[go: up one dir, main page]

CN104949382A - 太阳辐射能热机 - Google Patents

太阳辐射能热机 Download PDF

Info

Publication number
CN104949382A
CN104949382A CN201410115030.7A CN201410115030A CN104949382A CN 104949382 A CN104949382 A CN 104949382A CN 201410115030 A CN201410115030 A CN 201410115030A CN 104949382 A CN104949382 A CN 104949382A
Authority
CN
China
Prior art keywords
heat engine
working medium
energy
radiant energy
solar radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410115030.7A
Other languages
English (en)
Inventor
邱纪林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410115030.7A priority Critical patent/CN104949382A/zh
Priority to PCT/CN2014/000798 priority patent/WO2015143590A1/zh
Publication of CN104949382A publication Critical patent/CN104949382A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

太阳辐射能热机以二氧化碳为工质,通过膨胀原理对外做功、制冷,以太阳辐射能(大气、水系、浅地源温度)加热工质,实现热机循环。太阳辐射能热机摆脱了传统热机对化石能源的依赖,是高效、经济利用太阳能的新方法。

Description

太阳辐射能热机
技术领域
本发明涉及一种以二氧化碳为工质,通过膨胀发电制冷,有效利用太阳辐射能的方法。
背景技术
近年来,由于世界人口剧增,工业发展迅速,煤炭、石油、天然气燃烧产生的二氧化碳远超历史水平,严重破坏了地球亿万年来保持的碳平衡。大气中二氧化碳含量每增加1倍,全球气温将升高3℃~5℃,气候变暖导致自然灾害加剧,两极冰川融化,海平面升高,对人类生存和繁衍构成严重的挑战。
1980年全球二氧化碳排放量为50亿吨,2004年超过73亿吨。2008年,中国碳排放超过美国,成为全球排放最大的国家,这与我国以燃煤为主的能源结构有关。我们面临的困境是,到目前为止,所有新能源一直没有革命性的突破;包括光伏和风电技术,效率低,成本远超火电,只能依靠政府补贴生存。
太阳辐射能量巨大,人类目前每年能源消费总和只相当于40分钟内太阳照射到地球的能量。目前利用太阳能的光伏发电效率低,只有12%,每天工作8个小时,晚上无法工作。太阳辐射除大气散射、空中云层吸收等流失外,50%左右是被浅层土壤、水系和大气接收,其蕴藏量巨大。不过太阳辐射能品位低,需要找到一种能够用低品位热做功的热机。
本发明是一种以二氧化碳为工质,通过膨胀对外做功、制冷,利用太阳辐射能(大气、水系、地源温度)加热工质,实现热机循环运行的方法。
发明内容
太阳辐射能热机由膨胀、压缩、热交换三部分组成,其循环运行过程如下:
换热器中的高压液相工质经膨胀机绝热膨胀对外做功,消耗气体工质内能,自身变冷。根据能量转换和守恒定律,气体进行绝热膨张对外作功时,气体能量焓值减少,从而使气体本身强烈冷却,达到制冷目的。膨胀机的制冷量等于气体在膨胀过程减小的焓值。
低温工质经压缩机进入换热器。
在换热器中,工质气液相做相间质量传递并从外界环境温度吸热,工质温度低于临界点。
液相工质再次膨胀,进入下一循环。
太阳辐射能热机的工作原理同火力发电是一致的。火力发电过程,水被加热为蒸汽,气体体积膨胀推动发电机工作。由于工质是水,工作温度必须在100度以上,这就需要外来能源(煤、油、天然气等)加热,热机做功后的乏汽再利用大气环境冷却还原为水。太阳辐射能热机采用二氧化碳为工质,工作温度可以降到大气环境温度以下,可以利用太阳辐射能加热,通过膨胀释放能量来冷却工质。
二氧化碳临界温度低(31.1℃),临界压力高(7.3Mpa)。从三相点的-56.6℃(0.57兆帕)到临界温度31.1℃(7.3兆帕),87℃温差下压力提升12.8倍。水的临界温度为374℃,对应7兆帕压力的饱和蒸汽温度约289℃。太阳辐射能热机将低温热源(冷凝)温度设定为20℃,膨胀制冷(蒸发)温度设定为-55℃(略高于CO2的三相点),两者间温差75℃。根据卡诺热机效率公式,75℃温差热机理论效率为21.56%=1÷COP carnot,实际效率打6折为13%。
二氧化碳和水的性质不同。水从0℃升温到75℃自身压力几乎没有变化,而同样幅度的温升,CO2压力则从0.5兆帕提升至5.7兆帕,有11倍之多。对应5.7兆帕压力,水的饱和蒸汽温度约为274℃。以水来换算,温差75℃的热机(CO2工质)理论效率为50%,实际效率30%,与燃煤火力发电效率相当。
二氧化碳工质通过膨胀机释放热能、对外做功(发电)的同时,产生了与膨胀功等量的冷,所付出的是工质内能的减少,即工质温度从20℃下降到-55℃,压力从5.7兆帕下降到0.5兆帕。而工质从-55℃回升到20℃,压力从0.5兆帕返回到5.7兆帕,其能量来自太阳辐射能。
具体实施方式
换热器中的高压液相工质经膨胀机绝热膨胀对外做功,消耗气体工质内能制冷。低温工质经压缩进入换热器换热,从外界环境温度吸热,液相工质再次膨胀,进入下一循环。太阳辐射能热机二氧化碳循环过程在其两相区间(相当于水在100℃-374℃之间),为气液两相流。随温度变化,气、液相比随之变化。需要适应两相工质的压缩机和膨胀机,膨胀机替代节流阀以提高效率。

Claims (3)

1.一种以二氧化碳为工质,通过膨胀原理,对外做功、制冷,利用太阳辐射能重新加热工质的热机。
2.根据权利要求1所述,热机的工质为二氧化碳。
3.根据权利要求2所述,二氧化碳工质在其三相点与临界点之间循环运行。
CN201410115030.7A 2014-03-26 2014-03-26 太阳辐射能热机 Pending CN104949382A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410115030.7A CN104949382A (zh) 2014-03-26 2014-03-26 太阳辐射能热机
PCT/CN2014/000798 WO2015143590A1 (zh) 2014-03-26 2014-08-26 太阳辐射能热机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410115030.7A CN104949382A (zh) 2014-03-26 2014-03-26 太阳辐射能热机

Publications (1)

Publication Number Publication Date
CN104949382A true CN104949382A (zh) 2015-09-30

Family

ID=54164245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410115030.7A Pending CN104949382A (zh) 2014-03-26 2014-03-26 太阳辐射能热机

Country Status (2)

Country Link
CN (1) CN104949382A (zh)
WO (1) WO2015143590A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260689A (zh) * 2018-07-23 2019-09-20 郑昊 一种渐进集热逆流水冷却装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2284937Y (zh) * 1997-03-27 1998-06-24 黄清福 冷冻式压缩空气干燥机之低露点装置
CN1222741C (zh) * 2001-12-06 2005-10-12 天津大学 二氧化碳跨临界制冷循环转子式膨胀机

Also Published As

Publication number Publication date
WO2015143590A1 (zh) 2015-10-01

Similar Documents

Publication Publication Date Title
Liu et al. A solar energy storage and power generation system based on supercritical carbon dioxide
Panchal et al. Analysis and evaluation of a new renewable energy based integrated system for residential applications
US20090266075A1 (en) Process and device for using of low temperature heat for the production of electrical energy
CN102563987A (zh) 有机朗肯循环驱动的蒸气压缩制冷装置及方法
CN103147943B (zh) 一种用于地热能利用的基于氨水混合工质的冷电联供系统
CN104018901B (zh) 天然气压能冷能联合发电系统
CN101915224A (zh) 塔式太阳能循环热力发电系统
CN105736056B (zh) 液态空气储能系统
WO2016059478A1 (en) Rankine cycle power generation system with sc-co2 working fluid and integrated absorption refrigeration chiller
Li et al. Poly-generation energy system driven by associated geothermal water for oilfield in high water cut stage: a theoretical study
CN105464728B (zh) 中高温热源闪蒸‑有机朗肯循环的热水联合发电测试系统
CN106837441A (zh) 一种利用lng冷能的燃气轮机‑氮气布雷顿循环联合发电系统
CN206267902U (zh) 一种新型液化空气储能系统
CN102383882A (zh) 新型空气能制冷发电装置
CN202501677U (zh) 有机朗肯循环驱动的蒸气压缩制冷装置
CN205349435U (zh) 中高温热源闪蒸-有机朗肯循环的热水联合发电测试系统
CN201943904U (zh) 太阳能回热再热中冷燃气轮机循环的热力发电系统
CN104949382A (zh) 太阳辐射能热机
CN103075835B (zh) 一种新型吸附式制冷与发电联供装置
CN102367747A (zh) 新型空气能等温发动机
CN202360158U (zh) 新型空气能等温发动机
CN204511543U (zh) 以二氧化碳作冷却介质的带透平机的汽轮机排汽冷凝系统
CN210977771U (zh) 一种基于海洋温差能的冷电联产循环系统
Li et al. Compressed air energy storage system exergy analysis and its combined operation with nuclear power plants
CN111305921A (zh) 一种利用lng冷能的太阳能耦合余热发电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
DD01 Delivery of document by public notice

Addressee: Qiu Jilin

Document name: Notification of Publication of the Application for Invention

CB02 Change of applicant information

Address after: 100085 Beijing city Haidian District Qinghe small Xiao Ying Xi Shihua Long Yue No. 11 Building 2 unit 201

Applicant after: Qiu Jilin

Address before: 100088 Beijing city Haidian District Zhichun Road Tai Yue Yuan 4-805

Applicant before: Qiu Jilin

COR Change of bibliographic data
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150930

WD01 Invention patent application deemed withdrawn after publication