[go: up one dir, main page]

CN105103218A - 环境噪声均方根(rms)检测器 - Google Patents

环境噪声均方根(rms)检测器 Download PDF

Info

Publication number
CN105103218A
CN105103218A CN201380072664.2A CN201380072664A CN105103218A CN 105103218 A CN105103218 A CN 105103218A CN 201380072664 A CN201380072664 A CN 201380072664A CN 105103218 A CN105103218 A CN 105103218A
Authority
CN
China
Prior art keywords
rms
value
rms value
minimum
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380072664.2A
Other languages
English (en)
Other versions
CN105103218B (zh
Inventor
A·A·米拉尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirrus Logic Inc
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of CN105103218A publication Critical patent/CN105103218A/zh
Application granted granted Critical
Publication of CN105103218B publication Critical patent/CN105103218B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17837Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by retaining part of the ambient acoustic environment, e.g. speech or alarm signals that the user needs to hear
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0224Processing in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3023Estimation of noise, e.g. on error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02165Two microphones, one receiving mainly the noise signal and the other one mainly the speech signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Otolaryngology (AREA)
  • Noise Elimination (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Telephone Function (AREA)

Abstract

一种使用具有可变平滑因子的一阶回归量的RMS检测器经修改以惩罚来自数据中心的样本以便获得RMS值。与背景噪声电平相差极大的样本在RMS计算中受到抑制。当背景噪声改变时,系统将跟踪背景噪声的改变且在经校正RMS值的计算中包含所述改变。最小值跟踪器跟踪用以计算正规化距离值的最小rms值以使平滑因子正规化。经校正或经修正RMS值经确定为前一RMS值乘以1减所述平滑因子的差加所述平滑因子乘所述最小rms值的函数以输出针对本发明的所述经校正RMS。rms值用于为所述最小值跟踪器产生复位信号且举例来说,在背景信号随时间增加/降低时用于在所述跟踪器中避免死锁。

Description

环境噪声均方根(RMS)检测器
技术领域
本发明涉及一种环境噪声均方根(RMS)电平检测器。特定来说,本发明针对于一种经改进噪声RMS检测器,其对语音的存在、风噪声及噪声电平的其它突然变化为稳健的。
背景技术
例如无线电话的个人音频装置包含适应性噪声消除(ANC)电路,所述ANC电路从参考麦克风信号适应性地产生抗噪声信号且将所述抗噪声信号注入到扬声器或其它换能器输出中以产生环境音频声音的消除。还接近扬声器提供错误麦克风以测量环境声音及换能器附近的换能器输出,因此提供对噪声消除的有效性的指示。处理电路使用参考及/或错误麦克风(任选地)以及经提供以用于捕获近端语音的麦克风,以确定ANC电路是否正在不正确地适应于或可能不正确地适应于瞬时声环境及/或抗噪声信号是否可能为不正确的及/或破坏性的,且接着在处理电路中采取行动以防止或补救此类状况。
此类适应性噪声消除系统的实例揭示于在2012年6月7日公开的公开美国专利申请案2012/0140943中及在2012年8月16日公开的公开美国专利申请案2012/0207317中,所述两者以引用方式并入本文中。这两个参考与本申请案受让于同一受让人且共同命名至少一个发明者,且因此并不是本申请案的现有技术而是经提供以促进对如在使用领域中应用的ANC电路的不充分陈述。
现在参考图1,根据本发明的一实施例图解说明的无线电话10经展示为接近于人耳5。无线电话10包含换能器(例如扬声器SPKR),所述换能器重现由无线电话10接收的遥远语音以及用以提供平衡对话感知的其它局部音频事件(例如铃音、所存储音频程序材料、近端语音(即,无线电话10的用户的语音)的注入),以及需要由无线电话10重现的其它音频,例如来自网页或由无线电话10接收的其它网络通信的源以及例如电池量低及其它系统事件通知的音频指示。近语音麦克风NS经提供以捕获从无线电话10传输到其他对话参与者的近端语音。
无线电话10包含适应性噪声消除(ANC)电路及特征,所述ANC电路及特征将抗噪声信号注入到扬声器SPKR中以改进遥远语音及由扬声器SPKR重现的其它音频的可理解性。参考麦克风R经提供以用于测量周围声环境且经定位远离用户/谈话者的嘴的典型位置,使得近端语音在由参考麦克风R产生的信号中被最小化。第三麦克风(错误麦克风E)经提供以便在无线电话10紧密接近于耳朵5时,通过提供对环境音频与由接近于耳朵5的扬声器SPKR再现的音频的组合的测量而进一步改进ANC操作。无线电话10内的示范性电路14包含音频CODEC集成电路20,所述音频CODEC集成电路从参考麦克风R、近语音麦克风NS及错误麦克风E接收信号且与含有无线电话收发器的其它集成电路(例如RF集成电路12)介接。
一般来说,ANC技术测量撞击于参考麦克风R上的环境声事件(与扬声器SPKR的输出及/或近端语音相反),且通过也测量撞击于错误麦克风E上的相同环境声事件,所图解说明无线电话10的ANC处理电路调适从参考麦克风R的输出产生的抗噪声信号以具有使错误麦克风E处的环境声事件的振幅最小化的特性。由于声路径P(z)(也称为被动正向路径)从参考麦克风R延伸到错误麦克风E,因此ANC电路本质上与移除电声路径S(z)(也称为次级路径)的效应相组合地估计声路径P(z),所述电声路径S(z)表示CODECIC20的音频输出电路的响应及扬声器SPKR的包含特定声环境中扬声器SPKR与错误麦克风E之间的耦合的声/电传送功能,所述特定声环境在无线电话并非被稳固地压到耳朵5时受耳朵5及可接近于无线电话10的其它物理对象及人体头部结构的接近及结构影响。
此类适应性噪声消除(ANC)系统可采用均方根(rms)检测器来检测平均背景噪声电平。此RMS检测器需要缓慢地跟踪背景噪声电平但并不是如此缓慢以至于变得对环境变化不敏感。理想的RMS检测器应为对语音存在稳健的,对麦克风上的刮擦(接触)稳健的,对风噪声稳健的且具有低计算复杂性。出于描述本环境噪声RMS检测器的目的,小写rms变量用来指代现有技术的技术且大写RMS用来表示本环境噪声RMS检测器的经校正信号,如下文所陈述。本环境噪声RMS检测器可在产生RMS信号时利用现有技术rms值。
最著名的背景噪声估计方法(基于最小统计)可能是由雷尼尔马丁(RanierMartin)引入的rms检测器。参见以引用方式并入本文中的马丁,雷尼尔的基于最优平滑及最小统计的噪声功率频谱密度估计(NoisePowerSpectralDensityEstimationBasedonOptimalSmoothingandMinimumStatistics)(IEEE语音及音频处理会报,第9栏,第5号,2001年7月)以及同样以引用方式并入本文中的马丁,雷尼尔的基于最小统计的频谱减法(SpectralSubtractionBasedonMinimumStatistics)(在1994年9月13日到16日于英国爱丁堡的第7届EUSIPCO'94会刊中第1182页到1195页)。伊斯雷尔科恩(IsraelCohen)已基于马丁的设计制作了另一RMS检测器。参见以引用方式并入本文中的科恩,伊斯雷尔的不利环境中的噪声频谱估计:经改进的最小值控制的递归平均(NoiseSpectrumEstimationinAdverseEnvironments:ImprovedMinimaControlledRecursiveAveraging)(IEEE语音及音频处理会报,第11卷,第5期,2003年9月)以及同样以引用方式并入本文中的科恩,伊斯雷尔的用于稳健的语音增强的由最小值控制的递归平均进行的噪声估计(NoiseEstimationbyMinimaControlledRecursiveAveragingforRobustSpeechEnhancement)(IEEE信号处理快报,第9卷,第1号,2002年1月)。马丁及科恩两者的方法及设计采用跟踪最小RMS值的方法。两种方法还使用具有可变平滑因子的一阶回归量。
与马丁的设计相比,科恩的设计相比来说可较不复杂,且提供较好性能。科恩的设计取决于应针对不同应用而进行调整的几个阈值及参数。由于保留先前的rms值来找出最小值,因此科恩的设计还比马丁的设计使用更少的存储器。科恩的设计的问题是其易受非平稳噪声(例如尖峰噪声)的影响。举例来说,当用于蜂窝式电话或类似物上的适应性噪声消除系统(ANC)中时,例如风噪声或刮擦(用户/谈话者的手刮擦或摩擦外壳)等尖峰噪声可形成尖峰,科恩的设计将对所述尖峰过度反应。因此,(举例来说)蜂窝式电话或类似物中的ANC系统的性能可由于rms检测器对这些尖峰噪声过度反应而降级。
基于一阶回归的简单的rms检测器可产生图2中所图解说明的输出。此一阶回归可如方程式(1)中所展示而计算:
其中α表示平滑因子,rms(n)表示样本n的rms值且input(n)表示样本n的输入信号,且n为样本整数号。因此,通过将平滑因子(从1减去)乘以前一rms值且接着加上输入值的绝对值乘以此同一平滑因子而计算方程式(1)中的rms值。平滑因子α可取决于输入信号的绝对值是大于还是小于前一rms值而从两个值αatt或αdec中的一者选择。
此简单rms检测器的问题是其不仅跟踪背景噪声,而且还跟踪语音、刮擦及风噪声。如图2中所图解说明,外较暗线210表示语音信号,其具有如所展示的偶然的尖峰噪声220。较亮线230表示以缓慢进攻及快速衰减计算的rms信号,如方程式(1)中所展示。如在图2中可见,使用方程式(1)计算的rms值230以最终跟踪这些尖峰信号220,此对于适应性噪声消除(ANC)电路可能为不合意的。通过跟踪尖峰信号220,ANC电路可最终产生不适当的抗噪声且因此在用于用户的重现音频信号中形成伪声。
发明内容
本环境噪声RMS检测器表示从适应性或机器学习角度对现有技术rms检测器的改进。本环境噪声RMS检测器使用k-NN(使用最近相邻者进行分类)算法的概念以便获得RMS值。k-最近相邻者算法(k-NN)是用于基于特征空间中的最靠近训练例子将对象进行分类的方法。k-NN为一类基于实例的学习或即时学习,其中函数仅经局部近似且所有计算经推迟直至分类为止。将对象按其相邻者的多数表决而分类,其中将对象指派为其k个最近相邻者(k为通常小的正整数)当中最常见的类。如果k=1,那么将对象简单地指派为其最近相邻者的类。
通过简单地将对象的性质值指派为其k个最近相邻者的值的平均值,相同方法可用于回归。其对加权相邻者的贡献可为有用的,使得较近相邻者比较远相邻者对平均值的贡献更多。(常见加权方案为赋予每一相邻者1/d的权重,其中d为到相邻者的距离。此方案为线性内插的概述。)
本发明并入有使用具有可变平滑因子的一阶回归量的现有技术rms检测器,但添加了额外特征以惩罚来自数据中心的样本以便获得RMS值。因此,与背景噪声电平(例如语音、刮擦及其它噪声尖峰)相差极大的样本在RMS计算中受到抑制。然而,当背景噪声增加/降低(一般来说,改变)时,系统将跟踪背景噪声的此改变且在经校正RMS值的计算中包含所述改变。
将来自使用具有可变平滑因子的一阶回归量的现有技术rms检测器的输出馈送到最小值跟踪器,此也为此项技术中已知的。所述最小值跟踪器随时间跟踪最小rms值Rmin。使用此经修正的最小值来计算正规化距离值d,所述正规化距离值表示表达为先前所计算rms值与本环境噪声RMS检测器中所计算的RMS值之间的差的绝对值除以由本环境噪声RMS检测器所计算的RMS值的比率。此值d继而用于通过将平滑因子α除以d或1的最大值来使所述平滑因子正规化。
一旦计算了这些值,便可将经校正或经修正RMS值确定为前一RMS值乘以1减平滑因子的差加平滑因子乘最小rms值的函数,以输出本环境噪声RMS检测器的经校正RMS。rms值可用于为最小值跟踪器产生复位信号。此复位信号可以大约0.1秒到1秒操作且举例来说,在背景信号随时间增加时用于在跟踪器中避免死锁。
本环境噪声RMS检测器(如本文所附的图中所展示)的效应为提供尤其在与现有技术的技术相比时其值在很大程度上不受例如由于语音、“刮擦”(举例来说,当人身体上触摸麦克风时)或风噪声所致的突然尖峰的影响的背景RMS值。
虽然本文中在蜂窝式电话及其中所使用的适应性噪声消除电路的上下文中进行讨论,但本环境噪声RMS检测器具有用于若干个音频装置及类似物的应用。举例来说,本发明的RMS检测器可应用于音频及音频-视觉记录装备、配备有麦克风的计算装置、语音辨识系统、语音激活系统(例如,在汽车中)及甚至事件检测器(其中从突然噪声(例如玻璃破碎或闯入者的语音)过滤背景声音可为合意的),例如报警系统。虽然在蜂窝式电话及适应性噪声消除电路的上下文中进行揭示,但本环境噪声RMS检测器决不应解释为限于所述特定应用。
附图说明
图1是图解说明双麦克风可如何用于蜂窝式电话中的适应性噪声消除电路中的图式。
图2是图解说明具有尖峰分量的话音信号及使用现有技术的技术的所得rms信号计算的图表。
图3是本环境噪声RMS检测器的实施例的框图。
图4是图解说明如何跟踪最小RMS值的图表。
图5A是图解说明针对包括背景噪声与语音的样本输入信号的瞬时RMS及环境RMS的图表。
图5B是图解说明根据方程式(7)及图3中的方框160而从瞬时RMS计算的值α的图表。
图5C是图解说明根据方程式(6)及图3的方框150进行的距离值d的计算的图表。
图5D是图解说明如依据下文方程式(2)及图3的方框140所确定的所得Rmin的值的图表。
图6是将含有背景噪声的信号与语音进行比较的图表,其展示现有技术的旧方法与本环境噪声RMS检测器的技术及设备之间的比较。
图7是将含有背景噪声的信号与背景噪声中的“刮擦”信号进行比较的图表,其展示现有技术的旧方法与本环境噪声RMS检测器的技术及设备之间的比较。
具体实施方式
本环境噪声RMS检测器通过在RMS检测器中使用经改进算法而改进例如由马丁及科恩所教示的现有技术rms检测器的技术。图3是本环境噪声RMS检测器的框图。参考图3,使用已知的现有技术的技术从输入信号计算原始rms值。方框110、120及130为具有可变平滑因子的一阶回归量的要素。输入信号(其在此实例中可为背景噪声信号与语音)经馈送到其中采取所述信号的绝对值的方框110。此绝对值信号继而经馈送到低通滤波器120且接着经馈送到降低取样频率取样器130。净效应为输出例如上文结合方程式(1)所描述的原始rms值。由于所述框图的这前三个要素为此项技术中已知的,因此将不会进一步详细地描述所述要素。
上文所讨论的马丁及科恩两者的方法及设计还采用跟踪最小rms值Rmin的方法,且跟踪最小rms值为本环境噪声RMS检测器的一个功能。语音、麦克风上的刮擦(身体接触)、风噪声及任何尖峰噪声不太可能都是背景噪声,这是因为其等并非始终存在而是显现为环境噪声信号中的噪声尖峰。可通过将短期最小RMS值与长期最小RMS值进行比较来利用此事实以确定是否已发生此尖峰。图4是图解说明如何跟踪最小RMS值的图表。针对每一瞬时转变,短期rms值Rmin及Rtmp可经计算为:
其中Rmin为随时间的最小rms值,且Rtmp为用以跟踪背景噪声改变的暂时最小rms值。
接着用方程式(2)同时计算环境噪声检测器的复位机制。此复位机制每0.1秒到1秒将值Rmin及Rtmp的长期rms值计算为:
如图4中所图解说明,此方法具有响应于背景噪声rms值BKrms的基础rms计算的改变而延迟最小RMS值Rmin的改变的效应。当背景rms信号从电平A增加到电平B时,根据上文方程式(2)及(3)所计算的暂时最小值Rtmp从电平A上升到电平B,随时间延迟,如图4中所图解说明。最小RMS值Rmin的值从电平A上升到电平B,甚至进一步地延迟(从电平B降低到电平A同样如此),如图4中所图解说明。尽管图4仅展示其中电平A小于电平B的情形,但相同效应也在电平A大于电平B时发生。
在科恩的依据此最小RMS值Rmin计算的方法中,基于背景噪声信号中扰动的存在概率而使用第一方法计算RMS可为可能的:
RMS(l)=αd(l)·RMS(l-1)+(1-αd(l))·|input(l)|
(4)
αd(l)=β+(1-β)*p(l)
p(l)→1→αd(l)→1
此处,p(l)为任何扰动(例如,语音存在)的存在概率,且当此概率接近1时,平滑因子值接近1。此概率值可如下来计算:
其中αp表示平滑因子,且δ为确定任何扰动与Rmin(l)相比的电平的阈值。
此RMS跟踪技术的一个问题是存在太多参数需要调整。另外,其反应时间为缓慢的且并不稳健。语音rms可泄漏到背景RMS值。虽然现有技术的科恩设计具有额外组件以使系统更稳健,但所述系统仍遭受这些相同的操作问题。因此,本环境噪声RMS检测器改进方程式(4)及(5)的算法以提供经改进的最小RMS值Rmin跟踪技术及RMS计算。
返回参考图3,在本环境噪声RMS检测器中,所输出的原始rms值接着经馈送到最小值跟踪器140。在方框150中,目前RMS与瞬时rms值之间的正规化距离d经计算为:
d = | r m s ( l ) - R M S ( l ) | R M S ( l ) - - - ( 6 )
其中rms(l)为样本l的原始rms值且RMS(l)为经校正RMS因子。
在方框160中,平滑因子使用此距离d而正规化:
α d ( l ) = α 0 max ( d , l ) - - - ( 7 )
其中αd(l)表示样本l的正规化平滑因子且α0表示标准平滑因子,且max(d,l)为正规化距离与1的最大值。所述正规化平滑因子接着经馈送到方框170:
RMS(l)=(1-αd(l))·RMS(l-1)+αd(l)·Rmin(l)|(8)
其中RMS(l)为经校正RMS值,且RMS(l-1)为前一经校正RMS值,αd(l)表示如在方程式(7)中所计算的样本l的正规化平滑因子且最小RMS值Rmin为在方程式(3)中所计算的最小rms值。
原始rms值还经馈送到方框190,其接着产生复位信号Reset。复位信号Reset经触发以便使系统复位以(举例来说)在背景噪声信号逐渐上升时避免任何死锁。复位机制经展示于如先前所讨论的方程式(3)中。
图4到6是图解说明本环境噪声RMS检测器的操作的图表。在图5A中,展示针对包括背景噪声与语音的样本输入信号的瞬时RMS及环境RMS。在图5A中,背景噪声显现为基线信号510且语音部分在中央显现为升高部分520。瞬时rms显现为粗线(510、520),而最终所计算的环境RMS显现为粗线下方的细线530。在图5B中,展示了根据上文方程式(7)及图3中的方框160而从瞬时rms计算的值α。图5C展示根据上文方程式(6)及图3的方框150进行的d的计算。图5D展示如依据上文方程式(8)及图3的方框170所确定的所得最小RMS值Rmin
图6是将含有背景噪声的信号与语音进行比较的图表,其展示现有技术的旧方法与本发明的技术及设备之间的比较。在图6中rms(l)信号经展示为在中央部分中具有语音扰动620的宽的暗信号610。使用现有技术方法的rms计算经展示为所述信号的中央中的波状亮线630。如图6中所展示,在此信号中出现相对于源信号的尖峰。如图6中所图解说明,现有技术的技术对背景噪声信号中的语音敏感。底部线640表示使用本环境噪声RMS检测器的技术所计算的RMS值。如图6中所图解说明,本环境噪声RMS检测器的技术对瞬态尖峰的响应性远不及现有技术的技术。
图7是将含有背景噪声710的信号与背景噪声中的刮擦信号720进行比较,且展示现有技术的旧方法与本环境噪声RMS检测器的技术及设备之间的比较的图表。刮擦信号720比图6的语音信号620更显著。rms(l)信号在图7中经展示为宽的暗信号710。使用现有技术方法的rms计算经展示为所述信号的中央中的波状亮线730。如图7中所展示,在此信号中出现相对于源信号710的尖峰720。底部线740表示使用用于本环境噪声RMS检测器的技术所计算的RMS值。如图7中所图解说明,本环境噪声RMS检测器的技术对瞬态尖峰的响应性远不及现有技术的技术。
因此,已证明本环境噪声RMS检测器从输入信号更准确地计算RMS值,同时相对来说不受语音、风噪声、刮擦及其它信号尖峰的影响。此经改进的RMS值计算为供用于(举例来说)蜂窝式电话或类似物中的适应性噪声消除(ANC)电路提供更好的输入值。此经改进值继而允许对ANC电路的更好操作,在输出到用户的音频中形成更少的伪声或被丢掉的音频(例如,由于ANC电路过度补偿所期望的音频信号及使所期望的音频信号静音而导致)。
虽然本文中已详细揭示并描述本环境噪声RMS检测器的实施例,但所属领域的技术人员可明了,可在不背离本发明的精神及范围的情况下在实施例中做出形式及细节的各种改变。

Claims (34)

1.一种均方根RMS检测器,其检测背景噪声输入信号的RMS电平同时相对来说不受话音、风、刮擦声音及任何尖峰噪声的影响,所述RMS检测器包括:
原始rms检测器,其接收背景噪声输入信号且输出原始rms值;
最小rms跟踪器,其接收所述原始rms值且跟踪所述原始rms值的最小rms值;
正规化距离跟踪器,其接收所述原始rms值且计算所述原始rms值与经校正RMS值之间的距离;
正规化平滑因子计算器,其通过将平滑因子除以距离值或1的最大值而使所述平滑因子正规化;以及
RMS值计算器,其依据所述原始rms值、前一经校正RMS值及所述正规化平滑因子而确定经校正RMS值,且输出经校正RMS值。
2.根据权利要求1所述的RMS检测器,其进一步包括
复位产生器,其接收所述原始rms值,且产生到所述最小rms跟踪器的复位信号以在所述原始rms值的值随时间改变时使所述最小rms跟踪器复位以防止所述最小rms跟踪器锁定。
3.根据权利要求2所述的RMS检测器,其中所述原始rms检测器通过将前一原始rms值与输入信号值相加而确定原始rms。
4.根据权利要求3所述的RMS检测器,其中在与所述前一原始rms值相加之前,将所述输入信号值的绝对值乘以平滑因子。
5.根据权利要求4所述的RMS检测器,其中在与所述输入信号值相加之前,将所述前一rms值乘以1减所述平滑因子的差。
6.根据权利要求5所述的RMS检测器,其中所述平滑因子取决于所述输入信号的所述绝对值是大于还是小于所述前一原始rms值而选自两个预定值中的一者。
7.根据权利要求2所述的RMS检测器,其中所述原始rms检测器通过以下方程式确定原始rms:
rms(n)=(1-α)·rms(n-1)+α·|input(n)|
其中α表示平滑因子,rms(n)表示样本n的所述原始rms值且input(n)表示样本n的所述输入信号,且n样本号,且平滑因子α可取决于所述输入信号的所述绝对值是大于还是小于所述前一原始rms值而选自两个值αatt或αdec中的一者。
8.根据权利要求2所述的RMS检测器,其中所述最小值跟踪器通过采取所述前一原始rms值与当前最小rms值的最小值而确定所述原始rms值,且
每0.1秒到1秒,将长期rms值计算为前一暂时rms值或目前rms值的最小值以使所述检测器复位,其中所述暂时rms值为用以跟踪背景噪声改变的暂时最小rms值。
9.根据权利要求8所述的RMS检测器,其中所述最小值跟踪器每0.1秒到1秒将所述暂时rms值设定为当前rms值且将所述原始rms值设定为前一暂时rms值与所述当前rms值的最小值以更密切地跟踪所述最小rms值。
10.根据权利要求9所述的RMS检测器,其中通过将所述当前rms值与所述经校正RMS值之间的差除以所述经校正RMS值而计算所述正规化距离。
11.根据权利要求10所述的RMS检测器,其中通过将标准预定平滑因子除以所述正规化距离与1的所述最大值而计算所述正规化平滑因子。
12.根据权利要求11所述的RMS检测器,其中由所述RMS检测器输出的所述经校正RMS值是通过所述正规化平滑因子乘由所述最小rms值跟踪器确定的所述最小rms值与所述前一原始rms值乘1减所述正规化平滑因子的差的乘积的和来计算。
13.根据权利要求2所述的RMS检测器,其中所述最小值跟踪器通过采取所述前一原始rms值与所述当前最小rms值的所述最小值而确定所述原始rms值
R min ( l ) = min { R min ( l - 1 ) , r m s ( l ) } R t m p ( l ) = min { R t m p ( l - 1 ) , r m s ( l ) }
且每0.1秒到1秒,长期rms值Rmin及Rtmp可经计算为:
R min ( l ) = min { R t m p ( l - 1 ) , r m s ( l ) } R t m p ( l ) = r m s ( l )
以使所述检测器复位,其中Rmin为随时间的所述最小rms值,且Rtmp为用以跟踪背景噪声改变的暂时最小rms值。
14.根据权利要求13所述的RMS检测器,其中所述最小值跟踪器每0.1秒到1秒运行Rtmp(l)=rms(l)及Rmin(l)=min{Rtmp(l-1),rms(l)}以更密切地跟踪所述最小值。
15.根据权利要求14所述的RMS检测器,其中通过以下方程式计算所述正规化距离d:
d = | r m s ( l ) - R M S ( l ) | R M S ( l )
其中rms(l)为样本l的原始rms值且RMS(l)为经校正RMS值。
16.根据权利要求15所述的RMS检测器,其中通过以下方程式计算所述正规化平滑因子:
α d ( l ) = α 0 max ( d , l )
其中αd(l)表示样本l的所述正规化平滑因子且α0表示标准平滑因子,且max(d,l)为所述正规化距离与1的所述最大值。
17.根据权利要求16所述的RMS检测器,其中通过以下方程式计算由所述RMS检测器输出的所述经校正RMS值:
RMS(l)=(1-αd(l))·RMS(l-1)+αd(l)·Rmin(l)
其中RMS(l)为所述经校正RMS值,且RMS(l-1)为前一经校正RMS值,αd(l)表示由正规化更平滑因子计算器确定的样本l的所述正规化平滑因子,且Rmin为由所述最小rms值跟踪器所确定的所述最小rms值。
18.在RMS检测器中,一种检测背景噪声输入信号的RMS电平同时相对来说不受话音、刮擦、风声音及任何尖峰噪声影响的方法,所述方法包括:
在接收背景噪声输入信号的初始RMS检测器中产生原始rms值;
在接收所述原始rms值的最小rms跟踪器中跟踪所述原始rms值的最小rms值;
在接收所述原始rms值的正规化距离跟踪器中计算所述原始rms值与经校正RMS值之间的距离;
在正规化平滑因子计算器中,通过将平滑因子除以距离值或1的最大值而使所述平滑因子正规化;以及
在RMS值计算器中,通过依据所述原始RMS值、前一经校正RMS值及所述正规化平滑因子确定经校正RMS值而计算经校正RMS值。
19.根据权利要求18所述的方法,其进一步包括:
在接收所述原始rms值的复位产生器中,产生到所述最小rms跟踪器的复位信号以在所述原始rms值的值随时间改变时使所述最小rms跟踪器复位以防止所述最小rms跟踪器锁定。
20.根据权利要求19所述的方法,其中原始rms检测器通过将前一原始rms值与输入信号值相加而确定原始rms。
21.根据权利要求20所述的方法,其中在与所述前一原始rms值相加之前,将所述输入信号值的绝对值乘以平滑因子。
22.根据权利要求21所述的方法,其中在与所述输入信号值相加之前,将所述前一原始rms值乘以1减所述平滑因子的差。
23.根据权利要求22所述的方法,其中取决于所述输入信号的所述绝对值是大于还是小于所述前一原始rms值而从两个预定值中的一者选择所述平滑因子。
24.根据权利要求19所述的方法,其中所述原始rms检测器通过以下方程式确定原始rms:
rms(n)=(1-α)·rms(n-1)+α·|input(n)|
其中α表示平滑因子,rms(n)表示样本n的所述rms值且input(n)表示样本n的所述输入信号,且n样本号,且平滑因子α可取决于所述输入信号的所述绝对值是大于还是小于所述前一原始rms值而选自两个值αatt或αdec中的一者。
25.根据权利要求19所述的方法,其中所述最小值跟踪器通过采取所述前一原始rms值与当前最小rms值的最小值而确定所述原始rms值,且
每0.1秒到1秒,将长期rms值计算为前一暂时rms值或目前rms值的最小值以使所述检测器复位,其中所述暂时rms值为用以跟踪背景噪声改变的暂时最小rms值。
26.根据权利要求25所述的方法,其中所述最小值跟踪器每0.1秒到1秒将所述暂时rms值设定为当前rms值且将所述原始rms值设定为前一暂时rms值与所述当前rms值的最小值以更密切地跟踪所述最小值。
27.根据权利要求26所述的方法,其中通过将所述当前rms值与所述经校正RMS值之间的差除以所述经校正RMS值而计算所述正规化距离。
28.根据权利要求27所述的方法,其中通过将标准预定平滑因子除以所述正规化距离与1的所述最大值而计算所述正规化平滑因子。
29.根据权利要求28所述的方法,其中由所述RMS检测器输出的所述经校正RMS值是通过所述正规化平滑因子乘由所述最小rms值跟踪器确定的所述最小rms值与所述前一原始rms值乘1减所述正规化平滑因子的差的乘积的和来计算。
30.根据权利要求19所述的方法,其中所述最小值跟踪器通过采取所述前一原始rms值与所述当前最小rms值的所述最小值而确定所述原始rms值
R min ( l ) = min { R min ( l - 1 ) , r m s ( l ) } R t m p ( l ) = min { R t m p ( l - 1 ) , r m s ( l ) }
且每0.1秒到1秒,可将长期rms值Rmin及Rtmp计算为:
R min ( l ) = min { R t m p ( l - 1 ) , r m s ( l ) } R t m p ( l ) = r m s ( l )
以使所述检测器复位,其中Rmin为随时间的所述最小rms值,且Rtmp为用以跟踪背景噪声改变的暂时最小rms值。
31.根据权利要求30所述的方法,其中所述最小值跟踪器每0.1秒到1秒运行Rtmp(l)=rms(l)及Rmin(l)=min{Rtmp(l-l),rms(l)}以更密切地跟踪所述最小值。
32.根据权利要求31所述的方法,其中通过以下方程式计算所述正规化距离d:
d = | r m s ( l ) - R M S ( l ) | R M S ( l )
其中rms(l)为样本l的原始rms值且RMS(l)为经校正RMS因子。
33.根据权利要求32所述的RMS检测器,其中通过以下方程式计算所述正规化平滑因子:
α d ( l ) = α 0 max ( d , l )
其中αd(l)表示样本l的所述正规化平滑因子且α0表示标准平滑因子,且max(d,l)为所述正规化距离与1的所述最大值。
34.根据权利要求33所述的RMS检测器,其中通过以下方程式计算由所述RMS检测器输出的所述经校正RMS值:
RMS(l)=(1-αd(l))·RMS(l-1)+αd(l)·Rmin(l)
其中RMS(l)为所述经校正RMS值,且RMS(l-1)为前一经校正RMS值,αd(l)表示由正规化更平滑因子计算器确定的样本l的所述正规化平滑因子,且Rmin为由所述最小rms值跟踪器所确定的所述最小rms值。
CN201380072664.2A 2013-02-08 2013-07-04 环境噪声均方根(rms)检测器 Expired - Fee Related CN105103218B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/762,504 2013-02-08
US13/762,504 US9107010B2 (en) 2013-02-08 2013-02-08 Ambient noise root mean square (RMS) detector
PCT/US2013/049407 WO2014123569A1 (en) 2013-02-08 2013-07-04 Ambient noise root mean square (rms) detector

Publications (2)

Publication Number Publication Date
CN105103218A true CN105103218A (zh) 2015-11-25
CN105103218B CN105103218B (zh) 2019-01-04

Family

ID=49486651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380072664.2A Expired - Fee Related CN105103218B (zh) 2013-02-08 2013-07-04 环境噪声均方根(rms)检测器

Country Status (6)

Country Link
US (1) US9107010B2 (zh)
EP (1) EP2954513B1 (zh)
JP (1) JP6257063B2 (zh)
KR (1) KR102081568B1 (zh)
CN (1) CN105103218B (zh)
WO (1) WO2014123569A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120379A (zh) * 2018-08-30 2019-01-01 武汉虹信通信技术有限责任公司 一种适用于无线通信系统多场景的自适应调制编码方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9324311B1 (en) * 2013-03-15 2016-04-26 Cirrus Logic, Inc. Robust adaptive noise canceling (ANC) in a personal audio device
US20140279101A1 (en) * 2013-03-15 2014-09-18 Clinkle Corporation Distance factor based mobile device selection
US9635480B2 (en) 2013-03-15 2017-04-25 Cirrus Logic, Inc. Speaker impedance monitoring
US10206032B2 (en) 2013-04-10 2019-02-12 Cirrus Logic, Inc. Systems and methods for multi-mode adaptive noise cancellation for audio headsets
US9462376B2 (en) 2013-04-16 2016-10-04 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US9478210B2 (en) 2013-04-17 2016-10-25 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US9460701B2 (en) 2013-04-17 2016-10-04 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by biasing anti-noise level
US9578432B1 (en) 2013-04-24 2017-02-21 Cirrus Logic, Inc. Metric and tool to evaluate secondary path design in adaptive noise cancellation systems
US9264808B2 (en) 2013-06-14 2016-02-16 Cirrus Logic, Inc. Systems and methods for detection and cancellation of narrow-band noise
US9392364B1 (en) 2013-08-15 2016-07-12 Cirrus Logic, Inc. Virtual microphone for adaptive noise cancellation in personal audio devices
US9666176B2 (en) 2013-09-13 2017-05-30 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by adaptively shaping internal white noise to train a secondary path
US9620101B1 (en) 2013-10-08 2017-04-11 Cirrus Logic, Inc. Systems and methods for maintaining playback fidelity in an audio system with adaptive noise cancellation
US10382864B2 (en) 2013-12-10 2019-08-13 Cirrus Logic, Inc. Systems and methods for providing adaptive playback equalization in an audio device
US9704472B2 (en) 2013-12-10 2017-07-11 Cirrus Logic, Inc. Systems and methods for sharing secondary path information between audio channels in an adaptive noise cancellation system
US10219071B2 (en) 2013-12-10 2019-02-26 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation
US9479860B2 (en) 2014-03-07 2016-10-25 Cirrus Logic, Inc. Systems and methods for enhancing performance of audio transducer based on detection of transducer status
US10141003B2 (en) * 2014-06-09 2018-11-27 Dolby Laboratories Licensing Corporation Noise level estimation
US9609416B2 (en) 2014-06-09 2017-03-28 Cirrus Logic, Inc. Headphone responsive to optical signaling
US10181315B2 (en) 2014-06-13 2019-01-15 Cirrus Logic, Inc. Systems and methods for selectively enabling and disabling adaptation of an adaptive noise cancellation system
US9478212B1 (en) 2014-09-03 2016-10-25 Cirrus Logic, Inc. Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
US10181329B2 (en) * 2014-09-05 2019-01-15 Intel IP Corporation Audio processing circuit and method for reducing noise in an audio signal
US9552805B2 (en) 2014-12-19 2017-01-24 Cirrus Logic, Inc. Systems and methods for performance and stability control for feedback adaptive noise cancellation
WO2017029550A1 (en) 2015-08-20 2017-02-23 Cirrus Logic International Semiconductor Ltd Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
US9578415B1 (en) 2015-08-21 2017-02-21 Cirrus Logic, Inc. Hybrid adaptive noise cancellation system with filtered error microphone signal
US10013966B2 (en) 2016-03-15 2018-07-03 Cirrus Logic, Inc. Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device
CN107785016A (zh) * 2016-08-31 2018-03-09 株式会社东芝 训练神经网络辅助模型的方法和装置及语音识别方法和装置
US10461712B1 (en) * 2017-09-25 2019-10-29 Amazon Technologies, Inc. Automatic volume leveling
WO2023028018A1 (en) 2021-08-26 2023-03-02 Dolby Laboratories Licensing Corporation Detecting environmental noise in user-generated content

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113335A (zh) * 1994-05-13 1995-12-13 索尼公司 降低语音信号中噪声的方法和检测噪声域的方法
US20070033029A1 (en) * 2005-05-26 2007-02-08 Yamaha Hatsudoki Kabushiki Kaisha Noise cancellation helmet, motor vehicle system including the noise cancellation helmet, and method of canceling noise in helmet
CN101142800A (zh) * 2004-04-23 2008-03-12 声学技术公司 基于Bark频带Weiner滤波和修改的Doblinger噪声估值的噪声抑制器
US20090254340A1 (en) * 2008-04-07 2009-10-08 Cambridge Silicon Radio Limited Noise Reduction
CN101790752A (zh) * 2007-09-28 2010-07-28 高通股份有限公司 多麦克风声音活动检测器

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471370B2 (ja) 1991-07-05 2003-12-02 本田技研工業株式会社 能動振動制御装置
US5548681A (en) 1991-08-13 1996-08-20 Kabushiki Kaisha Toshiba Speech dialogue system for realizing improved communication between user and system
JP2939017B2 (ja) 1991-08-30 1999-08-25 日産自動車株式会社 能動型騒音制御装置
US5359662A (en) 1992-04-29 1994-10-25 General Motors Corporation Active noise control system
US5321759A (en) 1992-04-29 1994-06-14 General Motors Corporation Active noise control system for attenuating engine generated noise
US5251263A (en) 1992-05-22 1993-10-05 Andrea Electronics Corporation Adaptive noise cancellation and speech enhancement system and apparatus therefor
US5278913A (en) 1992-07-28 1994-01-11 Nelson Industries, Inc. Active acoustic attenuation system with power limiting
KR0130635B1 (ko) 1992-10-14 1998-04-09 모리시타 요이찌 연소 장치의 적응 소음 시스템
GB9222103D0 (en) 1992-10-21 1992-12-02 Lotus Car Adaptive control system
JP2929875B2 (ja) 1992-12-21 1999-08-03 日産自動車株式会社 能動型騒音制御装置
US5465413A (en) 1993-03-05 1995-11-07 Trimble Navigation Limited Adaptive noise cancellation
US5425105A (en) 1993-04-27 1995-06-13 Hughes Aircraft Company Multiple adaptive filter active noise canceller
AU7355594A (en) 1993-06-23 1995-01-17 Noise Cancellation Technologies, Inc. Variable gain active noise cancellation system with improved residual noise sensing
US7103188B1 (en) 1993-06-23 2006-09-05 Owen Jones Variable gain active noise cancelling system with improved residual noise sensing
US5586190A (en) 1994-06-23 1996-12-17 Digisonix, Inc. Active adaptive control system with weight update selective leakage
JPH0823373A (ja) 1994-07-08 1996-01-23 Kokusai Electric Co Ltd 通話器回路
US5815582A (en) 1994-12-02 1998-09-29 Noise Cancellation Technologies, Inc. Active plus selective headset
JP2843278B2 (ja) 1995-07-24 1999-01-06 松下電器産業株式会社 騒音制御型送受話器
US5699437A (en) 1995-08-29 1997-12-16 United Technologies Corporation Active noise control system using phased-array sensors
US6434246B1 (en) 1995-10-10 2002-08-13 Gn Resound As Apparatus and methods for combining audio compression and feedback cancellation in a hearing aid
GB2307617B (en) 1995-11-24 2000-01-12 Nokia Mobile Phones Ltd Telephones with talker sidetone
KR19980702171A (ko) 1995-12-15 1998-07-15 요트. 게. 아. 롤페즈 적응잡음 제거장치, 잡음감소 시스템과 트랜시버
US5706344A (en) 1996-03-29 1998-01-06 Digisonix, Inc. Acoustic echo cancellation in an integrated audio and telecommunication system
US6850617B1 (en) 1999-12-17 2005-02-01 National Semiconductor Corporation Telephone receiver circuit with dynamic sidetone signal generator controlled by voice activity detection
US5832095A (en) 1996-10-18 1998-11-03 Carrier Corporation Noise canceling system
US5991418A (en) 1996-12-17 1999-11-23 Texas Instruments Incorporated Off-line path modeling circuitry and method for off-line feedback path modeling and off-line secondary path modeling
JP3297346B2 (ja) * 1997-04-30 2002-07-02 沖電気工業株式会社 音声検出装置
WO1999005998A1 (en) 1997-07-29 1999-02-11 Telex Communications, Inc. Active noise cancellation aircraft headset system
TW392416B (en) 1997-08-18 2000-06-01 Noise Cancellation Tech Noise cancellation system for active headsets
US6219427B1 (en) 1997-11-18 2001-04-17 Gn Resound As Feedback cancellation improvements
US6282176B1 (en) 1998-03-20 2001-08-28 Cirrus Logic, Inc. Full-duplex speakerphone circuit including a supplementary echo suppressor
WO1999053476A1 (fr) 1998-04-15 1999-10-21 Fujitsu Limited Dispositif antibruit actif
EP0973151B8 (en) 1998-07-16 2009-02-25 Panasonic Corporation Noise control system
US6434247B1 (en) 1999-07-30 2002-08-13 Gn Resound A/S Feedback cancellation apparatus and methods utilizing adaptive reference filter mechanisms
AU1359601A (en) 1999-11-03 2001-05-14 Tellabs Operations, Inc. Integrated voice processing system for packet networks
GB2360165A (en) 2000-03-07 2001-09-12 Central Research Lab Ltd A method of improving the audibility of sound from a loudspeaker located close to an ear
US6766292B1 (en) 2000-03-28 2004-07-20 Tellabs Operations, Inc. Relative noise ratio weighting techniques for adaptive noise cancellation
SG106582A1 (en) 2000-07-05 2004-10-29 Univ Nanyang Active noise control system with on-line secondary path modeling
US6768795B2 (en) 2001-01-11 2004-07-27 Telefonaktiebolaget Lm Ericsson (Publ) Side-tone control within a telecommunication instrument
US6940982B1 (en) 2001-03-28 2005-09-06 Lsi Logic Corporation Adaptive noise cancellation (ANC) for DVD systems
US6996241B2 (en) 2001-06-22 2006-02-07 Trustees Of Dartmouth College Tuned feedforward LMS filter with feedback control
AUPR604201A0 (en) 2001-06-29 2001-07-26 Hearworks Pty Ltd Telephony interface apparatus
CA2354808A1 (en) 2001-08-07 2003-02-07 King Tam Sub-band adaptive signal processing in an oversampled filterbank
WO2003015074A1 (en) 2001-08-08 2003-02-20 Nanyang Technological University,Centre For Signal Processing. Active noise control system with on-line secondary path modeling
CA2354858A1 (en) 2001-08-08 2003-02-08 Dspfactory Ltd. Subband directional audio signal processing using an oversampled filterbank
US7181030B2 (en) 2002-01-12 2007-02-20 Oticon A/S Wind noise insensitive hearing aid
WO2007106399A2 (en) 2006-03-10 2007-09-20 Mh Acoustics, Llc Noise-reducing directional microphone array
US20100284546A1 (en) 2005-08-18 2010-11-11 Debrunner Victor Active noise control algorithm that requires no secondary path identification based on the SPR property
AU2003261203A1 (en) 2002-07-19 2004-02-09 The Penn State Research Foundation A linear independent method for noninvasive online secondary path modeling
CA2399159A1 (en) 2002-08-16 2004-02-16 Dspfactory Ltd. Convergence improvement for oversampled subband adaptive filters
US6917688B2 (en) 2002-09-11 2005-07-12 Nanyang Technological University Adaptive noise cancelling microphone system
US7895036B2 (en) 2003-02-21 2011-02-22 Qnx Software Systems Co. System for suppressing wind noise
US7885420B2 (en) 2003-02-21 2011-02-08 Qnx Software Systems Co. Wind noise suppression system
US7092514B2 (en) 2003-02-27 2006-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Audibility enhancement
US7242778B2 (en) 2003-04-08 2007-07-10 Gennum Corporation Hearing instrument with self-diagnostics
US7643641B2 (en) 2003-05-09 2010-01-05 Nuance Communications, Inc. System for communication enhancement in a noisy environment
GB2401744B (en) 2003-05-14 2006-02-15 Ultra Electronics Ltd An adaptive control unit with feedback compensation
US20050117754A1 (en) 2003-12-02 2005-06-02 Atsushi Sakawaki Active noise cancellation helmet, motor vehicle system including the active noise cancellation helmet, and method of canceling noise in helmet
ATE402468T1 (de) 2004-03-17 2008-08-15 Harman Becker Automotive Sys Geräuschabstimmungsvorrichtung, verwendung derselben und geräuschabstimmungsverfahren
US20060035593A1 (en) 2004-08-12 2006-02-16 Motorola, Inc. Noise and interference reduction in digitized signals
DK200401280A (da) 2004-08-24 2006-02-25 Oticon As Lavfrekvens fase matchning til mikrofoner
EP1629808A1 (en) 2004-08-25 2006-03-01 Phonak Ag Earplug and method for manufacturing the same
CA2481629A1 (en) 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for active noise cancellation
JP2006197075A (ja) 2005-01-12 2006-07-27 Yamaha Corp マイクロフォンおよび拡声装置
US7680456B2 (en) 2005-02-16 2010-03-16 Texas Instruments Incorporated Methods and apparatus to perform signal removal in a low intermediate frequency receiver
US7330739B2 (en) 2005-03-31 2008-02-12 Nxp B.V. Method and apparatus for providing a sidetone in a wireless communication device
EP1732352B1 (en) 2005-04-29 2015-10-21 Nuance Communications, Inc. Detection and suppression of wind noise in microphone signals
CN1897054A (zh) 2005-07-14 2007-01-17 松下电器产业株式会社 可根据声音种类发出警报的传输装置及方法
US8019103B2 (en) 2005-08-02 2011-09-13 Gn Resound A/S Hearing aid with suppression of wind noise
JP4262703B2 (ja) 2005-08-09 2009-05-13 本田技研工業株式会社 能動型騒音制御装置
US20070047742A1 (en) * 2005-08-26 2007-03-01 Step Communications Corporation, A Nevada Corporation Method and system for enhancing regional sensitivity noise discrimination
EP1938274A2 (en) 2005-09-12 2008-07-02 D.V.P. Technologies Ltd. Medical image processing
JP4742226B2 (ja) 2005-09-28 2011-08-10 国立大学法人九州大学 能動消音制御装置及び方法
WO2007046435A1 (ja) 2005-10-21 2007-04-26 Matsushita Electric Industrial Co., Ltd. 騒音制御装置
US8345890B2 (en) * 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
GB2436657B (en) 2006-04-01 2011-10-26 Sonaptic Ltd Ambient noise-reduction control system
GB2437772B8 (en) 2006-04-12 2008-09-17 Wolfson Microelectronics Plc Digital circuit arrangements for ambient noise-reduction.
US8706482B2 (en) 2006-05-11 2014-04-22 Nth Data Processing L.L.C. Voice coder with multiple-microphone system and strategic microphone placement to deter obstruction for a digital communication device
US7742790B2 (en) 2006-05-23 2010-06-22 Alon Konchitsky Environmental noise reduction and cancellation for a communication device including for a wireless and cellular telephone
US20070297620A1 (en) 2006-06-27 2007-12-27 Choy Daniel S J Methods and Systems for Producing a Zone of Reduced Background Noise
US7925307B2 (en) 2006-10-31 2011-04-12 Palm, Inc. Audio output using multiple speakers
US8126161B2 (en) 2006-11-02 2012-02-28 Hitachi, Ltd. Acoustic echo canceller system
US8270625B2 (en) 2006-12-06 2012-09-18 Brigham Young University Secondary path modeling for active noise control
US8019050B2 (en) 2007-01-03 2011-09-13 Motorola Solutions, Inc. Method and apparatus for providing feedback of vocal quality to a user
EP1947642B1 (en) 2007-01-16 2018-06-13 Apple Inc. Active noise control system
US8229106B2 (en) 2007-01-22 2012-07-24 D.S.P. Group, Ltd. Apparatus and methods for enhancement of speech
GB2441835B (en) 2007-02-07 2008-08-20 Sonaptic Ltd Ambient noise reduction system
DE102007013719B4 (de) 2007-03-19 2015-10-29 Sennheiser Electronic Gmbh & Co. Kg Hörer
US7365669B1 (en) 2007-03-28 2008-04-29 Cirrus Logic, Inc. Low-delay signal processing based on highly oversampled digital processing
JP5189307B2 (ja) 2007-03-30 2013-04-24 本田技研工業株式会社 能動型騒音制御装置
JP5002302B2 (ja) 2007-03-30 2012-08-15 本田技研工業株式会社 能動型騒音制御装置
JP4722878B2 (ja) 2007-04-19 2011-07-13 ソニー株式会社 ノイズ低減装置および音響再生装置
US7817808B2 (en) 2007-07-19 2010-10-19 Alon Konchitsky Dual adaptive structure for speech enhancement
EP2023664B1 (en) 2007-08-10 2013-03-13 Oticon A/S Active noise cancellation in hearing devices
KR101409169B1 (ko) 2007-09-05 2014-06-19 삼성전자주식회사 억제 폭 조절을 통한 사운드 줌 방법 및 장치
WO2009042635A1 (en) 2007-09-24 2009-04-02 Sound Innovations Inc. In-ear digital electronic noise cancelling and communication device
ATE518381T1 (de) 2007-09-27 2011-08-15 Harman Becker Automotive Sys Automatische bassregelung
US8325934B2 (en) 2007-12-07 2012-12-04 Board Of Trustees Of Northern Illinois University Electronic pillow for abating snoring/environmental noises, hands-free communications, and non-invasive monitoring and recording
GB0725108D0 (en) 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Slow rate adaption
GB0725110D0 (en) 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Gain control based on noise level
GB0725115D0 (en) 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Split filter
GB0725111D0 (en) 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Lower rate emulation
JP4530051B2 (ja) 2008-01-17 2010-08-25 船井電機株式会社 音声信号送受信装置
ATE520199T1 (de) 2008-01-25 2011-08-15 Nxp Bv Verbesserungen an oder im zusammenhang mit funkempfängern
US8374362B2 (en) 2008-01-31 2013-02-12 Qualcomm Incorporated Signaling microphone covering to the user
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8184816B2 (en) 2008-03-18 2012-05-22 Qualcomm Incorporated Systems and methods for detecting wind noise using multiple audio sources
JP4572945B2 (ja) 2008-03-28 2010-11-04 ソニー株式会社 ヘッドフォン装置、信号処理装置、信号処理方法
US8285344B2 (en) 2008-05-21 2012-10-09 DP Technlogies, Inc. Method and apparatus for adjusting audio for a user environment
JP5256119B2 (ja) 2008-05-27 2013-08-07 パナソニック株式会社 補聴器並びに補聴器に用いられる補聴処理方法及び集積回路
KR101470528B1 (ko) 2008-06-09 2014-12-15 삼성전자주식회사 적응 빔포밍을 위한 사용자 방향의 소리 검출 기반의 적응모드 제어 장치 및 방법
US8498589B2 (en) 2008-06-12 2013-07-30 Qualcomm Incorporated Polar modulator with path delay compensation
EP2133866B1 (en) 2008-06-13 2016-02-17 Harman Becker Automotive Systems GmbH Adaptive noise control system
GB2461315B (en) 2008-06-27 2011-09-14 Wolfson Microelectronics Plc Noise cancellation system
WO2010002676A2 (en) 2008-06-30 2010-01-07 Dolby Laboratories Licensing Corporation Multi-microphone voice activity detector
JP2010023534A (ja) 2008-07-15 2010-02-04 Panasonic Corp 騒音低減装置
JP5241921B2 (ja) 2008-07-29 2013-07-17 ドルビー ラボラトリーズ ライセンシング コーポレイション 電子音響チャンネルの適応制御とイコライゼーションの方法
US8290537B2 (en) 2008-09-15 2012-10-16 Apple Inc. Sidetone adjustment based on headset or earphone type
US20100082339A1 (en) 2008-09-30 2010-04-01 Alon Konchitsky Wind Noise Reduction
US8355512B2 (en) 2008-10-20 2013-01-15 Bose Corporation Active noise reduction adaptive filter leakage adjusting
US20100124335A1 (en) 2008-11-19 2010-05-20 All Media Guide, Llc Scoring a match of two audio tracks sets using track time probability distribution
US9020158B2 (en) 2008-11-20 2015-04-28 Harman International Industries, Incorporated Quiet zone control system
US8135140B2 (en) 2008-11-20 2012-03-13 Harman International Industries, Incorporated System for active noise control with audio signal compensation
JP5709760B2 (ja) 2008-12-18 2015-04-30 コーニンクレッカ フィリップス エヌ ヴェ オーディオノイズキャンセリング
EP2216774B1 (en) 2009-01-30 2015-09-16 Harman Becker Automotive Systems GmbH Adaptive noise control system and method
US8548176B2 (en) 2009-02-03 2013-10-01 Nokia Corporation Apparatus including microphone arrangements
CN102365875B (zh) 2009-03-30 2014-09-24 伯斯有限公司 个人声学设备位置确定
US8155330B2 (en) 2009-03-31 2012-04-10 Apple Inc. Dynamic audio parameter adjustment using touch sensing
US8442251B2 (en) 2009-04-02 2013-05-14 Oticon A/S Adaptive feedback cancellation based on inserted and/or intrinsic characteristics and matched retrieval
US9202456B2 (en) 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
EP2247119A1 (de) 2009-04-27 2010-11-03 Siemens Medical Instruments Pte. Ltd. Vorrichtung zum akustischen Analysieren einer Hörvorrichtung und Analyseverfahren
US8345888B2 (en) 2009-04-28 2013-01-01 Bose Corporation Digital high frequency phase compensation
US8315405B2 (en) 2009-04-28 2012-11-20 Bose Corporation Coordinated ANR reference sound compression
US8184822B2 (en) 2009-04-28 2012-05-22 Bose Corporation ANR signal processing topology
US20100296666A1 (en) 2009-05-25 2010-11-25 National Chin-Yi University Of Technology Apparatus and method for noise cancellation in voice communication
US8218779B2 (en) 2009-06-17 2012-07-10 Sony Ericsson Mobile Communications Ab Portable communication device and a method of processing signals therein
US8737636B2 (en) 2009-07-10 2014-05-27 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for adaptive active noise cancellation
KR101816667B1 (ko) 2009-10-28 2018-01-09 페어차일드 세미컨덕터 코포레이션 액티브 노이즈 제거 시스템 및 방법
US8401200B2 (en) 2009-11-19 2013-03-19 Apple Inc. Electronic device and headset with speaker seal evaluation capabilities
JP5418204B2 (ja) * 2009-12-22 2014-02-19 沖電気工業株式会社 背景雑音レベル推定装置、方法及びプログラム
US8385559B2 (en) 2009-12-30 2013-02-26 Robert Bosch Gmbh Adaptive digital noise canceller
EP2362381B1 (en) 2010-02-25 2019-12-18 Harman Becker Automotive Systems GmbH Active noise reduction system
JP2011191383A (ja) 2010-03-12 2011-09-29 Panasonic Corp 騒音低減装置
US20110288860A1 (en) 2010-05-20 2011-11-24 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for processing of speech signals using head-mounted microphone pair
US9053697B2 (en) 2010-06-01 2015-06-09 Qualcomm Incorporated Systems, methods, devices, apparatus, and computer program products for audio equalization
JP5593851B2 (ja) 2010-06-01 2014-09-24 ソニー株式会社 音声信号処理装置、音声信号処理方法、プログラム
US8515089B2 (en) 2010-06-04 2013-08-20 Apple Inc. Active noise cancellation decisions in a portable audio device
US9099077B2 (en) 2010-06-04 2015-08-04 Apple Inc. Active noise cancellation decisions using a degraded reference
EP2395500B1 (en) 2010-06-11 2014-04-02 Nxp B.V. Audio device
EP2395501B1 (en) 2010-06-14 2015-08-12 Harman Becker Automotive Systems GmbH Adaptive noise control
WO2011159858A1 (en) 2010-06-17 2011-12-22 Dolby Laboratories Licensing Corporation Method and apparatus for reducing the effect of environmental noise on listeners
US20110317848A1 (en) 2010-06-23 2011-12-29 Motorola, Inc. Microphone Interference Detection Method and Apparatus
GB2484722B (en) 2010-10-21 2014-11-12 Wolfson Microelectronics Plc Noise cancellation system
WO2012059241A1 (en) * 2010-11-05 2012-05-10 Semiconductor Ideas To The Market (Itom) Method for reducing noise included in a stereo signal, stereo signal processing device and fm receiver using the method
JP2012114683A (ja) 2010-11-25 2012-06-14 Kyocera Corp 携帯電話機および携帯電話機におけるエコー低減方法
EP2461323A1 (en) 2010-12-01 2012-06-06 Dialog Semiconductor GmbH Reduced delay digital active noise cancellation
EP2647002B1 (en) 2010-12-03 2024-01-31 Cirrus Logic, Inc. Oversight control of an adaptive noise canceler in a personal audio device
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
US20120155666A1 (en) 2010-12-16 2012-06-21 Nair Vijayakumaran V Adaptive noise cancellation
US8718291B2 (en) 2011-01-05 2014-05-06 Cambridge Silicon Radio Limited ANC for BT headphones
US9037458B2 (en) 2011-02-23 2015-05-19 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for spatially selective audio augmentation
DE102011013343B4 (de) 2011-03-08 2012-12-13 Austriamicrosystems Ag Regelsystem für aktive Rauschunterdrückung sowie Verfahren zur aktiven Rauschunterdrückung
US8693700B2 (en) 2011-03-31 2014-04-08 Bose Corporation Adaptive feed-forward noise reduction
US9055367B2 (en) 2011-04-08 2015-06-09 Qualcomm Incorporated Integrated psychoacoustic bass enhancement (PBE) for improved audio
US20120263317A1 (en) 2011-04-13 2012-10-18 Qualcomm Incorporated Systems, methods, apparatus, and computer readable media for equalization
EP2528358A1 (en) 2011-05-23 2012-11-28 Oticon A/S A method of identifying a wireless communication channel in a sound system
US20120300960A1 (en) 2011-05-27 2012-11-29 Graeme Gordon Mackay Digital signal routing circuit
US8958571B2 (en) 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US9076431B2 (en) 2011-06-03 2015-07-07 Cirrus Logic, Inc. Filter architecture for an adaptive noise canceler in a personal audio device
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US8848936B2 (en) 2011-06-03 2014-09-30 Cirrus Logic, Inc. Speaker damage prevention in adaptive noise-canceling personal audio devices
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9214150B2 (en) 2011-06-03 2015-12-15 Cirrus Logic, Inc. Continuous adaptation of secondary path adaptive response in noise-canceling personal audio devices
US8948407B2 (en) 2011-06-03 2015-02-03 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US10107887B2 (en) 2012-04-13 2018-10-23 Qualcomm Incorporated Systems and methods for displaying a user interface
US9014387B2 (en) 2012-04-26 2015-04-21 Cirrus Logic, Inc. Coordinated control of adaptive noise cancellation (ANC) among earspeaker channels
US9142205B2 (en) 2012-04-26 2015-09-22 Cirrus Logic, Inc. Leakage-modeling adaptive noise canceling for earspeakers
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9082387B2 (en) 2012-05-10 2015-07-14 Cirrus Logic, Inc. Noise burst adaptation of secondary path adaptive response in noise-canceling personal audio devices
US9319781B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Frequency and direction-dependent ambient sound handling in personal audio devices having adaptive noise cancellation (ANC)
US9076427B2 (en) * 2012-05-10 2015-07-07 Cirrus Logic, Inc. Error-signal content controlled adaptation of secondary and leakage path models in noise-canceling personal audio devices
US9538285B2 (en) 2012-06-22 2017-01-03 Verisilicon Holdings Co., Ltd. Real-time microphone array with robust beamformer and postfilter for speech enhancement and method of operation thereof
US9516407B2 (en) 2012-08-13 2016-12-06 Apple Inc. Active noise control with compensation for error sensing at the eardrum
US9113243B2 (en) 2012-08-16 2015-08-18 Cisco Technology, Inc. Method and system for obtaining an audio signal
US9330652B2 (en) 2012-09-24 2016-05-03 Apple Inc. Active noise cancellation using multiple reference microphone signals
US9353729B2 (en) 2013-07-02 2016-05-31 General Electric Company Aerodynamic hub assembly for a wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113335A (zh) * 1994-05-13 1995-12-13 索尼公司 降低语音信号中噪声的方法和检测噪声域的方法
CN101142800A (zh) * 2004-04-23 2008-03-12 声学技术公司 基于Bark频带Weiner滤波和修改的Doblinger噪声估值的噪声抑制器
US20070033029A1 (en) * 2005-05-26 2007-02-08 Yamaha Hatsudoki Kabushiki Kaisha Noise cancellation helmet, motor vehicle system including the noise cancellation helmet, and method of canceling noise in helmet
CN101790752A (zh) * 2007-09-28 2010-07-28 高通股份有限公司 多麦克风声音活动检测器
US20090254340A1 (en) * 2008-04-07 2009-10-08 Cambridge Silicon Radio Limited Noise Reduction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CH.V.RAMA RAO 等: "A NOVEL TWO STAGE SINGLE CHANNEL SPEECH ENHANCEMENT TECHNIQUE", 《2011 ANNUAL IEEE INDIA CONFERENCE》 *
JAN S. ERKELENS 等: "Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation", 《IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120379A (zh) * 2018-08-30 2019-01-01 武汉虹信通信技术有限责任公司 一种适用于无线通信系统多场景的自适应调制编码方法

Also Published As

Publication number Publication date
EP2954513A1 (en) 2015-12-16
WO2014123569A4 (en) 2014-10-02
US9107010B2 (en) 2015-08-11
KR20150118976A (ko) 2015-10-23
WO2014123569A1 (en) 2014-08-14
JP6257063B2 (ja) 2018-01-10
KR102081568B1 (ko) 2020-02-26
JP2016507086A (ja) 2016-03-07
EP2954513B1 (en) 2022-03-02
US20140226827A1 (en) 2014-08-14
CN105103218B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN105103218A (zh) 环境噪声均方根(rms)检测器
CN102065190B (zh) 一种回声消除方法及其装置
US10475471B2 (en) Detection of acoustic impulse events in voice applications using a neural network
US9343056B1 (en) Wind noise detection and suppression
CN103456310B (zh) 一种基于谱估计的瞬态噪声抑制方法
US20180102135A1 (en) Detection of acoustic impulse events in voice applications
US7813923B2 (en) Calibration based beamforming, non-linear adaptive filtering, and multi-sensor headset
CN103109320B (zh) 噪声抑制装置
US20130218559A1 (en) Noise reduction apparatus, audio input apparatus, wireless communication apparatus, and noise reduction method
CN112004177B (zh) 一种啸叫检测方法、麦克风音量调节方法及存储介质
CN104050971A (zh) 声学回声减轻装置和方法、音频处理装置和语音通信终端
US9343073B1 (en) Robust noise suppression system in adverse echo conditions
CN113766073A (zh) 会议系统中的啸叫检测
CN106033673B (zh) 一种近端语音信号检测方法及装置
EP2752848B1 (en) Method and apparatus for generating a noise reduced audio signal using a microphone array
CN103905656B (zh) 残留回声的检测方法及装置
US9875755B2 (en) Voice enhancement device and voice enhancement method
Park et al. Two‐Microphone Generalized Sidelobe Canceller with Post‐Filter Based Speech Enhancement in Composite Noise
US11270720B2 (en) Background noise estimation and voice activity detection system
Jeong et al. Adaptive noise power spectrum estimation for compact dual channel speech enhancement
Sasaoka et al. Speech enhancement with impact noise activity detection based on the kurtosis of an instantaneous power spectrum
KELAGADI et al. REDUCTION OF ENERGY FOR IOT BASED SPEECH SENSORS IN NOISE REDUCTION USING MACHINE LEARNING MODEL.
Meng et al. Novel DTD and VAD assisted voice detection algorithm for VoIP systems
JP2023061676A (ja) ハウリング防止回路、マイクロホン装置及び電子機器
Sharmida et al. A robust observation model for automatic speech recognition with Adaptive Thresholding

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190104

CF01 Termination of patent right due to non-payment of annual fee