[go: up one dir, main page]

CN104952715B - The forming method of semiconductor structure - Google Patents

The forming method of semiconductor structure Download PDF

Info

Publication number
CN104952715B
CN104952715B CN201410113739.3A CN201410113739A CN104952715B CN 104952715 B CN104952715 B CN 104952715B CN 201410113739 A CN201410113739 A CN 201410113739A CN 104952715 B CN104952715 B CN 104952715B
Authority
CN
China
Prior art keywords
control gate
layer
material layer
patterned
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410113739.3A
Other languages
Chinese (zh)
Other versions
CN104952715A (en
Inventor
黄芳
金龙灿
宋长庚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201410113739.3A priority Critical patent/CN104952715B/en
Publication of CN104952715A publication Critical patent/CN104952715A/en
Application granted granted Critical
Publication of CN104952715B publication Critical patent/CN104952715B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/6891Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
    • H10D30/6893Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode wherein the floating gate has multiple non-connected parts, e.g. multi-particle floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种半导体结构的形成方法,包括:提供半导体衬底,所述半导体衬底上形成有若干浮栅结构及位于所述浮栅结构顶部表面的控制栅介质层;在所述半导体衬底上形成具有连续图形的第一图形化控制栅材料层,所述第一图形化控制栅材料层覆盖若干浮栅结构上的部分浮栅介质层;在所述半导体衬底上形成掩膜层,所述掩膜层暴露出位于浮栅结构上方的部分第一图形化控制栅材料层及位于所述部分第一图形化控制栅材料层两侧的半导体衬底;以所述掩膜层为掩膜,去除所述未被掩膜层覆盖的第一图形化控制栅材料层,形成相互断开的控制栅;去除所述掩膜层;在所述浮栅结构、控制栅介质层和控制栅的侧壁表面形成侧墙。所述方法可以提高闪存的可靠性。

A method for forming a semiconductor structure, comprising: providing a semiconductor substrate, on which a plurality of floating gate structures and a control gate dielectric layer located on the top surface of the floating gate structures are formed; A first patterned control gate material layer with a continuous pattern, the first patterned control gate material layer covers part of the floating gate dielectric layer on several floating gate structures; a mask layer is formed on the semiconductor substrate, the The mask layer exposes part of the first patterned control gate material layer above the floating gate structure and the semiconductor substrate on both sides of the part of the first patterned control gate material layer; using the mask layer as a mask, removing the first patterned control gate material layer not covered by the mask layer to form mutually disconnected control gates; removing the mask layer; The wall surfaces form side walls. The method can improve the reliability of the flash memory.

Description

半导体结构的形成方法Formation method of semiconductor structure

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种半导体结构的形成方法。The invention relates to the technical field of semiconductors, in particular to a method for forming a semiconductor structure.

背景技术Background technique

在目前的半导体产业中,集成电路产品主要可分为三大类型:逻辑、存储器和模拟电路,其中存储器件在集成电路产品中占了相当大的比例,如RAM(随机存储器)、DRAM(动态随机存储器)、ROM(只读存储器)、EPROM(可擦除可编程只读存储器)、FLASH(快闪存储器)和FRAM(铁电存储器)等。存储器中的闪存器件的发展尤为迅速。它的主要特点是在不加电的情况下能长期保持存储的信息,具有集成度高、较快的存取速度和易于擦除等多项优点,因而在微机、自动化控制等多项领域得到了广泛的应用。In the current semiconductor industry, integrated circuit products can be mainly divided into three types: logic, memory and analog circuits, among which storage devices account for a considerable proportion of integrated circuit products, such as RAM (random access memory), DRAM (dynamic Random access memory), ROM (read-only memory), EPROM (erasable programmable read-only memory), FLASH (flash memory) and FRAM (ferroelectric memory), etc. The development of flash memory devices in memory is particularly rapid. Its main feature is that it can keep the stored information for a long time without power on. It has many advantages such as high integration, fast access speed and easy erasure, so it has been widely used in many fields such as microcomputer and automatic control. a wide range of applications.

闪存结构一般包括:位于衬底表面的浮栅介质层、位于浮栅介质层表面的浮栅、位于浮栅极表面的控制栅介质层、位于所述控制栅介质层表面的控制栅。随着集成电路集成度的不断提高,半导体的工艺节点也随之下降,由于受到光刻分辨率的限制,单次图形化工艺无法形成具有较高形貌质量的控制栅。为了提高形成的控制栅的形貌质量,通常会采用双重图形化方法形成所述控制栅。具体的,所述双重图形化方法包括:在所述控制栅介质层表面形成控制栅材料层之后,对所述控制栅材料层进行第一图形化,形成覆盖多个存储单元的连续的控制栅;然后对所述连续的控制栅进行第二图形化,使相邻存储单元之间的控制栅断开,形成独立的控制栅。The flash memory structure generally includes: a floating gate dielectric layer on the surface of the substrate, a floating gate on the surface of the floating gate dielectric layer, a control gate dielectric layer on the surface of the floating gate, and a control gate on the surface of the control gate dielectric layer. With the continuous improvement of the integration level of integrated circuits, the process nodes of semiconductors are also reduced. Due to the limitation of lithography resolution, a single patterning process cannot form a control gate with high morphology quality. In order to improve the topographical quality of the formed control gate, the control gate is usually formed by a double patterning method. Specifically, the double patterning method includes: after forming a control gate material layer on the surface of the control gate dielectric layer, performing first patterning on the control gate material layer to form a continuous control gate covering multiple memory cells. and then performing second patterning on the continuous control gates, so that the control gates between adjacent memory cells are disconnected to form independent control gates.

现有技术形成的闪存存储器经常会出现短路等问题,闪存存储器的可靠性有待进一步的提高。The flash memory formed by the prior art often has problems such as short circuit, and the reliability of the flash memory needs to be further improved.

发明内容Contents of the invention

本发明解决的问题是提供一种半导体结构的形成方法,可以提高闪存器件的可靠性。The problem solved by the invention is to provide a method for forming a semiconductor structure, which can improve the reliability of flash memory devices.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供半导体衬底,所述半导体衬底上形成有若干浮栅结构及位于所述浮栅结构顶部表面的控制栅介质层,所述浮栅结构包括位于半导体衬底表面的浮栅介质层和位于所述浮栅介质层表面的浮栅;在所述半导体衬底上形成具有连续图形的第一图形化控制栅材料层,所述第一图形化控制栅材料层覆盖若干浮栅结构上的部分浮栅介质层;在所述半导体衬底上形成掩膜层,所述掩膜层暴露出位于浮栅结构上方的部分第一图形化控制栅材料层及位于所述部分第一图形化控制栅材料层两侧的半导体衬底;以所述掩膜层为掩膜,去除所述未被掩膜层覆盖的第一图形化控制栅材料层,形成相互断开的控制栅;去除所述掩膜层;在所述浮栅结构、控制栅介质层和控制栅的侧壁表面形成侧墙。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising: providing a semiconductor substrate, on which a plurality of floating gate structures and a control gate dielectric layer located on the top surface of the floating gate structures are formed, The floating gate structure includes a floating gate dielectric layer on the surface of the semiconductor substrate and a floating gate on the surface of the floating gate dielectric layer; forming a first patterned control gate material layer with a continuous pattern on the semiconductor substrate, The first patterned control gate material layer covers part of the floating gate dielectric layer on several floating gate structures; a mask layer is formed on the semiconductor substrate, and the mask layer exposes part of the first floating gate structure above the floating gate structure. A patterned control gate material layer and semiconductor substrates located on both sides of the part of the first patterned control gate material layer; using the mask layer as a mask to remove the first pattern not covered by the mask layer Thinning the control gate material layer to form mutually disconnected control gates; removing the mask layer; forming sidewalls on the floating gate structure, the control gate dielectric layer and the side wall surfaces of the control gate.

可选的,采用各向异性刻蚀工艺去除所述暴露的第一图形化控制栅材料层。Optionally, an anisotropic etching process is used to remove the exposed first patterned control gate material layer.

可选的,所述各向异性刻蚀工艺为干法刻蚀工艺。Optionally, the anisotropic etching process is a dry etching process.

可选的,所述干法刻蚀工艺对第一图形化控制栅材料层的刻蚀速率大于对控制栅介质层的刻蚀速率。Optionally, the etching rate of the first patterned control gate material layer in the dry etching process is greater than the etching rate of the control gate dielectric layer.

可选的,采用等离子体刻蚀工艺刻蚀所述控制栅。Optionally, the control gate is etched using a plasma etching process.

可选的,所述等离子体刻蚀工艺采用的刻蚀气体包括Cl2、HBr,载气为He,其中,Cl2的流量为80sccm~2000sccm、HBr的流量为50sccm~2000sccm,He的流量为100sccm~2000sccm。Optionally, the etching gas used in the plasma etching process includes Cl 2 and HBr, and the carrier gas is He, wherein the flow rate of Cl 2 is 80 sccm-2000 sccm, the flow rate of HBr is 50 sccm-2000 sccm, and the flow rate of He is 100sccm~2000sccm.

可选的,所述掩膜层还暴露出部分未被第一图形化控制栅材料层覆盖的控制栅介质层的表面。Optionally, the mask layer also exposes part of the surface of the control gate dielectric layer not covered by the first patterned control gate material layer.

可选的,所述控制栅介质层的材料包括位于浮栅表面的第一氧化硅层、位于第一氧化硅层表面的氮化硅层、位于氮化硅层表面的第二氧化硅层。Optionally, the material of the control gate dielectric layer includes a first silicon oxide layer on the surface of the floating gate, a silicon nitride layer on the surface of the first silicon oxide layer, and a second silicon oxide layer on the surface of the silicon nitride layer.

可选的,所述第一图形化控制栅材料层的形成方法包括:在所述半导体衬底表面形成控制栅材料层,所述控制栅材料层覆盖控制栅介质层;在所述控制栅材料层表面形成第一图形化掩膜层;以所述第一图形化掩膜层为掩膜刻蚀所述控制栅材料层,形成第一图形化控制栅材料层;去除所述第一图形化掩膜层。Optionally, the method for forming the first patterned control gate material layer includes: forming a control gate material layer on the surface of the semiconductor substrate, the control gate material layer covering the control gate dielectric layer; Form a first patterned mask layer on the surface of the layer; use the first patterned mask layer as a mask to etch the control gate material layer to form a first patterned control gate material layer; remove the first patterned mask layer.

可选的,所述控制栅材料层的材料为多晶硅。Optionally, the material of the control gate material layer is polysilicon.

可选的,位于所述控制栅介质层表面的第一图形化控制栅材料层的厚度为1200埃~1700埃。Optionally, the first patterned control gate material layer on the surface of the control gate dielectric layer has a thickness of 1200 angstroms to 1700 angstroms.

可选的,所述浮栅的材料为多晶硅。Optionally, the material of the floating gate is polysilicon.

可选的,所述浮栅的厚度为900埃~1300埃。Optionally, the floating gate has a thickness of 900 angstroms to 1300 angstroms.

可选的,所述浮栅介质层的材料包括氧化硅、氮氧化硅或氧化铪。Optionally, the material of the floating gate dielectric layer includes silicon oxide, silicon oxynitride or hafnium oxide.

可选的,所述侧墙的材料包括氧化硅、氮化硅或氮氧化硅中的一种或几种。Optionally, the material of the sidewall includes one or more of silicon oxide, silicon nitride or silicon oxynitride.

可选的,所述侧墙的形成方法包括:在所述半导体衬底表面、控制栅介质层顶部表面、控制栅顶部表面、浮栅介质层侧壁表面、浮栅侧壁表面、控制栅介质层侧壁表面和控制栅侧壁表面形成侧墙材料层;采用无掩膜刻蚀工艺,去除位于控制栅顶部表面、控制栅介质层顶部表面以及半导体衬底表面的侧墙材料层,形成覆盖浮栅介质层、浮栅、控制栅介质层、控制栅的侧壁表面的侧墙。Optionally, the forming method of the sidewall includes: on the surface of the semiconductor substrate, the top surface of the control gate dielectric layer, the top surface of the control gate, the sidewall surface of the floating gate dielectric layer, the sidewall surface of the floating gate, the control gate dielectric layer layer sidewall surface and control gate sidewall surface to form a sidewall material layer; using a maskless etching process to remove the sidewall material layer located on the top surface of the control gate, the top surface of the control gate dielectric layer and the surface of the semiconductor substrate to form a covering The floating gate dielectric layer, the floating gate, the control gate dielectric layer, and the side wall of the side wall surface of the control gate.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明的技术方案中,在半导体衬底上形成浮栅结构之后,在半导体衬底上形成具有连续图形的第一图形化控制栅材料层,所述第一图形化控制栅材料层覆盖若干浮栅结构上的部分浮栅介质层;然后,在所述半导体衬底上形成掩膜层,所述掩膜层暴露出位于浮栅结构上方的部分第一图形化控制栅材料层及位于所述部分第一图形化控制栅材料层两侧的半导体衬底;以所述掩膜层为掩膜,去除所述未被掩膜层覆盖的第一图形化控制栅材料层后,再在所述浮栅结构、控制栅介质层和控制栅的侧壁表面形成侧墙。所述掩膜层的开口较大,所以所述掩膜层不仅暴露出部分第一图形化控制栅材料层还暴露出位于所述部分第一图形化控制栅材料层两侧的半导体衬底,在去除所述未被覆盖的第一图形化控制栅材料层时,由于所述第一图形化控制栅材料层可以完全暴露在刻蚀气体中,从而使得所述未被覆盖的第一图形化控制栅材料层能够完全被去除,使得最终形成的控制栅之间完全断开,避免不同存储单元之间的控制栅之间发生短路等问题,从而可以提高形成的闪存的可靠性。In the technical solution of the present invention, after the floating gate structure is formed on the semiconductor substrate, a first patterned control gate material layer with a continuous pattern is formed on the semiconductor substrate, and the first patterned control gate material layer covers several floating gates. A part of the floating gate dielectric layer on the gate structure; then, a mask layer is formed on the semiconductor substrate, and the mask layer exposes a part of the first patterned control gate material layer above the floating gate structure and the Part of the semiconductor substrate on both sides of the first patterned control gate material layer; using the mask layer as a mask, after removing the first patterned control gate material layer not covered by the mask layer, and then on the The floating gate structure, the control gate dielectric layer and the side wall surfaces of the control gate form side walls. The opening of the mask layer is relatively large, so the mask layer not only exposes part of the first patterned control gate material layer but also exposes the semiconductor substrate on both sides of the part of the first patterned control gate material layer, When removing the uncovered first patterned control gate material layer, since the first patterned control gate material layer can be completely exposed to the etching gas, the uncovered first patterned The control gate material layer can be completely removed, so that the finally formed control gates are completely disconnected, avoiding problems such as short circuits between control gates between different memory cells, thereby improving the reliability of the formed flash memory.

进一步的,可以采用各向异性的干法刻蚀工艺去除未被掩膜层覆盖的第一图形化控制栅材料层时采用的刻蚀工艺对第一图形化控制栅材料层的刻蚀速率大于对控制栅介质层的刻蚀速率,从而在去除所述第一图形化控制栅材料层的过程中,不会损伤控制栅介质层,及所述控制栅介质层下方的浮栅。Further, an anisotropic dry etching process can be used to remove the first patterned control gate material layer not covered by the mask layer, and the etching rate of the first patterned control gate material layer is greater than The etch rate of the control gate dielectric layer, so that in the process of removing the first patterned control gate material layer, the control gate dielectric layer and the floating gate below the control gate dielectric layer will not be damaged.

附图说明Description of drawings

图1至图4是本发明的一个实施例的半导体结构形成过程的结构示意图;1 to 4 are structural schematic diagrams of a process for forming a semiconductor structure according to an embodiment of the present invention;

图5至图14是本发明的另一个实施例的半导体结构形成过程的结构示意图。5 to 14 are structural schematic diagrams of the process of forming a semiconductor structure according to another embodiment of the present invention.

具体实施方式detailed description

如背景技术中所述,现有技术形成的闪存经常会出现失效或短路等问题。As mentioned in the background art, the flash memory formed in the prior art often has problems such as failure or short circuit.

本发明提供一个半导体结构的形成过程的实施例,请参考图1至图4,为所述实施例的半导体形成过程的结构示意图。The present invention provides an embodiment of the formation process of a semiconductor structure. Please refer to FIG. 1 to FIG. 4 , which are structural schematic diagrams of the semiconductor formation process of the embodiment.

请参考图1,在浮栅10上进行第一图形化之后,形成连续的控制栅20之后的俯视示意图。图1中,未示出控制栅介质层、半导体衬底等。Please refer to FIG. 1 , which is a schematic top view of a continuous control gate 20 after the first patterning is performed on the floating gate 10 . In FIG. 1 , the control gate dielectric layer, semiconductor substrate, etc. are not shown.

所述浮栅极10平行排列,所述连续的控制栅20覆盖若干浮栅10,由于所述控制栅20分别属于不同的存储单元,后续需要对所述控制栅20进行第二图形化,去除图1中虚框部分的部分控制栅21,以将连续的控制栅20断开,从而避免不同存储单元的控制栅之间发生短路等问题。The floating gates 10 are arranged in parallel, and the continuous control gates 20 cover several floating gates 10. Since the control gates 20 belong to different memory cells, the second patterning of the control gates 20 is required to remove Part of the control gates 21 in the dotted frame in FIG. 1 is used to disconnect the continuous control gates 20, so as to avoid problems such as short circuits between control gates of different memory cells.

请参考图2,为图1沿割线AA’的剖面示意图。Please refer to FIG. 2 , which is a schematic cross-sectional view of FIG. 1 along the secant line AA'.

所述半导体衬底30上形成有浮栅介质层11、浮栅10、控制栅介质层22,以及控制栅21。A floating gate dielectric layer 11 , a floating gate 10 , a control gate dielectric layer 22 , and a control gate 21 are formed on the semiconductor substrate 30 .

请参考图3,在所述浮栅介质层11、浮栅10、控制栅介质层22,以及控制栅21侧壁表面形成侧墙40。Referring to FIG. 3 , sidewalls 40 are formed on the floating gate dielectric layer 11 , the floating gate 10 , the control gate dielectric layer 22 , and the sidewall surfaces of the control gate 21 .

通常,所述侧墙40是在闪存器件的外围电路中的晶体管形成侧墙的同时,形成所述侧墙40。Usually, the spacer 40 is formed when the transistors in the peripheral circuit of the flash memory device form the spacer.

请参考图4,进行第二图形化处理,去除所述控制栅21(请参考图3)。Referring to FIG. 4 , a second patterning process is performed to remove the control gate 21 (please refer to FIG. 3 ).

在半导体衬底上形成掩膜层,覆盖控制栅21以外的其他区域,然后对所述控制栅21进行刻蚀,去除所述控制栅21。A mask layer is formed on the semiconductor substrate to cover other areas except the control gate 21 , and then the control gate 21 is etched to remove the control gate 21 .

由于形成所述侧墙40之后,侧墙21保护所述控制栅21的侧壁,在刻蚀所述控制栅21的过程中,随着控制栅21厚度的下降,在侧墙40之间会出现凹槽,由于所述控制栅21的宽度较小,所述凹槽的深宽比会逐渐增加,在凹槽底部的刻蚀气体浓度会小于凹槽顶部的刻蚀气体浓度,所以在刻蚀所述控制栅21至所述控制栅介质层22表面之后,会在所述凹槽底部侧壁及顶角位置处残留部分没有被去除的控制栅材料21a,所述残留的控制栅材料21a可能使的所述控制栅20(请参考图1)仍然保持连续状态,后续形成存储器之后,所述存储器的相邻存储单元之间就会发生短路问题,导致存储器失效。Since the sidewalls 21 protect the sidewalls of the control gate 21 after the formation of the spacers 40, during the process of etching the control gate 21, as the thickness of the control gate 21 decreases, there will be gaps between the sidewalls 40. A groove appears, and since the width of the control gate 21 is small, the aspect ratio of the groove will gradually increase, and the concentration of the etching gas at the bottom of the groove will be smaller than the concentration of the etching gas at the top of the groove. After etching the control gate 21 to the surface of the control gate dielectric layer 22, part of the control gate material 21a that has not been removed will remain at the bottom sidewall and top corner of the groove, and the remaining control gate material 21a It is possible that the control gate 20 (please refer to FIG. 1 ) remains in a continuous state. After the memory is subsequently formed, a short circuit will occur between adjacent memory cells of the memory, resulting in failure of the memory.

为了解决上述问题,本发明的另一实施例中,提出了半导体结构的另一种形成方法,在去除部分控制栅之后,再形成侧墙。In order to solve the above problems, in another embodiment of the present invention, another method for forming the semiconductor structure is proposed. After removing part of the control gate, the spacer is formed.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

请参考图5,提供半导体衬底100,在所述半导体衬底100上形成浮栅结构,所述浮栅结构包括位于半导体衬底100表面的浮栅介质层201和位于所述浮栅介质层201表面的浮栅202。Please refer to FIG. 5 , a semiconductor substrate 100 is provided, and a floating gate structure is formed on the semiconductor substrate 100. The floating gate structure includes a floating gate dielectric layer 201 on the surface of the semiconductor substrate 100 and a floating gate dielectric layer on the surface of the floating gate dielectric layer. The floating gate 202 on the surface of 201.

形成所述浮栅结构的形成方法包括:在所述半导体衬底100表面依次形成浮栅介质材料层和位于所述浮栅介质材料层表面的浮栅材料层;在所浮栅材料层表面形成掩膜层,所述掩膜层定义出后续形成的浮栅结构的尺寸和位置;以所述掩膜层为掩膜,对所述浮栅材料层、浮栅介质材料层进行刻蚀,形成浮栅结构。The forming method for forming the floating gate structure includes: sequentially forming a floating gate dielectric material layer and a floating gate material layer on the surface of the floating gate dielectric material layer on the surface of the semiconductor substrate 100; forming a floating gate material layer on the surface of the floating gate material layer A mask layer, the mask layer defines the size and position of the subsequently formed floating gate structure; using the mask layer as a mask, the floating gate material layer and the floating gate dielectric material layer are etched to form floating gate structure.

所述浮栅介质层201的材料为氧化硅、氮氧化硅等氧化物或氧化铪等高K介质材料。The material of the floating gate dielectric layer 201 is an oxide such as silicon oxide, silicon oxynitride, or a high-K dielectric material such as hafnium oxide.

所述浮栅202的材料为多晶硅。所述浮栅202的厚度为900埃~1300埃。The material of the floating gate 202 is polysilicon. The thickness of the floating gate 202 is 900 angstroms to 1300 angstroms.

本实施例中,在半导体衬底100上形成若干平行排列的浮栅结构,作为闪存的多个存储单元的浮栅结构。In this embodiment, several floating gate structures arranged in parallel are formed on the semiconductor substrate 100 as the floating gate structures of multiple memory cells of the flash memory.

请参考图6,在所述浮栅202表面形成控制栅介质层203。Referring to FIG. 6 , a control gate dielectric layer 203 is formed on the surface of the floating gate 202 .

形成所述控制栅介质层203的方法包括:在所述半导体衬底100表面、浮栅结构表面形成控制栅介质材料层;刻蚀所述控制栅介质材料层,形成位于浮栅202表面的控制栅介质层203。The method for forming the control gate dielectric layer 203 includes: forming a control gate dielectric material layer on the surface of the semiconductor substrate 100 and the surface of the floating gate structure; etching the control gate dielectric material layer to form a control gate on the surface of the floating gate 202. gate dielectric layer 203 .

本实施例中,所述控制栅介质材料层的为ONO堆叠结构,包括第一氧化硅层、位于第一氧化硅层表面的氮化硅层、位于氮化硅层表面的第二氧化硅层。In this embodiment, the control gate dielectric material layer is an ONO stack structure, including a first silicon oxide layer, a silicon nitride layer on the surface of the first silicon oxide layer, and a second silicon oxide layer on the surface of the silicon nitride layer. .

所述控制栅介质层用于隔离后续形成的控制栅与浮栅202。The control gate dielectric layer is used to isolate the subsequently formed control gate and the floating gate 202 .

请参考图7,在所述控制栅介质层203表面和半导体衬底100表面形成第一图形化控制栅材料层204。图7为形成所述第一图形化控制栅材料层204之后的俯视示意图。Referring to FIG. 7 , a first patterned control gate material layer 204 is formed on the surface of the control gate dielectric layer 203 and the surface of the semiconductor substrate 100 . FIG. 7 is a schematic top view after forming the first patterned control gate material layer 204 .

为了提高最终形成的控制栅的形貌质量,本实施例中,采用双重图形化工艺形成所述控制栅,具体包括:在半导体衬底100和浮栅结构上形成控制栅材料层之后,对所述控制栅材料层进行第一图形化处理,形成第一图形化控制栅材料层204;在对所述第一图形化控制栅材料层204进行第二图形化处理,形成最终的控制栅。与单次图形化形成控制栅相比,采用双重图形化工艺形成所述控制栅,可以降低单次图形化过程的难度,提高形成的控制栅的形貌质量。In order to improve the topographic quality of the finally formed control gate, in this embodiment, a double patterning process is used to form the control gate, which specifically includes: after forming a control gate material layer on the semiconductor substrate 100 and the floating gate structure, forming the control gate The first patterning treatment is performed on the control gate material layer to form the first patterned control gate material layer 204; the second patterning treatment is performed on the first patterned control gate material layer 204 to form the final control gate. Compared with forming the control gate by single-patterning, the formation of the control gate by a double-patterning process can reduce the difficulty of the single-patterning process and improve the shape quality of the formed control gate.

形成所述第一图形化控制栅材料层204的方法包括:在所述半导体衬底100表面形成控制栅材料层,所述控制栅材料层覆盖控制栅介质层203;在所述控制栅材料层表面形成第一图形化掩膜层;以所述第一图形化掩膜层为掩膜刻蚀所述控制栅材料层,形成第一图形化控制栅材料层204。The method for forming the first patterned control gate material layer 204 includes: forming a control gate material layer on the surface of the semiconductor substrate 100, the control gate material layer covering the control gate dielectric layer 203; A first patterned mask layer is formed on the surface; the control gate material layer is etched using the first patterned mask layer as a mask to form a first patterned control gate material layer 204 .

所述控制栅材料层的材料为多晶硅。The material of the control gate material layer is polysilicon.

所述第一图形化控制栅材料层204覆盖多个浮栅结构上方的部分控制栅介质层203。本实施例中,所述第一图形化控制栅材料层204的图形为一个连续图形,后续需要通过第二图形化工艺,将所述第一图形化控制栅材料层204断开,形成独立的控制栅。位于所述控制栅介质层203表面的第一图形化控制栅材料层204的厚度为1200埃~1700埃。The first patterned control gate material layer 204 covers part of the control gate dielectric layer 203 above the floating gate structures. In this embodiment, the pattern of the first patterned control gate material layer 204 is a continuous pattern, and the second patterning process is required to disconnect the first patterned control gate material layer 204 to form an independent control grid. The first patterned control gate material layer 204 located on the surface of the control gate dielectric layer 203 has a thickness of 1200 angstroms to 1700 angstroms.

本实施例中,图7中虚线框内的部分第一图形化控制栅材料层204a是需要去除的部分,以使得所述第一图形化控制栅材料层204被断开,形成独立的控制栅极。在本发明的其他所述例中,所述第一图形化控制栅材料层204被去除的部分还可以是其他位置,可以根据实际形成的闪存器件的要求,调整所述断开处的位置。In this embodiment, part of the first patterned control gate material layer 204a within the dotted line box in FIG. pole. In other examples of the present invention, the removed part of the first patterned control gate material layer 204 may also be in other positions, and the position of the disconnection can be adjusted according to the requirements of the actually formed flash memory device.

请参考图8,为沿图7中割线BB’的剖面示意图。Please refer to FIG. 8 , which is a schematic cross-sectional view along the secant line BB' in FIG. 7 .

请参考图9,在所述半导体衬底100(请参考图7)上形成第二图形化掩膜层300,所述第二图形化掩膜层300暴露出位于控制栅介质层上的部分第一图形化控制栅材料层204a及所述第一图形化控制栅材料层204a两侧的部分半导体衬底100。图10为沿图9中割线CC’的剖面示意图。Referring to FIG. 9 , a second patterned mask layer 300 is formed on the semiconductor substrate 100 (please refer to FIG. 7 ), and the second patterned mask layer 300 exposes a portion of the second layer located on the control gate dielectric layer. A patterned control gate material layer 204a and part of the semiconductor substrate 100 on both sides of the first patterned control gate material layer 204a. Fig. 10 is a schematic cross-sectional view along line CC' in Fig. 9 .

本实施例中,所述第二图形化掩膜层300的开口较大,暴露出第一图形化控制栅材料层204a及其两侧的半导体衬底100,还暴露出相邻第一图形化控制栅材料层204a之间的浮栅202表面的控制栅介质层203。In this embodiment, the opening of the second patterned mask layer 300 is relatively large, exposing the first patterned control gate material layer 204a and the semiconductor substrate 100 on both sides thereof, and also exposing the adjacent first patterned control gate material layer 204a. The control gate dielectric layer 203 on the surface of the floating gate 202 between the control gate material layers 204a.

所述第二图形化掩膜层300的材料为氮化硅、氧化硅或光刻胶等掩膜材料。所述第二图形化掩膜层300的开口较大,可以提高形成所述掩膜层300过程中的光刻或刻蚀工艺的工艺窗口,降低形成所述第二图形化掩膜层300的难度。The material of the second patterned mask layer 300 is a mask material such as silicon nitride, silicon oxide or photoresist. The opening of the second patterned mask layer 300 is relatively large, which can improve the process window of the photolithography or etching process in the process of forming the mask layer 300, and reduce the cost of forming the second patterned mask layer 300. difficulty.

请参考图11,以所述第二图形化掩膜层300(请参考图9)为掩膜,去除所述第一图形化控制栅材料层204a(请参考图9),剩余的部分第一图形化控制栅材料层204作为控制栅。请参考图12,图12为图11中沿割线DD’的剖面示意图。Please refer to FIG. 11, using the second patterned mask layer 300 (please refer to FIG. 9) as a mask, remove the first patterned control gate material layer 204a (please refer to FIG. 9), and the remaining part of the first The patterned control gate material layer 204 serves as a control gate. Please refer to FIG. 12 , which is a schematic cross-sectional view along the secant line DD' in FIG. 11 .

可以采用各向异性的干法刻蚀工艺去除所述第一图形化控制栅材料层204a。在所述各向异性的干法刻蚀工艺中,第一图形化控制栅材料层204a的材料与控制栅介质层203之间具有较高的刻蚀选择性,从而,在刻蚀过程中,不会对所述第一图形化控制栅材料层204a两侧未被覆盖的控制栅介质层203造成损伤。The first patterned control gate material layer 204a may be removed by using an anisotropic dry etching process. In the anisotropic dry etching process, there is a relatively high etching selectivity between the material of the first patterned control gate material layer 204a and the control gate dielectric layer 203, thus, during the etching process, The uncovered control gate dielectric layer 203 on both sides of the first patterned control gate material layer 204a will not be damaged.

本实施例中,所述各向异性的干法刻蚀工艺为等离子体刻蚀工艺。所述等离子体刻蚀工艺采用的刻蚀气体为Cl2、HBr的混合气体,载气为He,其中,Cl2的流量为80sccm~2000sccm、HBr的流量为50sccm~2000sccm,He的流量为100sccm~2000sccm。In this embodiment, the anisotropic dry etching process is a plasma etching process. The etching gas used in the plasma etching process is a mixed gas of Cl 2 and HBr, and the carrier gas is He, wherein the flow rate of Cl 2 is 80 sccm-2000 sccm, the flow rate of HBr is 50 sccm-2000 sccm, and the flow rate of He is 100 sccm ~2000 sccm.

由于所述第二图形化掩膜层300的开口较大,使得在刻蚀过程中,刻蚀气体能够充分接触所述第一图形化控制栅材料层204a,从而能够完整去除所述第一图形化控制栅材料层204a,使剩余的第一图形化控制栅材料层204(请参考图7)之间完全断开,与现有技术相比,可以避免存储单元之间出现短路等问题,可以提高形成的闪存器件的性能。Due to the large opening of the second patterned mask layer 300, during the etching process, the etching gas can fully contact the first patterned control gate material layer 204a, so that the first pattern can be completely removed. control gate material layer 204a to completely disconnect the remaining first patterned control gate material layer 204 (please refer to FIG. The performance of the formed flash memory device is improved.

本实施例中,由于所述第一图形化控制栅材料层204a的材料为多晶硅,所述半导体衬底100的材料为硅,而且,所述第二图形化掩膜层300还暴露出所述第一图形化控制栅材料层204a两侧的部分半导体衬底100,所以在刻蚀所述第一图形化控制栅材料层204a的过程中,还会对所述半导体衬底100进行一定的刻蚀,但是由于所述第一图形化控制栅材料层204a与半导体衬底100之间具有较大的高度差,所以,所述第一图形化控制栅材料层204a接触的刻蚀气体的浓度较大,具有较高的刻蚀速率,所以,在刻蚀去除第一图形化控制栅材料层204a时,对其两侧的半导体衬底100的刻蚀较少。并且,所述第一图形化控制栅材料层204a两侧的半导体衬底100并不构成闪存单元的一部分,所以对闪存器件的性能并没有影响。In this embodiment, since the material of the first patterned control gate material layer 204a is polysilicon, the material of the semiconductor substrate 100 is silicon, and the second patterned mask layer 300 also exposes the Part of the semiconductor substrate 100 on both sides of the first patterned control gate material layer 204a, so in the process of etching the first patterned control gate material layer 204a, the semiconductor substrate 100 will also be etched to a certain extent. However, since there is a large height difference between the first patterned control gate material layer 204a and the semiconductor substrate 100, the concentration of the etching gas in contact with the first patterned control gate material layer 204a is relatively high. It has a higher etching rate, so when the first patterned control gate material layer 204a is etched and removed, the semiconductor substrate 100 on both sides thereof is less etched. Moreover, the semiconductor substrate 100 on both sides of the first patterned control gate material layer 204a does not constitute a part of the flash memory unit, so it has no influence on the performance of the flash memory device.

请参考图13,去除所述第二图形化掩膜层300(请参考图11)。Referring to FIG. 13 , the second patterned mask layer 300 (please refer to FIG. 11 ) is removed.

采用湿法刻蚀工艺去除所述第二图形化掩膜层300,根据所述第二图形化掩膜层300的材料选择合适的刻蚀溶液,可以是氢氟酸、磷酸或硝酸溶液中的一种或几种。当所述第二图形化掩膜层300的材料为光刻胶时,还可以采用灰化工艺去除所述第二图形化掩膜层300。The second patterned mask layer 300 is removed by a wet etching process, and an appropriate etching solution is selected according to the material of the second patterned mask layer 300, which may be hydrofluoric acid, phosphoric acid or nitric acid solution. one or several. When the material of the second patterned mask layer 300 is photoresist, the second patterned mask layer 300 may also be removed by an ashing process.

去除所述第二图形化掩膜层300后,暴露出断开的控制栅204b,所述控制栅204b为去除所述部分第一图形化控制栅材料层204a(请参考图9)之后剩余的第一图形化控制栅材料层。所述控制栅204b之间相互断开,分别作为不同存储单元的控制栅。After removing the second patterned mask layer 300, the disconnected control gate 204b is exposed, and the control gate 204b is the remaining part after removing the part of the first patterned control gate material layer 204a (please refer to FIG. 9 ). The first patterned control gate material layer. The control gates 204b are disconnected from each other and serve as control gates of different memory cells respectively.

请参考图14,在所述浮栅介质层201、浮栅202、控制栅介质层203、控制栅204b(请参考图12)侧壁表面形成侧墙400。图14是在图12中的浮栅介质层201、浮栅202、控制栅介质层203侧壁表面形成侧墙400之后的示意图。Referring to FIG. 14 , sidewalls 400 are formed on the surface of the sidewalls of the floating gate dielectric layer 201 , the floating gate 202 , the control gate dielectric layer 203 , and the control gate 204 b (please refer to FIG. 12 ). FIG. 14 is a schematic diagram after forming sidewalls 400 on the surface of the sidewalls of the floating gate dielectric layer 201 , the floating gate 202 , and the control gate dielectric layer 203 in FIG. 12 .

所述侧墙400的材料为氧化硅、氮化硅或氮氧化硅中的一种或几种。所述侧墙400形成方法包括:在所述半导体衬底100表面、控制栅介质层203顶部表面、控制栅204b顶部表面、浮栅介质层201侧壁表面、浮栅202侧壁表面、控制栅介质层203侧壁表面和控制栅204b侧壁表面形成侧墙材料层;采用无掩膜刻蚀工艺,去除位于控制栅204b顶部表面、控制栅介质层203顶部表面以及半导体衬底100表面的侧墙材料层,形成覆盖浮栅介质层201、浮栅202、控制栅介质层203、控制栅204b的侧壁表面的侧墙400。The material of the sidewall 400 is one or more of silicon oxide, silicon nitride or silicon oxynitride. The formation method of the spacer 400 includes: on the surface of the semiconductor substrate 100, the top surface of the control gate dielectric layer 203, the top surface of the control gate 204b, the side wall surface of the floating gate dielectric layer 201, the side wall surface of the floating gate 202, the control gate The sidewall surface of the dielectric layer 203 and the sidewall surface of the control gate 204b form a sidewall material layer; using a maskless etching process, remove the sidewalls located on the top surface of the control gate 204b, the top surface of the control gate dielectric layer 203 and the surface of the semiconductor substrate 100 The wall material layer forms the sidewall 400 covering the sidewall surfaces of the floating gate dielectric layer 201, the floating gate 202, the control gate dielectric layer 203, and the control gate 204b.

本实施例中,在形成第一图形化控制栅材料层204之后,先对所述第一图形化控制栅材料层204进行第二图形化处理,去除部分第一图形化控制栅材料层204a,形成完全断开的控制栅204b,然后再形成侧墙400。而如果先形成侧墙在刻蚀第一图形化控制栅材料层,由于先形成了侧墙,需要去除的部分第一图形化控制栅材料层两侧受到侧墙的保护,在刻蚀过程中仅表面可以接触到刻蚀气体,并且随着刻蚀过程的继续,会在侧墙之间形成凹槽,由于所述第一图形化控制栅材料层的宽度一般较小,所述凹槽的深宽比较大,凹槽底部的刻蚀气体浓度较小,所以,很容易在凹槽底部残留部分控制栅材料,使得最终形成的控制栅之间不能完全断开而影响闪存器件的性能。本实施例在形成侧墙400之前进行第二图形化处理,在去除部分第一图形化控制栅材料层204a的过程中,所述部分第一图形化控制栅材料层204a两侧没有侧墙的保护,能够充分与刻蚀气体接触,从而使得所述部分第一图形化控制栅材料层204a能够完全被去除,使得最终形成的不同单元的控制栅之间完全断开,可以提高形成的闪存的可靠性。In this embodiment, after the first patterned control gate material layer 204 is formed, a second patterning treatment is performed on the first patterned control gate material layer 204 to remove part of the first patterned control gate material layer 204a, A completely disconnected control gate 204b is formed, and then spacers 400 are formed. However, if the sidewalls are first formed and the first patterned control gate material layer is etched, since the sidewalls are formed first, both sides of the part of the first patterned control gate material layer that need to be removed are protected by the sidewalls. Only the surface can be exposed to the etching gas, and as the etching process continues, a groove will be formed between the sidewalls. Since the width of the first patterned control gate material layer is generally small, the groove's The aspect ratio is large, and the etching gas concentration at the bottom of the groove is small, so it is easy to leave part of the control gate material at the bottom of the groove, so that the finally formed control gates cannot be completely disconnected and affect the performance of the flash memory device. In this embodiment, the second patterning process is performed before forming the sidewall 400. During the process of removing part of the first patterned control gate material layer 204a, there are no sidewalls on both sides of the part of the first patterned control gate material layer 204a. protection, can be fully in contact with the etching gas, so that the part of the first patterned control gate material layer 204a can be completely removed, so that the control gates of different cells that are finally formed are completely disconnected, which can improve the performance of the formed flash memory. reliability.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (16)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 提供半导体衬底,所述半导体衬底上形成有若干浮栅结构及位于所述浮栅结构顶部表面的控制栅介质层,所述浮栅结构包括位于半导体衬底表面的浮栅介质层和位于所述浮栅介质层表面的浮栅;A semiconductor substrate is provided, on which a number of floating gate structures and a control gate dielectric layer located on the top surface of the floating gate structure are formed, and the floating gate structure includes a floating gate dielectric layer located on the surface of the semiconductor substrate and a control gate dielectric layer located on the surface of the semiconductor substrate. a floating gate on the surface of the floating gate dielectric layer; 在所述半导体衬底上形成具有连续图形的第一图形化控制栅材料层,所述第一图形化控制栅材料层覆盖若干浮栅结构上的部分浮栅介质层;A first patterned control gate material layer having a continuous pattern is formed on the semiconductor substrate, and the first patterned control gate material layer covers part of the floating gate dielectric layer on several floating gate structures; 在所述半导体衬底上形成掩膜层,所述掩膜层暴露出位于浮栅结构上方的部分第一图形化控制栅材料层及位于所述部分第一图形化控制栅材料层两侧的半导体衬底;A mask layer is formed on the semiconductor substrate, and the mask layer exposes a part of the first patterned control gate material layer above the floating gate structure and parts of the first patterned control gate material layer on both sides of the part of the first patterned control gate material layer. semiconductor substrate; 以所述掩膜层为掩膜,去除未被所述掩膜层覆盖的第一图形化控制栅材料层,形成相互断开的控制栅;Using the mask layer as a mask, removing the first patterned control gate material layer not covered by the mask layer to form mutually disconnected control gates; 去除所述掩膜层;removing the mask layer; 在所述浮栅结构、控制栅介质层和控制栅的侧壁表面形成侧墙。A side wall is formed on the surface of the floating gate structure, the control gate dielectric layer and the side wall of the control gate. 2.根据权利要求1所述的半导体结构的形成方法,其特征在于,采用各向异性刻蚀工艺去除所述暴露的第一图形化控制栅材料层。2 . The method for forming a semiconductor structure according to claim 1 , wherein an anisotropic etching process is used to remove the exposed first patterned control gate material layer. 3 . 3.根据权利要求2所述的半导体结构的形成方法,其特征在于,所述各向异性刻蚀工艺为干法刻蚀工艺。3. The method for forming a semiconductor structure according to claim 2, wherein the anisotropic etching process is a dry etching process. 4.根据权利要求3所述的半导体结构的形成方法,其特征在于,所述干法刻蚀工艺对第一图形化控制栅材料层的刻蚀速率大于对控制栅介质层的刻蚀速率。4 . The method for forming a semiconductor structure according to claim 3 , wherein the etching rate of the first patterned control gate material layer in the dry etching process is greater than the etching rate of the control gate dielectric layer. 5.根据权利要求4所述的半导体结构的形成方法,其特征在于,采用等离子体刻蚀工艺刻蚀所述第一图形化控制栅材料层。5 . The method for forming a semiconductor structure according to claim 4 , wherein the first patterned control gate material layer is etched by a plasma etching process. 6.根据权利要求5所述的半导体结构的形成方法,其特征在于,所述等离子体刻蚀工艺采用的刻蚀气体包括Cl2、HBr,载气为He,其中,Cl2的流量为80sccm~2000sccm、HBr的流量为50sccm~2000sccm,He的流量为100sccm~2000sccm。6. The method for forming a semiconductor structure according to claim 5, wherein the etching gas used in the plasma etching process comprises Cl 2 , HBr, and the carrier gas is He, wherein the flow rate of Cl 2 is 80 sccm ~2000 sccm, the flow rate of HBr is 50 sccm-2000 sccm, and the flow rate of He is 100 sccm-2000 sccm. 7.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述掩膜层还暴露出部分未被第一图形化控制栅材料层覆盖的控制栅介质层的表面。7 . The method for forming a semiconductor structure according to claim 1 , wherein the mask layer also exposes a part of the surface of the control gate dielectric layer that is not covered by the first patterned control gate material layer. 8.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述控制栅介质层的材料包括位于浮栅表面的第一氧化硅层、位于第一氧化硅层表面的氮化硅层、位于氮化硅层表面的第二氧化硅层。8. The method for forming a semiconductor structure according to claim 1, wherein the material of the control gate dielectric layer comprises a first silicon oxide layer located on the surface of the floating gate, a silicon nitride layer located on the surface of the first silicon oxide layer layer, a second silicon oxide layer on the surface of the silicon nitride layer. 9.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述第一图形化控制栅材料层的形成方法包括:在所述半导体衬底表面形成控制栅材料层,所述控制栅材料层覆盖控制栅介质层;在所述控制栅材料层表面形成第一图形化掩膜层;以所述第一图形化掩膜层为掩膜刻蚀所述控制栅材料层,形成第一图形化控制栅材料层;去除所述第一图形化掩膜层。9. The method for forming a semiconductor structure according to claim 1, wherein the method for forming the first patterned control gate material layer comprises: forming a control gate material layer on the surface of the semiconductor substrate, the control gate material layer The gate material layer covers the control gate dielectric layer; a first patterned mask layer is formed on the surface of the control gate material layer; the control gate material layer is etched using the first patterned mask layer as a mask to form a second A patterned control gate material layer; removing the first patterned mask layer. 10.根据权利要求9所述的半导体结构的形成方法,其特征在于,所述控制栅材料层的材料为多晶硅。10 . The method for forming a semiconductor structure according to claim 9 , wherein the material of the control gate material layer is polysilicon. 11 . 11.根据权利要求9所述的半导体结构的形成方法,其特征在于,位于所述控制栅介质层表面的第一图形化控制栅材料层的厚度为1200埃~1700埃。11 . The method for forming a semiconductor structure according to claim 9 , wherein the first patterned control gate material layer on the surface of the control gate dielectric layer has a thickness of 1200 angstroms to 1700 angstroms. 12.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述浮栅的材料为多晶硅。12. The method for forming a semiconductor structure according to claim 1, wherein the material of the floating gate is polysilicon. 13.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述浮栅的厚度为900埃~1300埃。13 . The method for forming a semiconductor structure according to claim 1 , wherein the floating gate has a thickness of 900 angstroms to 1300 angstroms. 14.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述浮栅介质层的材料包括氧化硅、氮氧化硅或氧化铪。14. The method for forming a semiconductor structure according to claim 1, wherein the material of the floating gate dielectric layer comprises silicon oxide, silicon oxynitride or hafnium oxide. 15.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述侧墙的材料包括氧化硅、氮化硅或氮氧化硅中的一种或几种。15. The method for forming a semiconductor structure according to claim 1, wherein the material of the sidewall comprises one or more of silicon oxide, silicon nitride, or silicon oxynitride. 16.根据权利要求1所述的半导体结构的形成方法,其特征在于,所述侧墙的形成方法包括:在所述半导体衬底表面、控制栅介质层顶部表面、控制栅顶部表面、浮栅介质层侧壁表面、浮栅侧壁表面、控制栅介质层侧壁表面和控制栅侧壁表面形成侧墙材料层;采用无掩膜刻蚀工艺,去除位于控制栅顶部表面、控制栅介质层顶部表面以及半导体衬底表面的侧墙材料层,形成覆盖浮栅介质层、浮栅、控制栅介质层、控制栅的侧壁表面的侧墙。16. The method for forming the semiconductor structure according to claim 1, wherein the method for forming the sidewall comprises: on the surface of the semiconductor substrate, the top surface of the control gate dielectric layer, the top surface of the control gate, the floating gate The sidewall surface of the dielectric layer, the sidewall surface of the floating gate, the sidewall surface of the control gate dielectric layer, and the sidewall surface of the control gate form a sidewall material layer; the maskless etching process is used to remove the top surface of the control gate and the control gate dielectric layer. The top surface and the sidewall material layer on the surface of the semiconductor substrate form sidewalls covering the floating gate dielectric layer, the floating gate, the control gate dielectric layer, and the sidewall surfaces of the control gate.
CN201410113739.3A 2014-03-25 2014-03-25 The forming method of semiconductor structure Active CN104952715B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410113739.3A CN104952715B (en) 2014-03-25 2014-03-25 The forming method of semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410113739.3A CN104952715B (en) 2014-03-25 2014-03-25 The forming method of semiconductor structure

Publications (2)

Publication Number Publication Date
CN104952715A CN104952715A (en) 2015-09-30
CN104952715B true CN104952715B (en) 2018-02-16

Family

ID=54167286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410113739.3A Active CN104952715B (en) 2014-03-25 2014-03-25 The forming method of semiconductor structure

Country Status (1)

Country Link
CN (1) CN104952715B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607669A (en) * 2003-08-07 2005-04-20 三星电子株式会社 Nonvolatile semiconductor memory device having double floating gate structure and method of manufacturing the same
CN102651312A (en) * 2011-02-24 2012-08-29 中芯国际集成电路制造(上海)有限公司 Method for forming gate electrode
CN102760654A (en) * 2011-04-29 2012-10-31 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method for forming grid pattern
CN102969235A (en) * 2012-12-03 2013-03-13 上海集成电路研发中心有限公司 Method for forming space between small-sized line ends
CN103400753A (en) * 2013-08-14 2013-11-20 上海华力微电子有限公司 Method for manufacturing grid lines with high uniformity through double exposure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515374B1 (en) * 2003-01-30 2005-09-14 동부아남반도체 주식회사 Flash memory and fabrication method thereof
JP5621381B2 (en) * 2010-07-28 2014-11-12 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607669A (en) * 2003-08-07 2005-04-20 三星电子株式会社 Nonvolatile semiconductor memory device having double floating gate structure and method of manufacturing the same
CN102651312A (en) * 2011-02-24 2012-08-29 中芯国际集成电路制造(上海)有限公司 Method for forming gate electrode
CN102760654A (en) * 2011-04-29 2012-10-31 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method for forming grid pattern
CN102969235A (en) * 2012-12-03 2013-03-13 上海集成电路研发中心有限公司 Method for forming space between small-sized line ends
CN103400753A (en) * 2013-08-14 2013-11-20 上海华力微电子有限公司 Method for manufacturing grid lines with high uniformity through double exposure

Also Published As

Publication number Publication date
CN104952715A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
CN108735813B (en) Semiconductor structure and method of forming the same
CN102790055B (en) DRAM structure and its manufacturing method and IC structure and its manufacturing method
CN108933140B (en) Method for manufacturing semiconductor device
CN104752185B (en) The forming method of metal gates
CN105679713B (en) The manufacturing method of flush memory device
CN104347517B (en) The forming method of semiconductor structure
CN104425220A (en) Method for forming pattern
CN110581101A (en) Semiconductor device and method of forming the same
CN104681493A (en) Forming method of semiconductor structure
KR100744071B1 (en) Method of manufacturing semiconductor device having bulb type recess gate
KR101001466B1 (en) Manufacturing method of nonvolatile memory device
CN104952715B (en) The forming method of semiconductor structure
KR100647001B1 (en) Floating gate electrode formation method of flash memory device
CN108122762B (en) Semiconductor structure and forming method thereof
CN103928292B (en) The forming method of strip structure
CN103887160B (en) Control gate lithographic method
CN104701262B (en) A kind of forming method of semiconductor devices
CN111106001A (en) Method for forming gate structure of NAND memory, NAND memory and photomask mask
CN105810636B (en) Method for manufacturing non-volatile memory
TWI548039B (en) Semiconductor device manufacturing method
CN105023879B (en) Method for manufacturing semiconductor element
CN104425223B (en) Graphic method
CN108281426A (en) Memory and forming method thereof
CN109712985B (en) Mirror image split-gate flash memory and forming method thereof
KR20090000987A (en) Manufacturing Method of Flash Memory Device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant