CN105017695A - Nano-modified polytetrafluoroethylene composite material, arc-quenching nozzle and preparation method thereof, and high voltage circuit breaker - Google Patents
Nano-modified polytetrafluoroethylene composite material, arc-quenching nozzle and preparation method thereof, and high voltage circuit breaker Download PDFInfo
- Publication number
- CN105017695A CN105017695A CN201510375759.2A CN201510375759A CN105017695A CN 105017695 A CN105017695 A CN 105017695A CN 201510375759 A CN201510375759 A CN 201510375759A CN 105017695 A CN105017695 A CN 105017695A
- Authority
- CN
- China
- Prior art keywords
- boron nitride
- nano
- arc
- circuit breaker
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Circuit Breakers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种纳米改性聚四氟乙烯复合材料,灭弧喷口及其制备方法,高压断路器。纳米改性聚四氟乙烯复合材料由以下重量百分比的组分组成:纳米氮化硼1~3%、微米氮化硼3~10%,余量为聚四氟乙烯。灭弧喷口可采用上述纳米改性聚四氟乙烯复合材料。本发明的灭弧喷口,采用纳米氮化硼、微米氮化硼复配填充聚四氟乙烯,合理调配填充比例,改善了喷口材料的机械性能,提高了材料的韧性和抗开裂能力,同时改善了喷口材料的热导率,提高了材料的耐电弧烧蚀性能;采用本发明灭弧喷口的高压断路器可提升断路器的开断性能,从而提高高压断路器的运行稳定性。
The invention discloses a nano-modified polytetrafluoroethylene composite material, an arc extinguishing nozzle and a preparation method thereof, and a high-voltage circuit breaker. The nano-modified polytetrafluoroethylene composite material is composed of the following components by weight percentage: 1-3% of nanometer boron nitride, 3-10% of micron boron nitride, and the balance is polytetrafluoroethylene. The arc extinguishing nozzle can adopt the above-mentioned nano-modified polytetrafluoroethylene composite material. The arc extinguishing nozzle of the present invention is filled with polytetrafluoroethylene compounded with nano-boron nitride and micro-boron nitride, and the filling ratio is reasonably adjusted to improve the mechanical properties of the nozzle material, improve the toughness and crack resistance of the material, and improve The thermal conductivity of the nozzle material is improved, and the arc ablation resistance performance of the material is improved; the high-voltage circuit breaker adopting the arc-extinguishing nozzle of the present invention can improve the breaking performance of the circuit breaker, thereby improving the operation stability of the high-voltage circuit breaker.
Description
技术领域technical field
本发明属于高压断路器技术领域,具体涉及一种纳米改性聚四氟乙烯复合材料,同时涉及一种灭弧喷口及其制备方法,及使用该灭弧喷口的高压断路器。The invention belongs to the technical field of high-voltage circuit breakers, and specifically relates to a nano-modified polytetrafluoroethylene composite material, an arc-extinguishing nozzle and a preparation method thereof, and a high-voltage circuit breaker using the arc-extinguishing nozzle.
背景技术Background technique
高压SF6断路器作为电力系统中重要的电力设备,目前正在朝着高电压、大容量的方向发展,在提供电力能源稳定性和运行可靠性方面的要求也越来越高。SF6断路器灭弧室的喷口,对开断过程中吹弧气体的流动起着控制作用,其直接影响开断过程中喷口内SF6气体介质强度的恢复特性及灭弧能力。断路器开断短路电流时,与动触头一起作高速运动的喷口,承受着4000K以上的高温电弧的烧蚀以及压缩缸中压缩气体的反作用力,极易发生表面烧蚀和内部分解,甚至会引发喷口的断裂,因此,喷口材料的机械性能和耐烧蚀性能直接影响着高压断路器的开断能力和使用寿命。As an important power equipment in the power system, the high-voltage SF 6 circuit breaker is currently developing towards high voltage and large capacity, and the requirements for providing power energy stability and operational reliability are getting higher and higher. The nozzle of the SF 6 circuit breaker arc extinguishing chamber controls the flow of arc blowing gas during the breaking process, which directly affects the recovery characteristics of the SF 6 gas medium strength and the arc extinguishing ability in the breaking process. When the circuit breaker breaks the short-circuit current, the nozzle that moves at high speed together with the moving contact is subjected to the ablation of the high-temperature arc above 4000K and the reaction force of the compressed gas in the compression cylinder, which is prone to surface ablation and internal decomposition, and even It will cause the fracture of the spout. Therefore, the mechanical properties and ablation resistance of the spout material directly affect the breaking capacity and service life of the high-voltage circuit breaker.
目前,喷口材料多采用聚四氟乙烯材料。聚四氟乙烯(PTFE)具有极佳的电气绝缘性能和耐高温、耐电弧性能,同时具有优良的热稳定性、较高的光反射性、突出的化学惰性、卓越的物理机械性能及良好的耐气候性,广泛应用于电器和高、中、低压开关中,用作绝缘材料、断路器喷口(喷嘴)、垫带、制动环、衬套等。但聚四氟乙烯材料在400℃以上即开始发生显著分解,而高压断路器开断过程中电弧温度可达4000K以上,将纯PTFE材料用作灭弧喷口时,由于对电弧能量的无规则吸收,纯PTFE材料会发生显著的表面分解和严重的内部破裂。因此,在喷口制作的过程中,通常在PTFE材料中添加一些无机粉体材料作为填料制成复合型材料,使其成为能量吸收中心,从而规范电弧能量的吸收,减小喷口的无规则分解和破裂,以期增强喷口的耐烧蚀性能,延长喷口的使用寿命。At present, the spout material mostly adopts polytetrafluoroethylene material. Polytetrafluoroethylene (PTFE) has excellent electrical insulation properties, high temperature resistance, arc resistance, excellent thermal stability, high light reflectivity, outstanding chemical inertness, excellent physical and mechanical properties and good Weather resistance, widely used in electrical appliances and high, medium and low voltage switches, used as insulating materials, circuit breaker nozzles (nozzles), gaskets, brake rings, bushings, etc. However, the PTFE material begins to decompose significantly above 400°C, and the arc temperature during the breaking process of the high-voltage circuit breaker can reach above 4000K. When pure PTFE material is used as the arc extinguishing nozzle, due to the irregular absorption of arc energy , pure PTFE materials will undergo significant surface decomposition and severe internal rupture. Therefore, in the process of making the spout, some inorganic powder materials are usually added to the PTFE material as a filler to make a composite material, making it an energy absorption center, thereby regulating the absorption of arc energy and reducing the random decomposition of the spout. In order to enhance the ablation resistance of the spout and prolong the service life of the spout.
现有技术中,采用无机填料填充的复合型材料主要有三氧化二铝填充聚四氟乙烯复合材料、二硫化钼填充聚四氟乙烯复合材料和氮化硼填充聚四氟乙烯复合材料,二硫化钼和三氧化二铝填充聚四氟乙烯复合材料具有较好的机械性能,但其耐电弧烧蚀性能稍差;氮化硼(通常为微米氮化硼)填充聚四氟乙烯复合材料的机械性能,特别是拉伸强度则要明显低于二硫化钼和三氧化二铝配方。In the prior art, composite materials filled with inorganic fillers mainly include alumina-filled PTFE composite materials, molybdenum disulfide-filled PTFE composite materials, and boron nitride-filled PTFE composite materials. Molybdenum and aluminum oxide filled PTFE composites have good mechanical properties, but their arc ablation resistance is slightly poor; boron nitride (usually micron boron nitride) filled mechanical properties of PTFE composites Performance, especially tensile strength, is significantly lower than that of molybdenum disulfide and aluminum oxide formulations.
专利CN102731943B公开了二硫化钼-氮化硼-聚四氟乙烯三种材料复合制成的耐高电压、大电流电弧烧蚀的喷口,其质量百分比组成为:(1~10μm)氮化硼1~8%,(1~10μm)二硫化钼为0.1~0.4%,余量为聚四氟乙烯。在高压断路器朝高电压、大容量发展的今天,该复合材料喷口依然存在着韧性和抗开裂能力差、耐电弧烧蚀性能不足的问题。Patent CN102731943B discloses a high-voltage, high-current arc ablation nozzle made of molybdenum disulfide-boron nitride-polytetrafluoroethylene composite materials, and its mass percentage composition is: (1-10 μm) boron nitride 1 ~8%, (1~10μm) molybdenum disulfide is 0.1~0.4%, and the balance is polytetrafluoroethylene. Today, when high-voltage circuit breakers are developing towards high voltage and large capacity, the composite spout still has the problems of poor toughness and crack resistance, and insufficient arc ablation resistance.
发明内容Contents of the invention
本发明提供一种纳米改性聚四氟乙烯复合材料,同时提供一种使用上述纳米改性聚四氟乙烯复合材料的灭弧喷口,解决现有复合材料喷口韧性和抗开裂能力差,耐电弧烧蚀性能不足的问题。The invention provides a nano-modified polytetrafluoroethylene composite material, and at the same time provides an arc extinguishing nozzle using the nano-modified polytetrafluoroethylene composite material, which solves the problem of poor toughness and crack resistance of the existing composite material nozzle, and arc resistance The problem of insufficient ablative performance.
本发明另外提供一种上述灭弧喷口的制备方法。The present invention further provides a preparation method of the above-mentioned arc extinguishing nozzle.
本发明还提供一种使用上述灭弧喷口的高压断路器。The present invention also provides a high-voltage circuit breaker using the arc extinguishing nozzle.
为了实现以上目的,本发明所采用的技术方案是:一种纳米改性聚四氟乙烯复合材料,由以下重量百分比的组分组成:纳米氮化硼1~3%、微米氮化硼3~10%,余量为聚四氟乙烯。In order to achieve the above purpose, the technical solution adopted in the present invention is: a nano-modified polytetrafluoroethylene composite material, which is composed of the following components in weight percentage: 1-3% of nano-boron nitride, 3-3% of micro-boron nitride 10%, the balance is polytetrafluoroethylene.
作为优选方案,上述纳米改性聚四氟乙烯复合材料由以下重量百分比的组分组成:纳米氮化硼1~3%、微米氮化硼5~10%,余量为聚四氟乙烯。上述纳米改性聚四氟乙烯复合材料的重量百分比组成进一步优选为:纳米氮化硼2~3%、微米氮化硼8~10%,余量为聚四氟乙烯。As a preferred solution, the above-mentioned nano-modified polytetrafluoroethylene composite material is composed of the following components in weight percentage: 1-3% of nano-boron nitride, 5-10% of micro-boron nitride, and the balance is polytetrafluoroethylene. The weight percent composition of the nano-modified polytetrafluoroethylene composite material is further preferably: 2-3% of nano-boron nitride, 8-10% of micro-boron nitride, and the balance is polytetrafluoroethylene.
本发明提供的灭弧喷口使用上述纳米改性聚四氟乙烯复合材料。The arc extinguishing nozzle provided by the present invention uses the above-mentioned nano-modified polytetrafluoroethylene composite material.
纳米氮化硼为市售常规原料,六方晶型,晶体结构类似石墨层状结构,具有极佳的干润滑能力,热稳定性和化学稳定性好,热膨胀系数低,且高温下导热性能优异。Nano-boron nitride is a commercially available conventional raw material with a hexagonal crystal structure and a crystal structure similar to graphite layered structure. It has excellent dry lubrication ability, good thermal and chemical stability, low thermal expansion coefficient, and excellent thermal conductivity at high temperatures.
采用本发明纳米改性聚四氟乙烯复合材料的灭弧喷口,一方面纳米氮化硼和微米氮化硼在复合材料中容易混合分散,使复合材料具有良好的均一性,另一方面两者通过合理调配填充比例,纳米氮化硼组分对聚四氟乙烯材料的机械性能起到补强作用,可以提升复合材料的拉伸强度和断裂伸长率;纳米氮化硼和微米氮化硼在复合材料中可发生协同作用,进一步改善喷口材料的热导率,从而在断路器开断过程中快速传递电弧的能量,减少电弧对喷口的烧蚀作用。Using the arc extinguishing nozzle of the nano-modified polytetrafluoroethylene composite material of the present invention, on the one hand, nano-boron nitride and micro-boron nitride are easily mixed and dispersed in the composite material, so that the composite material has good uniformity; on the other hand, both By rationally adjusting the filling ratio, the nano-boron nitride component can reinforce the mechanical properties of the PTFE material, which can improve the tensile strength and elongation at break of the composite material; nano-boron nitride and micro-boron nitride A synergistic effect can occur in the composite material to further improve the thermal conductivity of the spout material, thereby rapidly transferring the energy of the arc during the breaking process of the circuit breaker, and reducing the ablation effect of the arc on the spout.
本发明提供的上述灭弧喷口的制备方法,包括取配方量的聚四氟乙烯树脂粉、纳米氮化硼粉、微米氮化硼粉混合后,进行模压、烧结,即得。The preparation method of the above-mentioned arc extinguishing nozzle provided by the present invention comprises mixing polytetrafluoroethylene resin powder, nanometer boron nitride powder and micrometer boron nitride powder in the formula, and then molding and sintering to obtain the finished product.
所述纳米氮化硼粉的粒径为200~300nm。The particle size of the nano boron nitride powder is 200-300nm.
所述聚四氟乙烯树脂粉的粒径为45~80μm。微米氮化硼粉的粒径为5~10μm。The particle diameter of the polytetrafluoroethylene resin powder is 45-80 μm. The particle size of the micron boron nitride powder is 5-10 μm.
所述混合是指在高速搅拌机中以400~600r/min转速搅拌10~30min。The mixing refers to stirring in a high-speed mixer at a speed of 400-600 r/min for 10-30 min.
所述模压的压力为20~30MPa,保压时间为20~35min。The molding pressure is 20-30 MPa, and the holding time is 20-35 minutes.
所述烧结的温度为330~370℃,烧结时间为48~60h。The sintering temperature is 330-370° C., and the sintering time is 48-60 hours.
本发明提供一种使用上述灭弧喷口的高压断路器。高压断路器,诸如敞开断路器、罐式断路器、全金属封闭组合电器的断路器等,灭弧室的喷口采用本发明提供的纳米改性聚四氟乙烯复合材料,高压断路器的其他部件如操动机构、传动机构、触头等可采用公知技术。由于本发明提供的灭弧喷口热导率高,耐电弧烧蚀性能得到了极大改善,提升了断路器的开断性能,从而提高了高压断路器的运行稳定性。The present invention provides a high-voltage circuit breaker using the arc extinguishing nozzle. For high-voltage circuit breakers, such as open circuit breakers, tank circuit breakers, circuit breakers of all-metal-enclosed combined electrical appliances, etc., the nozzle of the arc extinguishing chamber adopts the nano-modified polytetrafluoroethylene composite material provided by the present invention, and other components of the high-voltage circuit breaker Can adopt known technology as operating mechanism, transmission mechanism, contact etc. Due to the high thermal conductivity of the arc extinguishing nozzle provided by the invention, the arc ablation resistance performance is greatly improved, the breaking performance of the circuit breaker is improved, and thus the operation stability of the high voltage circuit breaker is improved.
附图说明Description of drawings
图1为实施例1灭弧喷口的结构示意图;Fig. 1 is the structural representation of embodiment 1 arc extinguishing spout;
图2为使用实施例1灭弧喷口的高压断路器的结构示意图。Fig. 2 is a schematic structural view of the high voltage circuit breaker using the arc extinguishing nozzle of Embodiment 1.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步的说明。The present invention will be further described below in combination with specific embodiments.
实施例1Example 1
本实施例的纳米改性聚四氟乙烯复合材料,由以下重量百分比的组分组成:纳米氮化硼1%、微米氮化硼10%,余量为聚四氟乙烯。The nano-modified polytetrafluoroethylene composite material in this embodiment is composed of the following components in weight percentage: 1% of nano boron nitride, 10% of micro boron nitride, and the balance is polytetrafluoroethylene.
本实施例的灭弧喷口采用上述纳米改性聚四氟乙烯复合材料,其结构如图1所示,1为喷口的喉部,高压断路器的开断过程在喷口内部完成,对喷口的喉部形成烧蚀。The arc extinguishing nozzle of this embodiment adopts the above-mentioned nano-modified polytetrafluoroethylene composite material, and its structure is shown in Figure 1, 1 is the throat of the nozzle, and the breaking process of the high-voltage circuit breaker is completed inside the nozzle. The part forms ablation.
本实施例的灭弧喷口的制备方法,包括下列步骤:The preparation method of the arc extinguishing nozzle of the present embodiment comprises the following steps:
1)取聚四氟乙烯树脂粉,进行打散、磨细处理,按照配方将粒径为45μm的聚四氟乙烯树脂粉、粒径为200nm的纳米氮化硼粉、粒径为10μm的微米氮化硼粉进行初步混合后,置于高速混料机中进行终混(转速为500r/min,时间为20min),得混合料;1) Take the polytetrafluoroethylene resin powder, disperse it, and grind it finely. According to the formula, polytetrafluoroethylene resin powder with a particle size of 45 μm, nano-boron nitride powder with a particle size of 200 nm, and micron boron nitride powder with a particle size of 10 μm After the boron nitride powder is initially mixed, it is placed in a high-speed mixer for final mixing (the rotating speed is 500r/min, and the time is 20min) to obtain a mixture;
2)将步骤1)所得混合料加入模具中进行模压成型,模压的压力为20MPa,保压20min后脱模,得半成品;2) adding the mixture obtained in step 1) into a mold for compression molding, the molding pressure is 20MPa, and the mold is demoulded after holding the pressure for 20 minutes to obtain a semi-finished product;
3)将步骤2)所得半成品在330℃温度下烧结60h,即得。3) The semi-finished product obtained in step 2) is sintered at 330° C. for 60 hours to obtain.
本实施例的高压断路器采用本实施例的灭弧喷口,其结构如图2所示,包括静主触头1、静弧触头2、喷口4、动主触头5、动弧触头6、压气缸7和压气活塞9,喷口4、动主触头5、动弧触头6和压气缸7固装在一起;分闸时,压气缸7沿运动方向10运动,静弧触头2和动弧触头6分开,触头间产生电弧3,压气缸7内的SF6气体8受到压缩后,高速喷入喷口4内部,从而熄灭电弧3。The high-voltage circuit breaker of this embodiment adopts the arc extinguishing nozzle of this embodiment, and its structure is shown in Figure 2, including a static main contact 1, a static arc contact 2, a nozzle 4, a moving main contact 5, and a moving arc contact 6. The air cylinder 7 and the air piston 9, the nozzle 4, the moving main contact 5, the moving arc contact 6 and the air cylinder 7 are fixed together; when the gate is opened, the air cylinder 7 moves along the movement direction 10, and the static arc contact 2 is separated from the moving arc contact 6, an arc 3 is generated between the contacts, and the SF 6 gas 8 in the cylinder 7 is compressed and sprayed into the nozzle 4 at a high speed, thereby extinguishing the arc 3.
实施例2-7Example 2-7
实施例2-7的纳米改性聚四氟乙烯复合材料,各组分的重量百分比如表1所示。The weight percent of each component of the nano-modified polytetrafluoroethylene composite material in Examples 2-7 is shown in Table 1.
表1实施例2-7纳米改性聚四氟乙烯复合材料各组分的重量百分比Table 1 embodiment 2-7 the weight percent of each component of nano-modified polytetrafluoroethylene composite material
使用实施例2-7纳米改性聚四氟乙烯复合材料的灭弧喷口结构与实施例1相同。The structure of the arc extinguishing nozzle using the nano-modified polytetrafluoroethylene composite material of Examples 2-7 is the same as that of Example 1.
实施例2-7的灭弧喷口采用表1所示的各组分配比通过混合、模压、烧结制备而成。原料的粒径及混合、模压、烧结试验条件见表2。The arc extinguishing nozzles of Examples 2-7 were prepared by mixing, molding and sintering using the distribution ratios of the components shown in Table 1. See Table 2 for the particle size of raw materials and the test conditions for mixing, molding and sintering.
表2实施例2~7灭弧喷口的制备工艺条件Table 2 The preparation process conditions of the arc extinguishing spout of embodiment 2~7
使用实施例2~7所述灭弧喷口的高压断路器的结构与实施例1相同。The structure of the high-voltage circuit breaker using the arc extinguishing nozzles described in Embodiments 2 to 7 is the same as that of Embodiment 1.
实验例Experimental example
本实验例对实施例1~7所得灭弧喷口的性能进行检测,结果如表2所示。所述耐烧蚀性试验条件为:直流电压600伏,直流电流5安培。其中,对比例1的灭弧喷口基材为聚四氟乙烯树脂,填料为氧化铝,填充质量百分比为10%。对比例2的灭弧喷口基材为聚四氟乙烯树脂,填料为二硫化钼,填充质量百分比为2%。对比例3的灭弧喷口基材为聚四氟乙烯树脂,填料为1~10μm的氮化硼,填充质量百分比为7%。对比例1~3灭弧喷口的规格与实施例1~7相同,制备方法中各工艺条件与实施例6相同。In this experimental example, the performance of the arc extinguishing nozzles obtained in Examples 1 to 7 was tested, and the results are shown in Table 2. The test conditions of the ablation resistance are: a direct current voltage of 600 volts and a direct current of 5 amperes. Wherein, the base material of the arc extinguishing nozzle in Comparative Example 1 is polytetrafluoroethylene resin, the filler is alumina, and the filling mass percentage is 10%. The base material of the arc extinguishing nozzle in Comparative Example 2 is polytetrafluoroethylene resin, the filler is molybdenum disulfide, and the filling mass percentage is 2%. The base material of the arc extinguishing nozzle in Comparative Example 3 is polytetrafluoroethylene resin, the filler is boron nitride with a thickness of 1-10 μm, and the filling mass percentage is 7%. The specifications of the arc extinguishing nozzles of Comparative Examples 1-3 are the same as those of Examples 1-7, and the process conditions in the preparation method are the same as those of Example 6.
表3实施例1~7和对比例灭弧喷口的性能检测结果Table 3 Embodiment 1~7 and the performance detection result of comparative example arc extinguishing spout
由表3的试验结果可知,本发明提供的灭弧喷口较对比例,改善了喷口材料的机械性能,提高了材料的韧性和抗开裂能力,同时改善了喷口材料的热导率,提高了材料的耐电弧烧蚀性能;采用本发明灭弧喷口的高压断路器可提升断路器的开断性能,从而提高高压断路器的运行稳定性。As can be seen from the test results in Table 3, the arc extinguishing nozzle provided by the present invention has improved the mechanical properties of the nozzle material, improved the toughness and crack resistance of the material, improved the thermal conductivity of the nozzle material, and improved the thermal conductivity of the material. Arc ablation resistance performance; the high-voltage circuit breaker adopting the arc extinguishing nozzle of the present invention can improve the breaking performance of the circuit breaker, thereby improving the operation stability of the high-voltage circuit breaker.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510375759.2A CN105017695B (en) | 2015-06-29 | 2015-06-29 | A kind of nano modification ptfe composite, quenching nozzle and preparation method thereof, primary cut-out |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510375759.2A CN105017695B (en) | 2015-06-29 | 2015-06-29 | A kind of nano modification ptfe composite, quenching nozzle and preparation method thereof, primary cut-out |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105017695A true CN105017695A (en) | 2015-11-04 |
CN105017695B CN105017695B (en) | 2017-05-31 |
Family
ID=54408022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510375759.2A Active CN105017695B (en) | 2015-06-29 | 2015-06-29 | A kind of nano modification ptfe composite, quenching nozzle and preparation method thereof, primary cut-out |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105017695B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111040346A (en) * | 2019-12-20 | 2020-04-21 | 佛山科学技术学院 | Anti-radiation polytetrafluoroethylene composite material and preparation method thereof |
CN111718550A (en) * | 2020-08-06 | 2020-09-29 | 云南电网有限责任公司电力科学研究院 | Preparation method of high-voltage circuit breaker nozzle material and high-voltage circuit breaker |
CN112266561A (en) * | 2020-10-23 | 2021-01-26 | 西安交通大学 | Polytetrafluoroethylene composite material with high alternating-current breakdown field strength and preparation method and application thereof |
CN112300520A (en) * | 2020-10-23 | 2021-02-02 | 西安交通大学 | A polytetrafluoroethylene composite material with arc ablation resistance and its preparation method and application |
CN114456619A (en) * | 2022-02-21 | 2022-05-10 | 复旦大学 | A kind of self-modified boron nitride thermally conductive filler and preparation method thereof |
CN115216099A (en) * | 2022-08-30 | 2022-10-21 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Polytetrafluoroethylene composite material, arc extinguishing nozzle and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4791256A (en) * | 1986-11-07 | 1988-12-13 | Mitsubishi Denki Kabushiki Kaisha | Insulated nozzle for use in an interrupter |
CN102731943A (en) * | 2012-06-29 | 2012-10-17 | 中国西电电气股份有限公司 | SF6 high-voltage circuit breaker polytetrafluoroethylene composite material nozzle and preparation method thereof |
CN104387709A (en) * | 2014-10-24 | 2015-03-04 | 河南平高电气股份有限公司 | Arc extinction nozzle for high-voltage breaker and preparation method thereof |
-
2015
- 2015-06-29 CN CN201510375759.2A patent/CN105017695B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4791256A (en) * | 1986-11-07 | 1988-12-13 | Mitsubishi Denki Kabushiki Kaisha | Insulated nozzle for use in an interrupter |
CN102731943A (en) * | 2012-06-29 | 2012-10-17 | 中国西电电气股份有限公司 | SF6 high-voltage circuit breaker polytetrafluoroethylene composite material nozzle and preparation method thereof |
CN104387709A (en) * | 2014-10-24 | 2015-03-04 | 河南平高电气股份有限公司 | Arc extinction nozzle for high-voltage breaker and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
陈卓等: "基于CO2连续激光器模拟的氮化物填充聚四氟乙烯复合材料耐烧蚀性能", 《复合材料学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111040346A (en) * | 2019-12-20 | 2020-04-21 | 佛山科学技术学院 | Anti-radiation polytetrafluoroethylene composite material and preparation method thereof |
CN111718550A (en) * | 2020-08-06 | 2020-09-29 | 云南电网有限责任公司电力科学研究院 | Preparation method of high-voltage circuit breaker nozzle material and high-voltage circuit breaker |
CN112266561A (en) * | 2020-10-23 | 2021-01-26 | 西安交通大学 | Polytetrafluoroethylene composite material with high alternating-current breakdown field strength and preparation method and application thereof |
CN112300520A (en) * | 2020-10-23 | 2021-02-02 | 西安交通大学 | A polytetrafluoroethylene composite material with arc ablation resistance and its preparation method and application |
CN114456619A (en) * | 2022-02-21 | 2022-05-10 | 复旦大学 | A kind of self-modified boron nitride thermally conductive filler and preparation method thereof |
CN115216099A (en) * | 2022-08-30 | 2022-10-21 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Polytetrafluoroethylene composite material, arc extinguishing nozzle and preparation method and application thereof |
CN115216099B (en) * | 2022-08-30 | 2024-03-22 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Polytetrafluoroethylene composite material, arc extinguishing nozzle and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105017695B (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105017695B (en) | A kind of nano modification ptfe composite, quenching nozzle and preparation method thereof, primary cut-out | |
Wu et al. | Effective thermal transport highway construction within dielectric polymer composites via a vacuum-assisted infiltration method | |
Zhang et al. | The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites | |
WO2017143625A1 (en) | High thermal conductive composite material, thermal conductive sheet prepared from material, and preparation method therefor | |
CA2900227C (en) | Arc-extinguishing insulation material molded product and gas circuit breaker including the same | |
CN105001565B (en) | A kind of ptfe composite, quenching nozzle and preparation method thereof, primary cut-out | |
CN103923465A (en) | Environment-friendly ablation-resistant ceramic silicone rubber composite material and preparation method thereof | |
CN110699568A (en) | Shell-core structure MXene @ MAX composite contact reinforcing phase material and preparation method thereof | |
CN104845378A (en) | Silicon rubber composition with high-voltage electric corrosion resistance for composite insulator and preparation method of silicon rubber composition | |
CN104387709B (en) | Arc extinction nozzle for high-voltage breaker and preparation method thereof | |
CN108034256A (en) | A kind of explosion-proof silica gel pad of high heat conduction low-gravity lithium battery and preparation method thereof | |
CN102731943B (en) | SF6 high-voltage circuit breaker polytetrafluoroethylene composite material nozzle and preparation method thereof | |
CN105062080A (en) | Arc-resistant silicon composite material, preparation method and use thereof | |
CN106009693A (en) | Silicone rubber with excellent tracking resistance and high heat conductivity | |
Azizi et al. | Enhancement in electrical and thermal performance of high‐temperature vulcanized silicone rubber composites for outdoor insulating applications | |
Liu et al. | Silicone resin-based composite materials for high thermal stability and thermal conductivity | |
CN101650994A (en) | suspension insulator | |
CN105367869A (en) | Anti-pollution flashover superhigh voltage insulation material and preparation method thereof | |
CN112480465B (en) | A kind of preparation method of hot air drying gel thermal conductive framework material, framework material and polymer composite material | |
Shan et al. | Preparation and property study of graphene oxide reinforced epoxy resin insulation nanocomposites with high heat conductivity | |
Li et al. | Compatibility-tuned distribution of nanoparticles in co-continuous rubber structures toward microwave absorption enhancement | |
JP6157896B2 (en) | Arc-resistant insulator, method for manufacturing arc-resistant insulator, and gas circuit breaker | |
CN107384275A (en) | A kind of high-thermal-conductivity epoxy resin composition and preparation method thereof | |
CN108711530A (en) | A kind of functionally gradient type quenching nozzle and preparation method thereof | |
CN111849176B (en) | A kind of high temperature resistant ceramic dynamic sealing rubber material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |