CN105097667B - 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构 - Google Patents
低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构 Download PDFInfo
- Publication number
- CN105097667B CN105097667B CN201510355056.3A CN201510355056A CN105097667B CN 105097667 B CN105097667 B CN 105097667B CN 201510355056 A CN201510355056 A CN 201510355056A CN 105097667 B CN105097667 B CN 105097667B
- Authority
- CN
- China
- Prior art keywords
- segment
- insulating layer
- substrate
- polysilicon
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02592—Microstructure amorphous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02672—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0212—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or coating of substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0221—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies
- H10D86/0223—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies comprising crystallisation of amorphous, microcrystalline or polycrystalline semiconductor materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0221—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies
- H10D86/0223—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies comprising crystallisation of amorphous, microcrystalline or polycrystalline semiconductor materials
- H10D86/0227—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies comprising crystallisation of amorphous, microcrystalline or polycrystalline semiconductor materials using structural arrangements to control crystal growth, e.g. placement of grain filters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0221—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies
- H10D86/0223—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies comprising crystallisation of amorphous, microcrystalline or polycrystalline semiconductor materials
- H10D86/0229—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies comprising crystallisation of amorphous, microcrystalline or polycrystalline semiconductor materials characterised by control of the annealing or irradiation parameters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0251—Manufacture or treatment of multiple TFTs characterised by increasing the uniformity of device parameters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/411—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by materials, geometry or structure of the substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
- H10D86/425—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer having different crystal properties in different TFTs or within an individual TFT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明提供一种低温多晶硅TFT基板结构的制作方法及低温多晶硅TFT基板结构。本发明的低温多晶硅TFT基板结构的制作方法,通过在驱动TFT区域的缓冲层下方设置有规律且大小一致的导热绝缘层图案,使其在后续准分子激光退火处理过程中吸收热量,从而使非晶硅的冷却速度加快,形成晶核,并在退火过程逐渐生长,由于导热绝缘层具有有规律且大小一致的图案,从而使驱动TFT区域形成的多晶硅的晶粒具有较好的一致性,且晶粒相对较大,保证了驱动TFT的电性一致性。本发明的低温多晶硅TFT基板结构,驱动TFT区域的缓冲层下方设置有有规律且大小一致的导热绝缘层图案,驱动TFT区域的多晶硅的晶粒一致性较好,且晶粒相对较大,驱动TFT的电性一致性较好。
Description
技术领域
本发明涉及显示技术领域,尤其涉及一种低温多晶硅TFT基板结构的制作方法及低温多晶硅TFT基板结构。
背景技术
低温多晶硅(Low Temperature Poly-silicon,LTPS)薄膜晶体管(Thin FilmTransistor,TFT)在高分辨率有源液晶显示(Active MatrixLiquid Crystal Display,AMLCD)以及有机发光二极管(Active-Matrix Organic Light Emitting Diode,AMOLED)显示器领域有很大的应用价值和潜力。
与非晶硅(a-Si)技术相比,LTPS TFT的迁移率高,器件稳定性好。LTPS TFT的迁移率可达几十至几百cm2/Vs,可以满足高分辨率AMLCD及AMOLED显示器的要求。因此,低温多晶硅显示器的反应速度较快,且有高亮度、高解析度与低耗电量等优点。除了作为像素开关,LTPS TFT还可以构建周边驱动电路,实现片上集成系统。
准分子激光退火处理(Excimer Laser Annealing,ELA)是利用激光的瞬间脉冲照射到非晶硅表面,使其溶化并重新结晶的技术。因为AMOLED驱动需要开关TFT和驱动TFT,其中,驱动TFT应具有较一致的电性从而具有一致的驱动能力,以防止在显示过程中导致颜色不均等问题。这就需要驱动TFT区域的多晶硅的晶粒具有较好的一致性,并且晶粒的尺寸较大。
然而目前的ELA结晶技术对于晶粒的一致性和晶粒的大小不能做到有效控制,所以结晶状况在整个基板的分布上很不均匀,导致驱动TFT区域多晶硅晶粒的一致性较差,且晶粒相对较小,使得驱动TFT的电性一致性和电性稳定性较差,容易导致画质不良等现象的产生。
发明内容
本发明的目的在于提供一种低温多晶硅TFT基板结构的制作方法,可以使驱动TFT区域的多晶硅的晶粒具有较好的一致性,且晶粒相对较大,可保证驱动TFT的电性一致性。
本发明的目的还在于提供一种低温多晶硅TFT基板结构,驱动TFT区域的多晶硅的晶粒一致性较好,且晶粒相对较大,驱动TFT的电性一致性较好。
为实现上述目的,本发明提供一种低温多晶硅TFT基板结构的制作方法,包括如下步骤:
步骤1、提供基板,所述基板包括开关TFT区域与驱动TFT区域,在所述基板上沉积导热绝缘薄膜,并对所述导热绝缘薄膜进行图案化处理,得到位于所述驱动TFT区域的导热绝缘层;
步骤2、在所述基板上沉积缓冲层,所述缓冲层覆盖所述导热绝缘层;
步骤3、在所述缓冲层上沉积非晶硅层,并对所述非晶硅层进行图案化处理,得到位于所述开关TFT区域的第一非晶硅段、及位于所述驱动TFT区域的第二非晶硅段;
步骤4、对所述第一非晶硅段、第二非晶硅段进行准分子激光退火处理,使所述第一非晶硅段、第二非晶硅段结晶,分别转变为第一多晶硅段、第二多晶硅段;
步骤5、在所述缓冲层上沉积层间绝缘层,所述层间绝缘层覆盖所述第一多晶硅段、第二多晶硅段;
步骤6、在所述层间绝缘层上沉积金属层,并对所述金属层进行图案化处理,分别对应所述第一多晶硅段、第二多晶硅段的上方形成第一栅极与第二栅极。
所述基板为玻璃基板或硅基板。
所述导热绝缘层的材料为氧化镁或氧化铝。
所述导热绝缘层的图案为均匀分布且大小一致的圆形、或方形。
所述步骤2采用化学气相沉积法制得所述缓冲层。
所述缓冲层的材料为氧化硅、氮化硅、或二者的组合。
所述步骤3采用气相沉积法制得所述非晶硅层。
所述步骤4采用炉管、准分子激光退火处理设备、或化学气相沉积加热室对所述第一非晶硅段、第二非晶硅段进行准分子激光退火处理。
本发明还提供一种低温多晶硅TFT基板结构,包括开关TFT区域和驱动TFT区域;
所述开关TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第一多晶硅段、设于所述缓冲层上覆盖所述第一多晶硅段的层间绝缘层、及对应所述第一多晶硅段上方设于所述层间绝缘层上的第一栅极;
所述驱动TFT区域包括基板、设于所述基板上的导热绝缘层、设于所述基板上覆盖所述导热绝缘层的缓冲层、设于所述缓冲层上的第二多晶硅段、设于所述缓冲层上覆盖所述第二多晶硅段的层间绝缘层、及对应所述第二多晶硅段上方设于所述层间绝缘层上的第二栅极。
所述基板为玻璃基板或硅基板;所述导热绝缘层的材料为氧化镁或氧化铝;所述导热绝缘层的图案为均匀分布的圆形、或方形;所述缓冲层的材料为氧化硅、氮化硅、或二者的组合。
本发明的有益效果:本发明的低温多晶硅TFT基板结构的制作方法,通过在驱动TFT区域的缓冲层下方设置有规律且大小一致的导热绝缘层图案,在进行后续准分子激光退火处理使非晶硅层结晶的过程中,导热绝缘层会吸收热量,从而使非晶硅的冷却速度加快,形成晶核,并在退火过程逐渐生
长,由于导热绝缘层具有有规律且大小一致的图案,从而使驱动TFT区域形成的多晶硅层的晶粒具有较好的一致性,且晶粒相对较大,保证了驱动TFT的电性一致性,提升了驱动TFT的电性稳定性,避免了画质不良等现象的产生。本发明的低温多晶硅TFT基板结构,驱动TFT区域的缓冲层下方设置有有规律且大小一致的导热绝缘层图案,驱动TFT区域的多晶硅层的晶粒一致性较好,且晶粒相对较大,驱动TFT的电性一致性较好,电性稳定性较好。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的低温多晶硅TFT基板结构的制作方法的流程图;
图2为本发明的低温多晶硅TFT基板结构的制作方法的步骤1的示意图;
图3为本发明的低温多晶硅TFT基板结构的制作方法的步骤2的示意图;
图4为本发明的低温多晶硅TFT基板结构的制作方法的步骤3的示意图;
图5为本发明的低温多晶硅TFT基板结构的制作方法的步骤4的示意图;
图6为本发明的低温多晶硅TFT基板结构的制作方法的步骤5的示意图;
图7为本发明的低温多晶硅TFT基板结构的制作方法的步骤6的示意图暨本发明的低温多晶硅TFT基板结构的剖面示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种低温多晶硅TFT基板结构的制作方法,包括如下步骤:
步骤1、如图2所示,提供基板1,所述基板1包括开关TFT区域与驱动TFT区域,在所述基板1上沉积导热绝缘薄膜,并对所述导热绝缘薄膜进行图案化处理,得到位于所述驱动TFT区域的导热绝缘层10。
具体的,所述基板1可以是玻璃基板或硅基板。
具体的,所述导热绝缘层10的材料为氧化镁或氧化铝。
具体的,通过一道光罩对所述导热绝缘薄膜进行图案化处理,于所述驱动TFT区域得到呈均匀分布且大小一致的圆形、方形等图案的导热绝缘层10。
步骤2、如图3所示,在所述基板1上沉积缓冲层2,所述缓冲层2覆盖所述导热绝缘层10。
具体的,采用化学气相沉积(CVD)法制得所述缓冲层2。
具体的,所述缓冲层2的材料可以是氧化硅、氮化硅、或二者的组合。
步骤3、如图4所示,在所述缓冲层2上沉积非晶硅层,并对所述非晶硅层进行图案化处理,得到位于所述开关TFT区域的第一非晶硅段31、及位于所述驱动TFT区域的第二非晶硅段32。
具体的,采用气相沉积法制得所述非晶硅层。
步骤4、如图5所示,对所述第一非晶硅段31、第二非晶硅段32进行准分子激光退火处理(Excimer Laser Annealer,ELA)使所述第一非晶硅段31、第二非晶硅段32结晶,分别转变为第一多晶硅段301、第二多晶硅段302。
在准分子激光退火处理的过程中,所述导热绝缘层10会吸收热量,从而使非晶硅的冷却速度加快,形成晶核,并在退火过程逐渐生长,由于导热绝缘层10具有有规律且大小一致的图案,从而使驱动TFT区域形成的第二多晶硅段302的晶粒具有较好的一致性,且晶粒相对较大。
具体的,采用炉管、准分子激光退火处理设备、或化学气相沉积加热室(CVDHeating Chamber)对所述第一非晶硅段31、第二非晶硅段32进行准分子激光退火处理。
步骤5、如图6所示,在所述缓冲层2上沉积层间绝缘层4,所述层间绝缘层4覆盖所述第一多晶硅段301、第二多晶硅段302。
步骤6、如图7所示,在所述层间绝缘层4上沉积金属层,并对所述金属层进行图案化处理,分别对应所述第一多晶硅段301、第二多晶硅段302的上方形成第一栅极51与第二栅极52,后续制作源/漏极等制程均可以采用现有技术实现。
上述低温多晶硅TFT基板结构的制作方法,通过在驱动TFT区域的缓冲层下方设置有规律且大小一致的导热绝缘层图案,在进行后续准分子激光退火处理使非晶硅层结晶的过程中,导热绝缘层会吸收热量,从而使非晶硅的冷却速度加快,形成晶核,并在退火过程逐渐生长,由于导热绝缘层具有有规律且大小一致的图案,从而使驱动TFT区域形成的多晶硅层的晶粒具有较好的一致性,且晶粒相对较大,保证了驱动TFT的电性一致性,提升了驱动TFT的电性稳定性,避免了画质不良等现象的产生。
请参阅图7,本发明还提供一种低温多晶硅TFT基板结构,包括开关TFT区域和驱动TFT区域。
所述开关TFT区域包括基板1、设于所述基板1上的缓冲层2、设于所述缓冲层2上的第一多晶硅段301、设于所述缓冲层2上覆盖所述第一多晶硅段301的层间绝缘层4、及对应所述第一多晶硅段301上方设于所述层间绝缘层4上的第一栅极51。
所述驱动TFT区域包括基板1、设于所述基板1上的导热绝缘层10、设于所述基板1上覆盖所述导热绝缘层10的缓冲层2、设于所述缓冲层2上的第二多晶硅段302、设于所述缓冲层2上覆盖所述第二多晶硅段302的层间绝缘层4、及对应所述第二多晶硅段302上方设于所述层间绝缘层4上的第二栅极52。
具体的,所述基板1为玻璃基板或硅基板。
具体的,所述导热绝缘层10的材料为氧化镁或氧化铝。
具体的,所述导热绝缘层10的图案为均匀分布且大小一致的圆形、方形、或者其他图形。
具体的,所述缓冲层2的材料为氧化硅、氮化硅、或二者的组合。
上述低温多晶硅TFT基板结构,驱动TFT区域的缓冲层下方设置有有规律且大小一致的导热绝缘层图案,驱动TFT区域的多晶硅层的晶粒一致性较好,且晶粒相对较大,驱动TFT的电性一致性较好,电性稳定性较好。
综上所述,本发明的低温多晶硅TFT基板结构的制作方法,通过在驱动TFT区域的缓冲层下方设置有规律且大小一致的导热绝缘层图案,在进行后续准分子激光退火处理使非晶硅层结晶的过程中,导热绝缘层会吸收热量,从而使非晶硅的冷却速度加快,形成晶核,并在退火过程逐渐生长,由于导热绝缘层具有有规律且大小一致的图案,从而使驱动TFT区域形成的多晶硅层的晶粒具有较好的一致性,且晶粒相对较大,保证了驱动TFT的电性一致性,提升了驱动TFT的电性稳定性,避免了画质不良等现象的产生。本发明的低温多晶硅TFT基板结构,驱动TFT区域的缓冲层下方设置有有规律且大小一致的导热绝缘层图案,驱动TFT区域的多晶硅层的晶粒一致性较好,且晶粒相对较大,驱动TFT的电性一致性较好,电性稳定性较好。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。
Claims (9)
1.一种低温多晶硅TFT基板结构的制作方法,其特征在于,包括如下步骤:
步骤1、提供基板(1),所述基板(1)包括开关TFT区域与驱动TFT区域,在所述基板(1)上沉积导热绝缘薄膜,并对所述导热绝缘薄膜进行图案化处理,得到位于所述驱动TFT区域的导热绝缘层(10);
步骤2、在所述基板(1)上沉积缓冲层(2),所述缓冲层(2)覆盖所述导热绝缘层(10);
步骤3、在所述缓冲层(2)上沉积非晶硅层,并对所述非晶硅层进行图案化处理,得到位于所述开关TFT区域的第一非晶硅段(31)、及位于所述驱动TFT区域的第二非晶硅段(32);
步骤4、对所述第一非晶硅段(31)、第二非晶硅段(32)进行准分子激光退火处理,使所述第一非晶硅段(31)、第二非晶硅段(32)结晶,分别转变为第一多晶硅段(301)、第二多晶硅段(302);
步骤5、在所述缓冲层(2)上沉积层间绝缘层(4),所述层间绝缘层(4)覆盖所述第一多晶硅段(301)、第二多晶硅段(302);
步骤6、在所述层间绝缘层(4)上沉积金属层,并对所述金属层进行图案化处理,分别对应所述第一多晶硅段(301)、第二多晶硅段(302)的上方形成第一栅极(51)与第二栅极(52);
所述导热绝缘层(10)的图案为均匀分布且大小一致的圆形、或方形。
2.如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其特征在于,所述基板(1)为玻璃基板或硅基板。
3.如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其特征在于,所述导热绝缘层(10)的材料为氧化镁或氧化铝。
4.如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其特征在于,所述步骤2采用化学气相沉积法制得所述缓冲层(2)。
5.如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其特征在于,所述缓冲层(2)的材料为氧化硅、氮化硅、或二者的组合。
6.如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其特征在于,所述步骤3采用气相沉积法制得所述非晶硅层。
7.如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其特征在于,所述步骤4采用炉管、准分子激光退火处理设备、或化学气相沉积加热室对所述第一非晶硅段(31)、第二非晶硅段(32)进行准分子激光退火处理。
8.一种采用如权利要求1所述的低温多晶硅TFT基板结构的制作方法制得的低温多晶硅TFT基板结构,其特征在于,包括开关TFT区域和驱动TFT区域;
所述开关TFT区域包括基板(1)、设于所述基板(1)上的缓冲层(2)、设于所述缓冲层(2)上的第一多晶硅段(301)、设于所述缓冲层(2)上覆盖所述第一多晶硅段(301)的层间绝缘层(4)、及对应所述第一多晶硅段(301)上方设于所述层间绝缘层(4)上的第一栅极(51);
所述驱动TFT区域包括基板(1)、设于所述基板(1)上的导热绝缘层(10)、设于所述基板(1)上覆盖所述导热绝缘层(10)的缓冲层(2)、设于所述缓冲层(2)上的第二多晶硅段(302)、设于所述缓冲层(2)上覆盖所述第二多晶硅段(302)的层间绝缘层(4)、及对应所述第二多晶硅段(302)上方设于所述层间绝缘层(4)上的第二栅极(52);
所述导热绝缘层(10)的图案为均匀分布的圆形、或方形。
9.如权利要求8所述的低温多晶硅TFT基板结构,其特征在于,所述基板(1)为玻璃基板或硅基板;所述导热绝缘层(10)的材料为氧化镁或氧化铝;所述缓冲层(2)的材料为氧化硅、氮化硅、或二者的组合。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510355056.3A CN105097667B (zh) | 2015-06-24 | 2015-06-24 | 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构 |
US14/787,768 US9761448B2 (en) | 2015-06-24 | 2015-07-23 | Method for manufacturing LTPS TFT substrate structure and structure of LTPS TFT substrate |
PCT/CN2015/084868 WO2016206151A1 (zh) | 2015-06-24 | 2015-07-23 | 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510355056.3A CN105097667B (zh) | 2015-06-24 | 2015-06-24 | 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105097667A CN105097667A (zh) | 2015-11-25 |
CN105097667B true CN105097667B (zh) | 2018-03-30 |
Family
ID=54577795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510355056.3A Active CN105097667B (zh) | 2015-06-24 | 2015-06-24 | 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9761448B2 (zh) |
CN (1) | CN105097667B (zh) |
WO (1) | WO2016206151A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106847824A (zh) * | 2015-12-04 | 2017-06-13 | 昆山国显光电有限公司 | 低温多晶硅薄膜晶体管及其制作方法、amoled显示面板 |
CN105374882A (zh) | 2015-12-21 | 2016-03-02 | 武汉华星光电技术有限公司 | 一种低温多晶硅薄膜晶体管及其制备方法 |
KR102352809B1 (ko) * | 2017-03-31 | 2022-01-19 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이를 포함하는 표시 장치 |
CN108417586A (zh) * | 2018-03-13 | 2018-08-17 | 京东方科技集团股份有限公司 | 一种阵列基板的制备方法及阵列基板 |
CN109860109A (zh) * | 2019-02-28 | 2019-06-07 | 武汉华星光电半导体显示技术有限公司 | 一种薄膜晶体管及其制作方法、显示面板 |
CN109841581B (zh) * | 2019-03-28 | 2020-11-24 | 京东方科技集团股份有限公司 | 薄膜晶体管及其制备方法、阵列基板、显示面板及装置 |
CN111370427A (zh) * | 2020-03-18 | 2020-07-03 | 武汉华星光电半导体显示技术有限公司 | 阵列基板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08139018A (ja) * | 1994-11-14 | 1996-05-31 | Casio Comput Co Ltd | ポリシリコン膜の形成方法 |
CN1604273A (zh) * | 2004-09-14 | 2005-04-06 | 友达光电股份有限公司 | 半导体器件及制作一低温多晶硅层的方法 |
CN101170076A (zh) * | 2006-10-27 | 2008-04-30 | 统宝光电股份有限公司 | 有机电激发光元件的制造方法及影像显示系统 |
CN102969250A (zh) * | 2012-11-22 | 2013-03-13 | 京东方科技集团股份有限公司 | Ltps薄膜及薄膜晶体管的制备方法、阵列基板及显示装置 |
CN104037066A (zh) * | 2014-06-25 | 2014-09-10 | 深圳市华星光电技术有限公司 | 定义多晶硅生长方向的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1270389C (zh) * | 1996-06-28 | 2006-08-16 | 精工爱普生株式会社 | 薄膜晶体管及其制造方法 |
JP3809733B2 (ja) * | 1998-02-25 | 2006-08-16 | セイコーエプソン株式会社 | 薄膜トランジスタの剥離方法 |
US6524877B1 (en) * | 1999-10-26 | 2003-02-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and method of fabricating the same |
JP4057215B2 (ja) * | 2000-03-07 | 2008-03-05 | 三菱電機株式会社 | 半導体装置の製造方法および液晶表示装置の製造方法 |
JP2002299632A (ja) * | 2001-03-30 | 2002-10-11 | Sanyo Electric Co Ltd | 半導体装置及びアクティブマトリクス型表示装置 |
CN1265430C (zh) * | 2003-04-09 | 2006-07-19 | 友达光电股份有限公司 | 低温多晶硅薄膜晶体管及其多晶硅层的制造方法 |
KR100841365B1 (ko) * | 2006-12-06 | 2008-06-26 | 삼성에스디아이 주식회사 | 박막트랜지스터와 그 제조방법 및 이를 구비한유기전계발광표시장치 |
TWI375282B (en) * | 2007-12-06 | 2012-10-21 | Chimei Innolux Corp | Thin film transistor(tft)manufacturing method and oled display having tft manufactured by the same |
CN101656233B (zh) * | 2008-08-22 | 2012-10-24 | 群康科技(深圳)有限公司 | 薄膜晶体管基板的制造方法 |
EP2551324B1 (en) * | 2011-07-29 | 2014-01-01 | W.L.Gore & Associates Gmbh | Use of an anisotropic fluoropolymer for the conduction of heat |
-
2015
- 2015-06-24 CN CN201510355056.3A patent/CN105097667B/zh active Active
- 2015-07-23 WO PCT/CN2015/084868 patent/WO2016206151A1/zh active Application Filing
- 2015-07-23 US US14/787,768 patent/US9761448B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08139018A (ja) * | 1994-11-14 | 1996-05-31 | Casio Comput Co Ltd | ポリシリコン膜の形成方法 |
CN1604273A (zh) * | 2004-09-14 | 2005-04-06 | 友达光电股份有限公司 | 半导体器件及制作一低温多晶硅层的方法 |
CN101170076A (zh) * | 2006-10-27 | 2008-04-30 | 统宝光电股份有限公司 | 有机电激发光元件的制造方法及影像显示系统 |
CN102969250A (zh) * | 2012-11-22 | 2013-03-13 | 京东方科技集团股份有限公司 | Ltps薄膜及薄膜晶体管的制备方法、阵列基板及显示装置 |
CN104037066A (zh) * | 2014-06-25 | 2014-09-10 | 深圳市华星光电技术有限公司 | 定义多晶硅生长方向的方法 |
Also Published As
Publication number | Publication date |
---|---|
US9761448B2 (en) | 2017-09-12 |
CN105097667A (zh) | 2015-11-25 |
US20170162610A1 (en) | 2017-06-08 |
WO2016206151A1 (zh) | 2016-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105097667B (zh) | 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构 | |
EP2735629B1 (en) | Method of manufacturing low temperature polysilicon film, thin film transistor and manufacturing method thereof | |
CN102969250B (zh) | Ltps薄膜及薄膜晶体管的制备方法,阵列基板及显示装置 | |
CN104157700B (zh) | 低温多晶硅薄膜晶体管及其制备方法 | |
CN106057735A (zh) | Tft背板的制作方法及tft背板 | |
CN104779199A (zh) | 低温多晶硅tft基板结构及其制作方法 | |
CN104701265A (zh) | 低温多晶硅tft基板结构及其制作方法 | |
CN105097666B (zh) | 低温多晶硅tft基板的制作方法及低温多晶硅tft基板 | |
CN104465319B (zh) | 低温多晶硅的制作方法及tft基板的制作方法 | |
CN104078621B (zh) | 低温多晶硅薄膜晶体管、其制备方法及阵列基板与显示装置 | |
CN103730336B (zh) | 定义多晶硅生长方向的方法 | |
US10192903B2 (en) | Method for manufacturing TFT substrate | |
CN104505404A (zh) | 薄膜晶体管及其制备方法、阵列基板和显示装置 | |
CN105514035B (zh) | 低温多晶硅tft基板的制作方法及低温多晶硅tft基板 | |
CN106548980B (zh) | 薄膜晶体管及其制作方法、显示基板和显示装置 | |
CN104599973B (zh) | 低温多晶硅薄膜晶体管的制备方法 | |
CN103325688A (zh) | 薄膜晶体管的沟道形成方法及补偿电路 | |
CN108281350B (zh) | 固相结晶方法与低温多晶硅tft基板的制作方法 | |
WO2019214509A1 (zh) | 显示基板、显示装置及显示基板的制作方法 | |
US10515800B2 (en) | Solid phase crystallization method and manufacturing method of low-temperature poly-silicon TFT substrate | |
CN104078365A (zh) | 低温多晶硅薄膜的制造方法、tft、阵列基板及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |