在观测方向周围增加一组线性归一化增益约束,降低目标信号在波达方向(DOA)上的不确定性,其波束形成问题表述如下:
其中,C表示N×L矩阵,f=(1,1,…,1)T表示不确定性约束方向上幅度响应单位化的L×1维矢量,W表示雷达空时数据矩阵X的第二空时自适应权值矩阵,R表示线性约束最小方差(LCMV)波束形成器的协方差矩阵。
线性约束最小方差(LCMV)波束形成器的解,即雷达空时数据矩阵X的第二空时自适应权值矩阵W可表示为:
w=R-1C(CHR-1C)-1f (6)
其中,C表示N×L维矩阵,f表示不确定性约束方向上幅度响应单位化的L×1维矢量,且f=(1,1,…,1)T,W表示雷达空时数据矩阵X的第二空时自适应权值矩阵,R表基于线性约束最小方差(LCMV)波束形成器的协方差矩阵,上标H表示共轭转置。
当N×L矩阵C的每一列均为不确定性约束方向上的导向矢量时,可将线性约束最小方差(LCMV)波束形成器作为基于线性约束最小方差(LCMV)的幅度约束;当N×L矩阵C的每一列均为阵列响应中不确定选定角θ的导向矢量衍生时,可将线性约束最小方差(LCMV)波束形成器作为基于线性约束最小方差(LCMV)的衍生约束;该基于线性约束最小方差(LCMV)的幅度约束和该基于线性约束最小方差(LCMV)的衍生约束均尝试使阵列响应中不确定性约束方向上的幅度响应,在所处理信号的方向附近浮动,使得该基于线性约束最小方差(LCMV)的阵列波形主波束展宽,也使得该基于线性约束最小方差(LCMV)的阵列波形对其协方差矩阵误差和导向矢量误匹配均具有稳健性。但是,线性约束最小方差(LCMV)波束形成器忽略了相位响应误匹配,造成线性约束最小方差(LCMV)波束形成器的性能退化,使得基于线性约束最小方差(LCMV)的阵列波形对其协方差矩阵误差和导向矢量误匹配均具有的稳健性降低。
为改善上述问题,本发明提出一种考虑相位误匹配的幅相约束稳健空时自适应处理(STAP)方法,即基于幅相约束的线性约束最小方差(LCMV)波束形成法,该种基于幅相约束的线性约束最小方差(LCMV)波束形成法表示如下:
其中,W表示雷达空时数据矩阵X的第二空时自适应权值矩阵,R表示基于线性约束最小方差(LCMV)波束形成器的协方差矩阵,上标H表示共轭转置,C表示N×L维矩阵,min表示求取最小值,subject to简写形式为s.t.,且均表示约束条件,表示基于幅相约束的线性约束最小方差(LCMV)波束形成器的复响应矢量,表示基于幅相约束的线性约束最小方差(LCMV)波束形成器的第l个相位角,l∈{1,2,…,q},q表示基于幅相约束的线性约束最小方差(LCMV)波束形成器的相位角总个数,(1,1,…,1)表示基于幅相约束的线性约束最小方差(LCMV)波束形成器的幅度约束,表示基于幅相约束的线性约束最小方差(LCMV)波束形成器的相位约束,表示Hadamard积。
2.2计算得到基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵
具体地,为了使雷达空时数据矩阵X的相位响应约束尽可能接近标准波束形成器的相位响应约束,将基于幅相约束的线性约束最小方差(LCMV)波束形成器的复响应矢量替换式(6)里不确定性约束方向上幅度响应单位化的L×1维矢量f,计算基于幅相约束的波束形成器的空时自适应权值矩阵其具体表达式为:
其中,C表示N×L维矩阵,表示基于幅相约束的线性约束最小方差波束形成器的复响应矢量,R表示基于线性约束最小方差(LCMV)波束形成器的协方差矩阵,上标H表示共轭转置。
通常,标准波束形成器阵列输出的相位响应约束表示如下:
其中,θ0表示视界方向用来解决阵列响应中不确定性的选定角,angle[·]表示计算[-π,π]范围内用来解决阵列响应中不确定性的选定角,wS表示标准波束形成权,上标H表示共轭转置,λ表示标准波束形成器的输出波长,n∈{1,2,…,N},N表示雷达空时数据矩阵X中的阵元个数,d表示雷达空时数据矩阵X的阵元间距,sin{·}表示求取正弦函数,y(θ)表示标准波束形成器输出阵列,a(θ)表示标准波束形成器阵列输出的方向图。
由于现有的波束形成器只与幅度响应约束有关,其阵列波形的主波束不够平坦。为解决这一问题,本发明将标准波束形成器阵列输出的相位响应约束作为基于幅相约束的线性约束最小方差波束形成器的相位响应约束,然后再设置基于幅相约束的线性约束最小方差波束形成器的幅度响应约束,使得产生的波形主波束展宽并单位化,再将雷达空时数据矩阵X的N×1维空间权矢量u设置成空时数据矩阵X的输出相位,能够使得基于幅相约束的线性约束最小方差波束形成器的相位响应约束与标准波束形成器阵列输出的相位响应约束相等。
根据式(8)可知,由于假定视界方向附近的相位响应近似为线性,则能够使用泰勒级数的第一级来获取基于幅相约束的线性约束最小方差波束形成器的相位响应约束的近似值,并且其稳健空时2-D滤波器的幅度响应约束与传统线性约束的最小方差无失真响应(MVDR)波束形成器的幅度响应约束的复杂度为同一级。
步骤3,根据步骤2得到的基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵得到基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2),并分别计算稳健时间协方差矩阵和稳健空间协方差矩阵分别得到稳健校正空间导向矢量和稳健校正时间导向矢量进而得到稳健校正空时导向矢量s;其中,λ1和λ2均表示拉格朗日倍乘数,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量;
具体地,
为解决式(4)中的最优化问题,根据步骤2得到的基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵并使用拉格朗日倍乘法,构造基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2),其表达式为:
L(u,v,λ1,λ2)=E{||uHXv*||2}+λ1(uHa-1)+λ2(vHb-1) (9)
其中,λ1和λ2均表示拉格朗日倍乘数,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,E{·}表示求取数学期望,上标H表示共轭转置,X表示雷达空时数据矩阵,v*表示雷达空时数据矩阵X设定的M×1维时间权矢量v的共轭,a表示空间导向矢量,b表示时间导向矢量。
通常,使用共轭梯度法或牛顿法来求解基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2)的最优解。由于空域和时域存在耦合,本发明采用双迭代算法分别计算稳健校正空间导向矢量和校正空时导向矢量,步骤3的具体子步骤如下:
3.1令基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2)关于u的导数为0,分别计算基于幅相约束的线性约束最小方差波束形成器的自适应空间权值矢量u(k)和基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵且表达式分别为:
其中,雷达空时数据矩阵X中的每个阵元接收M个脉冲,k∈{1,2,…,M},每个脉冲包含P个距离门,i∈{1,2,…,P},fs表示基于幅相约束的线性约束最小方差波束形成器的协方差矩阵的复矢量,表示基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,Xi表示雷达空时数据矩阵X中第i个阵元的接收数据,i表示第i个距离门,i也表示雷达空时数据矩阵X中第i个阵元,P≤N,N表示雷达空时数据矩阵X中的阵元个数,上标H表示共轭转置,C表示N×L维矩阵,令b表示时间导向矢量;
3.2令基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2)关于v的导数为0,分别计算基于幅相约束的线性约束最小方差波束形成器的自适应时间权值矢量v(k)和基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵其表达式分别为:
其中,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,表示基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵,空时数据矩阵X中的每个阵元接收M个脉冲,k∈{1,2,…,M},每个脉冲包含P个距离门,i∈{1,2,…,P},u表示雷达空时数据矩阵X设定的N×1维空间权矢量,Xi表示雷达空时数据矩阵X中第i个阵元的接收数据,i表示第i个距离门,i也表示雷达空时数据矩阵X中第i个阵元,P≤N,N表示雷达空时数据矩阵X中的阵元个数,令a表示空间导向矢量,上标H表示共轭转置,C表示N×L维矩阵,ft表示基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵的复矢量;
3.3利用基于幅相约束的线性约束最小方差波束形成器的自适应空间权值矢量u(k)构建基于幅相约束的线性约束最小方差波束形成器的第一时间协方差矩阵利用基于幅相约束的线性约束最小方差波束形成器的自适应时间权值矢量v(k)基于幅相约束的线性约束最小方差波束形成器的第一空间协方差矩阵然后将基于幅相约束的线性约束最小方差波束形成器的第一空间协方差矩阵代入式(10),将式(10)中的基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵替换成基于幅相约束的线性约束最小方差波束形成器的第一空间协方差矩阵得到基于幅相约束的线性约束最小方差波束形成器的第一自适应空间权值矢量u(k+1),将基于幅相约束的线性约束最小方差波束形成器的第一时间协方差矩阵代入式(12),将式(12)中的基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵替换成基于幅相约束的线性约束最小方差波束形成器的第一时间协方差矩阵得到基于幅相约束的线性约束最小方差波束形成器的第一自适应时间权值矢量v(k+1);
3.4利用基于幅相约束的线性约束最小方差波束形成器的第一自适应空间权值矢量u(k+1)构建基于幅相约束的线性约束最小方差波束形成器的第二时间协方差矩阵利用基于幅相约束的线性约束最小方差波束形成器的第一自适应时间权值矢量v(k+1)构建基于幅相约束的线性约束最小方差波束形成器的第二空间协方差矩阵然后将基于幅相约束的线性约束最小方差波束形成器的第二空间协方差矩阵代入式(10),将式(10)中的基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵替换成基于幅相约束的线性约束最小方差波束形成器的第二空间协方差矩阵得到基于幅相约束的线性约束最小方差波束形成器的第二自适应空间权值矢量u(k+2),将第二时间协方差矩阵代入式(12),将式(12)中的基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵替换成基于幅相约束的线性约束最小方差波束形成器的第二时间协方差矩阵得到基于幅相约束的线性约束最小方差波束形成器的第二自适应时间权值矢量v(k+2);
3.5重复此过程,直至得到基于幅相约束的线性约束最小方差波束形成器的第j自适应空间权值矢量u(k+j)和基于幅相约束的线性约束最小方差波束形成器的第j自适应时间权值矢量v(k+j)分别满足如下设定的收敛条件:
|u(k+j)-u(k+j-1)|<ε
(14)
|v(k+j)-v(k+j-1)|<ε
迭代停止,此时得到的基于幅相约束的线性约束最小方差波束形成器的第j自适应空间权值矢量u(k+j)和基于幅相约束的线性约束最小方差波束形成器的第j自适应时间权值矢量v(k+j)分别为稳健自适应空间权值矢量和稳健自适应时间权值矢量然后利用稳健自适应空间权值矢量计算得到稳健时间协方差矩阵利用稳健自适应时间权值矢量计算得到稳健空间协方差矩阵其中,j表示迭代次数。
3.6利用稳健时间协方差矩阵和稳健空间协方差矩阵分别得到稳健校正空时导向矢量和稳健校正时间导向矢量进而得到稳健校正空时导向矢量s。
具体地,
一般情况下,通过在多普勒-角度平面中的假定点周围添加几个同时满足幅度响应约束条件与相位响应约束条件的点,就能够使得稳健空时自适应处理(STAP)波束形成器的主波束得到较好保持。图2给出了多普勒-角度平面中的约束条件示意图。特别地,添加9个同时满足幅度响应约束条件与相位响应约束条件的点保持稳健空时自适应处理(STAP)波束形成器的性能。
但在实际应用中,特别是在降维空时自适应处理(STAP)处理过程中,通常需要获得稳健校正空间导向矢量和稳健校正时间导向矢量使得稳健空时自适应处理(STAP)波束形成器的主波束得到较好保持,此处选用优化迭代稳健空时自适应处理(STAP)方法进行计算,该优化迭代稳健空时自适应处理(STAP)方法的特点是对目标信号的波达方向(DOA)和多普勒频率误匹配均具有稳健性;并且,优化迭代稳健空时自适应处理的空域误匹配与时域误匹配需分开进行处理,然后分别采用空域稳健权和时域稳健权,均能将目标信号的波达方向(DOA)和多普勒频率导向矢量的不同误匹配计算出来。
令可分别得到稳健校正空间导向矢量和稳健校正时间导向矢量其表达式分别为:
所以,稳健校正空时导向矢量s为
其中,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,表示稳健时间协方差矩阵,表示稳健空间协方差矩阵,雷达空时数据矩阵X中的每个阵元接收M个脉冲,k∈{1,2,…,M},(·)-1表示求逆运算,上标H表示共轭转置,C表示N×L维矩阵,fs表示基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵的复矢量,ft表示基于幅相约束的线性约束最小方差波束形成器的协方差矩阵的复矢量,表示Kronecker积,表示稳健校正空时导向矢量,表示稳健校正时间导向矢量。
步骤4,将稳健校正空时导向矢量s与雷达空时数据矩阵X进行Kronecker积,得到经过空时处理的雷达空时数据矩阵,即得到经过空时处理的最终目标信号。
具体地,得到稳健校正空时导向矢量s后,将该稳健校正空时导向矢量s与雷达空时数据矩阵X进行Kronecker积,得到经过空时处理的雷达空时数据矩阵,即经过空时处理的最终目标信号,此时经过空时处理的最终目标信号的波达方向(DOA)和多普勒频率误匹配均具有稳健性,以此实现在小样本场景下比传统线性约束最小方差空时自适应处理(LCMV STAP)拥有更好的信号与干扰加噪声比(SINR)。
本发明效果可以通过以下仿真实验进一步说明。
(一)仿真条件
设定空时数据矩阵X为机载雷达均匀阵列,该机载雷达均匀阵列的仿真参数由表1给出。
表1
(二)仿真内容
仿真实验1:在第一个例子中,仿真由目标波达方向(DOA)和多普勒频率误差的场景以及该场景的训练数据样本中出现的目标信号组成,该目标信号的杂噪比(SNR)为20dB,脉冲重复频率归一化后的多普勒频率误差在-0.05~0.05之间变化;假定目标信号的波达方向(DOA)偏离实际目标信号的波达方向(DOA)的角度范围为-0.05°~0.05°,实际目标信号的波达方向(DOA)误差示意图与多普勒频率误差示意图分别由图2(a)和图2(b)给出;其中,信号-杂波-脉冲-噪声比(SCNR)损失定义为目标信号的输出信杂噪比(SCNR)与优化后目标信号的信杂噪比(SCNR)之比。如图2(a)所示,传统线性约束最小方差(MVDR)法的性能对假定目标信号的波达方向(DOA)和实际目标信号的波达方向(DOA)之间的差异相当敏感;从图2(b)可以看出,本发明的性能要优于传统方法的性能。随着假定目标信号多普勒频率和实际目标信号多普勒频率的增大,两种方法的性能都会产生退化。但从图2(b)中可以看出,相比于传统线性约束最小方差(MVDR)法,本发明方法性能还是有所提升。
仿真实验2:考虑目标信号的波达方向(DOA)与多普勒频率均不准确的场景。
图3为关于正规化多普勒频率的改善因子曲线示意图;图4为关于迭代次数的改善因子对比曲线示意图;
由图3和图4可以看出,传统线性约束最小方差(MVDR)法对目标信号的波达方向(DOA)和多普勒频率的误匹配均十分敏感,但本发明方法对目标信号的波达方向(DOA)以及多普勒频率误差均具有很好的稳健性。所以,当出现目标信号的波达方向(DOA)与多普勒频率误匹配时,传统方法会出现严重的性能退化,而本发明方法可以获得明显的性能提升,并对空时导向误差具有较好稳健性。但在多普勒频率较小时,本发明方法会出现一定程度的性能退化。因为在低多普勒频率场景中,假定目标信号接近于杂波脊,使得目标信号的输出功率最小值,均会与该目标信号的相位响应约束与幅相响应约束条件冲突,从而造成低多普勒频率场景中的性能退化。
仿真实验3:实际存在的一个问题,训练数据在实际应用中十分珍贵。在这一前提下,本发明方法相对传统方法具有明显的优越性,因为它只需要少量训练数据且信杂噪比(SCNR)损失很小。为证明这一点,此处仿真一个目标信号的波达方向(DOA)与多普勒频率均不精确,且相对于全空时自适应处理(STAP)训练数据较小的场景。特别地,训练数据样本大小为20。
当传统空时自适应处理(STAP)处理器被应用于该场景中时,传统自适应技术的性能退化问题就能得到缓解;并且由图4可以看出,本发明相比于传统线性约束最小方差(MVDR)法具有更好的性能,能够可靠地分别决定空域与时域的权值且只需要少量的训练数据。
仿真实验4:传统方法借助古德曼理论渐近地获得最优化性能,要求训练数据的大小大于二倍的自由度;图5为关于样本数量的改善因子曲线示意图;图6为关于训练数据数量的改善因子曲线示意图;
从图5和图6可以得知,本发明对于空间导向矢量误匹配、时间导向矢量误匹配与空时导向矢量误匹配均具有稳健性。此外,本发明提出的基于幅相约束稳健空时2-D滤波器的性能要优于传统线性约束最小方差(MVDR)法。图6也表明,基于幅相约束稳健空时2-D滤波器法能够大幅度减少训练数据数量,进而能够在训练数据样本不充分的非均匀环境下可靠工作。
综上所述,仿真实验验证了本发明的正确性、有效性和可靠性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (5)
1.一种基于幅相约束的雷达目标信号稳健空时自适应处理方法,其特征在于,包括以下步骤:
步骤1,设定目标信号为雷达空时数据矩阵X,并设定该雷达空时数据矩阵X的第一空时自适应权值矩阵进而设定该雷达空时数据矩阵X的最优化条件等式,其具体表达式为:
<mfenced open = "" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<munder>
<mi>min</mi>
<mrow>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
</mrow>
</munder>
<mi>E</mi>
<mo>{</mo>
<mo>|</mo>
<mo>|</mo>
<msup>
<mi>u</mi>
<mi>H</mi>
</msup>
<msup>
<mi>Xv</mi>
<mo>*</mo>
</msup>
<mo>|</mo>
<msup>
<mo>|</mo>
<mn>2</mn>
</msup>
<mo>}</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>s</mi>
<mo>.</mo>
<mi>t</mi>
<mo>.</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<msup>
<mi>u</mi>
<mi>H</mi>
</msup>
<mi>a</mi>
<mo>=</mo>
<mn>1</mn>
<mi>a</mi>
<mi>n</mi>
<mi>d</mi>
<mi> </mi>
<msup>
<mi>v</mi>
<mi>H</mi>
</msup>
<mi>b</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
其中,E{·}表示求取数学期望,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,v*表示雷达空时数据矩阵X设定的M×1维时间权矢量v的共轭,上标H表示共轭转置,X表示雷达空时数据矩阵,s.t.表示约束条件,min表示求取最小值,a表示空间导向矢量,b表示时间导向矢量;
步骤2,根据步骤1设定的最优化条件等式,计算雷达空时数据矩阵X的第二空时自适应权值矩阵W,并构建基于幅相约束的线性约束最小方差波束形成器的复响应矢量进而计算得到基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵
在步骤2中,所述计算得到基于幅相约束的波束形成器的空时自适应权值矩阵的子步骤为:
3.1根据步骤1设定的最优化条件等式,计算雷达空时数据矩阵X的第二空时自适应权值矩阵W,并构建基于幅相约束的线性约束最小方差波束形成器的复响应矢量
3.2计算得到基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵其表达式为:
<mrow>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<msup>
<mi>R</mi>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mi>C</mi>
<msup>
<mrow>
<mo>(</mo>
<msup>
<mi>C</mi>
<mi>H</mi>
</msup>
<msup>
<mi>R</mi>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mover>
<mi>f</mi>
<mo>^</mo>
</mover>
</mrow>
其中,C表示N×L维矩阵,表示基于幅相约束的线性约束最小方差波束形成器的复响应矢量,R表示基于线性约束最小方差波束形成器的协方差矩阵,上标H表示共轭转置;
所述雷达空时数据矩阵X的第二空时自适应权值矩阵W可表示为:
W=R-1C(CHR-1C)-1f
其中,C表示N×L维矩阵,f表示不确定性约束方向上幅度响应单位化的L×1维矢量,R表示基于线性约束最小方差波束形成器的协方差矩阵,上标H表示共轭转置;
步骤3,根据步骤2得到的基于幅相约束的线性约束最小方差波束形成器的空时自适应权值矩阵得到基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2),并分别计算稳健时间协方差矩阵和稳健空间协方差矩阵分别得到稳健校正空间导向矢量和稳健校正时间导向矢量进而得到稳健校正空时导向矢量s;其中,λ1和λ2均表示拉格朗日倍乘数,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量;
步骤4,将稳健校正空时导向矢量s与雷达空时数据矩阵X进行Kronecker积,得到经过空时处理的雷达空时数据矩阵,即得到经过空时处理的最终目标信号。
2.如权利要求1所述的一种基于幅相约束的雷达目标信号稳健空时自适应处理方法,其特征在于,在步骤1中,所述雷达空时数据矩阵X可表示为:
其中,x(n,k)表示第n个阵元的第k个脉冲的接收数据,n∈{1,2,…,N},N表示雷达空时数据矩阵X中的阵元个数,每个阵元接收M个脉冲,k∈{1,2,…,M}。
3.如权利要求1所述的一种基于幅相约束的雷达目标信号稳健空时自适应处理方法,其特征在于,在步骤3中,所述基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2)的表达式为:
L(u,v,λ1,λ2)=E{||uHXv*||2}+λ1(uHa-1)+λ2(vHb-1)
其中,λ1和λ2均表示拉格朗日倍乘数,u表示雷达空时数据矩阵X设定的N×1维空间权矢量,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,E{·}表示求取数学期望,上标H表示共轭转置,X表示雷达空时数据矩阵,v*表示雷达空时数据矩阵X设定的M×1维时间权矢量v的共轭,a表示空间导向矢量,b表示时间导向矢量。
4.如权利要求1所述的一种基于幅相约束的雷达目标信号稳健空时自适应处理方法,其特征在于,在步骤3中,所述稳健校正空间导向矢量和稳健校正时间导向矢量获得稳健校正空间导向矢量和稳健校正时间导向矢量的子步骤为:
6.1令基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2)关于u的导数为0,分别计算基于幅相约束的线性约束最小方差波束形成器的自适应空间权值矢量u(k)和基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵且表达式分别为:
其中,雷达空时数据矩阵X中的每个阵元接收M个脉冲,k∈{1,2,…,M},每个脉冲包含P个距离门,i∈{1,2,…,P},fs表示基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵的复矢量,表示基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,Xi表示雷达空时数据矩阵X中第i个阵元的接收数据,i表示第i个距离门,i也表示雷达空时数据矩阵X中第i个阵元,P≤N,N表示雷达空时数据矩阵X中的阵元个数,上标H表示共轭转置,C表示N×L维矩阵,令b表示时间导向矢量;
6.2令基于幅相约束的线性约束最小方差波束形成器的无约束代价函数L(u,v,λ1,λ2)关于v的导数为0,分别计算基于幅相约束的线性约束最小方差波束形成器的自适应时间权值矢量v(k)和基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵其表达式分别为:
其中,v表示雷达空时数据矩阵X设定的M×1维时间权矢量,表示基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵,雷达空时数据矩阵X中的每个阵元接收M个脉冲,k∈{1,2,…,M},每个脉冲包含P个距离门,i∈{1,2,…,P},u表示雷达空时数据矩阵X设定的N×1维空间权矢量,Xi表示雷达空时数据矩阵X中第i个阵元的接收数据,i表示第i个距离门,i也表示雷达空时数据矩阵X中第i个阵元,P≤N,N表示雷达空时数据矩阵X中的阵元个数,令a表示空间导向矢量,上标H表示共轭转置,C表示N×L维矩阵,ft表示基于幅相约束的线性约束最小方差波束形成器的时间协方差矩阵的复矢量;
6.3利用基于幅相约束的线性约束最小方差波束形成器的自适应空间权值矢量u(k)计算得到基于幅相约束的线性约束最小方差波束形成器的第一时间协方差矩阵利用基于幅相约束的线性约束最小方差波束形成器的自适应时间权值矢量v(k)计算得到基于幅相约束的线性约束最小方差波束形成器的第一空间协方差矩阵然后经过计算分别得到基于幅相约束的线性约束最小方差波束形成器的第一自适应空间权值矢量u(k+1)和基于幅相约束的线性约束最小方差波束形成器的第一自适应时间权值矢量v(k+1);
6.4利用基于幅相约束的线性约束最小方差波束形成器的第一自适应空间权值矢量u(k+1)计算得到基于幅相约束的线性约束最小方差波束形成器的第二时间协方差矩阵利用基于幅相约束的线性约束最小方差波束形成器的第一自适应时间权值矢量v(k+1)计算得到基于幅相约束的线性约束最小方差波束形成器的第二空间协方差矩阵然后经过计算分别得到基于幅相约束的线性约束最小方差波束形成器的第二自适应空间权值矢量和基于幅相约束的线性约束最小方差波束形成器的第二自适应时间权值矢量v(k+2);
6.5重复此过程,直至得到基于幅相约束的线性约束最小方差波束形成器的第j自适应空间权值矢量u(k+j)和基于幅相约束的线性约束最小方差波束形成器的第j自适应时间权值矢量v(k+j)分别满足如下设定的收敛条件:
|u(k+j)-u(k+j-1)|<ε
|v(k+j)-v(k+j-1)|<ε
迭代停止,此时得到的基于幅相约束的线性约束最小方差波束形成器的第j自适应空间权值矢量u(k+j)和基于幅相约束的线性约束最小方差波束形成器的第j自适应时间权值矢量v(k+j)分别为稳健自适应空间权值矢量和稳健自适应时间权值矢量然后将稳健自适应空间权值矢量构建稳健时间协方差矩阵将稳健自适应时间权值矢量构建稳健空间协方差矩阵其中,j表示迭代次数;
6.6利用稳健时间协方差矩阵和稳健空间协方差矩阵分别得到稳健校正空时导向矢量和稳健校正时间导向矢量
5.如权利要求1所述的一种基于幅相约束的雷达目标信号稳健空时自适应处理方法,其特征在于,在步骤3中,所述稳健校正空时导向矢量s的表达式为:
<mfenced open = "" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<mi>s</mi>
<mo>=</mo>
<mover>
<mi>a</mi>
<mo>&OverBar;</mo>
</mover>
<mo>&CircleTimes;</mo>
<mover>
<mi>b</mi>
<mo>&OverBar;</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>&mu;</mi>
<mn>1</mn>
</msub>
<mi>C</mi>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>C</mi>
<mi>H</mi>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>R</mi>
<mo>~</mo>
</mover>
<mi>s</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mi>C</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<msub>
<mi>f</mi>
<mi>s</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>&CircleTimes;</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>&mu;</mi>
<mn>2</mn>
</msub>
<mi>C</mi>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>C</mi>
<mi>H</mi>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>R</mi>
<mo>~</mo>
</mover>
<mi>t</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mi>C</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<msub>
<mi>f</mi>
<mi>t</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>=</mo>
<msub>
<mi>&mu;</mi>
<mn>1</mn>
</msub>
<msub>
<mi>&mu;</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>C</mi>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>C</mi>
<mi>H</mi>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>R</mi>
<mo>~</mo>
</mover>
<mi>s</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mi>C</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>&CircleTimes;</mo>
<mi>C</mi>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>C</mi>
<mi>H</mi>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>R</mi>
<mo>~</mo>
</mover>
<mi>t</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mi>C</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>f</mi>
<mi>s</mi>
</msub>
<mo>&CircleTimes;</mo>
<msub>
<mi>f</mi>
<mi>t</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
其中,令v表示雷达空时数据矩阵X设定的M×1维时间权矢量,表示稳健时间协方差矩阵,表示稳健空间协方差矩阵,雷达空时数据矩阵X中的每个阵元接收M个脉冲,k∈{1,2,…,M},(·)-1表示求逆运算,上标H表示共轭转置,C表示N×L维矩阵,fs表示基于幅相约束的线性约束最小方差波束形成器的空间协方差矩阵的复矢量,ft表示基于幅相约束的线性约束最小方差波束形成器的协方差矩阵的复矢量,表示Kronecker积,表示稳健校正空时导向矢量,表示稳健校正时间导向矢量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510443435.8A CN105137409B (zh) | 2015-07-24 | 2015-07-24 | 基于幅相约束的目标信号稳健空时自适应处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510443435.8A CN105137409B (zh) | 2015-07-24 | 2015-07-24 | 基于幅相约束的目标信号稳健空时自适应处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105137409A CN105137409A (zh) | 2015-12-09 |
CN105137409B true CN105137409B (zh) | 2018-03-06 |
Family
ID=54722815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510443435.8A Active CN105137409B (zh) | 2015-07-24 | 2015-07-24 | 基于幅相约束的目标信号稳健空时自适应处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105137409B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105629206B (zh) * | 2016-03-03 | 2018-03-06 | 深圳大学 | 导向矢量失配下的机载雷达稳健空时波束形成方法及系统 |
CN105824016B (zh) * | 2016-03-21 | 2018-06-05 | 西安电子科技大学 | 运动平台雷达检测超低空目标的稳健空时自适应处理方法 |
CN106226749B (zh) * | 2016-07-01 | 2018-11-16 | 西安电子科技大学 | 基于空时自适应处理雷达的和差波束形成方法 |
CN106546965B (zh) * | 2016-10-31 | 2019-05-21 | 西安电子科技大学 | 基于雷达幅度和多普勒频率估计的空时自适应处理方法 |
CN107831480B (zh) * | 2017-10-13 | 2021-06-01 | 西安电子科技大学 | 弹载雷达和差通道稳健自适应杂波抑制方法 |
CN108845298B (zh) * | 2018-07-06 | 2022-01-11 | 西安电子科技大学 | 基于杂波映射的自适应波束形成方法 |
CN110308117B (zh) * | 2019-07-22 | 2021-08-24 | 中国科学院大学 | 衍射距离校准方法及系统和图像重建方法及系统 |
CN113009464B (zh) * | 2021-03-05 | 2022-08-26 | 中国人民解放军海军航空大学 | 基于线性约束最小方差准则的稳健自适应脉冲压缩方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101887117A (zh) * | 2010-06-30 | 2010-11-17 | 西安电子科技大学 | 基于三迭代的机载mimo雷达空时降维自适应处理方法 |
CN103954942A (zh) * | 2014-04-25 | 2014-07-30 | 西安电子科技大学 | 机载mimo雷达三维波束空间的部分联合杂波抑制方法 |
US8907841B2 (en) * | 2011-04-04 | 2014-12-09 | Mitsubishi Electric Research Laboratories, Inc. | Method for detecting targets using space-time adaptive processing |
-
2015
- 2015-07-24 CN CN201510443435.8A patent/CN105137409B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101887117A (zh) * | 2010-06-30 | 2010-11-17 | 西安电子科技大学 | 基于三迭代的机载mimo雷达空时降维自适应处理方法 |
US8907841B2 (en) * | 2011-04-04 | 2014-12-09 | Mitsubishi Electric Research Laboratories, Inc. | Method for detecting targets using space-time adaptive processing |
CN103954942A (zh) * | 2014-04-25 | 2014-07-30 | 西安电子科技大学 | 机载mimo雷达三维波束空间的部分联合杂波抑制方法 |
Non-Patent Citations (3)
Title |
---|
Spatial-temporal separable filter for adaptive clutter suppression in airborne radar;X.-M.Li et al.;《Electronics Letters》;20080305;第44卷(第5期);P380-381 * |
基于幅相线性约束的自适应和差波束形成方法研究;许京伟;《电子学报》;20130930;第41卷(第9期);参见第1725页右栏第2段至第1726页右栏第一段 * |
机载相控阵雷达降维STAP方法及其应用;李晓明;《万方数据学位论文库》;20090429;第44页第2段至第57页最后一段 * |
Also Published As
Publication number | Publication date |
---|---|
CN105137409A (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105137409B (zh) | 基于幅相约束的目标信号稳健空时自适应处理方法 | |
CN102565790B (zh) | 平面相控阵自适应的和差测角方法 | |
CN109407055B (zh) | 基于多径利用的波束形成方法 | |
CN105445709B (zh) | 一种稀布阵列近场无源定位幅相误差校正方法 | |
CN103235292B (zh) | 平面相控阵调零保形校正的全维和差测角方法 | |
CN103885045B (zh) | 基于子阵划分的循环联合自适应波束形成方法 | |
CN101369014A (zh) | 应用于多输入多输出雷达的双边约束自适应波束形成方法 | |
CN103353595A (zh) | 基于阵列内插压缩感知的米波雷达测高方法 | |
US11681006B2 (en) | Method for jointly estimating gain-phase error and direction of arrival (DOA) based on unmanned aerial vehicle (UAV) array | |
CN103983958A (zh) | 基于多测量矢量稀疏表示的mimo雷达连续目标角度估计方法 | |
CN103728601B (zh) | 雷达信号运动干扰空域-极化域联合稳健滤波方法 | |
CN104166136A (zh) | 一种基于干扰子空间跟踪的高效自适应单脉冲测角方法 | |
CN103885049B (zh) | 基于最小冗余线性稀疏子阵的米波雷达低仰角估计方法 | |
CN105629206A (zh) | 导向矢量失配下的机载雷达稳健空时波束形成方法及系统 | |
CN106021637A (zh) | 互质阵列中基于迭代稀疏重构的doa估计方法 | |
CN106707250A (zh) | 基于互耦校正的雷达阵列自适应波束形成方法 | |
CN103558584A (zh) | 一种波达方向的检测方法及装置 | |
CN106093920A (zh) | 一种基于对角加载的自适应波束形成算法 | |
CN104360337B (zh) | 基于1范数约束的自适应波束形成方法 | |
CN104330766A (zh) | 一种稳健的波达方向估计方法 | |
CN110208757B (zh) | 一种抑制主瓣干扰的稳健自适应波束形成方法及装置 | |
CN105334435A (zh) | 一种基于任意阵形的自适应局部放电超声监测方法 | |
CN106680779A (zh) | 脉冲噪声下的波束成形方法及装置 | |
CN108594165B (zh) | 一种基于期望最大化算法的窄带信号波达方向估计方法 | |
CN106125039A (zh) | 基于局域联合处理的改进空时自适应单脉冲测角方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |