CN105004698B - A kind of Biosensors Based on Surface Plasmon Resonance device - Google Patents
A kind of Biosensors Based on Surface Plasmon Resonance device Download PDFInfo
- Publication number
- CN105004698B CN105004698B CN201510313359.9A CN201510313359A CN105004698B CN 105004698 B CN105004698 B CN 105004698B CN 201510313359 A CN201510313359 A CN 201510313359A CN 105004698 B CN105004698 B CN 105004698B
- Authority
- CN
- China
- Prior art keywords
- prism
- graphene
- plasmon resonance
- surface plasmon
- silicon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 title claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 19
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 17
- 239000002077 nanosphere Substances 0.000 claims abstract description 13
- 239000004793 Polystyrene Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- 229920002223 polystyrene Polymers 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000005308 flint glass Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims 4
- XOCUXOWLYLLJLV-UHFFFAOYSA-N [O].[S] Chemical compound [O].[S] XOCUXOWLYLLJLV-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000002184 metal Substances 0.000 abstract description 13
- 239000002105 nanoparticle Substances 0.000 abstract description 13
- 239000000126 substance Substances 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- MJBXVCIZVZQIEF-UHFFFAOYSA-N [Se].S=O Chemical compound [Se].S=O MJBXVCIZVZQIEF-UHFFFAOYSA-N 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种表面等离激元共振生物传感器,由棱镜、纳米颗粒阵列、二氧化硅薄膜、石墨烯以及样品池组成,纳米颗粒阵列位于棱镜的下表面,二氧化硅薄膜覆盖在纳米颗粒阵列上,石墨烯覆盖在二氧化硅薄膜上,其特征在于:棱镜为高折射率材料,纳米颗粒阵列由聚苯乙烯纳米球外覆金属薄膜组成。本发明属于纳米科学领域,利用SPR原理在金属的下表面激发SPP,样品折射率的微小改变能够影响共振曲线,改变共振角。反之,由探测得到的共振角即可推出样品的折射率,进而可准确地获得待测物质的浓度。
A surface plasmon resonance biosensor consists of a prism, a nanoparticle array, a silicon dioxide film, graphene, and a sample cell. The nanoparticle array is located on the lower surface of the prism, and the silicon dioxide film covers the nanoparticle array. The graphene is covered on the silicon dioxide film, and it is characterized in that: the prism is a high refractive index material, and the nanoparticle array is composed of polystyrene nanospheres coated with a metal film. The invention belongs to the field of nano science, uses the principle of SPR to excite SPP on the lower surface of metal, and the small change of the sample refractive index can affect the resonance curve and change the resonance angle. On the contrary, the refraction index of the sample can be deduced from the detected resonance angle, and then the concentration of the substance to be measured can be obtained accurately.
Description
技术领域technical field
本发明涉及一种新型表面等离激元共振生物传感器,属于纳米技术、生物技术科学领域。The invention relates to a novel surface plasmon resonance biosensor, which belongs to the scientific fields of nanotechnology and biotechnology.
背景技术Background technique
近年来,对金属表面等离激元(SPP)的研究取得了长足的进展。SPP是指由外部电磁场(如光波)诱导金属微纳结构表面自由电子的集体振荡,它具有一个突出特点就是可以实现表面等离激元共振(Surface Plasmon Resonance,SPR),共振时局部电场可以增大上千倍。因此可以极大的提高电场与物质的作用效果,在生物传感领域应用十分广泛,已成为人们分析物质浓度的强有力的技术手段。本发明提出了一种新型的SPR传感技术,采用纳米球外覆金属薄膜作为传感单元,并用石墨烯封装,具有灵敏性高和适用范围广的特点。In recent years, the research on metal surface plasmons (SPPs) has made great progress. SPP refers to the collective oscillation of free electrons on the surface of metal micro-nano structures induced by an external electromagnetic field (such as light waves). It has a prominent feature that it can realize surface plasmon resonance (Surface Plasmon Resonance, SPR). Thousands of times bigger. Therefore, the interaction effect between the electric field and the substance can be greatly improved, and it is widely used in the field of biosensing, and has become a powerful technical means for people to analyze the concentration of substances. The invention proposes a new type of SPR sensing technology, which uses nanospheres covered with metal film as a sensing unit and is encapsulated with graphene, which has the characteristics of high sensitivity and wide application range.
发明内容Contents of the invention
本发明需要解决的技术问题是:克服现有技术的不足,提供一种灵敏度高、应用范围广泛、价格经济的一种新型表面等离激元共振生物传感器。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a novel surface plasmon resonance biosensor with high sensitivity, wide application range and economical price.
本发明的技术解决方案是:Technical solution of the present invention is:
一种新型表面等离激元共振生物传感器,由棱镜(1)、纳米颗粒阵列(2)、二氧化硅薄膜(3)、石墨烯(4)以及样品池(5)组成,纳米颗粒阵列(2)位于棱镜(1)的下表面,二氧化硅薄膜(3)覆盖在纳米颗粒阵列(2)上,石墨烯(4)覆盖在二氧化硅薄膜(3)上,棱镜(1)为高折射率材料,纳米颗粒阵列(2)由聚苯乙烯纳米球(6)外覆金属薄膜(7)组成。A novel surface plasmon resonance biosensor consists of a prism (1), a nanoparticle array (2), a silicon dioxide film (3), graphene (4) and a sample cell (5), and the nanoparticle array ( 2) Located on the lower surface of the prism (1), the silicon dioxide film (3) covers the nanoparticle array (2), graphene (4) covers the silicon dioxide film (3), and the prism (1) is a high The refractive index material, the nanoparticle array (2) is composed of polystyrene nanospheres (6) coated with a metal film (7).
所述的棱镜(1)为折射率大于二氧化硅薄膜(3)的材料,且相对于入射光为低损耗,优选为重火石玻璃或硒基氧硫玻璃或硅。The prism (1) is a material with a higher refractive index than the silicon dioxide film (3), and has low loss relative to incident light, preferably heavy flint glass or selenium oxysulfide glass or silicon.
所述聚苯乙烯纳米球(6)直径为50nm~80nm,单层紧邻排布。The polystyrene nanospheres (6) have a diameter of 50nm to 80nm and are arranged in a single layer next to each other.
所述金属薄膜(7)材料为金或银或铝,厚度为10nm~80nm。The material of the metal thin film (7) is gold, silver or aluminum, and the thickness is 10nm-80nm.
所述二氧化硅薄膜(3)厚度介于10nm与0.25倍入射波长之间。The thickness of the silicon dioxide film (3) is between 10 nm and 0.25 times the incident wavelength.
所述石墨烯(4)层数为1~8层。The number of layers of the graphene (4) is 1-8 layers.
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
1.超高的灵敏度。本发明设计的SPR生物传感器与传统的生物传感器相比灵敏度提高将近1个量级。1. Ultra-high sensitivity. Compared with the traditional biosensor, the sensitivity of the SPR biosensor designed by the invention is improved by nearly one order of magnitude.
2.待测物质检测范围种类广。本生物传感器克服待测样品物态受限的缺点,既能进行液态检测又可进行气态检测,应用范围广。2. The detection range of substances to be tested is wide. The biosensor overcomes the disadvantage of limited physical state of the sample to be tested, can detect both liquid state and gas state, and has a wide range of applications.
3.使用寿命长。石墨烯具有很强的抗氧化能力,可保护金属层不被氧化和腐蚀,增长传感器的使用寿命。3. Long service life. Graphene has a strong anti-oxidation ability, which can protect the metal layer from oxidation and corrosion, and increase the service life of the sensor.
4.操作波长宽。本发明选用的棱镜材料具有较宽的操作波长,可以在不同波段对样品进行检测。4. Wide operating wavelength. The prism material selected in the present invention has a wide operating wavelength and can detect samples in different wave bands.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2表面等离激元共振峰Figure 2 Surface plasmon resonance peak
图3测试样品的共振峰移动Figure 3 The formant shift of the test sample
具体实施方式detailed description
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
如图1所示,本发明由棱镜(1)、纳米颗粒阵列(2)、二氧化硅薄膜(3)、石墨烯(4)以及样品池(5)组成,纳米颗粒阵列(2)位于棱镜(1)的下表面,二氧化硅薄膜(3)覆盖在纳米颗粒阵列(2)上,石墨烯(4)覆盖在二氧化硅薄膜(3)上。当棱镜(1)为重火石玻璃,金属薄膜(7)为银,厚度h为10nm,二氧化硅薄膜(3)厚度为25nm,石墨烯(4)厚度为0.34nm时,为入射波长700nm所用的表面等离激元共振传感器。As shown in Figure 1, the present invention is made up of prism (1), nanoparticle array (2), silicon dioxide film (3), graphene (4) and sample cell (5), and nanoparticle array (2) is positioned at prism On the lower surface of (1), the silicon dioxide film (3) is covered on the nanoparticle array (2), and the graphene (4) is covered on the silicon dioxide film (3). When the prism (1) is heavy flint glass, the metal film (7) is silver, the thickness h is 10nm, the silicon dioxide film (3) thickness is 25nm, and when the graphene (4) thickness is 0.34nm, it is used for incident wavelength 700nm surface plasmon resonance sensor.
当用TM偏振的700nm激光光源入射时,经过棱镜(1)折射后到达纳米颗粒阵列(2)。当入射角度大于全反射临界角后,在棱镜(1)和纳米颗粒阵列(2)的界面处产生消逝波,该消逝波将激发表面等离激元共振模式。当覆盖于聚苯乙烯纳米球(6)上的金属薄膜(7)厚度h为10nm~80nm时,可以显著增强这种共振模式,其作用类似于纳米球壳。共振发生时,局部电场增大,入射光被吸收,使反射光能量急剧下降,在反射光谱上出现表面等离激元共振峰,如图2所示。该共振峰对样品折射率的改变十分敏感,当被石墨烯(4)吸附的样品折射率改变时,共振峰位置将发生改变,实现对样品的检测,如图3所示。石墨烯(4)介电常数具有较大的虚部,在可见光波段比Ag要大一个数量级。这会导致表面等离激元共振时损耗增大,引起共振峰变宽,使得传感器的准确度降低。在金属薄膜(7)与石墨烯(4)之间添加二氧化硅薄膜(3)调节膜系的等效介电常数,厚度介于10nm与0.25倍入射波长之间。When incident with a TM polarized 700nm laser light source, it reaches the nanoparticle array (2) after being refracted by the prism (1). When the incident angle is greater than the critical angle of total reflection, an evanescent wave is generated at the interface of the prism (1) and the nanoparticle array (2), and the evanescent wave will excite a surface plasmon resonance mode. When the thickness h of the metal thin film (7) covered on the polystyrene nanosphere (6) is 10nm-80nm, the resonance mode can be significantly enhanced, and its effect is similar to that of a nanosphere shell. When the resonance occurs, the local electric field increases, the incident light is absorbed, the energy of the reflected light drops sharply, and the surface plasmon resonance peak appears on the reflection spectrum, as shown in Figure 2. The resonance peak is very sensitive to the change of the refractive index of the sample. When the refractive index of the sample adsorbed by graphene (4) changes, the position of the resonance peak will change to realize the detection of the sample, as shown in Figure 3. The dielectric constant of graphene (4) has a large imaginary part, which is an order of magnitude larger than that of Ag in the visible light band. This leads to increased loss at surface plasmon resonance, causing a broadening of the resonance peak, which reduces the accuracy of the sensor. A silicon dioxide film (3) is added between the metal film (7) and the graphene (4) to adjust the equivalent dielectric constant of the film system, and the thickness is between 10 nm and 0.25 times the incident wavelength.
本发明的具体制作步骤如下:Concrete manufacturing steps of the present invention are as follows:
a.将聚苯乙烯纳米球分散液均匀涂覆在棱镜下表面,形成紧邻的单层纳米球阵列;b.真空环境下采用磁控溅射在棱镜下表面的纳米球阵列上镀金属薄膜,厚度为10nm~80nm;c.采用液相沉积技术法(LPD)在金属银或铝膜上生长二氧化硅薄膜,膜厚为10nm~0.25倍入射波长;d.采用化学气相沉积法(CVD)生长石墨烯,厚度为0.34nm~2.72nm;e.清洗、烘干,完成制作。a. uniformly coating the polystyrene nanosphere dispersion on the lower surface of the prism to form a single-layer nanosphere array next to each other; b. using magnetron sputtering in a vacuum environment to coat a metal film on the nanosphere array on the lower surface of the prism, Thickness is 10nm~80nm; c. Using liquid phase deposition (LPD) to grow silicon dioxide film on metal silver or aluminum film, the film thickness is 10nm~0.25 times the incident wavelength; d. Using chemical vapor deposition (CVD) Grow graphene with a thickness of 0.34nm to 2.72nm; e. Clean and dry to complete the production.
Claims (3)
- A kind of 1. Biosensors Based on Surface Plasmon Resonance device, by prism (1), nano-grain array (2), silica membrane (3), graphene (4) and sample cell (5) composition, nano-grain array (2) are located at the lower surface of prism (1), and silica is thin Film (3) is covered on nano-grain array (2), and graphene (4) is covered on silica membrane (3), it is characterised in that:Prism (1) it is high-index material, nano-grain array (2) is cladded with metallic film (7) by polystyrene nanospheres (6) and formed;A diameter of 50nm~the 80nm of the polystyrene nanospheres (6), individual layer is close to arrangement;The metallic film (7) is covered on polystyrene nanospheres (6), is 10nm~80nm apart from nanosphere top thickness h, Material is gold or silver or aluminium;Silica membrane (3) thickness is between 10nm and 0.25 times of incident wavelength.
- 2. Biosensors Based on Surface Plasmon Resonance device according to claim 1, it is characterised in that:Described prism (1) It is more than the material of silica membrane (3) for refractive index, and is low-loss relative to incident light, is dense flint glass or seleno oxygen Sulphur glass or silicon.
- 3. Biosensors Based on Surface Plasmon Resonance device according to claim 1, it is characterised in that:The graphene (4) The number of plies is 1~8 layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510313359.9A CN105004698B (en) | 2015-06-09 | 2015-06-09 | A kind of Biosensors Based on Surface Plasmon Resonance device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510313359.9A CN105004698B (en) | 2015-06-09 | 2015-06-09 | A kind of Biosensors Based on Surface Plasmon Resonance device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105004698A CN105004698A (en) | 2015-10-28 |
CN105004698B true CN105004698B (en) | 2018-01-09 |
Family
ID=54377451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510313359.9A Active CN105004698B (en) | 2015-06-09 | 2015-06-09 | A kind of Biosensors Based on Surface Plasmon Resonance device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105004698B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109917512A (en) * | 2019-03-22 | 2019-06-21 | 中国科学院微电子研究所 | A Silicon Two-Wire System with Gain Assist |
WO2022047847A1 (en) * | 2020-09-07 | 2022-03-10 | 科竟达生物科技有限公司 | Local surface plasmon resonance biochip and manufacturing method therefor, biosensing system including same, and use of biosensing system |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105372207B (en) * | 2015-11-25 | 2019-01-08 | 广西师范大学 | The surface plasma waveguide trace gas sensing device of grapheme material |
CN106872405B (en) * | 2017-01-05 | 2019-08-13 | 深圳大学 | A kind of biologic sensor chip based on bilayer graphene |
CN109870765B (en) * | 2019-03-22 | 2020-07-28 | 中国科学院微电子研究所 | Gain-assisted super-resonance based on single silicon wire |
CN110231309A (en) * | 2019-04-15 | 2019-09-13 | 厦门大学 | A method of utilizing the medium prism structure and its sensing of graphene |
CN111239082B (en) * | 2020-01-21 | 2023-05-23 | 东北大学秦皇岛分校 | A Surface Plasmon Resonance Sensor Based on Graphene-Silver Grating |
CN111272666B (en) * | 2020-02-27 | 2022-01-25 | 电子科技大学 | Bio-protein sensor based on magneto-optical surface plasmon resonance |
CN111735799A (en) * | 2020-07-02 | 2020-10-02 | 燕山大学 | A guided wave surface plasmon resonance sensor |
CN112304905B (en) * | 2020-10-22 | 2022-11-04 | 吉林省兜率龙源实业集团有限公司 | High-performance waveguide sensing system and preparation method thereof |
CN113030026B (en) * | 2021-03-07 | 2022-11-04 | 天津理工大学 | An LSPR multi-wavelength narrow-band tunable sensor |
CN114527071A (en) * | 2022-01-19 | 2022-05-24 | 大连理工大学 | Method for monitoring heparin level in human blood in real time |
CN114659943A (en) * | 2022-03-28 | 2022-06-24 | 东南大学 | Medium nanosphere array microcavity particle sensing system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101551330A (en) * | 2009-05-15 | 2009-10-07 | 南京大学 | Surface plasmon crystal transducer and preparation method thereof |
CN102212790A (en) * | 2011-05-19 | 2011-10-12 | 浙江大学 | Preparation method of noble metal/submicron spherical shell arrays |
CN102928388A (en) * | 2012-11-06 | 2013-02-13 | 泰州巨纳新能源有限公司 | Graphene gas sensor based on surface plasma resonance |
CN205120588U (en) * | 2015-06-09 | 2016-03-30 | 安徽师范大学 | Novel surface plasmon biosensor that resonates |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120281957A1 (en) * | 2011-05-08 | 2012-11-08 | Georgia Tech Research Corporation | Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements |
-
2015
- 2015-06-09 CN CN201510313359.9A patent/CN105004698B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101551330A (en) * | 2009-05-15 | 2009-10-07 | 南京大学 | Surface plasmon crystal transducer and preparation method thereof |
CN102212790A (en) * | 2011-05-19 | 2011-10-12 | 浙江大学 | Preparation method of noble metal/submicron spherical shell arrays |
CN102928388A (en) * | 2012-11-06 | 2013-02-13 | 泰州巨纳新能源有限公司 | Graphene gas sensor based on surface plasma resonance |
CN205120588U (en) * | 2015-06-09 | 2016-03-30 | 安徽师范大学 | Novel surface plasmon biosensor that resonates |
Non-Patent Citations (2)
Title |
---|
Sensitivity enhancement of surface plasmon resonance based biomolecules sensor using graphene and silicon layers;Roli Verma et al.;《Sensors and Actuators B》;20110824;第160卷(第1期);摘要,第624页左栏第2段至右栏第4段,图1 * |
表面等离子体共振技术的一些新应用;张天浩等;《物理》;20051231;第34卷(第12期);909-914 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109917512A (en) * | 2019-03-22 | 2019-06-21 | 中国科学院微电子研究所 | A Silicon Two-Wire System with Gain Assist |
CN109917512B (en) * | 2019-03-22 | 2020-07-28 | 中国科学院微电子研究所 | Silicon double-wire system with gain assistance |
WO2022047847A1 (en) * | 2020-09-07 | 2022-03-10 | 科竟达生物科技有限公司 | Local surface plasmon resonance biochip and manufacturing method therefor, biosensing system including same, and use of biosensing system |
Also Published As
Publication number | Publication date |
---|---|
CN105004698A (en) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105004698B (en) | A kind of Biosensors Based on Surface Plasmon Resonance device | |
Chen et al. | Review of surface plasmon resonance and localized surface plasmon resonance sensor | |
US8298495B2 (en) | High sensitivity localized surface plasmon resonance sensor and sensor system using same | |
Wang et al. | Barium titanate film based fiber optic surface plasmon sensor with high sensitivity | |
Wang et al. | Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement | |
CN103512865B (en) | A kind of device and method producing surface plasma wave | |
JP5182900B2 (en) | Sample detection sensor and sample detection method | |
Jamil et al. | Graphene-based surface plasmon resonance urea biosensor using Kretschmann configuration | |
CN103728275B (en) | Based on the optical index sensor of optics Tamm state phasmon | |
CN102156110A (en) | Sensing method based on local surface plasma resonance | |
CN110389110B (en) | Dielectric nanometer light wave antenna sensor based on rod-ring structure and application | |
CN104792731B (en) | A kind of liquid refractive index sensor based on resonance light tunneling effect | |
Jamil et al. | Urea biosensor utilizing graphene-MoS 2 and Kretschmann-based SPR | |
Galopin et al. | Short-and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies | |
Liu et al. | Two-dimensional transition metal dichalcogenides-based high sensitivity lossy mode refractive index sensor | |
CN111272730B (en) | High-sensitivity optical fiber surface plasmon sensor and preparation method thereof | |
CN109541502A (en) | A kind of magnetic field vector sensor and its preparation and detection method based on side throwing optical fiber surface plasmon resonance body | |
CN103926218B (en) | High-sensitivity refractive index sensor based on surface plasma resonance | |
Jamil et al. | Graphene-MoS 2 SPR-based biosensor for urea detection | |
CN103245635B (en) | Sensor based on guided wave resonance and preparation method thereof | |
CN102954950A (en) | Biosensor based on periodic nano-medium particles and preparation method thereof | |
CN205120588U (en) | Novel surface plasmon biosensor that resonates | |
CN114199828B (en) | A metal-graphene hybrid metasurface biosensor and its preparation method | |
CN114062316B (en) | High-quality optical refractive index sensor based on plasmon nanometer cavity | |
CN107356563A (en) | One kind is narrow to excite angle SPR sensorgram chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220120 Address after: 264200 No. 21, Xingshan Road, chucun Town, torch high tech Industrial Development Zone, Weihai City, Shandong Province Patentee after: Shandong Weixin Medical Equipment Co.,Ltd. Address before: 241002 Research Office of Anhui Normal University, Huajin South Road, Wuhu City, Anhui Province Patentee before: ANHUI NORMAL University |