CN105000529B - Pressure sensor chip based on MEMS (Micro Electro Mechanical System) technology and manufacturing method thereof - Google Patents
Pressure sensor chip based on MEMS (Micro Electro Mechanical System) technology and manufacturing method thereof Download PDFInfo
- Publication number
- CN105000529B CN105000529B CN201510353479.1A CN201510353479A CN105000529B CN 105000529 B CN105000529 B CN 105000529B CN 201510353479 A CN201510353479 A CN 201510353479A CN 105000529 B CN105000529 B CN 105000529B
- Authority
- CN
- China
- Prior art keywords
- pressure sensor
- pressure
- sensor chip
- layer
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000005516 engineering process Methods 0.000 title abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 29
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 17
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 28
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 239000010703 silicon Substances 0.000 claims description 24
- 238000005530 etching Methods 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 238000005468 ion implantation Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 239000005357 flat glass Substances 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 abstract description 15
- 238000007789 sealing Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000003754 machining Methods 0.000 abstract 1
- 230000003068 static effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 45
- 239000011521 glass Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000002131 composite material Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000000347 anisotropic wet etching Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
技术领域technical field
本发明涉及MEMS设计和半导体加工领域,具体为一种基于MEMS工艺的多压力形式压力传感器芯片及其制备方法。The invention relates to the fields of MEMS design and semiconductor processing, in particular to a multi-pressure form pressure sensor chip based on MEMS technology and a preparation method thereof.
背景技术Background technique
中国产业信息网发布的《2014-2019年中国传感器市场深度调查及投资前景评估询报告》指出:近年来,全球传感器市场一直保持快速增长,2009年和2010年增长速度达20%以上,2011年受全球经济下滑的影响,传感器市场增速比2010年下滑5%,市场规模为828亿美元。随着全球市场的逐步复苏,2012年全球传感器市场规模已达到952亿美元,2013年约为1055亿美元。未来,随着经济环境的持续好转,市场对传感器的需求将不断增多,据预测,未来几年全球传感器市场将保持20%以上的增长速度,2015年市场规模将突破1500亿美元。而目前来看,流量传感器、压力传感器、温度传感器的市场规模最大,其中,压力传感器占到市场份额的18%左右。The "2014-2019 China Sensor Market In-Depth Survey and Investment Prospect Evaluation Consulting Report" released by China Industry Information Network pointed out that in recent years, the global sensor market has maintained rapid growth, and the growth rate in 2009 and 2010 reached more than 20%. Affected by the global economic downturn, the growth rate of the sensor market fell by 5% compared with 2010, and the market size was 82.8 billion US dollars. With the gradual recovery of the global market, the global sensor market reached USD 95.2 billion in 2012 and approximately USD 105.5 billion in 2013. In the future, as the economic environment continues to improve, the market demand for sensors will continue to increase. It is predicted that the global sensor market will maintain a growth rate of more than 20% in the next few years, and the market size will exceed 150 billion US dollars in 2015. At present, flow sensors, pressure sensors, and temperature sensors have the largest market size, among which pressure sensors account for about 18% of the market share.
硅压阻式压力传感器是压力传感器的一种,目前大多数硅压阻式压力传感器都采用MEMS体微机械加工工艺制备,即在硅片表面通过氧化、光刻、离子注入等平面IC工艺制备出压力敏感电阻与金属互连引线后,从硅片背面进行各向异性湿法腐蚀,通过调整腐蚀速率及时间来控制压力敏感膜的厚度,腐蚀完成后需用玻璃进行键合,作为芯片的支撑结构。采用上述工艺制备的压力传感器压力敏感膜的厚度均匀性差,芯片体积大,成品率低、性能不稳定、成本高。Silicon piezoresistive pressure sensor is a kind of pressure sensor. At present, most silicon piezoresistive pressure sensors are prepared by MEMS body micromachining technology, that is, on the surface of silicon wafer through oxidation, photolithography, ion implantation and other planar IC processes. After the pressure-sensitive resistors and metal interconnection leads are produced, anisotropic wet etching is performed from the back of the silicon wafer. The thickness of the pressure-sensitive film is controlled by adjusting the etching rate and time. After the etching is completed, glass is used for bonding. supporting structure. The thickness uniformity of the pressure sensitive film of the pressure sensor prepared by the above process is poor, the chip volume is large, the yield is low, the performance is unstable, and the cost is high.
本发明涉及的压力传感器采用表面微机械加工工艺制备,可避免体硅深刻蚀即可制备密封表压压力传感器芯片,加上ICP和硅-玻璃键合工艺可在同一设计上实现表压和绝压芯片的制备;采用LPCVD淀积的多晶硅作为压敏电阻,可提高工作温度范围。本发明涉及的压力传感器工艺实现上更加简单,利于传感器与后续信号检测电路的集成,实现机电一体化,且有助于传感器成本的降低。The pressure sensor involved in the present invention is prepared by surface micro-machining technology, which can avoid deep etching of bulk silicon and can prepare a sealed gauge pressure sensor chip. In addition, ICP and silicon-glass bonding technology can realize gauge pressure and insulation on the same design. The preparation of the pressure chip; the polysilicon deposited by LPCVD is used as the piezoresistor, which can increase the working temperature range. The technology of the pressure sensor involved in the present invention is simpler to implement, is beneficial to the integration of the sensor and the subsequent signal detection circuit, realizes electromechanical integration, and helps reduce the cost of the sensor.
发明内容Contents of the invention
本发明提供了一种基于MEMS工艺的多压力形式压力传感器芯片及其制备方法,同一套版图可同时实现密封表压、表压和绝压三种压力形式的芯片制备;4层复合膜通过适当的膜厚匹配和退火处理,可降低压力敏感膜的残余应力;敏感膜上制备质量块,防止释放粘连现象,并提高传感器过载能力和线性度;多晶硅电阻制作在复合膜的顶层氮化硅上,氮化硅可起到屏蔽带电离子的作用,并形成SOI结构,提高了芯片的工作温度范围。The invention provides a multi-pressure form pressure sensor chip based on MEMS technology and a preparation method thereof. The same set of layouts can realize the preparation of three pressure forms of sealed gauge pressure, gauge pressure and absolute pressure at the same time; The film thickness matching and annealing treatment can reduce the residual stress of the pressure sensitive film; the quality block is prepared on the sensitive film to prevent the release adhesion phenomenon, and improve the overload capacity and linearity of the sensor; the polysilicon resistance is made on the top layer of silicon nitride of the composite film , Silicon nitride can play the role of shielding charged ions, and form an SOI structure, which improves the operating temperature range of the chip.
具体地,本发明的技术方案如下:Specifically, the technical scheme of the present invention is as follows:
一种基于MEMS工艺压力传感器芯片,其特征在于:包括多层压力敏感膜,形成该多层压力敏感膜上方的压敏电阻11,所述压敏电阻11形成惠斯通电桥结构;形成在所述多层压力敏感膜下方的质量块6,该质量块防止粘连现象,并提高所述压力传感器的过载能力和线性度。A kind of pressure sensor chip based on MEMS technology, it is characterized in that: comprise multi-layer pressure-sensitive film, form the piezoresistor 11 above this multi-layer pressure-sensitive film, described piezoresistor 11 forms Wheatstone bridge structure; The mass block 6 below the multi-layer pressure sensitive film prevents adhesion and improves the overload capacity and linearity of the pressure sensor.
进一步地,所述的多层压力敏感膜包括氮化硅层5、多晶硅层8、氧化硅层9、氮化硅绝缘层10。Further, the multi-layer pressure sensitive film includes a silicon nitride layer 5 , a polysilicon layer 8 , a silicon oxide layer 9 , and a silicon nitride insulating layer 10 .
进一步地,还包括形成在压敏电阻11上的互连12。Further, interconnection 12 formed on piezoresistor 11 is also included.
进一步地,还包括形成在所述压敏电阻11表面的保护层。Further, a protective layer formed on the surface of the piezoresistor 11 is also included.
进一步地,还包括键合在衬底硅片1背面的玻璃片14。Further, it also includes a glass piece 14 bonded to the back of the substrate silicon wafer 1 .
本发明还提出一种基于MEMS工艺的压力传感器芯片制造方法,包括以下步骤:The present invention also proposes a method for manufacturing a pressure sensor chip based on MEMS technology, comprising the following steps:
(1)在衬底上腐蚀出压力参考腔2;(1) etching a pressure reference cavity 2 on the substrate;
(2)淀积牺牲层3,所述牺牲层3覆盖所述压力参考腔2;(2) depositing a sacrificial layer 3, the sacrificial layer 3 covering the pressure reference cavity 2;
(3)在牺牲层3上刻蚀半孔4;(3) etching the half hole 4 on the sacrificial layer 3;
(4)在牺牲层3上沉积氮化硅层5,所述氮化硅填满牺牲层上半孔4,以形成质量块6;(4) Depositing a silicon nitride layer 5 on the sacrificial layer 3, the silicon nitride fills the half hole 4 on the sacrificial layer to form a mass 6;
(5)释放牺牲层3;(5) releasing the sacrificial layer 3;
(6)在氮化硅层5上沉积多晶硅层8、氧化硅层9、氮化硅绝缘层10,以构成多层压力敏感膜;(6) Deposit a polysilicon layer 8, a silicon oxide layer 9, and a silicon nitride insulating layer 10 on the silicon nitride layer 5 to form a multilayer pressure sensitive film;
(7)沉积多晶硅薄膜,离子注入掺杂,并刻蚀出压敏电阻11,形成惠斯通电桥结构;(7) Deposit polysilicon film, doping with ion implantation, and etch piezoresistor 11 to form a Wheatstone bridge structure;
(8)制备互连引线12。(8) The interconnection leads 12 are prepared.
进一步地,在步骤(1)之前,还包括依据压力传感器量程要求确定芯片及压力敏感膜尺寸,采用有限元分析软件确定多层复合膜的应力分布,布置多晶电阻及质量块位置的步骤。Further, before step (1), it also includes the steps of determining the size of the chip and the pressure-sensitive membrane according to the range requirements of the pressure sensor, using finite element analysis software to determine the stress distribution of the multilayer composite membrane, and arranging the polycrystalline resistor and the position of the mass block.
进一步地,所述腐蚀出压力参考腔2包括对P型或N型抛光硅片1进行氧化,光刻并湿法腐蚀出6-8um左右深度的浅硅杯。Further, etching out the pressure reference chamber 2 includes oxidizing the P-type or N-type polished silicon wafer 1, photolithography and wet etching to form a shallow silicon cup with a depth of about 6-8um.
进一步地,所述半孔4包括多个,具有2-4微米的深度、1-2微米的孔径。Further, the semi-holes 4 include a plurality, with a depth of 2-4 microns and a diameter of 1-2 microns.
进一步地,还包括在衬底背面键合玻璃片14,以形成绝压压力传感器芯片。Further, it also includes bonding a glass sheet 14 on the back of the substrate to form an absolute pressure sensor chip.
附图说明Description of drawings
图1为本发明其中一实施例涉及的基于MEMS工艺的多压力形式压力传感器芯片密封表压型截面图;Fig. 1 is a cross-sectional view of a multi-pressure form pressure sensor chip sealing gauge pressure based on MEMS technology related to one embodiment of the present invention;
图2为本发明其中一实施例涉及的基于MEMS工艺的多压力形式压力传感器芯片表压截面图;Fig. 2 is a cross-sectional view of the gauge pressure of a multi-pressure form pressure sensor chip based on MEMS technology related to one embodiment of the present invention;
图3为为本发明其中一实施例涉及的基于MEMS工艺的多压力形式压力传感器芯片绝压截面图;3 is an absolute pressure sectional view of a multi-pressure form pressure sensor chip based on MEMS technology related to one embodiment of the present invention;
图4为本发明其中一实施例涉及的基于MEMS工艺的多压力形式压力传感器芯片及其制备方法工艺流程图。FIG. 4 is a process flow chart of a MEMS-based multi-pressure form pressure sensor chip and its manufacturing method related to one embodiment of the present invention.
其中:1为P型或N型衬底硅片,2为浅硅杯,3为PSG牺牲层,4为半孔,5为氮化硅层,6为氮化硅质量块,7为牺牲层释放通孔,8为多晶硅,9为热氧化层,10为氮化硅绝缘层,11为多晶电阻,12为金属互连,13为表压芯片压力参考腔,14为键合玻璃片。Among them: 1 is a P-type or N-type substrate silicon wafer, 2 is a shallow silicon cup, 3 is a PSG sacrificial layer, 4 is a half hole, 5 is a silicon nitride layer, 6 is a silicon nitride mass block, and 7 is a sacrificial layer Release through hole, 8 is polysilicon, 9 is thermal oxide layer, 10 is silicon nitride insulating layer, 11 is polycrystalline resistor, 12 is metal interconnection, 13 is gauge pressure chip pressure reference cavity, 14 is bonding glass sheet.
具体实施方式detailed description
为了使本领域技术人员更好的理解本发明的技术方案,下面结合附图1-4进行详细描述本发明的具体实施方式。In order to enable those skilled in the art to better understand the technical solutions of the present invention, the specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings 1-4.
实施例1Example 1
本发明提出一种密封表压MEMS压力传感器芯片,参见图1,包括P型或N型衬底硅片1,形成在衬底硅片1上的浅硅杯2,该浅硅杯2的深度为6-8微米,浅硅杯2中沉积有牺牲层3、例如为PSG牺牲层,牺牲层3释放后形成压力参考腔。该压力传感器芯片包括4层复合膜形成的压力敏感膜,该复合膜包括氮化硅膜5、多晶硅膜8、热氧化膜9、氮化硅绝缘层10,在压力敏感膜朝向浅硅杯一侧,形成有多个质量块6;质量块6的设计有利于防止释放粘连现象,质量块位于压敏电阻应力匹配区域,可提高压力传感器灵敏度和线性度;在复合膜的顶层氮化硅绝缘层10上制备多晶硅电阻层,并经离子注入、刻蚀形成多晶硅压敏电阻11,以形成惠斯通电桥结构。压敏电阻分布在压力敏感膜上张应力与压应力的对称区域;多晶硅电阻制作在复合膜的顶层氮化硅上,氮化硅可以起到屏蔽带电离子的作用,并形成SOI结构,提高了芯片的工作温度范围。还包括离子注入形成欧姆接触浓硼区,淀积金属互连引线12。还包括形成在多晶硅压敏电阻11表面的钝化保护层。The present invention proposes a sealed gauge pressure MEMS pressure sensor chip, referring to Fig. 1, comprising a P-type or N-type substrate silicon chip 1, a shallow silicon cup 2 formed on the substrate silicon chip 1, the depth of the shallow silicon cup 2 6-8 microns, a sacrificial layer 3, such as a PSG sacrificial layer, is deposited in the shallow silicon cup 2, and a pressure reference chamber is formed after the sacrificial layer 3 is released. The pressure sensor chip includes a pressure-sensitive membrane formed by a 4-layer composite membrane. The composite membrane includes a silicon nitride membrane 5, a polysilicon membrane 8, a thermal oxide membrane 9, and a silicon nitride insulating layer 10. When the pressure-sensitive membrane faces a shallow silicon cup On the side, a plurality of mass blocks 6 are formed; the design of the mass blocks 6 is beneficial to prevent the phenomenon of release adhesion, and the mass blocks are located in the stress matching area of the piezoresistor, which can improve the sensitivity and linearity of the pressure sensor; the silicon nitride insulation on the top layer of the composite film A polysilicon resistance layer is prepared on the layer 10, and a polysilicon varistor 11 is formed by ion implantation and etching to form a Wheatstone bridge structure. Varistors are distributed in the symmetrical area of tensile stress and compressive stress on the pressure-sensitive film; polysilicon resistors are made on the top layer of silicon nitride of the composite film, and silicon nitride can shield charged ions and form an SOI structure, improving the The operating temperature range of the chip. It also includes ion implantation to form an ohmic contact boron-concentrated region, and deposits metal interconnection wires 12 . It also includes a passivation protection layer formed on the surface of the polysilicon varistor 11 .
实施例2Example 2
本发明提出一种表压MEMS压力传感器芯片,参见图2,与实施例1相同的结构和部件不再赘述,区别在于:通过ICP深刻蚀工艺,在衬底硅片1上形成表压芯片压力参考腔13,制备表压压力传感器芯片,其中:氮化硅4为ICP刻蚀阻挡层,实现腐蚀自停止。The present invention proposes a gauge pressure MEMS pressure sensor chip. Referring to FIG. 2, the same structure and components as those in Embodiment 1 will not be repeated. Referring to the cavity 13, a gauge pressure sensor chip is prepared, wherein: silicon nitride 4 is an ICP etch barrier layer, which realizes self-stopping of corrosion.
实施例3Example 3
本发明提出一种绝压MEMS真空压力传感器芯片,参见图3,在表压芯片的基础上进行硅-玻璃键合工艺,键合玻璃14至衬底硅片1,形成绝压真空压力参考腔13,可完成绝压压力传感器芯片的制备。与实施例1、2相同的结构和部件不再赘述。The present invention proposes an absolute pressure MEMS vacuum pressure sensor chip, as shown in Figure 3, on the basis of the gauge pressure chip, a silicon-glass bonding process is performed, and the glass 14 is bonded to the substrate silicon wafer 1 to form an absolute pressure vacuum pressure reference cavity 13. The preparation of the absolute pressure sensor chip can be completed. The same structures and components as those in Embodiments 1 and 2 will not be repeated.
实施例4Example 4
针对实施例1-3的MEMS压力传感器芯片,本实施例给出其制备方法,参见图4,本发明提出的基于MEMS工艺的多压力形式压力传感器芯片及其制备方法包括以下步骤:For the MEMS pressure sensor chip of Embodiment 1-3, the present embodiment provides its preparation method, referring to Figure 4, the multi-pressure form pressure sensor chip based on the MEMS process proposed by the present invention and its preparation method include the following steps:
(1)依据压力传感器量程要求确定芯片及压力敏感膜尺寸,采用有限元分析软件确定多层复合膜的应力分布,布置多晶电阻及质量块;(1) Determine the size of the chip and pressure-sensitive membrane according to the range requirements of the pressure sensor, use finite element analysis software to determine the stress distribution of the multilayer composite membrane, and arrange polycrystalline resistors and mass blocks;
(2)P型或N型抛光硅片1进行氧化,光刻并湿法腐蚀出6-8um左右深度的浅硅杯2,作为压力传感器的压力参考腔;(2) P-type or N-type polished silicon wafer 1 is oxidized, and a shallow silicon cup 2 with a depth of about 6-8um is formed by photolithography and wet etching, which is used as a pressure reference cavity for the pressure sensor;
(3)淀积PSG牺牲层3,牺牲层覆盖浅硅杯2,并高出浅硅杯1um左右的厚度;(3) Deposit a PSG sacrificial layer 3, the sacrificial layer covers the shallow silicon cup 2, and is about 1um thicker than the shallow silicon cup;
(4)牺牲层3上刻蚀半孔4;该半孔的刻蚀深度为2-4微米,孔径为1-2微米;(4) half-hole 4 is etched on the sacrificial layer 3; the etching depth of the half-hole is 2-4 microns, and the aperture is 1-2 microns;
(5)牺牲层上PECVD氮化硅层5,氮化硅填满牺牲层半孔4,形成质量块6,并对氮化硅刻蚀形成释放通孔7;其中刻蚀方法例如为干法刻蚀,孔径大约3-4微米;(5) PECVD silicon nitride layer 5 on the sacrificial layer, silicon nitride fills the half hole 4 of the sacrificial layer to form a mass 6, and etches silicon nitride to form a release through hole 7; wherein the etching method is, for example, dry method Etching, the pore size is about 3-4 microns;
(6)采用湿法或干法HF释放牺牲层3,释放出压力传感器的密封参考腔2;(6) The sacrificial layer 3 is released by wet method or dry method HF, and the sealed reference cavity 2 of the pressure sensor is released;
(7)LPCVD多晶硅8,热氧化生成氧化硅9,再通过PECVD工艺淀积氮化硅绝缘层10,形成压力传感器的敏感膜,封闭释放通孔7以形成压力参考腔,并1000-1100℃退火释放薄膜应力;其中第一氮化硅膜5、多晶硅膜8、氧化硅膜9、第二氮化硅膜10的厚度之比为1~2:0.5~1.5:4~8:1~2,优选为1.5:1:6:1.5;厚度由压力传感器芯片的量程决定;(7) LPCVD polysilicon 8, thermal oxidation to generate silicon oxide 9, and then deposit a silicon nitride insulating layer 10 by PECVD process to form a sensitive film of the pressure sensor, seal the release through hole 7 to form a pressure reference chamber, and heat it at 1000-1100 ° C Annealing releases film stress; wherein the thickness ratio of the first silicon nitride film 5, the polysilicon film 8, the silicon oxide film 9, and the second silicon nitride film 10 is 1-2:0.5-1.5:4-8:1-2 , preferably 1.5:1:6:1.5; the thickness is determined by the range of the pressure sensor chip;
(8)LPCVD多晶硅薄膜,离子注入进行掺杂,刻蚀出压敏电阻11,形成惠斯通电桥结构;(8) LPCVD polysilicon thin film, doping by ion implantation, etching the piezoresistor 11 to form a Wheatstone bridge structure;
(9)离子注入形成欧姆接触浓硼区,淀积金属互连引线12,测试、切割后完成密封表压压力传感器芯片的制备。(9) Ion implantation forms an ohmic contact boron-concentrated region, deposits metal interconnection leads 12, and completes the preparation of a sealed gauge pressure sensor chip after testing and cutting.
对于表压压力传感器芯片,还包括以下步骤:For gauge pressure sensor chips, the following steps are also included:
通过ICP深刻蚀工艺,第一氮化硅膜5为ICP刻蚀阻挡层,实现腐蚀自停止,形成表压芯片压力参考腔13。Through the ICP deep etching process, the first silicon nitride film 5 is an ICP etching barrier layer, which realizes self-stopping of etching, and forms a pressure reference chamber 13 of a gauge pressure chip.
对于绝压真空压力传感器芯片,进一步地包括以下步骤:For the absolute pressure vacuum pressure sensor chip, further include the following steps:
在表压芯片的基础上进行硅-玻璃键合工艺,将玻璃片14键合到衬底硅片1上,形成绝压真空压力参考腔,可完成绝压压力传感器芯片的制备。The silicon-glass bonding process is carried out on the basis of the gauge pressure chip, and the glass sheet 14 is bonded to the substrate silicon chip 1 to form an absolute pressure vacuum pressure reference cavity, which can complete the preparation of the absolute pressure sensor chip.
需要说明的是,上述实施例属于优选实施例,所涉及的模块并不一定是本申请所必须的。本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。It should be noted that the above embodiments are preferred embodiments, and the involved modules are not necessarily required by this application. Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
以上对本申请进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The application has been described in detail above, and specific examples have been used in this paper to illustrate the principles and implementation methods of the application. The descriptions of the above embodiments are only used to help understand the method and core idea of the application; meanwhile, for this field Those of ordinary skill in the art, based on the idea of this application, will have changes in the specific implementation and scope of application. In summary, the content of this specification should not be construed as limiting the application.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510353479.1A CN105000529B (en) | 2015-06-24 | 2015-06-24 | Pressure sensor chip based on MEMS (Micro Electro Mechanical System) technology and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510353479.1A CN105000529B (en) | 2015-06-24 | 2015-06-24 | Pressure sensor chip based on MEMS (Micro Electro Mechanical System) technology and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105000529A CN105000529A (en) | 2015-10-28 |
CN105000529B true CN105000529B (en) | 2017-02-01 |
Family
ID=54373454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510353479.1A Active CN105000529B (en) | 2015-06-24 | 2015-06-24 | Pressure sensor chip based on MEMS (Micro Electro Mechanical System) technology and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105000529B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318218B (en) * | 2018-05-14 | 2024-01-16 | 中国空气动力研究与发展中心低速空气动力研究所 | Flexible film type multi-measuring-point pressure measuring belt for low-speed wind tunnel |
CN112393838A (en) * | 2021-01-19 | 2021-02-23 | 南京高华科技股份有限公司 | Pressure sensor with wafer-level self-sealing vacuum cavity structure and preparation method thereof |
CN113401861B (en) * | 2021-05-21 | 2024-02-23 | 成都凯天电子股份有限公司 | Multi-range integrated composite diaphragm type MEMS pressure sensor |
CN115615587B (en) * | 2022-12-20 | 2023-03-07 | 苏州敏芯微电子技术股份有限公司 | Pressure sensor |
CN119091154A (en) * | 2024-10-30 | 2024-12-06 | 江苏永鼎股份有限公司 | A method for optimizing the aperture of VCSEL chips by wet oxidation using dynamic adjustment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201653604U (en) * | 2010-04-09 | 2010-11-24 | 无锡芯感智半导体有限公司 | Pressure sensor |
CN102419227A (en) * | 2011-09-13 | 2012-04-18 | 河南省电力公司信阳供电公司 | Novel micro-pressure sensor chip |
CN103645000A (en) * | 2013-11-22 | 2014-03-19 | 中航(重庆)微电子有限公司 | High-temperature pressure sensor and preparation method thereof |
CN104071744A (en) * | 2014-06-24 | 2014-10-01 | 上海天英微系统科技有限公司 | Pressure sensor and making method thereof |
-
2015
- 2015-06-24 CN CN201510353479.1A patent/CN105000529B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201653604U (en) * | 2010-04-09 | 2010-11-24 | 无锡芯感智半导体有限公司 | Pressure sensor |
CN102419227A (en) * | 2011-09-13 | 2012-04-18 | 河南省电力公司信阳供电公司 | Novel micro-pressure sensor chip |
CN103645000A (en) * | 2013-11-22 | 2014-03-19 | 中航(重庆)微电子有限公司 | High-temperature pressure sensor and preparation method thereof |
CN104071744A (en) * | 2014-06-24 | 2014-10-01 | 上海天英微系统科技有限公司 | Pressure sensor and making method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105000529A (en) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103604538B (en) | MEMS pressure sensor chip and its manufacture method based on SOI technology | |
JP3462488B2 (en) | Method of manufacturing diaphragm-based sensor and apparatus configured using the same | |
CN105000529B (en) | Pressure sensor chip based on MEMS (Micro Electro Mechanical System) technology and manufacturing method thereof | |
US7998777B1 (en) | Method for fabricating a sensor | |
CN104931163B (en) | A kind of double soi structure MEMS pressure sensor chips and preparation method thereof | |
CN105444931B (en) | SOI presser sensor chips based on sacrificial layer technology and its manufacturing method | |
CA2777309C (en) | Device for measuring environmental forces and method of fabricating the same | |
US20070052046A1 (en) | Pressure sensors and methods of making the same | |
CN108254106B (en) | Preparation method of silicon-glass-silicon four-layer structure resonant MEMS pressure sensor | |
JP2015515609A (en) | Catheter die and manufacturing method thereof | |
CN104535253A (en) | High temperature pressure sensor and process method thereof | |
CN101825505B (en) | MEMS pressure sensitive chip and manufacturing method thereof | |
CN104297520A (en) | Monolithic embedded integrated silicon acceleration and pressure composite sensor | |
CN101988859A (en) | Low pressure sensor device with high accuracy and high sensitivity | |
JP2015511006A (en) | Pressure sensor and corresponding sensor manufacturing method | |
CN105021328B (en) | The compatible piezoresistive pressure sensor and preparation method thereof of CMOS technology | |
CN104266781A (en) | Piezoresistive pressure sensor and manufacturing method thereof | |
CN106744651A (en) | A kind of condenser type microelectronics baroceptor and preparation method thereof | |
CN114235232A (en) | A kind of MEMS pressure sensor and preparation method thereof | |
CN205317381U (en) | Sensitive chip of SOI pressure based on sacrifice layer technique | |
CN204831651U (en) | Gauge pressure pressure sensor chip is sealed up to polycrystalline silicon pressure drag formula | |
CN111174957A (en) | Pressure sensor and preparation method thereof | |
CN107957304A (en) | MEMS high-temp pressure sensors based on two-dimensional electron gas and preparation method thereof | |
CN113483926B (en) | Explosion field MEMS piezoresistive pressure sensor | |
CN104697700B (en) | A kind of piezoresistive pressure gage chip structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder |
Address after: No. 100-17 Dicui Road, Liyuan Development Zone, Wuxi City, Jiangsu Province, 214000 Patentee after: WUXI SENCOCH SEMICONDUCTOR Co.,Ltd. Address before: Room 10-225, Hujing Science and Technology Park, No. 288 Shibawan Road (Meiyuan Jikangli), Binhu District, Wuxi City, Jiangsu Province, 214064 Patentee before: WUXI SENCOCH SEMICONDUCTOR Co.,Ltd. |
|
CP02 | Change in the address of a patent holder | ||
CP03 | Change of name, title or address |
Address after: No. 100-17 Dicui Road, Liyuan Development Zone, Wuxi City, Jiangsu Province, 214000 Patentee after: Wuxi Xingan Intelligent Technology Co.,Ltd. Country or region after: China Address before: No. 100-17 Dicui Road, Liyuan Development Zone, Wuxi City, Jiangsu Province, 214000 Patentee before: WUXI SENCOCH SEMICONDUCTOR Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |