[go: up one dir, main page]

CN105093927A - Reversing substitution compensation method for EMA (electromechanical actuator) dead zone - Google Patents

Reversing substitution compensation method for EMA (electromechanical actuator) dead zone Download PDF

Info

Publication number
CN105093927A
CN105093927A CN201510449762.4A CN201510449762A CN105093927A CN 105093927 A CN105093927 A CN 105093927A CN 201510449762 A CN201510449762 A CN 201510449762A CN 105093927 A CN105093927 A CN 105093927A
Authority
CN
China
Prior art keywords
steering gear
controller
compensation
output
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510449762.4A
Other languages
Chinese (zh)
Other versions
CN105093927B (en
Inventor
周满
张驰
张明月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongtian Changguang Qingdao Equipment Technology Co ltd
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201510449762.4A priority Critical patent/CN105093927B/en
Publication of CN105093927A publication Critical patent/CN105093927A/en
Application granted granted Critical
Publication of CN105093927B publication Critical patent/CN105093927B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

电动舵机死区换向替代补偿方法属于电动舵机伺服控制技术领域,该方法是在电动舵机伺服系统控制器中加入补偿控制器,将电动舵机位置偏转误差e、舵机正常工作下的PWM值、舵机方向信号输入补偿控制器,其输出为▽m;当e>θ0且舵机位置发生换向时,▽m=uv0,代替速度PI控制器上一时刻的输出uv(k-1),得出舵机速度环当前输出为uv(k)=uv0+(kpv+kiv)ev(k)-kpvev(k-1);当e<-θ0且舵机位置发生换向时,▽m=uv1,代替速度PI控制器上一时刻的输出uv(k-1),得出舵机速度环当前输出为uv(k)=uv1+(kpv+kiv)ev(k)-kpvev(k-1)。本发明不需要精确的补偿值▽m,经控制器几次迭代运算后便能快速启动舵机,消除死区的影响,同时也避免因频繁补偿而导致的稳态抖动问题。

The electric steering gear dead zone commutation replacement compensation method belongs to the technical field of electric steering gear servo control. The method is to add a compensation controller to the electric steering gear servo system controller to reduce the position deflection error e of the electric steering gear and the steering gear under normal operation. The PWM value of the steering gear and the steering gear direction signal are input to the compensation controller, and its output is ▽m; when e>θ 0 and the steering gear position changes direction, ▽m=u v0 , which replaces the output u of the speed PI controller at the previous moment v (k-1), the current output of the servo speed loop is u v (k)=u v0 +(k pv +k iv )e v (k)-k pv e v (k-1); when e <-θ 0 and the position of the steering gear changes direction, ▽m=u v1 , instead of the output u v (k-1) of the speed PI controller at the previous moment, the current output of the speed loop of the steering gear is u v (k )=u v1 +(k pv +k iv )e v (k)-k pv e v (k-1). The present invention does not require an accurate compensation value ▽m, and the steering gear can be quickly started after several iterations of the controller, eliminating the influence of the dead zone and avoiding the problem of steady-state jitter caused by frequent compensation.

Description

电动舵机死区换向替代补偿方法Alternative Compensation Method for Dead Zone Commutation of Electric Steering Gear

技术领域technical field

本发明属于电动舵机伺服控制技术领域,具体涉及一种电动舵机死区换向替代补偿方法。The invention belongs to the technical field of servo control of an electric steering gear, and in particular relates to a dead zone commutation replacement compensation method of an electric steering gear.

背景技术Background technique

电动舵机(EMA)因其体积小、成本低、易于控制等优点,在国内外飞行器上得到较为广泛的应用。但舵机系统不可避免的存在死区(摩擦、间隙等),在死区不太严重且控制指标要求不严格的情况下,可以忽略。但是,在做高精度、高带宽的位置跟踪时,忽略死区效应将产生严重的“平顶”问题,严重影响舵机系统的跟踪精度及带宽,甚至造成飞行器的航迹抖动,破坏飞行器的稳定性。因此,针对死区的补偿和控制方法必不可少。Electric steering gear (EMA) has been widely used in aircraft at home and abroad because of its small size, low cost, and easy control. However, there is inevitably a dead zone (friction, clearance, etc.) in the steering gear system, which can be ignored when the dead zone is not too serious and the control index requirements are not strict. However, when doing high-precision, high-bandwidth position tracking, ignoring the dead zone effect will cause a serious "flat-top" problem, which will seriously affect the tracking accuracy and bandwidth of the steering gear system, and even cause the aircraft's track to shake, destroying the aircraft's stability. Therefore, compensation and control methods for the dead zone are essential.

目前,不少学者采用变结构控制、神经网络控制、粒子算法等先进控制理论取得较好的成果,较好的解决了舵机死区带来的“平顶”问题。但其缺点是:算法较为复杂、运算周期较长,不易工程化实现,对微处理芯片要求较高;传统的补偿控制器对补偿量的精度要求较高,导致工程化后补偿效果大大降低;克服死区问题的同时又引入了新的问题。At present, many scholars have achieved good results using advanced control theories such as variable structure control, neural network control, and particle algorithms, and have better solved the "flat top" problem caused by the dead zone of the steering gear. But its disadvantages are: the algorithm is relatively complex, the calculation cycle is long, it is not easy to realize engineering, and the requirements for micro-processing chips are relatively high; the traditional compensation controller has high requirements for the accuracy of the compensation amount, resulting in a greatly reduced compensation effect after engineering; While overcoming the dead zone problem, new problems are introduced.

发明内容Contents of the invention

为了解决现有技术对存在死区的舵机位置跟踪系统,做小角度位置正弦跟踪时,舵机系统存在较大的“平顶”问题,造成较大的位置跟踪误差,进而引发飞行器航迹剧烈抖动的技术问题,本发明提供了一种简单可靠、易于工程化实现、提高控制精度及速度的电动舵机死区换向替代补偿方法。该方法在伺服系统控制器中加入死区换向替代补偿控制器,有效的改善位置跟踪“平顶”问题,提高跟踪精度;由于补偿方式、补偿位置及补偿精度,将直接影响“平顶”削弱效果和舵机系统的其他性能指标,在设计死区换向补偿控制算法时,结合舵机旋转方向及偏转误差,在速度环采用换向替代补偿的方式。In order to solve the problem of the steering gear position tracking system with dead zone in the prior art, when performing sinusoidal tracking of the small angle position, the steering gear system has a large "flat top" problem, which causes a large position tracking error, and then causes the aircraft track To solve the technical problem of severe jitter, the present invention provides a dead-zone commutation replacement compensation method for electric steering gear that is simple, reliable, easy to implement, and improves control accuracy and speed. This method adds a dead zone commutation to replace the compensation controller in the servo system controller, which can effectively improve the "flat top" problem of position tracking and improve the tracking accuracy; due to the compensation method, compensation position and compensation accuracy, it will directly affect the "flat top" To weaken the effect and other performance indicators of the steering gear system, when designing the dead zone commutation compensation control algorithm, the commutation substitution compensation method is adopted in the speed loop in combination with the steering gear rotation direction and deflection error.

本发明解决技术问题所采取的技术方案如下:The technical solution adopted by the present invention to solve the technical problems is as follows:

电动舵机死区换向替代补偿方法,其包括如下步骤:在电动舵机伺服系统控制器中加入补偿控制器,将电动舵机位置偏转误差e、舵机正常工作下的PWM值、舵机方向信号输入补偿控制器,其输出为▽m;当舵机位置偏转误差e>θ00是一个大于零极小值,可根据稳态精度要求进行调整),且舵机位置发生换向时,▽m=uv0(uv0为舵机正常运转下的正向PWM码值),代替电动舵机伺服系统控制器中速度PI控制器上一时刻的输出uv(k-1),得出舵机速度环当前输出为uv(k)=uv0+(kpv+kiv)ev(k)-kpvev(k-1);当舵机位置偏转误差e<-θ0,且舵机位置发生换向时,▽m=uv1(uv1为舵机正常运转下的负向PWM码值),代替速度PI控制器上一时刻的输出uv(k-1),得出舵机速度环当前输出为uv(k)=uv1+(kpv+kiv)ev(k)-kpvev(k-1);在|e|≤|θ0|或者舵机位置未发生换向时,补偿控制器输出▽m为速度PI控制器上一时刻的输出uv(k-1)。The electric steering gear dead zone commutation replacement compensation method includes the following steps: adding a compensation controller to the electric steering gear servo system controller, and calculating the position deflection error e of the electric steering gear, the PWM value of the steering gear under normal operation, and the steering gear The direction signal is input to the compensation controller, and its output is ▽m; when the steering gear position deflection error e>θ 00 is a minimum value greater than zero, it can be adjusted according to the steady-state accuracy requirements), and the steering gear position changes ▽m=u v0 (u v0 is the positive PWM code value under the normal operation of the steering gear), replacing the output u v (k-1) of the speed PI controller in the servo system controller of the electric steering gear at the previous moment , the current output of the steering gear speed loop is u v (k) = u v0 +(k pv +k iv )e v (k)-k pv e v (k-1); when the steering gear position deflection error e< -θ 0 , and when the position of the steering gear changes direction, ▽m=u v1 (u v1 is the negative PWM code value under the normal operation of the steering gear), instead of the output u v of the speed PI controller at the previous moment (k- 1), the current output of the steering gear speed loop is u v (k)=u v1 +(k pv +k iv )e v (k)-k pv e v (k-1); when |e|≤| θ 0 | or when the position of the steering gear does not change direction, the compensation controller output ▽m is the output uv (k-1) of the speed PI controller at the previous moment.

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

1、本发明通过对舵机死区进行补偿,有效地改善了小角度位置正弦跟踪存在的“平顶”现象,解决了因“平顶”问题而引发的飞行器指令高频颤抖问题。1. By compensating the dead zone of the steering gear, the present invention effectively improves the "flat-top" phenomenon in the sinusoidal tracking of the small angle position, and solves the problem of high-frequency vibration of the aircraft command caused by the "flat-top" problem.

2、本发明采用换向替代补偿的方式,每次换向仅做一次补偿,有效地避免了传统补偿算法因控制器的频繁补偿而影响舵机系统其他性能指标的问题。2. The present invention adopts the method of commutation instead of compensation, and only one compensation is performed for each commutation, which effectively avoids the problem that the traditional compensation algorithm affects other performance indicators of the steering gear system due to frequent compensation by the controller.

3、本发明采用的替换补偿方法对补偿量的精度要求低,可以直接使用舵机正常运行时PWM值作为补偿值,算法简单、可靠、工程量小,且易于工程化实现,具有较广的适用范围。3. The replacement compensation method adopted in the present invention has low requirements on the accuracy of the compensation amount, and the PWM value when the steering gear is in normal operation can be directly used as the compensation value. scope of application.

附图说明Description of drawings

图1是本发明的电动舵机系统结构框图。Fig. 1 is a structural block diagram of the electric steering gear system of the present invention.

图2是本发明的舵机伺服系统控制器工作原理图。Fig. 2 is a schematic diagram of the working principle of the steering gear servo system controller of the present invention.

图3是本发明的舵机伺服系统控制器计算流程图。Fig. 3 is a calculation flowchart of the steering gear servo system controller of the present invention.

图4是本发明的换向替代补偿控制器流程图。Fig. 4 is a flowchart of the commutation substitution compensation controller of the present invention.

图5是引入舵机死区换向替代补偿控制器前后0.1°、4Hz小角度正弦跟踪的对比图。Figure 5 is a comparison diagram of 0.1°, 4Hz small-angle sine tracking before and after introducing the dead zone commutation of the steering gear instead of the compensation controller.

具体实施方式Detailed ways

下面结合附图和实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

如图1所示,本发明的电动舵机系统包括舵机伺服系统控制器、PWM功率模块、无刷直流电机、减速器、速度传感器和位置传感器;舵机伺服系统控制器接收舵机偏转指令,同时通过速度传感器和位置传感器实时采集舵机的速度和位置信号,并经舵机伺服系统控制器的处理后,输出PWM码值至PWM功率模块,驱动无刷直流电机,进而带动舵面偏转,实现舵机系统的高精度位置跟踪。As shown in Figure 1, the electric steering gear system of the present invention includes a steering gear servo system controller, a PWM power module, a brushless DC motor, a speed reducer, a speed sensor and a position sensor; the steering gear servo system controller receives the steering gear deflection command At the same time, the speed and position signals of the steering gear are collected in real time through the speed sensor and position sensor, and after being processed by the servo system controller of the steering gear, the PWM code value is output to the PWM power module to drive the brushless DC motor, and then drive the steering surface to deflect , to achieve high-precision position tracking of the steering gear system.

如图1和图2所示,本发明的舵机伺服系统控制器主要包括位置环控制器、速度环控制器和补偿控制器三部分;位置环为外环,采用PI控制器,输入量为舵机偏转指令、位置反馈信号,输出量为速度环的速度指令;速度环为内环,采用PI控制器,输入量为速度指令、速度反馈信号、补偿控制器的补偿值,输出量为PWM码值,通过脉宽调制实现速度大小及方向的控制;补偿控制器的输入量为当前舵机位置偏转误差、舵机正常工作下的PWM码值、舵机旋转方向,补偿控制器的输出量为▽m,用于替代速度环控制器上一时刻的输出PWM(k-1)。舵机伺服系统控制器的工作过程,当位置环控制器接收到舵机偏转指令θ和舵偏角反馈值θ'后,输出速度偏转指令v,同时向补偿控制器输出位置跟踪误差e;补偿控制器接收舵机位置偏转误差e,同时根据电动舵机的旋转方向及其正常工作下的PWM值,输出粗略的补偿值▽m,来替代PWM(k-1);速度环控制器根据接收到的速度指令v、速度反馈v'和补偿值▽m,计算出新的PWM(k)值。此方法不需要精确的补偿值▽m,经控制器几次迭代运算后便能快速启动舵机,消除死区的影响,同时也避免因频繁补偿而导致的稳态抖动问题。As shown in Fig. 1 and Fig. 2, steering gear servo system controller of the present invention mainly comprises three parts of position loop controller, speed loop controller and compensation controller; Position loop is outer loop, adopts PI controller, and input quantity is Steering gear deflection command, position feedback signal, the output is the speed command of the speed loop; the speed loop is an inner loop, using a PI controller, the input is the speed command, speed feedback signal, compensation value of the compensation controller, and the output is PWM Code value, control the speed and direction through pulse width modulation; the input of the compensation controller is the current steering gear position deflection error, the PWM code value of the steering gear under normal operation, the rotation direction of the steering gear, and the output of the compensation controller is ▽m, which is used to replace the output PWM(k-1) of the speed loop controller at the previous moment. The working process of the steering gear servo system controller, when the position loop controller receives the steering gear deflection command θ and the rudder deflection angle feedback value θ', it outputs the speed deflection command v, and at the same time outputs the position tracking error e to the compensation controller; the compensation The controller receives the steering gear position deflection error e, and at the same time, according to the rotation direction of the electric steering gear and its PWM value under normal operation, outputs a rough compensation value ▽m to replace PWM(k-1); the speed loop controller receives According to the received speed command v, speed feedback v' and compensation value ▽m, a new PWM(k) value is calculated. This method does not require an accurate compensation value ▽m, and the steering gear can be quickly started after several iterative calculations by the controller, eliminating the influence of the dead zone and avoiding the steady-state jitter problem caused by frequent compensation.

如图3所示,其为本发明的舵机伺服系统控制器计算流程。舵机位置换向时,由于离散控制器的迭代计算和静摩擦等作用,致使舵机速度换向在时间上滞后于舵机换向,同时在静摩擦作用范围内出现位置“平顶”现象,严重影响跟踪精度。As shown in FIG. 3 , it is the calculation flow of the steering gear servo system controller of the present invention. When the position of the steering gear is changed, due to the iterative calculation of the discrete controller and the effects of static friction, the speed change of the steering gear lags behind the direction of the steering gear in time, and the position "flat top" phenomenon occurs within the range of static friction, seriously Affects tracking accuracy.

位置环PI离散控制器如下:The position loop PI discrete controller is as follows:

&dtri;&dtri; uu pp (( kk )) == kk pp &lsqb;&lsqb; ee pp (( kk )) -- ee pp (( kk -- 11 )) &rsqb;&rsqb; ++ kk ii ee pp (( kk )) uu pp (( kk )) == uu pp (( kk -- 11 )) ++ &dtri;&dtri; uu pp (( kk )) ee pp (( kk )) == &theta;&theta; (( kk )) -- &theta;&theta; &prime;&prime; (( kk )) ee pp (( kk -- 11 )) == &theta;&theta; (( kk -- 11 )) -- &theta;&theta; &prime;&prime; (( kk -- 11 ))

其中,kp、ki为位置环PI控制器参数,可根据系统性能指标求得。θ(k)为当前位置指令,θ'(k)为当前位置反馈,ep(k)为当前位置偏转误差,ep(k-1)为上一时刻位置偏转误差,up(k)为当前时刻位置PI控制器输出。Among them, k p and ki are the parameters of the position loop PI controller, which can be obtained according to the system performance index. θ(k) is the current position command, θ'(k) is the current position feedback, e p (k) is the current position deflection error, e p (k-1) is the position deflection error at the previous moment, u p (k) It is the output of the PI controller for the current position.

将舵机偏转指令θ(k)及舵机位置反馈θ'(k)输入位置环控制器,经位置环控制器运算输出速度指令up(k)至速度环控制器。The steering gear deflection command θ(k) and the steering gear position feedback θ'(k) are input to the position loop controller, and the speed command u p (k) is output to the speed loop controller through the calculation of the position loop controller.

速度环PI离散控制器如下:The speed loop PI discrete controller is as follows:

&dtri;&dtri; uu vv (( kk )) == (( kk pp vv ++ kk ii vv )) ee vv (( kk )) -- kk pp vv ee vv (( kk -- 11 )) uu vv (( kk )) == uu vv (( kk -- 11 )) ++ &dtri;&dtri; uu vv (( kk )) ee vv (( kk )) == uu pp (( kk )) -- vv &prime;&prime; (( kk )) ee vv (( kk -- 11 )) == uu pp (( kk -- 11 )) -- vv &prime;&prime; (( kk -- 11 ))

其中,kpv、kiv为速度环PI控制器参数,可根据系统性能指标求得。up(k)为当前速度指令,v'(k)为当前速度反馈,ev(k)为当前速度误差,ev(k-1)为上一时刻速度误差,uv(k)为当前时刻位置PI控制器输出,uv(k-1)为上一时刻位置PI控制器输出。Among them, k pv and k iv are the parameters of the speed loop PI controller, which can be obtained according to the system performance index. u p (k) is the current speed command, v'(k) is the current speed feedback, e v (k) is the current speed error, e v (k-1) is the speed error at the previous moment, u v (k) is The current position is the output of the PI controller, and u v (k-1) is the output of the previous position PI controller.

速度PI控制器接收速度指令up(k)、速度反馈值v'(k)、补偿控制器的补偿值,通过速度PI控制器计算输出PWM,实现脉宽调制。因速度、位置离散控制器迭代项uv(k-1)和up(k-1)的影响,位置换向即ep(k)方向发生变化时,uv(k)符号方向不能及时发生改变,存在较大的延迟,导致位置发生换向时速度环不能及时换向,同时由于静摩擦影响,使得系统速度环存在死区,为此加入死区补偿控制器。The speed PI controller receives the speed command up ( k ), the speed feedback value v'(k), and the compensation value of the compensation controller, and calculates and outputs PWM through the speed PI controller to realize pulse width modulation. Due to the influence of the iterative items u v ( k -1) and up (k-1) of the discrete controller for speed and position, when the direction of position commutation, that is, the direction of e p (k) changes, the sign direction of u v (k) cannot be timely If there is a change, there is a large delay, so that the speed loop cannot be reversed in time when the position is reversed. At the same time, due to the influence of static friction, there is a dead zone in the system speed loop. For this reason, a dead zone compensation controller is added.

图4为本发明所设计的换向替代补偿控制器流程图。将电动舵机位置偏转误差e、控制器输出的PWM值、舵机方向信号输入舵机死区补偿控制器,其输出为▽m。当舵机位置偏转误差e>θ00为一个大于零的极小值,可根据稳态精度的要求进行调整),且舵机位置发生换向时,▽m=uv0(uv0为舵机正常运转下的正向PWM码值),代替速度PI控制器上一时刻的输出uv(k-1),即得出舵机速度环当前输出为uv(k)=uv0+(kpv+kiv)ev(k)-kpvev(k-1);当舵机位置偏转误差e<-θ0,且舵机位置发生换向时,▽m=uv1(uv1为舵机正常运转下的负向PWM码值),代替速度PI控制器上一时刻的输出uv(k-1),即得出舵机速度环当前输出为uv(k)=uv1+(kpv+kiv)ev(k)-kpvev(k-1);在舵机位置跟踪误差较小及舵机位置未发生换向情况下,死区换向替代补偿控制器则不起作用。这样,既可以有效补偿舵机死区消除位置跟踪“平顶”问题,又可以避免因频繁补偿控制参数而引发控制的不连续性。Fig. 4 is a flow chart of the commutation replacement compensation controller designed by the present invention. Input the position deflection error e of the electric steering gear, the PWM value output by the controller, and the direction signal of the steering gear into the dead zone compensation controller of the steering gear, and its output is ▽m. When the steering gear position deflection error e>θ 00 is a minimum value greater than zero, which can be adjusted according to the requirements of steady-state accuracy), and the steering gear position changes direction, ▽m=u v0 (u v0 is the positive PWM code value under the normal operation of the steering gear), and replaces the output u v (k-1) of the speed PI controller at the previous moment, that is, the current output of the speed loop of the steering gear is u v (k) = u v0 +(k pv +k iv )e v (k)-k pv e v (k-1); when the steering gear position deflection error e<-θ 0 , and the steering gear position changes direction, ▽m=u v1 (u v1 is the negative PWM code value under the normal operation of the steering gear), replace the output u v (k-1) of the speed PI controller at the previous moment, that is, the current output of the speed loop of the steering gear is u v (k) =u v1 +(k pv +k iv )e v (k)-k pv e v (k-1); when the tracking error of the steering gear position is small and the steering gear position does not change direction, the dead zone commutation Alternative compensation controllers do not work. In this way, it can not only effectively compensate the "flat top" problem of position tracking for dead zone elimination of steering gear, but also avoid control discontinuity caused by frequent compensation of control parameters.

图5为引入舵机死区替换补偿控制器前后,电动舵机做0.1°、4Hz小角度正弦位置跟踪对比图。可以看出,引入替换补偿控制器之前,由于控制器迭代的延迟、静摩擦等因素影响,做小角度正弦跟踪时,存在50ms的速度死区,位置出现较严重“平顶”现象,平顶时间约为62ms,跟踪误差为0.12°;引入替换补偿控制器之后,速度死区为8ms,位置平顶时间为18ms,跟踪误差为0.05°,跟踪精度及响应速度得到较大的提高。本发明的电动舵机死区换向替代补偿方法,在克服舵机死区影响的同时不影响其他指标,并且不需要精确的补偿量、算法简单易于工程实现。Figure 5 is a comparison diagram of the electric steering gear performing 0.1°, 4Hz small-angle sinusoidal position tracking before and after introducing the dead zone of the steering gear to replace the compensation controller. It can be seen that before the introduction of the replacement compensation controller, due to the delay of controller iterations, static friction and other factors, when doing small-angle sine tracking, there is a speed dead zone of 50ms, and the position has a serious "flat-top" phenomenon, and the flat-top time It is about 62ms, and the tracking error is 0.12°; after introducing the replacement compensation controller, the speed dead zone is 8ms, the position topping time is 18ms, and the tracking error is 0.05°, and the tracking accuracy and response speed are greatly improved. The dead zone commutation replacement compensation method of the electric steering gear of the present invention overcomes the influence of the dead zone of the steering gear while not affecting other indicators, does not require precise compensation amounts, and has a simple algorithm and is easy to realize in engineering.

Claims (1)

1.电动舵机死区换向替代补偿方法,其特征在于,该方法包括如下步骤:在电动舵机伺服系统控制器中加入补偿控制器,将电动舵机位置偏转误差e、舵机正常工作下的PWM值、舵机方向信号输入补偿控制器,其输出为当舵机位置偏转误差e>θ00为一个大于零的极小值,可根据稳态精度的要求进行调整),且舵机位置发生换向时,(uv0为舵机正常运转下的正向PWM码值),代替电动舵机伺服系统控制器中速度PI控制器上一时刻的输出uv(k-1),得出舵机速度环当前输出为uv(k)=uv0+(kpv+kiv)ev(k)-kpvev(k-1);当舵机位置偏转误差e<-θ0,且舵机位置发生换向时,(uv1为舵机正常运转下的负向PWM码值),代替速度PI控制器上一时刻的输出uv(k-1),得出舵机速度环当前输出为uv(k)=uv1+(kpv+kiv)ev(k)-kpvev(k-1);在|e|≤|θ0|或者舵机位置未发生换向时,补偿控制器输出为速度PI控制器上一时刻的输出uv(k-1)。1. The dead zone commutation compensation method of the electric steering gear is characterized in that the method comprises the following steps: adding a compensation controller in the electric steering gear servo system controller, and reducing the position deflection error e of the electric steering gear and the normal operation of the steering gear The PWM value and the direction signal of the steering gear are input to the compensation controller, and the output is When the steering gear position deflection error e>θ 00 is a minimum value greater than zero, it can be adjusted according to the requirements of steady-state accuracy), and the steering gear position changes direction, (u v0 is the positive PWM code value under the normal operation of the steering gear), instead of the output u v (k-1) of the speed PI controller in the servo system controller of the electric steering gear at the previous moment, the current value of the speed loop of the steering gear is obtained The output is u v (k)=u v0 +(k pv +k iv )e v (k)-k pv e v (k-1); when the steering gear position deflection error e<-θ 0 , and the steering gear position When commutation occurs, (u v1 is the negative PWM code value under the normal operation of the steering gear), instead of the output u v (k-1) of the speed PI controller at the previous moment, the current output of the speed loop of the steering gear is u v (k) = u v1 +(k pv +k iv )e v (k)-k pv e v (k-1); when |e|≤|θ 0 | or the servo position does not change direction, the compensation controller output is the output u v (k-1) of the speed PI controller at the last moment.
CN201510449762.4A 2015-07-28 2015-07-28 Alternative Compensation Method for Dead Zone Commutation of Electric Steering Gear Active CN105093927B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510449762.4A CN105093927B (en) 2015-07-28 2015-07-28 Alternative Compensation Method for Dead Zone Commutation of Electric Steering Gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510449762.4A CN105093927B (en) 2015-07-28 2015-07-28 Alternative Compensation Method for Dead Zone Commutation of Electric Steering Gear

Publications (2)

Publication Number Publication Date
CN105093927A true CN105093927A (en) 2015-11-25
CN105093927B CN105093927B (en) 2017-07-25

Family

ID=54574633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510449762.4A Active CN105093927B (en) 2015-07-28 2015-07-28 Alternative Compensation Method for Dead Zone Commutation of Electric Steering Gear

Country Status (1)

Country Link
CN (1) CN105093927B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341065A (en) * 2016-10-12 2017-01-18 闽江学院 Ultrasonic motor servo control system speed dead zone compensation control device and method
CN106681134A (en) * 2017-01-10 2017-05-17 广东石油化工学院 High-precision steering engine position control method
CN107065943A (en) * 2017-05-02 2017-08-18 南京工程学院 One kind directly turns platform position control system and control method
CN108803357A (en) * 2018-09-03 2018-11-13 中国科学院长春光学精密机械与物理研究所 A kind of the electric steering engine mixing control method and system of PID and improvement sliding formwork
CN109976371A (en) * 2019-04-22 2019-07-05 朴敏楠 The suppressing method, device and equipment of posture limit cycle when aircraft cruise section
CN110109348A (en) * 2019-05-13 2019-08-09 河南工学院 A kind of two-way dead-zone compensation method of hydraulic proportion valve based on depth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301101A (en) * 1990-06-21 1994-04-05 Honeywell Inc. Receding horizon based adaptive control having means for minimizing operating costs
CN1800781A (en) * 2004-12-30 2006-07-12 中国科学院自动化研究所 Track autopilot control system and method thereof
CN101488010A (en) * 2009-03-06 2009-07-22 北京理工大学 Essentially nonlinear compensation controller of servo system
CN202379084U (en) * 2011-11-25 2012-08-15 北京自动化控制设备研究所 Multi-loop control and high-power driving circuit for quick-response electric steering engine
CN103207568A (en) * 2013-03-18 2013-07-17 哈尔滨工程大学 Steering engine saturation resistant self-adaptive control method for ship courses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301101A (en) * 1990-06-21 1994-04-05 Honeywell Inc. Receding horizon based adaptive control having means for minimizing operating costs
CN1800781A (en) * 2004-12-30 2006-07-12 中国科学院自动化研究所 Track autopilot control system and method thereof
CN101488010A (en) * 2009-03-06 2009-07-22 北京理工大学 Essentially nonlinear compensation controller of servo system
CN202379084U (en) * 2011-11-25 2012-08-15 北京自动化控制设备研究所 Multi-loop control and high-power driving circuit for quick-response electric steering engine
CN103207568A (en) * 2013-03-18 2013-07-17 哈尔滨工程大学 Steering engine saturation resistant self-adaptive control method for ship courses

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
张明月,等: "改进自抗扰控制谐波式电动舵机伺服系统", 《光学精密工程》 *
张明月,等: "电动舵机速度环改进自抗扰控制研究", 《计算机测量与控制》 *
朱钰: "船舶变频液压舵机控制策略研究", 《船舶工程》 *
肖亮,等: "基于高效率SVPWM控制的电动舵机", 《电力电子》 *
肖前进,等: "电动舵机伺服系统非线性辨识及补偿", 《光学精密工程》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341065A (en) * 2016-10-12 2017-01-18 闽江学院 Ultrasonic motor servo control system speed dead zone compensation control device and method
CN106681134A (en) * 2017-01-10 2017-05-17 广东石油化工学院 High-precision steering engine position control method
CN107065943A (en) * 2017-05-02 2017-08-18 南京工程学院 One kind directly turns platform position control system and control method
CN107065943B (en) * 2017-05-02 2019-09-20 南京工程学院 A direct drive turntable position control system and control method
CN108803357A (en) * 2018-09-03 2018-11-13 中国科学院长春光学精密机械与物理研究所 A kind of the electric steering engine mixing control method and system of PID and improvement sliding formwork
CN109976371A (en) * 2019-04-22 2019-07-05 朴敏楠 The suppressing method, device and equipment of posture limit cycle when aircraft cruise section
CN110109348A (en) * 2019-05-13 2019-08-09 河南工学院 A kind of two-way dead-zone compensation method of hydraulic proportion valve based on depth
CN110109348B (en) * 2019-05-13 2023-03-10 河南工学院 Depth-based hydraulic proportional valve bidirectional dead zone compensation method

Also Published As

Publication number Publication date
CN105093927B (en) 2017-07-25

Similar Documents

Publication Publication Date Title
CN105093927B (en) Alternative Compensation Method for Dead Zone Commutation of Electric Steering Gear
CN105610350B (en) A kind of gap synchronisation control means that disappears for dual-servo-motor system
CN104238572B (en) Jitter-free sliding mode position control method for motor servo system based on disturbance compensation
CN103401501B (en) A kind of PMSM servo system control method based on fuzzy active disturbance rejection
CN104953915A (en) Permanent magnet synchronous motor sliding-mode control strategy based on novel reaching law
CN104536297B (en) Cascade active disturbance rejection multi-closed-loop control method
CN104570730A (en) Improved active disturbance rejection control method
CN104638999B (en) Dual-servo-motor system control method based on segmentation neutral net friction model
Wu et al. Integral design of contour error model and control for biaxial system
CN103701368A (en) Dual-motor energy-saving anti-backlash control method
CN1967414A (en) Method for building simplified self interference rejection controller of permanent magnet synchronous machine
Qu et al. Sliding-mode anti-disturbance speed control of permanent magnet synchronous motor based on an advanced reaching law
CN109541940A (en) Mix fault tolerant control method based on 2D model multistage batch process constrained predictive
CN104199301A (en) Trajectory Tracking Device and Method for Linear Motor Based on Improved Active Disturbance Rejection Controller
CN104953916A (en) Novel speed controller based on speed regulating system of permanent magnet synchronous motor
CN105549383A (en) Linear-motor precision trajectory tracking device and method
CN110968037A (en) Control method for reducing contour error of multi-axis motion system
CN105929791B (en) The direct contour outline control method of plane rectangular coordinates kinematic system
CN102778840B (en) IST control system based on sliding mode variable structure and control method of IST control system
CN102820839A (en) Precision positioning method for motor servo system in backlash transmission
CN108803357B (en) PID and improved sliding mode electric steering engine hybrid control method and system
CN204086851U (en) Linear Motor Trajectory Tracking Device Based on Improved Active Disturbance Rejection Controller
CN202068368U (en) Rotational speed close-loop control system of single-phase brushless DC motor
CN104270046A (en) Motor control method based on self-learning of rotating speed-current two-dimensional fuzzy model
CN205427466U (en) Linear Motor Precision Trajectory Tracking Device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210120

Address after: 266111 No.17, Hongxiang 2nd Road, Jihongtan street, Chengyang District, Qingdao City, Shandong Province

Patentee after: Zhongtian Changguang (Qingdao) equipment Technology Co.,Ltd.

Address before: 130033, 3888 southeast Lake Road, Jilin, Changchun

Patentee before: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

TR01 Transfer of patent right