[go: up one dir, main page]

CN104766932A - Biodegradable substrate for flexible optoelectronic device and method for manufacturing same - Google Patents

Biodegradable substrate for flexible optoelectronic device and method for manufacturing same Download PDF

Info

Publication number
CN104766932A
CN104766932A CN201510194972.3A CN201510194972A CN104766932A CN 104766932 A CN104766932 A CN 104766932A CN 201510194972 A CN201510194972 A CN 201510194972A CN 104766932 A CN104766932 A CN 104766932A
Authority
CN
China
Prior art keywords
wire
nano
curing
heterojunction
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510194972.3A
Other languages
Chinese (zh)
Inventor
于军胜
范惠东
王煦
施薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201510194972.3A priority Critical patent/CN104766932A/en
Publication of CN104766932A publication Critical patent/CN104766932A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Paints Or Removers (AREA)

Abstract

本发明公开了一种生物可降解的柔性光电子器件用基板及其制造方法,本发明的基板包括柔性衬底和导电层,导电层位于柔性衬底的上方,所述柔性衬底为掺有双重固化胶的虫胶,双重固化胶在虫胶中的质量比为0.3—4%,所述双重固化胶由双重固化体系构成,所述双重固化体系为紫外光固化-热固化体系、紫外光固化-微波固化体系、紫外光固化-厌氧固化体系或紫外光固化-电子束固化体系。本发明通过双重固化处理后分子之间相互交联,防止虫胶中树脂分子结晶,使光散射降低,提高了柔性衬底的透光率,提高了柔性光电子器件的性能,也同时解决了衬底柔韧性不高的问题,提升了柔性衬底对水氧阻隔能力和衬底表面的平滑度,改善了导电薄膜与衬底的亲和度。

The present invention discloses a biodegradable substrate for flexible optoelectronic devices and a method for manufacturing the same. The substrate of the present invention comprises a flexible substrate and a conductive layer, wherein the conductive layer is located above the flexible substrate, wherein the flexible substrate is shellac mixed with dual-curing glue, wherein the mass ratio of the dual-curing glue in the shellac is 0.3-4%, and wherein the dual-curing glue is composed of a dual-curing system, wherein the dual-curing system is a UV-curing-thermal curing system, a UV-curing-microwave curing system, a UV-curing-anaerobic curing system, or a UV-curing-electron beam curing system. The present invention cross-links molecules after dual-curing treatment to prevent crystallization of resin molecules in the shellac, thereby reducing light scattering, improving the light transmittance of the flexible substrate, improving the performance of the flexible optoelectronic device, and simultaneously solving the problem of low substrate flexibility, improving the water and oxygen barrier capacity of the flexible substrate and the smoothness of the substrate surface, and improving the affinity of the conductive film to the substrate.

Description

生物可降解的柔性光电子器件用基板及其制造方法Biodegradable substrate for flexible optoelectronic devices and manufacturing method thereof

技术领域technical field

本发明属于有机光电子技术领域,具体涉及一种可降解的柔性光电子器件用基板及其制造方法。The invention belongs to the technical field of organic optoelectronics, and in particular relates to a degradable substrate for flexible optoelectronic devices and a manufacturing method thereof.

背景技术Background technique

随着光电子技术在太阳能电池、光影像感测器、电浆平面显示器、电致发光显示器、薄膜晶体管以及液晶显示面板等光电子产品的广泛应用,光电信息产业越来越受到各个国家的重视,成为重要的发展领域之一,光电信息领域的竞争也日益加剧。传统的刚性衬底(如玻璃或者硅片上)虽然具有优良的器件性能,但抗震动、冲击能力较弱,重量相对较重,不易携带,在应用上受到极大的限制。近10年来,柔性电子与柔性光电子技术成为电子信息领域最为活跃的研究方向,同时也是电子信息产业发展的重要方向。With the wide application of optoelectronic technology in optoelectronic products such as solar cells, optical image sensors, plasma flat panel displays, electroluminescent displays, thin film transistors, and liquid crystal display panels, the optoelectronic information industry has received more and more attention from various countries and has become One of the important development areas, the competition in the field of optoelectronic information is also intensifying. Although traditional rigid substrates (such as glass or silicon wafers) have excellent device performance, they are weak in vibration and impact resistance, relatively heavy in weight, and not easy to carry, which is greatly limited in application. In the past 10 years, flexible electronics and flexible optoelectronics technology has become the most active research direction in the field of electronic information, and it is also an important direction for the development of the electronic information industry.

相对传统刚性衬底光电子器件,柔性衬底光电子器件更轻、更薄、可弯曲、可卷曲并且易于携带。目前,柔性液晶显示器、柔性有机电致发光显示器、柔性有机太阳能电池等已经逐渐发展为最具前景的高科技产业。然而,尽管柔性衬底有这些优点,仍有许多基础问题亟待解决:1、柔性衬底表面平整性远不及玻璃衬底,同时,相对要沉积的薄膜附着性较差,有机材料易被水、氧侵蚀,造成器件效率的降低。2、日益增多的柔性电子与柔性光电子产品由于其不可降解性而造成了大量的固体污染。因此,研究可降解的柔性光电子器件用基板对扩宽柔性光电子/电子技术的应用范围和环境保护具有重要意义。Compared with traditional rigid substrate optoelectronic devices, flexible substrate optoelectronic devices are lighter, thinner, bendable, rollable and easy to carry. At present, flexible liquid crystal displays, flexible organic electroluminescent displays, flexible organic solar cells, etc. have gradually developed into the most promising high-tech industries. However, despite the advantages of flexible substrates, there are still many basic problems to be solved: 1. The surface flatness of flexible substrates is far less than that of glass substrates. Oxygen attack, resulting in a reduction in device efficiency. 2. The increasing number of flexible electronics and flexible optoelectronic products have caused a large amount of solid pollution due to their non-degradability. Therefore, the study of degradable substrates for flexible optoelectronic devices is of great significance for broadening the application range of flexible optoelectronics/electronics technology and environmental protection.

目前,生物可降解基板的研究仍存在一些难题:1、柔韧性差,应用于柔性光电子器件中不能达到预期的效果;2、透过率低,直接影响器件的效率;3、对水氧阻隔能力差,造成器件正常工作过程中性能大幅度衰减。综上所述,这些问题的存在,在一定程度上制约了柔性光电子器件的快速发展及应用。At present, there are still some problems in the research of biodegradable substrates: 1. The flexibility is poor, and the expected effect cannot be achieved when applied to flexible optoelectronic devices; 2. The transmittance is low, which directly affects the efficiency of the device; 3. The barrier ability to water and oxygen Poor, causing the performance of the device to be greatly attenuated during normal operation. To sum up, the existence of these problems restricts the rapid development and application of flexible optoelectronic devices to a certain extent.

发明内容Contents of the invention

本发明为了解决上述技术问题,而提供一种生物可降解的柔性光电子器件用基板及其制造方法,解决了柔性衬底表面平滑度较差的问题,提高了柔性衬底对水氧的阻隔能力,提升了柔性衬底对导电层的附着能力,同时提高了柔性衬底的透光率,进而提高柔性光电子器件的光电或电光转换效率;制备方法简单、高效,能够有效降低生产成本和工艺难度。In order to solve the above technical problems, the present invention provides a biodegradable substrate for flexible optoelectronic devices and its manufacturing method, which solves the problem of poor surface smoothness of the flexible substrate and improves the barrier ability of the flexible substrate to water and oxygen , improve the adhesion of the flexible substrate to the conductive layer, and at the same time increase the light transmittance of the flexible substrate, thereby improving the photoelectric or electro-optical conversion efficiency of the flexible optoelectronic device; the preparation method is simple and efficient, and can effectively reduce the production cost and process difficulty .

为解决上述技术问题,本发明所采用的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:

一种生物可降解的柔性光电子器件用基板,包括柔性衬底和导电层,导电层位于柔性衬底的上方,其特征在于,所述柔性衬底为掺有双重固化胶的虫胶,所述双重固化胶在虫胶中的质量比为0.3—4%,所述双重固化胶由双重固化体系构成,所述双重固化体系为紫外光固化-热固化体系、紫外光固化-微波固化体系、紫外光固化-厌氧固化体系或紫外光固化-电子束固化体系中的一种或者多种,所述双重固化体系是通过两个独立的固化阶段完成的,其中一个固化阶段是通过紫外光固化反应,另一个固化阶段是暗反应。A substrate for biodegradable flexible optoelectronic devices, including a flexible substrate and a conductive layer, the conductive layer is located above the flexible substrate, characterized in that the flexible substrate is shellac mixed with double curing glue, the The mass ratio of the dual-curing glue in the shellac is 0.3-4%, and the double-curing glue is composed of a dual-curing system, and the dual-curing system is an ultraviolet curing-thermal curing system, an ultraviolet curing-microwave curing system, an ultraviolet One or more of photocuring-anaerobic curing system or UV curing-electron beam curing system, the dual curing system is completed through two independent curing stages, one of which is through UV curing reaction , another curing stage is the dark reaction.

所述双重固化体系为以下体系:The dual curing system is the following system:

①自由基型紫外光固化-热固化体系,重量组成:① Radical UV curing-heat curing system, weight composition:

固化过程为:先进行紫外光固化,接着进行加热固化,再进行紫外光固化;或者先进行加热固化,接着进行紫外光固化,再加热固化;The curing process is: UV curing first, then heating and curing, and then UV curing; or heating and curing first, then UV curing, and then heating and curing;

②自由基型紫外光固化-微波固化体系,重量组成:② Radical UV curing-microwave curing system, weight composition:

固化过程为:先进行紫外光固化,接着进行微波固化,再进行紫外光固化;或者先进行微波固化,接着进行紫外光固化,再加热或微波固化;The curing process is: UV curing first, then microwave curing, and then UV curing; or microwave curing first, then UV curing, and then heating or microwave curing;

③自由基型紫外光固化-厌氧固化体系,重量组成:③Free radical UV curing-anaerobic curing system, weight composition:

固化过程是:首先进行紫外光固化,接着未受到光照且处于缺氧条件下的衬底会自动进行厌氧固化反应,再进行紫外光固化;The curing process is: firstly carry out ultraviolet light curing, then the substrate which is not exposed to light and under anoxic conditions will automatically undergo anaerobic curing reaction, and then carry out ultraviolet light curing;

④自由基型紫外光固化-电子束固化体系,重量组成:④ Radical UV curing-electron beam curing system, weight composition:

固化过程是:首先进行紫外光固化,接着在真空下进行电子束固化,再进行紫外光固化;The curing process is: first UV curing, then electron beam curing under vacuum, and then UV curing;

⑤阳离子型紫外光固化-热固化体系,重量组成:⑤Cationic UV curing-thermal curing system, weight composition:

固化过程是:先进行紫外光固化,接着进行加热固化,再进行紫外光固化;或者先进行加热固化,接着进行紫外光固化,再加热固化;The curing process is: UV curing first, then heating and curing, and then UV curing; or heating and curing first, then UV curing, and then heating and curing;

⑥阳离子型紫外光固化-微波固化体系,重量组成:⑥Cationic UV curing-microwave curing system, weight composition:

固化过程是:先进行紫外光固化,接着进行微波固化,再进行紫外光固化;或者先进行微波固化,接着进行紫外光固化,再加热或微波固化;The curing process is: UV curing first, then microwave curing, and then UV curing; or microwave curing first, then UV curing, and then heating or microwave curing;

⑦阳离子型紫外光固化-厌氧固化体系,重量组成:⑦Cationic UV curing-anaerobic curing system, weight composition:

固化过程是:首先进行紫外光固化,接着未受到光照且处于缺氧条件下的衬底会自动进行厌氧固化反应,再进行紫外光固化;The curing process is: firstly carry out ultraviolet light curing, then the substrate which is not exposed to light and under anoxic conditions will automatically undergo anaerobic curing reaction, and then carry out ultraviolet light curing;

或⑧阳离子型紫外光固化-电子束固化体系,重量组成:Or ⑧ cationic UV curing - electron beam curing system, weight composition:

固化过程是:首先进行紫外光固化,接着在真空下进行电子束固化,再进行紫外光固化。The curing process is: first UV curing, then electron beam curing under vacuum, and then UV curing.

所述自由基热固化剂为乙二胺、己二胺、三乙烯四胺、羟乙基二乙烯三胺、羟异丙基二乙烯三胺、聚乙二酸己二酰胺、二甲氨丙胺、四甲基丙二胺、双氰胺、二胺基二苯基砜、二胺基二苯基甲烷、间苯二胺、二乙基甲苯二胺、N-(氨丙基)-甲苯二胺、二甲基乙醇胺、二甲基卞胺、三乙基苄基氯化胺、苄基-二甲胺、N-苄基二甲胺、2,4,6,-三-(二甲胺基甲基)-苯酚、苯酚甲醛己二胺、N,N-二甲基苄胺、2-乙基咪唑、2-苯基咪唑、2-甲基咪唑、2-乙基咪唑、2-乙基-4-甲基咪唑、1-(2-氨基乙基)-2-甲基咪唑、顺丁烯二酸酐、二苯醚四酸二酐、邻苯二甲酸酐、偏苯三甲酸酐、四溴苯二甲酸酐、聚壬乙酸酐、癸二酸二酰肼、己二酰肼、碳酸二酰肼、草酸二酰肼、丁二酸二酰肼、己二酸二酰肼、N-氨基聚丙烯酰胺、癸二酸酰肼、间苯二甲酸酰肼、对羟基安息香酸酰肼、壬二酸二酰肼、间苯二甲酸二酰肼、二茂铁四氟硼酸盐、三聚氰酸三烯丙酯、甲苯二异氰酸酯、二苯甲烷二异氰酸酯、己二异氰酸酯、三甲基己二异氰酸酯、二环己基甲烷二异氰酸酯、苯二亚甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、甲基苯乙烯异氰酸酯、六氢甲苯二异氰酸酯、三苯基甲-4,4',4'-三异氰酸酯、二氨基二苯基甲烷、N-对氯代苯基-N-N-二甲基脲、3-苯基-1,1-二甲基脲、3-对氯苯基-1,1-二甲基脲、4,4′-二氨基二苯基双酚、聚氨基甲酸酯、脲醛树脂、环氧-乙二胺氨基甲酸酯、2,4,6-三(二甲氨基甲基)苯酚、2,4-二氨基甲苯、聚氨基甲酸脂、甲醚化脲醛树脂、三(3-氨基丙基)胺、2-氨基乙基-二(3-氨基丙基)胺、4,4′-二氨基二苯甲烷、4,4′-二氨基二苯基双酚、4,4′-二氨基二苯砜、三(3-氨基丙基)胺、三聚氰胺树脂、苯代三聚氰胺树脂、六羟甲基三聚氰胺树脂、六甲氧甲基三聚氰胺树脂、脲-三聚氰胺甲醛树脂、聚酯三聚氰胺、三氯异氰脲酸酯、氨基三嗪树脂、氨基甲酸酯丙烯酸酯、4-氨基吡啶树脂、N-β-氨乙基氨基聚酯树脂、α-氨基吡啶树脂、氨基二苯醚树脂、氨基磷酸树脂、羟乙氨基聚酯树脂;所述微波固化剂与热固化剂使用相同材料或者不同材料;所述厌氧固化剂包括:双甲基丙烯酸三缩四乙二醇酯、双甲基丙烯酸多缩乙二醇酯、三缩乙二醇双甲基丙烯酸酯、双甲基丙烯酸乙二醇酯、甲基丙烯酸羟乙酯或羟丙酯、甲氧基化聚乙二醇甲基丙烯酸酯、邻苯二甲酸二缩三乙二醇酯、甲基丙烯酸β-羟乙酯、三缩乙二醇双甲基丙烯酸酯、双甲基丙烯酸硫代二甘醇酯、邻苯二甲酸双(二甘醇丙烯酸酯)、乙氧基化双酚A二甲基丙烯酸酯、二甲基丙烯酸双酚A乙二醇脂、乙二酯甲基丙烯酸酯、二缩三乙二醇二甲基丙烯酸酯、缩乙二醇双甲基丙烯酸酯、乙二醇双甲基丙烯酸酯、一缩二乙醇双甲基丙烯酸酯、环氧树脂甲基丙烯酸酯、双甲基丙烯酸一缩二乙二醇酯;所述电子束固化剂包括:三酚基甲烷缩水甘油醚环氧树脂、二环戊二烯双酚型环氧树脂、双酚A型乙烯基酯树脂、环氧乙烯基酯树脂、环氧丙烯酸酯树脂、马来酰亚胺树脂、4,4’-二苯甲烷双马来酰亚胺、双酚A-二苯醚双马来酰亚胺、双酚A顺丁烯二酸乙烯基树脂、溴化乙烯基酯树脂、酚醛环氧乙烯基酯树脂、羟甲基化双酚A型环氧树脂、双酚A丙烯酸酯、聚氨酯丙烯酸酯、双酚A环氧乙烯基酯树脂、双酚A苯并噁嗪-环氧树脂、双酚芴环氧树脂、双酚A型环氧丙烯酸酯树脂、双酚A二缩水甘油醚或双酚A环氧氯丙烯酸酯树脂;The free radical thermal curing agent is ethylenediamine, hexamethylenediamine, triethylenetetramine, hydroxyethyldiethylenetriamine, hydroxyisopropyldiethylenetriamine, polyoxalic acid adipamide, dimethylaminopropylamine , tetramethylpropylenediamine, dicyandiamide, diaminodiphenylsulfone, diaminodiphenylmethane, m-phenylenediamine, diethyltoluenediamine, N-(aminopropyl)-toluene di Amine, dimethylethanolamine, dimethylbenzylamine, triethylbenzylamine chloride, benzyl-dimethylamine, N-benzyldimethylamine, 2,4,6,-tri-(dimethylamine methyl)-phenol, phenol formaldehyde hexamethylenediamine, N,N-dimethylbenzylamine, 2-ethylimidazole, 2-phenylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl Base-4-methylimidazole, 1-(2-aminoethyl)-2-methylimidazole, maleic anhydride, diphenyl ether tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, tetra Bromophthalic anhydride, polynonacetic anhydride, sebacic acid dihydrazide, adipic acid dihydrazide, carbonate dihydrazide, oxalic acid dihydrazide, succinic acid dihydrazide, adipate dihydrazide, N-amino Polyacrylamide, sebacic acid hydrazide, isophthalic acid hydrazide, p-hydroxybenzoic acid hydrazide, azelaic acid dihydrazide, isophthalic acid dihydrazide, ferrocene tetrafluoroborate, trimer Triallyl cyanate, toluene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate diisocyanate, methylstyrene isocyanate, hexahydrotoluene diisocyanate, trityl methane-4,4',4'-triisocyanate, diaminodiphenylmethane, N-p-chlorophenyl-N-N-di Methylurea, 3-phenyl-1,1-dimethylurea, 3-p-chlorophenyl-1,1-dimethylurea, 4,4'-diaminodiphenylbisphenol, polyurethane Ester, urea-formaldehyde resin, epoxy-ethylenediamine carbamate, 2,4,6-tris(dimethylaminomethyl)phenol, 2,4-diaminotoluene, polyurethane, methyl etherified urea-formaldehyde Resin, tris(3-aminopropyl)amine, 2-aminoethyl-bis(3-aminopropyl)amine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylbis Phenol, 4,4'-diaminodiphenylsulfone, tris(3-aminopropyl)amine, melamine resin, benzomelamine resin, hexamethylolmelamine resin, hexamethoxymethylmelamine resin, urea-melamine formaldehyde resin , polyester melamine, trichloroisocyanurate, aminotriazine resin, urethane acrylate, 4-aminopyridine resin, N-β-aminoethyl aminopolyester resin, α-aminopyridine resin, amino Diphenyl ether resin, aminophosphoric acid resin, hydroxyethylamino polyester resin; the microwave curing agent and the thermal curing agent use the same material or different materials; the anaerobic curing agent includes: triethylene glycol dimethacrylate Ester, polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, ethylene glycol dimethacrylate, hydroxyethyl or hydroxypropyl methacrylate, methoxylated polyethylene Diol methacrylate, triethylene glycol phthalate, β-hydroxyethyl methacrylate, triethylene glycol phthalate Ethylene Glycol Dimethacrylate, Thiodiethylene Glycol Dimethacrylate, Bis(Diethylene Glycol Acrylate) Phthalate, Ethoxylated Bisphenol A Dimethacrylate, Dimethacrylic Acid Bisphenol A glycol ester, ethylene glycol methacrylate, triethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, acetal Ethanol dimethacrylate, epoxy resin methacrylate, diethylene glycol dimethacrylate; the electron beam curing agent includes: triphenolyl methane glycidyl ether epoxy resin, dicyclopentadiene Alkenyl bisphenol type epoxy resin, bisphenol A type vinyl ester resin, epoxy vinyl ester resin, epoxy acrylate resin, maleimide resin, 4,4'-diphenylmethane bismaleimide Amine, bisphenol A-diphenyl ether bismaleimide, bisphenol A maleic acid vinyl resin, brominated vinyl ester resin, novolac epoxy vinyl ester resin, methylolated bisphenol A Type epoxy resin, bisphenol A acrylate, urethane acrylate, bisphenol A epoxy vinyl ester resin, bisphenol A benzoxazine-epoxy resin, bisphenol fluorene epoxy resin, bisphenol A type epoxy Acrylate resin, bisphenol A diglycidyl ether or bisphenol A epoxy chloroacrylate resin;

光引发剂为为安息香或者安息香衍生物,所述安息香衍生物为安息香甲醚、安息香乙醚、乙酰苯衍生物或安息香异丙醚;阳离子光引发剂为芳香硫鎓盐、碘鎓盐或茂铁盐类;光敏剂为二苯甲酮、硫杂蒽醌或米蚩酮;助剂包括增塑剂、触变剂和填充剂;The photoinitiator is benzoin or benzoin derivatives, and the benzoin derivatives are benzoin methyl ether, benzoin ether, acetophenone derivatives or benzoin isopropyl ether; the cationic photoinitiator is aromatic sulfonium salt, iodonium salt or ferrocene salts; photosensitizers are benzophenone, thioxanthraquinone or Michler's ketone; additives include plasticizers, thixotropic agents and fillers;

增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯、三丁氧基乙烯基磷酸酯、聚乙烯醇缩丁醛、乙酰柠檬酸三丁酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、已二酸二(丁氧基乙氧基)乙酯、钛酸异丙酯、钛酸正丁酯、柠檬酸酯、偏苯三酸(2-乙基)己酯、邻苯二甲酸二(2-乙基)己酯、癸二酸二(2-乙基)己酯、一缩二乙二醇二苯甲酸酯、邻苯二甲酸酐、二丙二醇二苯甲酸酯和氯磺化聚乙烯;所述偶联剂包括甲基乙烯基二氯硅烷、甲基氢二氯硅烷、二甲基二氯硅烷、二甲基一氯硅烷、乙烯基三氯硅烷、γ-氨丙基三甲氧基硅烷、聚二甲基硅氧烷、聚氢甲基硅氧烷、聚甲基甲氧基硅氧烷、γ-甲基丙烯酸丙醋基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚丙基三甲氧基硅烷、氨丙基倍半硅氧烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、长链烷基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、γ-氯丙基三乙氧基硅烷、双-(γ-三乙氧基硅基丙基)、苯胺甲基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基三甲氧基硅烷、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基甲基二甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲基硅烷、γ-巯基丙基三甲氧基硅烷或γ-巯基丙基三乙氧基硅烷。Plasticizers are dioctyl phthalate, dibutyl phthalate, tributoxy vinyl phosphate, polyvinyl butyral, acetyl tributyl citrate, dimethyl phthalate , diethyl phthalate, bis(butoxyethoxy) ethyl adipate, isopropyl titanate, n-butyl titanate, citrate, trimellitic acid (2-ethyl) Hexyl ester, Di(2-ethyl)hexyl phthalate, Di(2-ethyl)hexyl sebacate, Diethylene glycol dibenzoate, Phthalic anhydride, Dipropylene glycol Dibenzoate and chlorosulfonated polyethylene; the coupling agents include methylvinyldichlorosilane, methylhydrogendichlorosilane, dimethyldichlorosilane, dimethylmonochlorosilane, vinyltrichlorosilane, Chlorosilane, γ-Aminopropyltrimethoxysilane, Dimethicone, Polyhydromethylsiloxane, Polymethylmethoxysiloxane, γ-Propyltrimethoxymethacrylate Silane, γ-aminopropyltriethoxysilane, γ-glycidyl ether propyltrimethoxysilane, aminopropyl silsesquioxane, γ-methacryloxypropyltrimethoxysilane, long Alkyltrimethoxysilane, Vinyltriethoxysilane, Vinyltrimethoxysilane, γ-Chloropropyltriethoxysilane, Bis-(γ-triethoxysilylpropyl), Aniline Methyltriethoxysilane, N-β(aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltriethoxysilane, N- β(aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-(2,3-glycidoxy)propyltrimethoxysilane, γ-(methacryloyloxy)propyl Trimethylsilane, γ-mercaptopropyltrimethoxysilane or γ-mercaptopropyltriethoxysilane.

所述导电层的材料为石墨烯、碳纳米管、金属单质纳米线、金属合金纳米线、金属异质结纳米线、氧化锌、氧化钛、氧化铟锡或聚合物电极材料中的一种或多种。The material of the conductive layer is one or more of graphene, carbon nanotubes, metal elemental nanowires, metal alloy nanowires, metal heterojunction nanowires, zinc oxide, titanium oxide, indium tin oxide or polymer electrode materials Various.

所述金属单质纳米线或铁纳米线、铜纳米线、银纳米线、金纳米线、铝纳米线、镍纳米线、钴纳米线、锰纳米线、镉纳米线、铟纳米线、锡纳米线、钨纳米线或铂纳米线中的一种或多种。The metal nanowires or iron nanowires, copper nanowires, silver nanowires, gold nanowires, aluminum nanowires, nickel nanowires, cobalt nanowires, manganese nanowires, cadmium nanowires, indium nanowires, tin nanowires , one or more of tungsten nanowires or platinum nanowires.

所述金属合金纳米线为铜铁合金纳米线、银铁合金纳米线、金铁合金纳米线、铝铁合金纳米线、镍铁合金纳米线、钴铁合金纳米线、锰铁合金纳米线、镉铁合金纳米线、铟铁合金纳米线、锡铁合金纳米线、钨铁合金纳米线、铂铁合金纳米线、银铜合金纳米线、金铜合金纳米线、铝铜合金纳米线、镍铜合金纳米线、钴铜合金纳米线、锰铜合金纳米线、镉铜合金纳米线、锡铜合金纳米线、钨铜合金纳米线、铂铜合金纳米线、金银合金纳米线、铝银合金纳米线、镍银合金纳米线、钴银合金纳米线、锰银合金纳米线、镉银合金纳米线、铟银合金纳米线、锡银合金纳米线、钨银合金纳米线、铂银合金纳米线、铝金合金纳米线、镍金合金纳米线、钴金合金纳米线、锰金合金纳米线、镉金合金纳米线、铟金合金纳米线、锡金合金纳米线、钨金合金纳米线、钴镍合金纳米线、锰镍合金纳米线、镉镍合金纳米线、铟镍合金纳米线、锡镍合金纳米线、钨镍合金纳米线、铂镍合金纳米线、镉锰合金纳米线、铟锰合金纳米线、锡锰合金纳米线、钨锰合金纳米线、铂锰合金纳米线、铟镉合金纳米线、锡镉合金纳米线、钨镉合金纳米线、铂镉合金纳米线、锡铟合金纳米线、钨铟合金纳米线、铂铟合金纳米线、钨锡合金纳米线、铂锡合金纳米线或铂钨合金纳米线中的一种或多种。The metal alloy nanowires are copper-iron alloy nanowires, silver-iron alloy nanowires, gold-iron alloy nanowires, aluminum-iron alloy nanowires, nickel-iron alloy nanowires, cobalt-iron alloy nanowires, manganese-iron alloy nanowires, cadmium-iron alloy nanowires, and indium-iron alloy nanowires. wire, tin-iron alloy nanowire, tungsten-iron alloy nanowire, platinum-iron alloy nanowire, silver-copper alloy nanowire, gold-copper alloy nanowire, aluminum-copper alloy nanowire, nickel-copper alloy nanowire, cobalt-copper alloy nanowire, manganese-copper alloy Nanowires, cadmium-copper alloy nanowires, tin-copper alloy nanowires, tungsten-copper alloy nanowires, platinum-copper alloy nanowires, gold-silver alloy nanowires, aluminum-silver alloy nanowires, nickel-silver alloy nanowires, cobalt-silver alloy nanowires , manganese-silver alloy nanowires, cadmium-silver alloy nanowires, indium-silver alloy nanowires, tin-silver alloy nanowires, tungsten-silver alloy nanowires, platinum-silver alloy nanowires, aluminum-gold alloy nanowires, nickel-gold alloy nanowires, cobalt Gold alloy nanowires, manganese-gold alloy nanowires, cadmium-gold alloy nanowires, indium-gold alloy nanowires, tin-gold alloy nanowires, tungsten-gold alloy nanowires, cobalt-nickel alloy nanowires, manganese-nickel alloy nanowires, cadmium-nickel alloy nanowires wire, indium-nickel alloy nanowire, tin-nickel alloy nanowire, tungsten-nickel alloy nanowire, platinum-nickel alloy nanowire, cadmium-manganese alloy nanowire, indium-manganese alloy nanowire, tin-manganese alloy nanowire, tungsten-manganese alloy nanowire, Platinum-manganese alloy nanowires, indium-cadmium alloy nanowires, tin-cadmium alloy nanowires, tungsten-cadmium alloy nanowires, platinum-cadmium alloy nanowires, tin-indium alloy nanowires, tungsten-indium alloy nanowires, platinum-indium alloy nanowires, tungsten-tin One or more of alloy nanowires, platinum-tin alloy nanowires or platinum-tungsten alloy nanowires.

所述金属异质结纳米线为铜铁异质结纳米线、银铁异质结纳米线、金铁异质结纳米线、铝铁异质结纳米线、镍铁异质结纳米线、钴铁异质结纳米线、锰铁异质结纳米线、镉铁异质结纳米线、铟铁异质结纳米线、锡铁异质结纳米线、钨铁异质结纳米线、铂铁异质结纳米线、银铜异质结纳米线、金铜异质结纳米线、铝铜异质结纳米线、镍铜异质结纳米线、钴铜异质结纳米线、锰铜异质结纳米线、镉铜异质结纳米线、锡铜异质结纳米线、钨铜异质结纳米线、铂铜异质结纳米线、金银异质结纳米线、铝银异质结纳米线、镍银异质结纳米线、钴银异质结纳米线、锰银异质结纳米线、镉银异质结纳米线、铟银异质结纳米线、锡银异质结纳米线、钨银异质结纳米线、铂银异质结纳米线、铝金异质结纳米线、镍金异质结纳米线、钴金异质结纳米线、锰金异质结纳米线、镉金异质结纳米线、铟金异质结纳米线、锡金异质结纳米线、钨金异质结纳米线、钴镍异质结纳米线、锰镍异质结纳米线、镉镍异质结纳米线、铟镍异质结纳米线、锡镍异质结纳米线、钨镍异质结纳米线、铂镍异质结纳米线、镉锰异质结纳米线、铟锰异质结纳米线、锡锰异质结纳米线、钨锰异质结纳米线、铂锰异质结纳米线、铟镉异质结纳米线、锡镉异质结纳米线、钨镉异质结纳米线、铂镉异质结纳米线、锡铟异质结纳米线、钨铟异质结纳米线、铂铟异质结纳米线、钨锡异质结纳米线、铂锡异质结纳米线或铂钨异质结纳米线中的一种或多种。The metal heterojunction nanowires are copper-iron heterojunction nanowires, silver-iron heterojunction nanowires, gold-iron heterojunction nanowires, aluminum-iron heterojunction nanowires, nickel-iron heterojunction nanowires, cobalt Iron heterojunction nanowires, manganese-iron heterojunction nanowires, cadmium-iron heterojunction nanowires, indium-iron heterojunction nanowires, tin-iron heterojunction nanowires, tungsten-iron heterojunction nanowires, platinum-iron heterojunction nanowires Mass junction nanowires, silver-copper heterojunction nanowires, gold-copper heterojunction nanowires, aluminum-copper heterojunction nanowires, nickel-copper heterojunction nanowires, cobalt-copper heterojunction nanowires, manganin-copper heterojunction Nanowires, cadmium-copper heterojunction nanowires, tin-copper heterojunction nanowires, tungsten-copper heterojunction nanowires, platinum-copper heterojunction nanowires, gold-silver heterojunction nanowires, aluminum-silver heterojunction nanowires , nickel-silver heterojunction nanowires, cobalt-silver heterojunction nanowires, manganese-silver heterojunction nanowires, cadmium-silver heterojunction nanowires, indium-silver heterojunction nanowires, tin-silver heterojunction nanowires, tungsten Silver heterojunction nanowires, platinum-silver heterojunction nanowires, aluminum-gold heterojunction nanowires, nickel-gold heterojunction nanowires, cobalt-gold heterojunction nanowires, manganese-gold heterojunction nanowires, cadmium-gold heterojunction nanowires Mass junction nanowires, indium-gold heterojunction nanowires, tin-gold heterojunction nanowires, tungsten-gold heterojunction nanowires, cobalt-nickel heterojunction nanowires, manganese-nickel heterojunction nanowires, cadmium-nickel heterojunction nanowires wire, indium-nickel heterojunction nanowire, tin-nickel heterojunction nanowire, tungsten-nickel heterojunction nanowire, platinum-nickel heterojunction nanowire, cadmium-manganese heterojunction nanowire, indium-manganese heterojunction nanowire, Tin-manganese heterojunction nanowires, tungsten-manganese heterojunction nanowires, platinum-manganese heterojunction nanowires, indium-cadmium heterojunction nanowires, tin-cadmium heterojunction nanowires, tungsten-cadmium heterojunction nanowires, platinum-cadmium heterojunction nanowires Heterojunction nanowires, tin-indium heterojunction nanowires, tungsten-indium heterojunction nanowires, platinum-indium heterojunction nanowires, tungsten-tin heterojunction nanowires, platinum-tin heterojunction nanowires or platinum-tungsten heterojunction One or more of the junction nanowires.

所述聚合物电极材料为聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)或3,4-聚乙烯二氧噻吩。The polymer electrode material is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) or 3,4-polyethylenedioxythiophene.

一种生物可降解的柔性光电子器件用基板的制造方法,包括以下步骤:A method for manufacturing a substrate for a biodegradable flexible optoelectronic device, comprising the following steps:

①对表面粗糙度小于1nm的刚性基板进行清洗,清洗后用干燥氮气吹干;① Clean the rigid substrate with surface roughness less than 1nm, and dry it with dry nitrogen after cleaning;

②在刚性基板上采用辊涂、LB膜法、刮涂、旋涂、滴涂、喷涂、提拉法、流延法、浸涂、喷墨打印、自组装或丝网印刷制备柔性衬底,所述柔性衬底为虫胶,所述虫胶中掺有质量比为0.3-4%的双重固化胶,所述双重固化胶是由双重固化体系构成,所述双重固化体系为紫外光固化-热固化体系、紫外光固化-微波固化体系、紫外光固化-厌氧固化体系和紫外光固化-电子束固化体系的一种或多种。② Prepare flexible substrates on rigid substrates by roller coating, LB film method, scraping coating, spin coating, drop coating, spray coating, pulling method, casting method, dip coating, inkjet printing, self-assembly or screen printing, The flexible substrate is shellac, and the shellac is mixed with a dual-curing adhesive with a mass ratio of 0.3-4%. The dual-curing adhesive is composed of a dual-curing system, and the dual-curing system is UV-curing- One or more of thermal curing system, UV curing-microwave curing system, UV curing-anaerobic curing system and UV curing-electron beam curing system.

③对步骤②得到的柔性衬底进行紫外光处理,进行光固化;③ UV light treatment is carried out on the flexible substrate obtained in step ②, and photocuring is carried out;

④将柔性衬底放入加热炉进行热固化或者放入微波炉进行微波固化;④ Put the flexible substrate into a heating furnace for heat curing or put it in a microwave oven for microwave curing;

同时,步骤③和④可以互换,即先进行加热固化或者微波固化,再进行紫外光固化;At the same time, steps ③ and ④ can be interchanged, that is, heat curing or microwave curing is performed first, and then UV curing is performed;

⑤在柔性衬底表面采用辊涂、LB膜法、滴涂、喷涂、提拉法、喷墨打印或丝网印刷法制备导电层;⑤ Prepare the conductive layer on the surface of the flexible substrate by roller coating, LB film method, drop coating, spray coating, pulling method, inkjet printing or screen printing method;

⑥对步骤⑤得到的柔性衬底再次进行紫外光处理,进行光固化;⑥UV treatment is performed on the flexible substrate obtained in step ⑤, and photocuring is carried out;

⑦将柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the rigid substrate to form a substrate for flexible optoelectronic devices;

进一步的,制作完成后测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。Further, after the fabrication is completed, the degradation characteristics, square resistance, surface morphology, water-oxygen transmittance and light transmittance of the substrate for flexible optoelectronic devices are tested.

一种生物可降解的柔性光电子器件用基板的制造方法,其特征在于,包括以下步骤:A method for manufacturing a substrate for a biodegradable flexible optoelectronic device, characterized in that it comprises the following steps:

①表面粗糙度小于1nm的刚性基板进行清洗,清洗后用干燥氮气吹干;① Rigid substrates with surface roughness less than 1nm should be cleaned, and then dried with dry nitrogen after cleaning;

②在刚性基板上采用辊涂、LB膜法、刮涂、旋涂、滴涂、喷涂、提拉法、流延法、浸涂、喷墨打印、自组装或丝网印刷制备柔性衬底,所述柔性衬底为虫胶,所述虫胶中掺有质量比为0.3-4%的双重固化胶,所述双重固化胶是由双重固化体系构成,所述双重固化体系为紫外光固化-热固化体系、紫外光固化-微波固化体系、紫外光固化-厌氧固化体系和紫外光固化-电子束固化体系的一种或多种。② Prepare flexible substrates on rigid substrates by roller coating, LB film method, scraping coating, spin coating, drop coating, spray coating, pulling method, casting method, dip coating, inkjet printing, self-assembly or screen printing, The flexible substrate is shellac, and the shellac is mixed with a dual-curing adhesive with a mass ratio of 0.3-4%. The dual-curing adhesive is composed of a dual-curing system, and the dual-curing system is UV-curing- One or more of thermal curing system, UV curing-microwave curing system, UV curing-anaerobic curing system and UV curing-electron beam curing system.

③对步骤②得到的柔性衬底进行紫外光处理,进行光固化;③ UV light treatment is carried out on the flexible substrate obtained in step ②, and photocuring is carried out;

④将柔性衬底放置在真空环境下,进行厌氧固化或者电子束固化过程;④ Place the flexible substrate in a vacuum environment for anaerobic curing or electron beam curing;

⑤在柔性衬底表面采用辊涂、LB膜法、滴涂、喷涂、提拉法、喷墨打印或丝网印刷法制备导电层;⑤ Prepare the conductive layer on the surface of the flexible substrate by roller coating, LB film method, drop coating, spray coating, pulling method, inkjet printing or screen printing method;

⑥对步骤⑤得到的柔性衬底再次进行紫外光处理,进行光固化;⑥UV treatment is performed on the flexible substrate obtained in step ⑤, and photocuring is carried out;

⑦将柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the rigid substrate to form a substrate for flexible optoelectronic devices;

进一步的,制作完成后测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。Further, after the fabrication is completed, the degradation characteristics, square resistance, surface morphology, water-oxygen transmittance and light transmittance of the substrate for flexible optoelectronic devices are tested.

与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:

(1)在虫胶中掺入适量的双重固化胶,通过双重固化处理后分子之间相互交联,防止虫胶中树脂分子结晶,从而使光散射降低,提高了柔性衬底的透光率,从而对柔性光电子器件性能有很大的提升。(1) Add an appropriate amount of double-curing glue to the shellac, and cross-link the molecules after the double-curing treatment to prevent the crystallization of the resin molecules in the shellac, thereby reducing light scattering and improving the light transmittance of the flexible substrate , thus greatly improving the performance of flexible optoelectronic devices.

(2)在虫胶中掺入适量的双重固化胶,通过双重固化处理后分子之间相互交联,从而增加了虫胶的柔韧性。(2) In the shellac, an appropriate amount of double curing glue is mixed, and the molecules are cross-linked after the double curing treatment, thereby increasing the flexibility of the shellac.

(3)经双重固化处理后的掺有适量双重固化胶的虫胶,分子排列更加紧密,有效地提高了水氧阻隔能力。(3) The shellac mixed with an appropriate amount of double-cured glue after the double-cured treatment has a tighter molecular arrangement, which effectively improves the water-oxygen barrier capacity.

(4)有效地增加了柔性衬底和导电薄膜之间的附着能力,提升了器件的性能。(5)采用本发明中提供的制备方法能够大大降低基板的生产成本和工艺难度。(4) The adhesion ability between the flexible substrate and the conductive film is effectively increased, and the performance of the device is improved. (5) The production cost and process difficulty of the substrate can be greatly reduced by adopting the preparation method provided in the present invention.

附图说明Description of drawings

图1是本发明的生物可降解的柔性光电子器件用基板的结构示意图;Fig. 1 is a schematic structural view of a substrate for a biodegradable flexible optoelectronic device of the present invention;

图中标记:1、导电层,2、柔性衬底。Marks in the figure: 1. conductive layer, 2. flexible substrate.

具体实施方式Detailed ways

下面结合实施例对本发明作进一步的描述,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的其他所用实施例,都属于本发明的保护范围。The present invention will be further described below in conjunction with the embodiments, and the described embodiments are only a part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, other used embodiments obtained by persons of ordinary skill in the art without creative efforts all belong to the protection scope of the present invention.

结合附图,本发明的生物可降解的柔性光电子器件用基板,包括柔性衬底和导电层,导电层位于柔性衬底的上方,其特征在于,所述柔性衬底为掺有双重固化胶的虫胶,所述双重固化胶在虫胶中的质量比为0.3—4%,所述双重固化胶由双重固化体系构成,所述双重固化体系为紫外光固化-热固化体系、紫外光固化-微波固化体系、紫外光固化-厌氧固化体系或紫外光固化-电子束固化体系中的一种或者多种,所述双重固化体系是通过两个独立的固化阶段完成的,其中一个固化阶段是通过紫外光固化反应,另一个固化阶段是暗反应。With reference to the accompanying drawings, the substrate for biodegradable flexible optoelectronic devices of the present invention includes a flexible substrate and a conductive layer. Shellac, the mass ratio of the dual-curing glue in the shellac is 0.3-4%, and the double-curing glue is composed of a dual-curing system, and the dual-curing system is a UV-curing-heat-curing system, a UV-curing- One or more of microwave curing system, UV curing-anaerobic curing system or UV curing-electron beam curing system, the dual curing system is completed through two independent curing stages, one of which is With UV light curing reaction, another curing stage is dark reaction.

本发明中的柔性衬底2为导电层的依托,它有一定的弯折性能,有一定的防水汽和氧气渗透的能力,有良好的平整性,有良好的透光性。The flexible substrate 2 in the present invention is the support of the conductive layer. It has a certain bending performance, a certain ability to prevent moisture and oxygen penetration, has good flatness, and has good light transmission.

本发明中导电层1要求具有良好的成膜性能,良好的导电性,通常采用石墨烯、碳纳米管、金属单质纳米线、金属合金纳米线、金属异质结纳米线、氧化锌、氧化钛、氧化铟锡或聚合物电极材料中的一种或多种。In the present invention, the conductive layer 1 is required to have good film-forming properties and good electrical conductivity, and graphene, carbon nanotubes, metal elemental nanowires, metal alloy nanowires, metal heterojunction nanowires, zinc oxide, and titanium oxide are usually used. , indium tin oxide or one or more of polymer electrode materials.

所述双重固化体系为以下体系:The dual curing system is the following system:

①自由基型紫外光固化-热固化体系,重量组成:① Radical UV curing-heat curing system, weight composition:

固化过程为:先进行紫外光固化,接着进行加热固化,再进行紫外光固化;或者先进行加热固化,接着进行紫外光固化,再加热固化;The curing process is: UV curing first, then heating and curing, and then UV curing; or heating and curing first, then UV curing, and then heating and curing;

②自由基型紫外光固化-微波固化体系,重量组成:② Radical UV curing-microwave curing system, weight composition:

固化过程为:先进行紫外光固化,接着进行微波固化,再进行紫外光固化;或者先进行微波固化,接着进行紫外光固化,再加热或微波固化;The curing process is: UV curing first, then microwave curing, and then UV curing; or microwave curing first, then UV curing, and then heating or microwave curing;

③自由基型紫外光固化-厌氧固化体系,重量组成:③Free radical UV curing-anaerobic curing system, weight composition:

固化过程是:首先进行紫外光固化,接着未受到光照且处于缺氧条件下的衬底会自动进行厌氧固化反应,再进行紫外光固化;The curing process is: firstly carry out ultraviolet light curing, then the substrate which is not exposed to light and under anoxic conditions will automatically undergo anaerobic curing reaction, and then carry out ultraviolet light curing;

④自由基型紫外光固化-电子束固化体系,重量组成:④ Radical UV curing-electron beam curing system, weight composition:

固化过程是:首先进行紫外光固化,接着在真空下进行电子束固化,再进行紫外光固化;The curing process is: first UV curing, then electron beam curing under vacuum, and then UV curing;

⑤阳离子型紫外光固化-热固化体系,重量组成:⑤Cationic UV curing-thermal curing system, weight composition:

固化过程是:先进行紫外光固化,接着进行加热固化,再进行紫外光固化;或者先进行加热固化,接着进行紫外光固化,再加热固化;The curing process is: UV curing first, then heating and curing, and then UV curing; or heating and curing first, then UV curing, and then heating and curing;

⑥阳离子型紫外光固化-微波固化体系,重量组成:⑥Cationic UV curing-microwave curing system, weight composition:

固化过程是:先进行紫外光固化,接着进行微波固化,再进行紫外光固化;或者先进行微波固化,接着进行紫外光固化,再加热或微波固化;The curing process is: UV curing first, then microwave curing, and then UV curing; or microwave curing first, then UV curing, and then heating or microwave curing;

⑦阳离子型紫外光固化-厌氧固化体系,重量组成:⑦Cationic UV curing-anaerobic curing system, weight composition:

固化过程是:首先进行紫外光固化,接着未受到光照且处于缺氧条件下的衬底会自动进行厌氧固化反应,再进行紫外光固化;The curing process is: firstly carry out ultraviolet light curing, then the substrate which is not exposed to light and under anoxic conditions will automatically undergo anaerobic curing reaction, and then carry out ultraviolet light curing;

或⑧阳离子型紫外光固化-电子束固化体系,重量组成:Or ⑧ cationic UV curing - electron beam curing system, weight composition:

固化过程是:首先进行紫外光固化,接着在真空下进行电子束固化,再进行紫外光固化。The curing process is: first UV curing, then electron beam curing under vacuum, and then UV curing.

所述自由基热固化剂为乙二胺、己二胺、三乙烯四胺、羟乙基二乙烯三胺、羟异丙基二乙烯三胺、聚乙二酸己二酰胺、二甲氨丙胺、四甲基丙二胺、双氰胺、二胺基二苯基砜、二胺基二苯基甲烷、间苯二胺、二乙基甲苯二胺、N-(氨丙基)-甲苯二胺、二甲基乙醇胺、二甲基卞胺、三乙基苄基氯化胺、苄基-二甲胺、N-苄基二甲胺、2,4,6,-三-(二甲胺基甲基)-苯酚、苯酚甲醛己二胺、N,N-二甲基苄胺、2-乙基咪唑、2-苯基咪唑、2-甲基咪唑、2-乙基咪唑、2-乙基-4-甲基咪唑、1-(2-氨基乙基)-2-甲基咪唑、顺丁烯二酸酐、二苯醚四酸二酐、邻苯二甲酸酐、偏苯三甲酸酐、四溴苯二甲酸酐、聚壬乙酸酐、癸二酸二酰肼、己二酰肼、碳酸二酰肼、草酸二酰肼、丁二酸二酰肼、己二酸二酰肼、N-氨基聚丙烯酰胺、癸二酸酰肼、间苯二甲酸酰肼、对羟基安息香酸酰肼、壬二酸二酰肼、间苯二甲酸二酰肼、二茂铁四氟硼酸盐、三聚氰酸三烯丙酯、甲苯二异氰酸酯、二苯甲烷二异氰酸酯、己二异氰酸酯、三甲基己二异氰酸酯、二环己基甲烷二异氰酸酯、苯二亚甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、甲基苯乙烯异氰酸酯、六氢甲苯二异氰酸酯、三苯基甲-4,4',4'-三异氰酸酯、二氨基二苯基甲烷、N-对氯代苯基-N-N-二甲基脲、3-苯基-1,1-二甲基脲、3-对氯苯基-1,1-二甲基脲、4,4′-二氨基二苯基双酚、聚氨基甲酸酯、脲醛树脂、环氧-乙二胺氨基甲酸酯、2,4,6-三(二甲氨基甲基)苯酚、2,4-二氨基甲苯、聚氨基甲酸脂、甲醚化脲醛树脂、三(3-氨基丙基)胺、2-氨基乙基-二(3-氨基丙基)胺、4,4′-二氨基二苯甲烷、4,4′-二氨基二苯基双酚、4,4′-二氨基二苯砜、三(3-氨基丙基)胺、三聚氰胺树脂、苯代三聚氰胺树脂、六羟甲基三聚氰胺树脂、六甲氧甲基三聚氰胺树脂、脲-三聚氰胺甲醛树脂、聚酯三聚氰胺、三氯异氰脲酸酯、氨基三嗪树脂、氨基甲酸酯丙烯酸酯、4-氨基吡啶树脂、N-β-氨乙基氨基聚酯树脂、α-氨基吡啶树脂、氨基二苯醚树脂、氨基磷酸树脂、羟乙氨基聚酯树脂;所述微波固化剂与热固化剂使用相同材料或者不同材料;所述厌氧固化剂包括:双甲基丙烯酸三缩四乙二醇酯、双甲基丙烯酸多缩乙二醇酯、三缩乙二醇双甲基丙烯酸酯、双甲基丙烯酸乙二醇酯、甲基丙烯酸羟乙酯或羟丙酯、甲氧基化聚乙二醇甲基丙烯酸酯、邻苯二甲酸二缩三乙二醇酯、甲基丙烯酸β-羟乙酯、三缩乙二醇双甲基丙烯酸酯、双甲基丙烯酸硫代二甘醇酯、邻苯二甲酸双(二甘醇丙烯酸酯)、乙氧基化双酚A二甲基丙烯酸酯、二甲基丙烯酸双酚A乙二醇脂、乙二酯甲基丙烯酸酯、二缩三乙二醇二甲基丙烯酸酯、缩乙二醇双甲基丙烯酸酯、乙二醇双甲基丙烯酸酯、一缩二乙醇双甲基丙烯酸酯、环氧树脂甲基丙烯酸酯、双甲基丙烯酸一缩二乙二醇酯;所述电子束固化剂包括:三酚基甲烷缩水甘油醚环氧树脂、二环戊二烯双酚型环氧树脂、双酚A型乙烯基酯树脂、环氧乙烯基酯树脂、环氧丙烯酸酯树脂、马来酰亚胺树脂、4,4’-二苯甲烷双马来酰亚胺、双酚A-二苯醚双马来酰亚胺、双酚A顺丁烯二酸乙烯基树脂、溴化乙烯基酯树脂、酚醛环氧乙烯基酯树脂、羟甲基化双酚A型环氧树脂、双酚A丙烯酸酯、聚氨酯丙烯酸酯、双酚A环氧乙烯基酯树脂、双酚A苯并噁嗪-环氧树脂、双酚芴环氧树脂、双酚A型环氧丙烯酸酯树脂、双酚A二缩水甘油醚或双酚A环氧氯丙烯酸酯树脂;The free radical thermal curing agent is ethylenediamine, hexamethylenediamine, triethylenetetramine, hydroxyethyldiethylenetriamine, hydroxyisopropyldiethylenetriamine, polyoxalic acid adipamide, dimethylaminopropylamine , tetramethylpropylenediamine, dicyandiamide, diaminodiphenylsulfone, diaminodiphenylmethane, m-phenylenediamine, diethyltoluenediamine, N-(aminopropyl)-toluene di Amine, dimethylethanolamine, dimethylbenzylamine, triethylbenzylamine chloride, benzyl-dimethylamine, N-benzyldimethylamine, 2,4,6,-tri-(dimethylamine methyl)-phenol, phenol formaldehyde hexamethylenediamine, N,N-dimethylbenzylamine, 2-ethylimidazole, 2-phenylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl Base-4-methylimidazole, 1-(2-aminoethyl)-2-methylimidazole, maleic anhydride, diphenyl ether tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, tetra Bromophthalic anhydride, polynonacetic anhydride, sebacic acid dihydrazide, adipic acid dihydrazide, carbonate dihydrazide, oxalic acid dihydrazide, succinic acid dihydrazide, adipate dihydrazide, N-amino Polyacrylamide, sebacic acid hydrazide, isophthalic acid hydrazide, p-hydroxybenzoic acid hydrazide, azelaic acid dihydrazide, isophthalic acid dihydrazide, ferrocene tetrafluoroborate, trimer Triallyl cyanate, toluene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate diisocyanate, methylstyrene isocyanate, hexahydrotoluene diisocyanate, trityl methane-4,4',4'-triisocyanate, diaminodiphenylmethane, N-p-chlorophenyl-N-N-di Methylurea, 3-phenyl-1,1-dimethylurea, 3-p-chlorophenyl-1,1-dimethylurea, 4,4'-diaminodiphenylbisphenol, polyurethane Ester, urea-formaldehyde resin, epoxy-ethylenediamine carbamate, 2,4,6-tris(dimethylaminomethyl)phenol, 2,4-diaminotoluene, polyurethane, methyl etherified urea-formaldehyde Resin, tris(3-aminopropyl)amine, 2-aminoethyl-bis(3-aminopropyl)amine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylbis Phenol, 4,4'-diaminodiphenylsulfone, tris(3-aminopropyl)amine, melamine resin, benzomelamine resin, hexamethylolmelamine resin, hexamethoxymethylmelamine resin, urea-melamine formaldehyde resin , polyester melamine, trichloroisocyanurate, aminotriazine resin, urethane acrylate, 4-aminopyridine resin, N-β-aminoethyl aminopolyester resin, α-aminopyridine resin, amino Diphenyl ether resin, aminophosphoric acid resin, hydroxyethylamino polyester resin; the microwave curing agent and the thermal curing agent use the same material or different materials; the anaerobic curing agent includes: triethylene glycol dimethacrylate Ester, polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, ethylene glycol dimethacrylate, hydroxyethyl or hydroxypropyl methacrylate, methoxylated polyethylene Diol methacrylate, triethylene glycol phthalate, β-hydroxyethyl methacrylate, triethylene glycol phthalate Ethylene Glycol Dimethacrylate, Thiodiethylene Glycol Dimethacrylate, Bis(Diethylene Glycol Acrylate) Phthalate, Ethoxylated Bisphenol A Dimethacrylate, Dimethacrylic Acid Bisphenol A glycol ester, ethylene glycol methacrylate, triethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, acetal Ethanol dimethacrylate, epoxy resin methacrylate, diethylene glycol dimethacrylate; the electron beam curing agent includes: triphenolyl methane glycidyl ether epoxy resin, dicyclopentadiene Alkenyl bisphenol type epoxy resin, bisphenol A type vinyl ester resin, epoxy vinyl ester resin, epoxy acrylate resin, maleimide resin, 4,4'-diphenylmethane bismaleimide Amine, bisphenol A-diphenyl ether bismaleimide, bisphenol A maleic acid vinyl resin, brominated vinyl ester resin, novolac epoxy vinyl ester resin, methylolated bisphenol A Type epoxy resin, bisphenol A acrylate, urethane acrylate, bisphenol A epoxy vinyl ester resin, bisphenol A benzoxazine-epoxy resin, bisphenol fluorene epoxy resin, bisphenol A type epoxy Acrylate resin, bisphenol A diglycidyl ether or bisphenol A epoxy chloroacrylate resin;

光引发剂为为安息香或者安息香衍生物,所述安息香衍生物为安息香甲醚、安息香乙醚、乙酰苯衍生物或安息香异丙醚;阳离子光引发剂为芳香硫鎓盐、碘鎓盐或茂铁盐类;光敏剂为二苯甲酮、硫杂蒽醌或米蚩酮;助剂包括增塑剂、触变剂和填充剂;The photoinitiator is benzoin or benzoin derivatives, and the benzoin derivatives are benzoin methyl ether, benzoin ether, acetophenone derivatives or benzoin isopropyl ether; the cationic photoinitiator is aromatic sulfonium salt, iodonium salt or ferrocene salts; photosensitizers are benzophenone, thioxanthraquinone or Michler's ketone; additives include plasticizers, thixotropic agents and fillers;

增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯、三丁氧基乙烯基磷酸酯、聚乙烯醇缩丁醛、乙酰柠檬酸三丁酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、已二酸二(丁氧基乙氧基)乙酯、钛酸异丙酯、钛酸正丁酯、柠檬酸酯、偏苯三酸(2-乙基)己酯、邻苯二甲酸二(2-乙基)己酯、癸二酸二(2-乙基)己酯、一缩二乙二醇二苯甲酸酯、邻苯二甲酸酐、二丙二醇二苯甲酸酯和氯磺化聚乙烯;所述偶联剂包括甲基乙烯基二氯硅烷、甲基氢二氯硅烷、二甲基二氯硅烷、二甲基一氯硅烷、乙烯基三氯硅烷、γ-氨丙基三甲氧基硅烷、聚二甲基硅氧烷、聚氢甲基硅氧烷、聚甲基甲氧基硅氧烷、γ-甲基丙烯酸丙醋基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚丙基三甲氧基硅烷、氨丙基倍半硅氧烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、长链烷基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、γ-氯丙基三乙氧基硅烷、双-(γ-三乙氧基硅基丙基)、苯胺甲基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基三甲氧基硅烷、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基甲基二甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲基硅烷、γ-巯基丙基三甲氧基硅烷或γ-巯基丙基三乙氧基硅烷。Plasticizers are dioctyl phthalate, dibutyl phthalate, tributoxy vinyl phosphate, polyvinyl butyral, acetyl tributyl citrate, dimethyl phthalate , diethyl phthalate, bis(butoxyethoxy) ethyl adipate, isopropyl titanate, n-butyl titanate, citrate, trimellitic acid (2-ethyl) Hexyl ester, Di(2-ethyl)hexyl phthalate, Di(2-ethyl)hexyl sebacate, Diethylene glycol dibenzoate, Phthalic anhydride, Dipropylene glycol Dibenzoate and chlorosulfonated polyethylene; the coupling agents include methylvinyldichlorosilane, methylhydrogendichlorosilane, dimethyldichlorosilane, dimethylmonochlorosilane, vinyltrichlorosilane, Chlorosilane, γ-Aminopropyltrimethoxysilane, Dimethicone, Polyhydromethylsiloxane, Polymethylmethoxysiloxane, γ-Propyltrimethoxymethacrylate Silane, γ-aminopropyltriethoxysilane, γ-glycidyl ether propyltrimethoxysilane, aminopropyl silsesquioxane, γ-methacryloxypropyltrimethoxysilane, long Alkyltrimethoxysilane, Vinyltriethoxysilane, Vinyltrimethoxysilane, γ-Chloropropyltriethoxysilane, Bis-(γ-triethoxysilylpropyl), Aniline Methyltriethoxysilane, N-β(aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltriethoxysilane, N- β(aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-(2,3-glycidoxy)propyltrimethoxysilane, γ-(methacryloyloxy)propyl Trimethylsilane, γ-mercaptopropyltrimethoxysilane or γ-mercaptopropyltriethoxysilane.

所述导电层的材料为石墨烯、碳纳米管、金属单质纳米线、金属合金纳米线、金属异质结纳米线、氧化锌、氧化钛、氧化铟锡或聚合物电极材料中的一种或多种。The material of the conductive layer is one or more of graphene, carbon nanotubes, metal elemental nanowires, metal alloy nanowires, metal heterojunction nanowires, zinc oxide, titanium oxide, indium tin oxide or polymer electrode materials Various.

所述金属单质纳米线或铁纳米线、铜纳米线、银纳米线、金纳米线、铝纳米线、镍纳米线、钴纳米线、锰纳米线、镉纳米线、铟纳米线、锡纳米线、钨纳米线或铂纳米线中的一种或多种。The metal nanowires or iron nanowires, copper nanowires, silver nanowires, gold nanowires, aluminum nanowires, nickel nanowires, cobalt nanowires, manganese nanowires, cadmium nanowires, indium nanowires, tin nanowires , one or more of tungsten nanowires or platinum nanowires.

所述金属合金纳米线为铜铁合金纳米线、银铁合金纳米线、金铁合金纳米线、铝铁合金纳米线、镍铁合金纳米线、钴铁合金纳米线、锰铁合金纳米线、镉铁合金纳米线、铟铁合金纳米线、锡铁合金纳米线、钨铁合金纳米线、铂铁合金纳米线、银铜合金纳米线、金铜合金纳米线、铝铜合金纳米线、镍铜合金纳米线、钴铜合金纳米线、锰铜合金纳米线、镉铜合金纳米线、锡铜合金纳米线、钨铜合金纳米线、铂铜合金纳米线、金银合金纳米线、铝银合金纳米线、镍银合金纳米线、钴银合金纳米线、锰银合金纳米线、镉银合金纳米线、铟银合金纳米线、锡银合金纳米线、钨银合金纳米线、铂银合金纳米线、铝金合金纳米线、镍金合金纳米线、钴金合金纳米线、锰金合金纳米线、镉金合金纳米线、铟金合金纳米线、锡金合金纳米线、钨金合金纳米线、钴镍合金纳米线、锰镍合金纳米线、镉镍合金纳米线、铟镍合金纳米线、锡镍合金纳米线、钨镍合金纳米线、铂镍合金纳米线、镉锰合金纳米线、铟锰合金纳米线、锡锰合金纳米线、钨锰合金纳米线、铂锰合金纳米线、铟镉合金纳米线、锡镉合金纳米线、钨镉合金纳米线、铂镉合金纳米线、锡铟合金纳米线、钨铟合金纳米线、铂铟合金纳米线、钨锡合金纳米线、铂锡合金纳米线或铂钨合金纳米线中的一种或多种。The metal alloy nanowires are copper-iron alloy nanowires, silver-iron alloy nanowires, gold-iron alloy nanowires, aluminum-iron alloy nanowires, nickel-iron alloy nanowires, cobalt-iron alloy nanowires, manganese-iron alloy nanowires, cadmium-iron alloy nanowires, and indium-iron alloy nanowires. wire, tin-iron alloy nanowire, tungsten-iron alloy nanowire, platinum-iron alloy nanowire, silver-copper alloy nanowire, gold-copper alloy nanowire, aluminum-copper alloy nanowire, nickel-copper alloy nanowire, cobalt-copper alloy nanowire, manganese-copper alloy Nanowires, cadmium-copper alloy nanowires, tin-copper alloy nanowires, tungsten-copper alloy nanowires, platinum-copper alloy nanowires, gold-silver alloy nanowires, aluminum-silver alloy nanowires, nickel-silver alloy nanowires, cobalt-silver alloy nanowires , manganese-silver alloy nanowires, cadmium-silver alloy nanowires, indium-silver alloy nanowires, tin-silver alloy nanowires, tungsten-silver alloy nanowires, platinum-silver alloy nanowires, aluminum-gold alloy nanowires, nickel-gold alloy nanowires, cobalt Gold alloy nanowires, manganese-gold alloy nanowires, cadmium-gold alloy nanowires, indium-gold alloy nanowires, tin-gold alloy nanowires, tungsten-gold alloy nanowires, cobalt-nickel alloy nanowires, manganese-nickel alloy nanowires, cadmium-nickel alloy nanowires wire, indium-nickel alloy nanowire, tin-nickel alloy nanowire, tungsten-nickel alloy nanowire, platinum-nickel alloy nanowire, cadmium-manganese alloy nanowire, indium-manganese alloy nanowire, tin-manganese alloy nanowire, tungsten-manganese alloy nanowire, Platinum-manganese alloy nanowires, indium-cadmium alloy nanowires, tin-cadmium alloy nanowires, tungsten-cadmium alloy nanowires, platinum-cadmium alloy nanowires, tin-indium alloy nanowires, tungsten-indium alloy nanowires, platinum-indium alloy nanowires, tungsten-tin One or more of alloy nanowires, platinum-tin alloy nanowires or platinum-tungsten alloy nanowires.

所述金属异质结纳米线为铜铁异质结纳米线、银铁异质结纳米线、金铁异质结纳米线、铝铁异质结纳米线、镍铁异质结纳米线、钴铁异质结纳米线、锰铁异质结纳米线、镉铁异质结纳米线、铟铁异质结纳米线、锡铁异质结纳米线、钨铁异质结纳米线、铂铁异质结纳米线、银铜异质结纳米线、金铜异质结纳米线、铝铜异质结纳米线、镍铜异质结纳米线、钴铜异质结纳米线、锰铜异质结纳米线、镉铜异质结纳米线、锡铜异质结纳米线、钨铜异质结纳米线、铂铜异质结纳米线、金银异质结纳米线、铝银异质结纳米线、镍银异质结纳米线、钴银异质结纳米线、锰银异质结纳米线、镉银异质结纳米线、铟银异质结纳米线、锡银异质结纳米线、钨银异质结纳米线、铂银异质结纳米线、铝金异质结纳米线、镍金异质结纳米线、钴金异质结纳米线、锰金异质结纳米线、镉金异质结纳米线、铟金异质结纳米线、锡金异质结纳米线、钨金异质结纳米线、钴镍异质结纳米线、锰镍异质结纳米线、镉镍异质结纳米线、铟镍异质结纳米线、锡镍异质结纳米线、钨镍异质结纳米线、铂镍异质结纳米线、镉锰异质结纳米线、铟锰异质结纳米线、锡锰异质结纳米线、钨锰异质结纳米线、铂锰异质结纳米线、铟镉异质结纳米线、锡镉异质结纳米线、钨镉异质结纳米线、铂镉异质结纳米线、锡铟异质结纳米线、钨铟异质结纳米线、铂铟异质结纳米线、钨锡异质结纳米线、铂锡异质结纳米线或铂钨异质结纳米线中的一种或多种。The metal heterojunction nanowires are copper-iron heterojunction nanowires, silver-iron heterojunction nanowires, gold-iron heterojunction nanowires, aluminum-iron heterojunction nanowires, nickel-iron heterojunction nanowires, cobalt Iron heterojunction nanowires, manganese-iron heterojunction nanowires, cadmium-iron heterojunction nanowires, indium-iron heterojunction nanowires, tin-iron heterojunction nanowires, tungsten-iron heterojunction nanowires, platinum-iron heterojunction nanowires Mass junction nanowires, silver-copper heterojunction nanowires, gold-copper heterojunction nanowires, aluminum-copper heterojunction nanowires, nickel-copper heterojunction nanowires, cobalt-copper heterojunction nanowires, manganin-copper heterojunction Nanowires, cadmium-copper heterojunction nanowires, tin-copper heterojunction nanowires, tungsten-copper heterojunction nanowires, platinum-copper heterojunction nanowires, gold-silver heterojunction nanowires, aluminum-silver heterojunction nanowires , nickel-silver heterojunction nanowires, cobalt-silver heterojunction nanowires, manganese-silver heterojunction nanowires, cadmium-silver heterojunction nanowires, indium-silver heterojunction nanowires, tin-silver heterojunction nanowires, tungsten Silver heterojunction nanowires, platinum-silver heterojunction nanowires, aluminum-gold heterojunction nanowires, nickel-gold heterojunction nanowires, cobalt-gold heterojunction nanowires, manganese-gold heterojunction nanowires, cadmium-gold heterojunction nanowires Mass junction nanowires, indium-gold heterojunction nanowires, tin-gold heterojunction nanowires, tungsten-gold heterojunction nanowires, cobalt-nickel heterojunction nanowires, manganese-nickel heterojunction nanowires, cadmium-nickel heterojunction nanowires wire, indium-nickel heterojunction nanowire, tin-nickel heterojunction nanowire, tungsten-nickel heterojunction nanowire, platinum-nickel heterojunction nanowire, cadmium-manganese heterojunction nanowire, indium-manganese heterojunction nanowire, Tin-manganese heterojunction nanowires, tungsten-manganese heterojunction nanowires, platinum-manganese heterojunction nanowires, indium-cadmium heterojunction nanowires, tin-cadmium heterojunction nanowires, tungsten-cadmium heterojunction nanowires, platinum-cadmium heterojunction nanowires Heterojunction nanowires, tin-indium heterojunction nanowires, tungsten-indium heterojunction nanowires, platinum-indium heterojunction nanowires, tungsten-tin heterojunction nanowires, platinum-tin heterojunction nanowires or platinum-tungsten heterojunction One or more of the junction nanowires.

所述聚合物电极材料为聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)或3,4-聚乙烯二氧噻吩。The polymer electrode material is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) or 3,4-polyethylenedioxythiophene.

一种生物可降解的柔性光电子器件用基板的制造方法,包括以下步骤:A method for manufacturing a substrate for a biodegradable flexible optoelectronic device, comprising the following steps:

①对表面粗糙度小于1nm的刚性基板进行清洗,清洗后用干燥氮气吹干;① Clean the rigid substrate with surface roughness less than 1nm, and dry it with dry nitrogen after cleaning;

②在刚性基板上采用辊涂、LB膜法、刮涂、旋涂、滴涂、喷涂、提拉法、流延法、浸涂、喷墨打印、自组装或丝网印刷制备柔性衬底,所述柔性衬底为虫胶,所述虫胶中掺有质量比为0.3-4%的双重固化胶,所述双重固化胶是由双重固化体系构成,所述双重固化体系为紫外光固化-热固化体系、紫外光固化-微波固化体系、紫外光固化-厌氧固化体系和紫外光固化-电子束固化体系的一种或多种。② Prepare flexible substrates on rigid substrates by roller coating, LB film method, scraping coating, spin coating, drop coating, spray coating, pulling method, casting method, dip coating, inkjet printing, self-assembly or screen printing, The flexible substrate is shellac, and the shellac is mixed with a dual-curing adhesive with a mass ratio of 0.3-4%. The dual-curing adhesive is composed of a dual-curing system, and the dual-curing system is UV-curing- One or more of thermal curing system, UV curing-microwave curing system, UV curing-anaerobic curing system and UV curing-electron beam curing system.

③对步骤②得到的柔性衬底进行紫外光处理,进行光固化;③ UV light treatment is carried out on the flexible substrate obtained in step ②, and photocuring is carried out;

④将柔性衬底放入加热炉进行热固化或者放入微波炉进行微波固化;④ Put the flexible substrate into a heating furnace for heat curing or put it in a microwave oven for microwave curing;

同时,步骤③和④可以互换,即先进行加热固化或者微波固化,再进行紫外光固化;At the same time, steps ③ and ④ can be interchanged, that is, heat curing or microwave curing is performed first, and then UV curing is performed;

⑤在柔性衬底表面采用辊涂、LB膜法、滴涂、喷涂、提拉法、喷墨打印或丝网印刷法制备导电层;⑤ Prepare the conductive layer on the surface of the flexible substrate by roller coating, LB film method, drop coating, spray coating, pulling method, inkjet printing or screen printing method;

⑥对步骤⑤得到的柔性衬底再次进行紫外光处理,进行光固化;⑥UV treatment is performed on the flexible substrate obtained in step ⑤, and photocuring is carried out;

⑦将柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板。⑦Peel off the flexible substrate from the rigid substrate to form a substrate for flexible optoelectronic devices.

制作完成后测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。After the production is completed, the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of the substrate for flexible optoelectronic devices are tested.

一种生物可降解的柔性光电子器件用基板的制造方法,其特征在于,包括以下步骤:A method for manufacturing a substrate for a biodegradable flexible optoelectronic device, characterized in that it comprises the following steps:

①表面粗糙度小于1nm的刚性基板进行清洗,清洗后用干燥氮气吹干;① Rigid substrates with surface roughness less than 1nm should be cleaned, and then dried with dry nitrogen after cleaning;

②在刚性基板上采用辊涂、LB膜法、刮涂、旋涂、滴涂、喷涂、提拉法、流延法、浸涂、喷墨打印、自组装或丝网印刷制备柔性衬底,所述柔性衬底为虫胶,所述虫胶中掺有质量比为0.3-4%的双重固化胶,所述双重固化胶是由双重固化体系构成,所述双重固化体系为紫外光固化-热固化体系、紫外光固化-微波固化体系、紫外光固化-厌氧固化体系和紫外光固化-电子束固化体系的一种或多种。② Prepare flexible substrates on rigid substrates by roller coating, LB film method, scraping coating, spin coating, drop coating, spray coating, pulling method, casting method, dip coating, inkjet printing, self-assembly or screen printing, The flexible substrate is shellac, and the shellac is mixed with a dual-curing adhesive with a mass ratio of 0.3-4%. The dual-curing adhesive is composed of a dual-curing system, and the dual-curing system is UV-curing- One or more of thermal curing system, UV curing-microwave curing system, UV curing-anaerobic curing system and UV curing-electron beam curing system.

③对步骤②得到的柔性衬底进行紫外光处理,进行光固化;③ UV light treatment is carried out on the flexible substrate obtained in step ②, and photocuring is carried out;

④将柔性衬底放置在真空环境下,进行厌氧固化或者电子束固化过程;④ Place the flexible substrate in a vacuum environment for anaerobic curing or electron beam curing;

⑤在柔性衬底表面采用辊涂、LB膜法、滴涂、喷涂、提拉法、喷墨打印或丝网印刷法制备导电层;⑤ Prepare the conductive layer on the surface of the flexible substrate by roller coating, LB film method, drop coating, spray coating, pulling method, inkjet printing or screen printing method;

⑥对步骤⑤得到的柔性衬底再次进行紫外光处理,进行光固化;⑥UV treatment is performed on the flexible substrate obtained in step ⑤, and photocuring is carried out;

⑦将柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板。⑦Peel off the flexible substrate from the rigid substrate to form a substrate for flexible optoelectronic devices.

制作完成后,测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。After the fabrication is completed, the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of the substrate for flexible optoelectronic devices are tested.

虫胶是一种天然树脂,具有独特的优良特性,被广泛应用于食品、医药、塑料、军事、电气、橡胶、油墨、皮革、涂料、染料和粘合剂等行业。虫胶无毒,目前在医药工业中主要用于药丸药片的防潮糖衣、药品密封、上光、肠溶药包衣和近年发展起来的营养物与化妆品的胶囊等。紫胶涂料同样可用于食品工业的很多方面,可被人体吸收、可自然降解,例如糖果和糕点涂了紫胶涂料之后,可变得甚为美观、光亮,可以防潮、防结块、防变质和延长贮存时间等。水果用紫胶涂料涂膜后,能在一定时期内抑制水分蒸发,保持新鲜,减少腐烂,改善外观,产生提高经济效益的效果。虫胶产品具有较好的抗张强度、耐磨性、回弹性和硬度,具有理想的机械性能。电学性能方面,虫胶的介电强度高,且在受电弧支配后,无导电性,加上它有良好的粘着性和热塑性,在电器绝缘上有特殊的用途。另外,被水解的虫胶形成的薄膜比天然虫胶形成的薄膜更柔软,这与虫胶中软树脂的增加有关。但水解虫胶膜的水汽浸透性比用天然虫胶膜低一些,所以需要进行一些处理来保证虫胶的水氧阻隔能力。Shellac is a kind of natural resin with unique and excellent properties, which is widely used in industries such as food, medicine, plastics, military, electrical, rubber, printing ink, leather, paint, dyestuff and adhesive. Shellac is non-toxic, and is mainly used in the pharmaceutical industry for moisture-proof sugar coating of pills and tablets, drug sealing, glazing, enteric drug coating, and capsules of nutrients and cosmetics developed in recent years. Shellac coatings can also be used in many aspects of the food industry. They can be absorbed by the human body and can be degraded naturally. For example, after coating shellac coatings on candies and cakes, they can become very beautiful and bright, and can prevent moisture, caking and deterioration. and prolong storage time. After the fruit is coated with shellac paint, it can inhibit water evaporation in a certain period of time, keep fresh, reduce rot, improve appearance, and produce the effect of improving economic benefits. Shellac products have good tensile strength, abrasion resistance, resilience and hardness, and have ideal mechanical properties. In terms of electrical properties, shellac has high dielectric strength and is non-conductive after being dominated by an arc. In addition, it has good adhesion and thermoplasticity, and has special uses in electrical insulation. In addition, the film formed by hydrolyzed shellac is softer than the film formed by natural shellac, which is related to the increase of soft resin in shellac. However, the water vapor permeability of hydrolyzed shellac film is lower than that of natural shellac film, so some treatment is required to ensure the water and oxygen barrier ability of shellac.

紫外光固化技术由于采用了紫外光作为固化能源,决定了其存在着自身的局限性,主要表现在:对应用基材形状有一定的限制,对带色体系固化速度低,深层和物件阴影区域难以固化,固化后体积收缩较大引起附着力差及光引发剂残留等问题。这些不足影响了紫外光固化技术的进一步发展和应用,而固化后体积收缩较大的缺点也严重影响了紫外光固化材料的应用范围。双重固化(dual一curing)技术是光固化与其它固化方法的结合。Because ultraviolet light curing technology uses ultraviolet light as the curing energy, it has its own limitations, which are mainly manifested in: there are certain restrictions on the shape of the applied substrate, the curing speed of the colored system is low, and the deep layer and the shadow area of the object It is difficult to cure, and the large volume shrinkage after curing causes problems such as poor adhesion and photoinitiator residue. These deficiencies have affected the further development and application of UV curing technology, and the disadvantage of large volume shrinkage after curing has also seriously affected the application range of UV curing materials. Dual curing (dual-curing) technology is the combination of light curing and other curing methods.

在双重固化体系中,体系的交联或聚合反应是通过两个独立的具有不同反应原理的阶段来完成的,其中一个阶段是通过光固化反应,而另一个阶段是通过暗反应进行的。其中,光固化可以是自由基紫外光固化,也可以是阳离子紫外光固化;暗固化可以是热固化、电子束固化、厌氧固化和微波聚合等。这样就可以利用光固化使体系快速定型或达到表干,而利用暗反应使阴影部分或底层部分固化完全。In the dual curing system, the crosslinking or polymerization reaction of the system is completed through two independent stages with different reaction principles, one of which is through the light curing reaction, while the other is through the dark reaction. Among them, the light curing can be free radical UV curing or cationic UV curing; the dark curing can be thermal curing, electron beam curing, anaerobic curing and microwave polymerization. In this way, light curing can be used to quickly set the system or reach surface dryness, while dark reaction can be used to completely cure the shadow part or bottom part.

光固化和暗固化的阶段都可以针对自由基型和阳离子型紫外固化剂,所以存在自由基型和阳离子型的热固化等。Both light curing and dark curing stages can be aimed at free radical and cationic UV curing agents, so there are free radical and cationic thermal curing.

下面是举的一些典型体系,以及一些具体的操作参数。Below are some typical systems and some specific operating parameters.

所述的柔性光电子器件用基板,自由基型紫外光固化剂为聚酯-丙烯酸酯、环氧-丙烯酸酯、氨基甲酸酯-丙烯酸酯、聚醚-丙烯酸酯或者以下分子结构的物质;In the substrate for flexible optoelectronic devices, the free radical UV curing agent is polyester-acrylate, epoxy-acrylate, urethane-acrylate, polyether-acrylate or substances with the following molecular structures;

HS(CH2CH2O)nCH2CH2SH或 HS(CH 2 CH 2 O) n CH 2 CH 2 SH or

阳离子型紫外光固化剂包括:环氧树脂或改性环氧树脂。Cationic UV curing agents include: epoxy resin or modified epoxy resin.

增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯、三丁氧基乙烯基磷酸酯、聚乙烯醇缩丁醛、乙酰柠檬酸三丁酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、已二酸二(丁氧基乙氧基)乙酯、钛酸异丙酯、钛酸正丁酯、柠檬酸酯、偏苯三酸(2-乙基)己酯、邻苯二甲酸二(2-乙基)己酯、癸二酸二(2-乙基)己酯、一缩二乙二醇二苯甲酸酯、邻苯二甲酸酐、二丙二醇二苯甲酸酯和氯磺化聚乙烯;所述偶联剂包括甲基乙烯基二氯硅烷、甲基氢二氯硅烷、二甲基二氯硅烷、二甲基一氯硅烷、乙烯基三氯硅烷、γ-氨丙基三甲氧基硅烷、聚二甲基硅氧烷、聚氢甲基硅氧烷、聚甲基甲氧基硅氧烷、γ-甲基丙烯酸丙醋基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚丙基三甲氧基硅烷、氨丙基倍半硅氧烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、长链烷基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、γ-氯丙基三乙氧基硅烷、双-(γ-三乙氧基硅基丙基)、苯胺甲基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基三甲氧基硅烷、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基甲基二甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲基硅烷、γ-巯基丙基三甲氧基硅烷或γ-巯基丙基三乙氧基硅烷中的一种或多种。Plasticizers are dioctyl phthalate, dibutyl phthalate, tributoxy vinyl phosphate, polyvinyl butyral, acetyl tributyl citrate, dimethyl phthalate , diethyl phthalate, bis(butoxyethoxy) ethyl adipate, isopropyl titanate, n-butyl titanate, citrate, trimellitic acid (2-ethyl) Hexyl ester, Di(2-ethyl)hexyl phthalate, Di(2-ethyl)hexyl sebacate, Diethylene glycol dibenzoate, Phthalic anhydride, Dipropylene glycol Dibenzoate and chlorosulfonated polyethylene; the coupling agents include methylvinyldichlorosilane, methylhydrogendichlorosilane, dimethyldichlorosilane, dimethylmonochlorosilane, vinyltrichlorosilane, Chlorosilane, γ-Aminopropyltrimethoxysilane, Dimethicone, Polyhydromethylsiloxane, Polymethylmethoxysiloxane, γ-Propyltrimethoxymethacrylate Silane, γ-aminopropyltriethoxysilane, γ-glycidyl ether propyltrimethoxysilane, aminopropyl silsesquioxane, γ-methacryloxypropyltrimethoxysilane, long Alkyltrimethoxysilane, Vinyltriethoxysilane, Vinyltrimethoxysilane, γ-Chloropropyltriethoxysilane, Bis-(γ-triethoxysilylpropyl), Aniline Methyltriethoxysilane, N-β(aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltriethoxysilane, N- β(aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-(2,3-glycidoxy)propyltrimethoxysilane, γ-(methacryloyloxy)propyl One or more of trimethylsilane, γ-mercaptopropyltrimethoxysilane or γ-mercaptopropyltriethoxysilane.

自由基活性稀释剂分为开发较早的第一代丙烯酸多官能单体、近期开发的第二代丙烯酸多官能单体和更优异的第三代丙烯酸单体。Free radical active diluents are divided into the first-generation acrylic multifunctional monomers developed earlier, the second-generation acrylic multifunctional monomers developed recently, and the more excellent third-generation acrylic monomers.

单官能活性稀释剂有:苯乙烯、N-乙烯基吡咯烷酮、丙烯酸异辛酯、丙烯酸羟乙酯和丙烯酸异冰片酯、甲基丙烯酸酯磷酸酯及甲基丙烯酸异冰片酯,后两个为良好的增塑增韧单体。Monofunctional reactive diluents are: styrene, N-vinylpyrrolidone, isooctyl acrylate, hydroxyethyl acrylate and isobornyl acrylate, methacrylate phosphate and isobornyl methacrylate, the latter two being good plasticizing and toughening monomer.

双官能活性稀释剂有:三乙二醇二丙烯酸酯、三丙二醇二丙烯酸酯、乙二醇二丙烯酸酯、聚乙二醇二丙烯酸醇酯、新戊二醇二丙烯酸酯和丙氧基新戊二醇二丙烯酸酯,丙烯酸酯官能单体主要有1,6-己二醇二丙烯酸酯(HDDA)、1,4-丁二醇二丙烯酸酯(BDDA)、丙二醇二丙烯酸酯(DPGDA)、丙三醇二丙烯酸酯(TPGDA)、三官能团的三羟基甲基丙烷三丙烯酸酯(TMPTA)、季戊四醇三丙烯酸酯(PETA)、三羟基甲基丙烷三醇三丙烯酸酯(TMPTMA)、三羟甲基丙烷三丙烯酸酯、丙氧基化三羟基经甲基丙烷三丙烯酸酯、季戊四醇三丙烯醇酯、丙氧基化季戊四醇丙烯醇酯、N,N-二羟乙基-3胺基丙酸甲酯、二缩三乙二醇双甲基丙烯酸酯、长链脂肪烃缩水甘油醚丙烯酸、间苯二酚双缩水甘油醚、双季戊四醇五丙烯酸酯、二缩三丙二醇二丙烯酸酯、邻苯二甲酸二乙醇二丙烯酸酯(PDDA)。它们取代了活性小的第一代丙烯酸单官能单体。但随着UV固化技术的飞速发展,它们对皮肤的刺激性大的缺点显露出来。Difunctional reactive diluents are: triethylene glycol diacrylate, tripropylene glycol diacrylate, ethylene glycol diacrylate, polyethylene glycol diacrylate, neopentyl glycol diacrylate, and propoxyneopentyl Diol diacrylate, acrylate functional monomers mainly include 1,6-hexanediol diacrylate (HDDA), 1,4-butanediol diacrylate (BDDA), propylene glycol diacrylate (DPGDA), propane Triol Diacrylate (TPGDA), Trifunctional Trimethylolpropane Triacrylate (TMPTA), Pentaerythritol Triacrylate (PETA), Trihydroxymethylpropane Triol Triacrylate (TMPTMA), Trimethylolpropane Triacrylate Propane Triacrylate, Propoxylated Trihydroxymethylpropane Triacrylate, Pentaerythritol Tripropenol, Propoxylated Pentaerythritol Propyl Ester, Methyl N,N-Dihydroxyethyl-3-Aminopropionate , triethylene glycol dimethacrylate, long-chain aliphatic hydrocarbon glycidyl ether acrylic acid, resorcinol diglycidyl ether, dipentaerythritol pentaacrylate, tripropylene glycol diacrylate, phthalate di Diethyl alcohol diacrylate (PDDA). They replace less reactive first-generation acrylic monofunctional monomers. However, with the rapid development of UV curing technology, their shortcomings of great irritation to the skin have emerged.

第二代丙烯酸多官能单体主要是在分子中引入乙氧基或丙氧基,克服了刺激性大的缺点,还应具有更高的活性和固化程度。如乙氧基化三羟基甲基丙烷三醇三丙烯酸酯(TMP(EO)TMA)、丙氧基化三羟基甲基丙烷三醇三丙烯酸酯(TMP(PO)TMA)、丙氧基化丙三醇三丙烯酸酯(G(PO)TA)。第三代丙烯酸单体主要为含有甲氧基的丙烯酸酯,较好的解决了高固化速度与收缩率、低固化程度的矛盾。这类材料有1,6-己二醇甲氧基单丙烯酸酯(HDOMEMA)、乙氧基化新戊二醇甲氧基单丙烯酸酯(TMP(PO)MEDA)。分子中引入烷氧基后,可以降低单体的粘度,同时降低单体的刺激性。The second-generation acrylic polyfunctional monomer mainly introduces ethoxy or propoxy groups into the molecule, which overcomes the disadvantage of high irritation, and should also have higher activity and curing degree. Such as ethoxylated trimethylolpropane triol triacrylate (TMP(EO)TMA), propoxylated trimethylolpropane triol triacrylate (TMP(PO)TMA), propoxylated propane Triol Triacrylate (G(PO)TA). The third-generation acrylic monomer is mainly methoxy-containing acrylate, which better solves the contradiction between high curing speed, shrinkage rate and low curing degree. Such materials include 1,6-hexanediol methoxy monoacrylate (HDOMEMA), ethoxylated neopentyl glycol methoxy monoacrylate (TMP(PO)MEDA). After the alkoxy group is introduced into the molecule, the viscosity of the monomer can be reduced, and the irritation of the monomer can be reduced at the same time.

烷氧基的引入对稀释剂单体的相容性也有较大提高,乙烯基三乙氧基硅烷(A15I)、γ-甲基丙烯酰氧丙基三甲氧基硅烷(A174)可作为单体。The introduction of alkoxy groups also greatly improves the compatibility of diluent monomers. Vinyltriethoxysilane (A15I) and γ-methacryloxypropyltrimethoxysilane (A174) can be used as monomers .

各种活性环氧树脂稀释剂及各种环醚、环内酷、乙烯基醚单体等都可以作为阳离子光固化树脂的稀释剂。其中乙烯基醚类化合物和低聚物固化速度快、粘度适中、无味、无毒,可以与环氧树脂配合使用。乙烯基醚单体有:1,2,3-丙三醇缩水甘油醚(EPON-812)、三乙二醇二乙烯基醚(DVE-3)、1,4-丁二醇乙烯基醚(HBVE)、环己基乙烯基醚(CHVE)、全氟甲基乙烯基醚(PMVE)、全氟正丙基乙烯基醚、异丁基乙烯基醚、羟丁基乙烯基醚、乙烯基乙醚、乙基乙烯基醚、乙基乙烯基醚丙烯、乙二醇单烯丙基醚、羟丁基乙烯基醚、丁基乙烯基醚、三氟氯乙烯(CTFE)、三甘醇二乙烯基醚、乙烯基甲醚、乙烯基正丁醚、十二烷基乙烯基醚(DDVE)、环己基乙烯基醚、三苄基苯酚聚氧乙烯基醚、四氟乙烯-全氟丙基乙烯基醚、四氟乙烯-全氟丙基乙烯基醚、叔丁基乙烯基醚:Various active epoxy resin diluents and various cyclic ethers, cyclic lactones, vinyl ether monomers, etc. can be used as diluents for cationic photocurable resins. Among them, vinyl ether compounds and oligomers have fast curing speed, moderate viscosity, odorless and non-toxic, and can be used in conjunction with epoxy resin. Vinyl ether monomers include: 1,2,3-propanetriol glycidyl ether (EPON-812), triethylene glycol divinyl ether (DVE-3), 1,4-butanediol vinyl ether ( HBVE), cyclohexyl vinyl ether (CHVE), perfluoromethyl vinyl ether (PMVE), perfluoro-n-propyl vinyl ether, isobutyl vinyl ether, hydroxybutyl vinyl ether, vinyl ethyl ether, Ethyl vinyl ether, ethyl vinyl ether propylene, ethylene glycol monoallyl ether, hydroxybutyl vinyl ether, butyl vinyl ether, chlorotrifluoroethylene (CTFE), triethylene glycol divinyl ether , vinyl methyl ether, vinyl n-butyl ether, dodecyl vinyl ether (DDVE), cyclohexyl vinyl ether, tribenzylphenol polyoxyethylene ether, tetrafluoroethylene-perfluoropropyl vinyl ether , tetrafluoroethylene-perfluoropropyl vinyl ether, tert-butyl vinyl ether:

环氧化合物单体有:3,4-环氧基环己基甲酸-3′,4′-环氧基环己基甲酯(ERL-4221)、双酚A型环氧树脂(EP)、环氧丙烯酸酯、环氧乙烯基酯、丙烯酸环氧酯、甲基丙烯酸环氧酯、水溶性衣康酸环氧酯树脂:Epoxy compound monomers include: 3,4-epoxycyclohexylcarboxylate-3′,4′-epoxycyclohexylmethyl ester (ERL-4221), bisphenol A epoxy resin (EP), epoxy Acrylates, epoxy vinyl esters, epoxy acrylates, epoxy methacrylates, water soluble epoxy itaconate resins:

光引发剂的作用是在其吸收紫外光能量后,经分解产生自由基,从而引发体系中的不饱和键聚合,交联固化成一个整体。常用的自由基型光引发剂有裂解型和提氢型两大类。The function of the photoinitiator is to generate free radicals through decomposition after absorbing ultraviolet light energy, thereby initiating the polymerization of unsaturated bonds in the system, and crosslinking and curing into a whole. Commonly used free radical photoinitiators include cracking type and hydrogen extraction type.

裂解型光引发剂:裂解型光引发剂主要有苯偶姻醚类(安息香醚类)、苯偶酰缩酮和苯乙酮等。裂解型光引发剂在吸收紫外光后皲裂,产生两个自由基,自由基引发不饱和基团聚合。苯偶姻醚类(安息香醚类)包括:安息香(Benzoin)、安息香甲醚、安息香乙醚(Benzoinethyl ether)、安息香丁醚(Benzoin butyl ether)、安息香亏(Benzoin oxime)、安息香异丙醚;酰基膦氧化物包括:2,4,6三甲基苯甲酰二苯基氧膦(TPO)和(2,4,6-三甲基苯甲酰)苯基氧化膦(BAPO phenyl bis(2,4,6-trimethyl benzoyl)phosphine oxide)、苯基双(2,4,6-三甲基苯甲酰基)氧化膦(819)、四甲基哌啶酮氧化物(TMPO)、磷酸三乙酯(TEPO),它们是比较理想的光引发剂,具有很高的光引发活性,对长波近紫外线有吸收,适用于白色涂料和膜较厚的情况,而且具有很好的稳定性,不会变色或褪色。Cleavage-type photoinitiators: Cleavage-type photoinitiators mainly include benzoin ethers (benzoin ethers), benzil ketals, and acetophenones. The cleavage-type photoinitiator cracks after absorbing ultraviolet light, generating two free radicals, which initiate the polymerization of unsaturated groups. Benzoin ethers (benzoin ethers) include: benzoin, benzoin methyl ether, benzoinethyl ether, benzoin butyl ether, benzoin oxime, benzoin isopropyl ether; acyl Phosphine oxides include: 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO) and (2,4,6-trimethylbenzoyl)phenylphosphine oxide (BAPO phenyl bis(2, 4,6-trimethylbenzoyl)phosphine oxide), phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (819), tetramethylpiperidone oxide (TMPO), triethyl phosphate (TEPO), they are ideal photoinitiators, have high photoinitiation activity, absorb long-wave near ultraviolet rays, are suitable for white coatings and thick films, and have good stability and will not change color or faded.

提氢型引发剂:提氢型引发剂主要有二苯甲酮类和硫杂蒽酮类等。其中硫杂蒽酮类光引发剂在近紫外光区的最大吸收波长在380-420nm,且吸收能力和夺氢能力强,具有较高的引发效率。提氢型引发剂必须要有供氢体作为协同成份,否则,引发效率太低,以至不能付诸应用。三线态羰基游离基从供氢体分子的三级碳上比二级碳上或甲基上更有可能提取氢,接在氧或氮等杂原子上的氢比碳原子上的氢更易提取。这类供氢体有胺、醇胺(三乙醇胺、甲基二乙醇胺、三异丙醇胺等)、硫醇、N,N-二乙基-对二甲氨基苯甲酰胺。Hydrogen-extracting initiators: Hydrogen-extracting initiators mainly include benzophenones and thioxanthones. Among them, the thioxanthone photoinitiator has a maximum absorption wavelength of 380-420nm in the near-ultraviolet region, has strong absorption capacity and hydrogen abstraction capacity, and has high initiation efficiency. The hydrogen-extracting initiator must have a hydrogen donor as a synergistic component, otherwise, the initiation efficiency is too low to be put into practice. The triplet carbonyl radical is more likely to extract hydrogen from the tertiary carbon of the hydrogen donor molecule than the secondary carbon or methyl group, and the hydrogen attached to heteroatoms such as oxygen or nitrogen is easier to extract than the hydrogen on carbon atoms. Such hydrogen donors include amines, alcohol amines (triethanolamine, methyldiethanolamine, triisopropanolamine, etc.), mercaptans, and N,N-diethyl-p-dimethylaminobenzamide.

二苯酮光引发体系,二苯酮需要与醇、醚或胺并用才能使烯类单体进行光聚合。主要包括:二苯甲酮、硫杂蒽醌、米蚩酮、二甲氧基苯甲基苯基酮(DMPA)、α-羟基-2,2二甲基苯乙酮(1173)、α-羟基环己基苯基酮(184)、α-胺烷基苯酮、2-甲基-1(4-甲琉基苯基)-2-吗啉基丙酮(MMMP)、2,2’-二苯甲酰氨基二苯基二硫化物(DBMD)、(4-二甲氨基苯基)-(1-哌啶基)-甲酮、异丙基硫杂蒽酮(ITX)、(4-二甲氨基苯基)-(4-吗啉基)-甲酮、2-羟基-2-甲基-1-苯基-1-苯基-1-丙酮、二苯氧基二苯酮、羟基-2-甲基苯基丙烷-1-酮。以及混合体系,如可消除胶膜中的氧气对自由基聚合反应的阻聚作用的二苯甲酮与叔氨的配合引发剂体系;米蚩酮和二苯甲酮配合使用,可得到较便宜和很有效的引发剂体系。Benzophenone photoinitiation system, benzophenone needs to be used in combination with alcohol, ether or amine to make vinyl monomers photopolymerize. Mainly include: benzophenone, thioxanthraquinone, Michler's ketone, dimethoxybenzyl phenyl ketone (DMPA), α-hydroxy-2,2 dimethylacetophenone (1173), α- Hydroxycyclohexylphenylketone (184), α-aminoalkylphenone, 2-methyl-1(4-methylmercaptophenyl)-2-morpholinoacetone (MMMP), 2,2'-di Benzamidodiphenyl disulfide (DBMD), (4-dimethylaminophenyl)-(1-piperidinyl)-methanone, isopropylthioxanthone (ITX), (4-di Methylaminophenyl)-(4-morpholino)-methanone, 2-hydroxy-2-methyl-1-phenyl-1-phenyl-1-propanone, diphenoxybenzophenone, hydroxy- 2-Methylphenylpropan-1-one. And mixed systems, such as the coordinated initiator system of benzophenone and tertiary ammonia that can eliminate the inhibition of oxygen in the film to free radical polymerization; Michler's ketone and benzophenone are used in conjunction to obtain cheaper and very effective initiator system.

阳离子型光引发剂:芳香硫鎓盐和碘鎓盐类引发剂具有优异的高温稳定性,与环氧树脂配合后也具有稳定性,所以被广泛应用于阳离子固化体系。此类引发剂包括:二甲苯基碘六氟磷酸盐(PI810)、羟基苯基碘鎓盐(HTIB)、4,4-双十二烷基苯碘鎓六氟锑酸盐、二甲苯基碘鎓盐、二苯基六氟砷酸碘鎓盐、[4-(2-羟基-3-丁氧基-1-丙氧基)苯基]苯碘鎓-六氟锑酸盐、[4-(对苯甲酰基苯硫基)苯]苯基碘鎓六氟磷酸盐、[4-(4-苯甲酰基苯氧基)苯]苯基碘鎓六氟磷酸盐、4-(对苯甲酰基苯硫基)苯]苯基碘鎓六氟磷酸盐、4,4′-二甲基二苯基碘鎓盐六氟磷酸盐(IHT-PI 820)、4,4'-二乙酰胺基二苯基碘六氟磷酸盐、37-二硝基二苯并环状碘鎓盐及3,7一二硝基二苯并环状溴鎓盐、四氟硼酸二芳基碘鎓盐、3,3'-二硝基二苯基碘鎓盐、3,3'-二硝基二苯基碘鎓盐和几种2,2'-二取代(碘、溴、氯)-5,5'-二硝基苯基碘鎓盐、碘化2-[2-(3-中氮茚)乙烯基]-1-甲基喹啉鎓盐、碘化4-(2-苯并噁唑)-N-甲基吡啶鎓盐、3-硝基苯基二苯基硫六氟磷酸盐、三芳基膦二氢咪唑鎓盐、三芳基膦1,1'-联萘二氢咪唑环鎓盐、3,7-二硝基二苯并溴五环盐、对甲基苯磺酸三苯基硫鎓盐、溴化三苯基硫鎓盐、(4-苯硫基-苯基)二苯基硫鎓六氟磷酸盐、4-(苯硫基)三苯基硫鎓六氟磷酸盐、3,3′-二硝基二苯基碘六氟磷酸盐、3-硝基苯基二苯基硫六氟磷酸盐、三苯基硫鎓盐、4-氯苯基二苯基硫六氟磷酸盐、3-硝基苯基二苯基硫六氟磷酸盐、4-乙酰胺基苯基二苯基硫六氟磷酸盐、3-苯甲酰基苯基二苯基硫六氟磷酸盐、三苯基硫氟硼酸盐、三苯基硫六氟磷酸盐、三苯基硫六氟锑酸盐、4-甲苯基二苯基硫六氟磷酸盐、六氟化磷三芳基硫鎓盐、六氟化锑三芳基硫鎓盐、[4-(对苯甲酰基苯硫基)苯]苯基碘鎓六氟磷酸盐、1-(4'-溴-2'-氟苄基)吡啶鎓盐、[4-(对苯甲酰基苯硫基)苯]苯基碘鎓六氟磷酸盐、{4-[4-(对硝基苯甲酰基)苯硫基]苯}苯基碘鎓六氟磷酸盐、{4-[4-(对甲基苯甲酰基)苯硫基]苯}苯基碘鎓六氟磷酸盐、{4-[4-(对甲基苯甲酰基)苯氧基]苯}苯基碘鎓六氟磷酸盐、[4-(对苯甲酰基苯氧基)苯]苯基碘鎓六氟磷酸盐、4,4-双十二烷基苯碘鎓六氟锑酸盐。Cationic photoinitiator: Aromatic sulfonium salt and iodonium salt initiators have excellent high temperature stability and are also stable when combined with epoxy resin, so they are widely used in cationic curing systems. Such initiators include: xylyl iodide hexafluorophosphate (PI810), hydroxyphenyl iodonium salt (HTIB), 4,4-didodecylphenyliodonium hexafluoroantimonate, xylyl iodide Onium salt, iodonium diphenylhexafluoroarsenate, [4-(2-hydroxy-3-butoxy-1-propoxy)phenyl]phenyliodonium-hexafluoroantimonate, [4- (p-benzoylphenylthio)phenyl]phenyliodonium hexafluorophosphate, [4-(4-benzoylphenoxy)phenyl]phenyliodonium hexafluorophosphate, 4-(p-benzoylphenoxy Acylphenylthio)phenyl]phenyliodonium hexafluorophosphate, 4,4'-dimethyldiphenyliodonium hexafluorophosphate (IHT-PI 820), 4,4'-diacetamido Diphenyliodohexafluorophosphate, 37-dinitrodibenzocyclic iodonium salt and 3,7-dinitrodibenzocyclic bromide salt, tetrafluoroborate diaryliodonium salt, 3 ,3'-Dinitrodiphenyliodonium salt, 3,3'-dinitrodiphenyliodonium salt and several 2,2'-disubstituted (iodo, bromine, chlorine)-5,5' -Dinitrophenyliodonium salt, 2-[2-(3-indolizine)vinyl]-1-methylquinolinium iodide, 4-(2-benzoxazole) iodide- N-methylpyridinium salt, 3-nitrophenyldiphenylthiohexafluorophosphate, triarylphosphine dihydroimidazolium salt, triarylphosphine 1,1'-binaphthyldihydroimidazolium salt, 3 ,7-Dinitrodibenzobromopentacyclic salt, triphenylsulfonium p-toluenesulfonate, triphenylsulfonium bromide, (4-phenylsulfanyl-phenyl)diphenylsulfide Onium hexafluorophosphate, 4-(phenylthio)triphenylsulfonium hexafluorophosphate, 3,3′-dinitrodiphenyliodohexafluorophosphate, 3-nitrophenyldiphenylsulfur Hexafluorophosphate, triphenylsulfonium salt, 4-chlorophenyldiphenylthiohexafluorophosphate, 3-nitrophenyldiphenylthiohexafluorophosphate, 4-acetamidophenyldiphenyl Triphenylthiohexafluorophosphate, 3-benzoylphenyldiphenylthiohexafluorophosphate, triphenylthiofluoroborate, triphenylthiohexafluorophosphate, triphenylthiohexafluoroantimonate , 4-tolyldiphenylthiohexafluorophosphate, phosphorus hexafluoride triarylsulfonium salt, antimony hexafluoride triarylsulfonium salt, [4-(p-benzoylphenylthio)phenyl]phenyl Ionium hexafluorophosphate, 1-(4'-bromo-2'-fluorobenzyl)pyridinium salt, [4-(p-benzoylphenylthio)phenyl]phenyliodonium hexafluorophosphate, { 4-[4-(p-Nitrobenzoyl)phenylthio]phenyl}phenyliodonium hexafluorophosphate, {4-[4-(p-methylbenzoyl)phenylthio]phenyl}phenyl Ionium hexafluorophosphate, {4-[4-(p-methylbenzoyl)phenoxy]phenyl}phenyliodonium hexafluorophosphate, [4-(p-benzoylphenoxy)benzene] Phenyliodonium hexafluorophosphate, 4,4-didodecylphenyliodonium hexafluoroantimonate.

茂铁盐类:茂铁盐类光引发体系是继二芳香碘鎓盐和三芳香硫鎓盐后发展的一种新阳离子光引发剂,主要包括:环戊二烯基-铁-苯盐、环戊二烯基-铁-甲苯盐、环戊二烯基-铁-对二甲苯盐、环戊二烯基-铁-萘盐、环戊二烯基-铁-联苯盐、环戊二烯基-铁-2,4-二甲基苯乙酮盐、乙酰基-环戊二烯基-铁-对二甲苯盐、环戊二烯基-铁-苯甲醚盐、环戊二烯基-铁-二苯醚盐、环戊二烯基-铁-2,4-二乙氧基苯盐、二茂铁四氟硼酸盐、甲苯茂铁四氟硼酸盐、环戊二烯基-铁-苯甲醚盐、环戊二烯基-铁-二苯醚盐、环戊二烯基-铁-1,4-二乙氧基苯盐、环戊二烯基-铁-氯苯盐、环戊二烯基-铁-(1,4-二乙氧基苯)六氟磷酸盐、环戊二烯基-铁-二苯醚六氟磷酸盐、1,10-邻二氮杂菲高氯酸亚铁盐、1,10-邻二氮杂菲硫酸亚铁盐环戊二烯基-铁-苯甲醚盐、环戊二烯基-铁-二苯醚盐、[1,1'-双(二苯基膦)二茂铁]二氯化镍、乙烯基二茂铁、N,N'-双二茂铁亚甲基丁二胺季铵盐、二茂铁甲酰胺、二茂铁酰基丙酸、乙酰基二茂铁、乙基二茂铁,丁酰基二茂铁,丁基二茂铁,N,N-二甲基-胺甲基二茂铁、1,1'-二苯甲酰基二茂铁、(3-羧丙酰基)二茂铁、1,1'-二溴二茂铁、氨基二茂铁。Ferrocene salts: The photoinitiating system of ferrocene salts is a new cationic photoinitiator developed after diaromatic iodonium salts and triaromatic sulfonium salts, mainly including: cyclopentadienyl-iron-benzene salt, Cyclopentadienyl-iron-toluene salt, cyclopentadienyl-iron-p-xylene salt, cyclopentadienyl-iron-naphthalene salt, cyclopentadienyl-iron-biphenyl salt, cyclopentadienyl Alkenyl-Iron-2,4-Dimethylacetophenone Salt, Acetyl-Cyclopentadienyl-Iron-p-Xylene Salt, Cyclopentadienyl-Iron-Anisole Salt, Cyclopentadiene Base-iron-diphenyl ether salt, cyclopentadienyl-iron-2,4-diethoxybenzene salt, ferrocene tetrafluoroborate, tolyl ferrocene tetrafluoroborate, cyclopentadiene Cyclopentadienyl-iron-anisole salt, cyclopentadienyl-iron-diphenyl ether salt, cyclopentadienyl-iron-1,4-diethoxybenzene salt, cyclopentadienyl-iron-chloro Benzene salt, cyclopentadienyl-iron-(1,4-diethoxybenzene) hexafluorophosphate, cyclopentadienyl-iron-diphenyl ether hexafluorophosphate, 1,10-o-diazepine Ferrous phenanthrene perchlorate, 1,10-phenanthrene ferrous sulfate cyclopentadienyl-iron-anisole salt, cyclopentadienyl-iron-diphenyl ether salt, [1 ,1'-bis(diphenylphosphino)ferrocene]nickel dichloride, vinyl ferrocene, N,N'-bis-ferrocenemethylene butanediamine quaternary ammonium salt, ferrocene formamide, Ferrocenylpropionic acid, Acetylferrocene, Ethylferrocene, Butyrylferrocene, Butylferrocene, N,N-Dimethyl-aminomethylferrocene, 1,1' -Dibenzoylferrocene, (3-carboxypropionyl)ferrocene, 1,1'-dibromoferrocene, aminoferrocene.

紫外光固化-热固化体系:发现热处理后固化产物的机械性能有了明显的提高,而且随着环氧组分的增加,混杂体系在金属等底材上有着很好的粘附性能,这一方面是由于环氧化合物固化时收缩小的缘故,另一方面是由于热固化时消除了自由基光固化时产生的内应力。按照本发明所提供的柔性光电子器件用基板,其特征在于,所述热固化方式中的热固化剂包括:环氧树脂类、异氰酸酯类、氨基树脂类和自由基热固化剂。UV curing-heat curing system: It is found that the mechanical properties of the cured product after heat treatment have been significantly improved, and with the increase of epoxy components, the hybrid system has good adhesion on metal and other substrates. On the one hand, it is due to the small shrinkage of the epoxy compound during curing, and on the other hand, due to the elimination of the internal stress generated during the free radical photocuring during thermal curing. According to the substrate for flexible optoelectronic devices provided by the present invention, it is characterized in that the thermal curing agent in the thermal curing method includes: epoxy resins, isocyanates, amino resins and free radical thermal curing agents.

环氧树脂包括:脂肪族胺类、芳香族胺类、双氰胺类、咪唑类、有机酸酐类、有机酰肼类、路易斯酸胺类和微胶囊类。Epoxy resins include: aliphatic amines, aromatic amines, dicyandiamide, imidazoles, organic acid anhydrides, organic hydrazides, Lewis acid amines and microcapsules.

脂肪族胺类包括:乙二胺、己二胺、二乙烯三胺、三乙烯四胺、羟乙基二乙烯三胺、羟异丙基二乙烯三胺、聚乙二酸己二酰胺、二乙醇胺、四甲基乙二胺、甘草酸二胺、N-(2-羟乙基)乙二胺、二(4-胺基苯氧基)-苯基氧化磷、二(3-胺基苯基)苯基氧化磷、四聚丙二醇二胺、N-羟乙基乙二胺、甲基环戊二胺、聚醚胺、酚醛胺固化剂(T-31)、羟乙基乙二胺、异佛尔酮二胺、孟烷二胺、二甲氨丙胺、双(4-氨基-3-甲基环己基)甲烷、四甲基丙二胺、改性胺环氧固化剂(593)、脂肪胺类环氧固化剂(3380、TG-03、LX-502、D230)、脂肪胺改性加成物(HB-206、HB-205、HB-2512、HB-9305、HB-9409)。Aliphatic amines include: ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, hydroxyethyldiethylenetriamine, hydroxyisopropyldiethylenetriamine, polyoxalic acid adipamide, Ethanolamine, tetramethylethylenediamine, diamine glycyrrhizinate, N-(2-hydroxyethyl)ethylenediamine, bis(4-aminophenoxy)-phenylphosphine oxide, bis(3-aminophenyl base) phenylphosphine oxide, tetrapropylene glycol diamine, N-hydroxyethyl ethylenediamine, methylcyclopentadiamine, polyether amine, phenalkamine curing agent (T-31), hydroxyethyl ethylenediamine, Isophoronediamine, menthanediamine, dimethylaminopropylamine, bis(4-amino-3-methylcyclohexyl)methane, tetramethylpropylenediamine, modified amine epoxy curing agent (593), Aliphatic amine epoxy curing agent (3380, TG-03, LX-502, D230), fatty amine modified adduct (HB-206, HB-205, HB-2512, HB-9305, HB-9409).

双氰胺类包括:双氰胺、3,5二取代苯胺改性的双氰胺衍生物(HT 2833、HT 2844)、双氰胺(MD 02,由环氧丙烷与双氰胺反应制得)、改性双氰胺衍生物(AEHD-610、AEHD-210)、以及含有以下分子式的衍生物。Dicyandiamide includes: dicyandiamide, 3,5 disubstituted aniline modified dicyandiamide derivatives (HT 2833, HT 2844), dicyandiamide (MD 02, prepared by the reaction of propylene oxide and dicyandiamide ), modified dicyandiamide derivatives (AEHD-610, AEHD-210), and derivatives containing the following molecular formula.

芳香族胺类包括:二胺基二苯基砜(DDS)、二胺基二苯基甲烷(DDM)、间苯二胺(m PDA)、8间萘二胺、二乙基甲苯二胺、邻苯二胺、对苯二胺、烯丙基芳香二胺、N-(氨丙基)-甲苯二胺、异佛尔酮二胺、二甲基乙醇胺、二甲基卞胺、三乙基苄基氯化胺、苄基-二甲胺、N-苄基二甲胺、2,4,6,-三-(二甲胺基甲基)-苯酚、苯酚甲醛己二胺、N,N-二甲基苄胺(BDMA)、N-对羧基苯基马来酸亚胺(p-CPMD)。Aromatic amines include: diaminodiphenylsulfone (DDS), diaminodiphenylmethane (DDM), m-phenylenediamine (m PDA), 8-m-naphthalenediamine, diethyltoluenediamine, O-phenylenediamine, p-phenylenediamine, allyl aromatic diamine, N-(aminopropyl)-toluenediamine, isophorone diamine, dimethylethanolamine, dimethylbenylamine, triethyl Benzylamine chloride, benzyl-dimethylamine, N-benzyldimethylamine, 2,4,6,-tris-(dimethylaminomethyl)-phenol, phenol formaldehyde hexamethylenediamine, N,N -Dimethylbenzylamine (BDMA), N-p-carboxyphenylmaleimide (p-CPMD).

咪唑类包括:1-甲基咪唑、2-乙基咪唑、2-苯基咪唑、2-甲基咪唑、1-8-氨基乙基-2-甲基咪唑(AMz)、2-十一烷基咪唑已二酸二盐、2-乙基咪唑、2-乙基-4-甲基咪唑(2E4Mz)、1-(2-氨基乙基)-2-甲基咪唑、1-氰基-2-乙基-4-甲基咪唑、2-十七烷基咪唑、2-乙基-4-甲基咪唑-羧基、3-二羟甲基取代咪唑衍生物、1,3-二苯基-2-甲基咪唑的氯化物、1-癸烷基-2-乙基咪唑、改性咪唑(JH-0511、JH-0512、JH-0521)。Imidazoles include: 1-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-methylimidazole, 1-8-aminoethyl-2-methylimidazole (AMz), 2-undecane Imidazole adipate di-salt, 2-ethylimidazole, 2-ethyl-4-methylimidazole (2E4Mz), 1-(2-aminoethyl)-2-methylimidazole, 1-cyano-2 -Ethyl-4-methylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole-carboxyl, 3-dimethylol-substituted imidazole derivatives, 1,3-diphenyl- 2-methylimidazole chloride, 1-decyl-2-ethylimidazole, modified imidazole (JH-0511, JH-0512, JH-0521).

有机酸酐类包括:环氧化聚丁二烯/酸酐、顺丁烯二酸酐、70#酸酐(由丁二烯与顺丁烯二酸酐合成)、647#酸酐(由双环戊二烯与顺丁烯二酸酐合成)、308桐油酸酐(由桐油改性的顺丁烯二酸酐、甲基内次甲基四氢邻苯二甲酸酐(MNA)合成)、均苯四甲酸二酐(PMTA)(均苯四甲酸二酐与顺丁烯二酸酐混合)、甲基六氢苯酐(MeHHPA)、二苯醚四酸二酐、邻苯二甲酸酐(PA)、六氢邻苯二甲酸酐(HHPA)、四氢苯二甲酸酐(THPA)、甲基四氢苯二甲酸酐、环氧化聚丁二烯/酸酐、偏苯三甲酸酐(TMA)、四溴苯二甲酸酐、聚壬乙酸酐(PAPA)。Organic acid anhydrides include: epoxidized polybutadiene/anhydride, maleic anhydride, 70# anhydride (synthesized from butadiene and maleic anhydride), 647# anhydride (synthesized from dicyclopentadiene and maleic anhydride) Synthesis of olefinic anhydride), 308 tungoleic anhydride (synthesized from tung oil modified maleic anhydride, methyl endomethylene tetrahydrophthalic anhydride (MNA)), pyromellitic dianhydride (PMTA) ( Pyromellitic dianhydride mixed with maleic anhydride), methyl hexahydrophthalic anhydride (MeHHPA), diphenyl ether tetracarboxylic dianhydride, phthalic anhydride (PA), hexahydrophthalic anhydride (HHPA ), tetrahydrophthalic anhydride (THPA), methyltetrahydrophthalic anhydride, epoxidized polybutadiene/anhydride, trimellitic anhydride (TMA), tetrabromophthalic anhydride, polynonacetic anhydride (PAPA).

有机酰肼类包括:癸二酸二酰肼(SDH)、己二酰肼、碳酸二酰肼、草酸二酰肼、丁二酸二酰肼、己二酸二酰肼、N-氨基聚丙烯酰胺、N(CH2CH2CONHNH2)3、(H2NHNCOCH2CH2)2NCH2CH2N(CHCHCONHNH2)2、琥珀酸酰肼、癸二酸酰肼、间苯二甲酸酰肼、对羟基安息香酸酰肼(POBH)、壬二酸二酰肼、间苯二甲酸二酰肼。Organic hydrazides include: sebacic acid dihydrazide (SDH), adipic dihydrazide, carbonate dihydrazide, oxalic acid dihydrazide, succinic acid dihydrazide, adipate dihydrazide, N-aminopolypropylene Amide, N(CH2CH2CONHNH2)3, (H2NHNCOCH2CH2)2NCH2CH2N(CHCHCONHNH2)2, succinic acid hydrazide, sebacic acid hydrazide, isophthalic acid hydrazide, p-hydroxybenzoic acid hydrazide (POBH), azelaic acid diamide Hydrazine, isophthalic acid dihydrazide.

路易斯酸胺类由BF3、AlCl3、ZnCl2、PF5等路易斯酸与伯胺或仲胺形成络合物而成,其中包括:环戊二烯基异丙苯铁六氟磷酸盐(Irgacure 261)、三氟化硼、二茂铁四氟硼酸盐。Lewis acid amines are composed of BF3, AlCl3, ZnCl2, PF5 and other Lewis acids and primary or secondary amines to form complexes, including: cyclopentadienyl cumene iron hexafluorophosphate (Irgacure 261), three Boron fluoride, ferrocene tetrafluoroborate.

微胶囊类包括:纤维素、明胶、聚乙烯醇、聚酯、聚砜。Microcapsules include: cellulose, gelatin, polyvinyl alcohol, polyester, polysulfone.

异氰酸酯包括:三聚氰酸三烯丙酯、甲苯二异氰酸酯(TDI)、二苯甲烷二异氰酸酯(MDI)、多亚甲基多苯基多异氰酸酯(PAPI)、己二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、三甲基己二异氰酸酯(TMDI)、二环己基甲烷二异氰酸酯(HMDI)、苯二亚甲基二异氰酸酯(XDI)、四甲基苯二亚甲基二异氰酸酯(TMXDI)、甲基苯乙烯异氰酸酯(TMI)、六氢甲苯二异氰酸酯(HTDI)、丁腈橡胶、七异氰酸酯、三苯基甲-4,4',4'-三异氰酸酯、硫代磷酸三(4-异氰酸酯基苯酯)、四异氰酸酯、七异氰酸酯、缩二脲多异氰酸酯、四氢呋喃聚醚多元醇-环氧树脂-异氰酸酯、三羟基聚氧化丙烯多元醇-异氰酸酯。Isocyanates include: triallyl cyanurate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (PAPI), hexamethylene diisocyanate (HDI), isofor Alone diisocyanate (IPDI), trimethylhexamethylene diisocyanate (TMDI), dicyclohexylmethane diisocyanate (HMDI), xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate ( TMXDI), methylstyrene isocyanate (TMI), hexahydrotoluene diisocyanate (HTDI), nitrile rubber, heptaisocyanate, triphenylmethane-4,4',4'-triisocyanate, thiophosphoric acid tri(4 -isocyanatophenyl ester), tetraisocyanate, heptaisocyanate, biuret polyisocyanate, tetrahydrofuran polyether polyol-epoxy resin-isocyanate, trihydroxypolyoxypropylene polyol-isocyanate.

氨基树脂包括:二氨基二苯基甲烷(DDM)、N-对氯代苯基-N-N-二甲基脲、3-苯基-1,1-二甲基脲、3-对氯苯基-1,1-二甲基脲、4,4′-二氨基二苯基双酚、聚氨基甲酸酯、脲醛树脂、环氧-乙二胺氨基甲酸酯、N,N,N',N'-四炔丙基-4,4'-二氨基-二苯甲烷(TPDDM)、2,4,6-三(二甲氨基甲基)苯酚、2,4-二氨基甲苯、4,6-三(二甲氨基甲基)苯酚、聚氨基甲酸脂、甲醚化脲醛树脂、三(3-氨基丙基)胺、2-氨基乙基-二(3-氨基丙基)胺、N,N,N’,N’-四(3-氨基丙基)乙二胺、1-[二(3-氨基丙基)氨基]-2-丙醇;N-(2-氨基乙基)-N-(3-氨基丙基)胺、1-[(2-氨基乙基)-(3-氨基丙基)氨基]-1-乙醇、1-[(2-氨基乙基)-(3-氨基丙基)氨基]-2-丙醇、3-二甲氨基丙胺、4,4′-二氨基二苯甲烷(DDM)、4,4′-二氨基二苯基双酚、4,4′-二氨基二苯砜(DDS)、三(3-氨基丙基)胺、三聚氰胺树脂、苯代三聚氰胺树脂、六羟甲基三聚氰胺树脂、甲醚化三聚氰胺树脂、甲醚化苯代三聚氰胺树脂、甲醚化尿素三聚氰胺共缩聚树脂、六甲氧甲基三聚氰胺树脂(TMMM)、甲醇改性三羟甲基三聚氰胺、脲-三聚氰胺甲醛树脂、聚酯三聚氰胺、2-仲丁基苯基-N-甲基氨基酸酯、二氯异氰脲酸酯、三氯异氰脲酸酯、氨基三嗪树脂、氨基甲酸酯丙烯酸酯、4-氨基吡啶树脂、N-β-氨乙基氨基聚酯树脂、α-氨基吡啶树脂、氨基二苯醚树脂、氨基聚硅氧烷、氨基磷酸树脂、马来海松酸聚酯氨基树脂、哌嗪氨基二硫代甲酸型螯合树脂、羟乙氨基聚酯树脂。Amino resins include: diaminodiphenylmethane (DDM), N-p-chlorophenyl-N-N-dimethylurea, 3-phenyl-1,1-dimethylurea, 3-p-chlorophenyl- 1,1-dimethylurea, 4,4'-diaminodiphenylbisphenol, polyurethane, urea-formaldehyde resin, epoxy-ethylenediamine carbamate, N, N, N', N '-Tetrapropargyl-4,4'-diamino-diphenylmethane (TPDDM), 2,4,6-tris(dimethylaminomethyl)phenol, 2,4-diaminotoluene, 4,6- Tris(dimethylaminomethyl)phenol, polyurethane, methyl etherified urea-formaldehyde resin, tris(3-aminopropyl)amine, 2-aminoethyl-bis(3-aminopropyl)amine, N,N , N', N'-tetrakis(3-aminopropyl)ethylenediamine, 1-[bis(3-aminopropyl)amino]-2-propanol; N-(2-aminoethyl)-N- (3-aminopropyl)amine, 1-[(2-aminoethyl)-(3-aminopropyl)amino]-1-ethanol, 1-[(2-aminoethyl)-(3-aminopropyl base) amino] -2-propanol, 3-dimethylaminopropylamine, 4,4'-diaminodiphenylmethane (DDM), 4,4'-diaminodiphenylbisphenol, 4,4'-di Aminodiphenyl sulfone (DDS), tris(3-aminopropyl)amine, melamine resin, benzomelamine resin, hexamethylol melamine resin, methyl etherified melamine resin, methyl etherified benzomelamine resin, methyl etherified Urea melamine polycondensation resin, hexamethoxymethyl melamine resin (TMMM), methanol modified trimethylol melamine, urea-melamine formaldehyde resin, polyester melamine, 2-sec-butylphenyl-N-methyl amino acid ester, Dichloroisocyanurate, trichloroisocyanurate, aminotriazine resin, urethane acrylate, 4-aminopyridine resin, N-β-aminoethylaminopolyester resin, α-aminopyridine Resin, amino diphenyl ether resin, amino polysiloxane, amino phosphoric acid resin, maleopimaric acid polyester amino resin, piperazine aminodithioformic acid type chelating resin, hydroxyethyl amino polyester resin.

自由基热固化剂包括:过氧化二异丙苯、丙烯酸环氧单酯、苯甲酸叔丁脂、聚氨酯丙烯酸酯、聚氨酯二醇、聚酯三醇、双(六氟磷酸酯)、聚甲基丙烯酸甲酯(PMMA)、苯乙烯-丙烯酸酯、聚丁二烯型丙烯酸羟基酯、聚酯氨基甲酸酯丙烯酸酯、丙烯酸环氧单酯、丁二烯-甲基丙烯酸甲酯-苯二烯共聚物、丁二烯-甲基丙烯酸甲酯、乙烯-丙烯酸酯、聚丙烯酸酯、氯化聚丙稀-丙烯酸酯、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、氰基丙烯酸酯、2-丙烯酸-1,2-丙二醇单酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸羟乙酯、甲基丙烯酸异丁酯、甲基丙烯酸异丁酯、甲基丙烯酸异辛酯、甲基丙烯酸2甲基氨基乙酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸2羟基丙酯、丙烯酸羟乙酯、丙烯酸异辛酯、醋酸乙烯酯-丙烯酸丁酯、聚甲基丙烯酸甲酯。Free radical thermal curing agents include: dicumyl peroxide, epoxy monoacrylate, tert-butyl benzoate, polyurethane acrylate, polyurethane diol, polyester triol, bis(hexafluorophosphate), polymethyl Methyl Acrylate (PMMA), Styrene-Acrylate, Polybutadiene Hydroxyacrylate, Polyester Urethane Acrylate, Epoxy Monoacrylate, Butadiene-Methyl Methacrylate-Styrene Copolymer, butadiene-methyl methacrylate, ethylene-acrylate, polyacrylate, chlorinated polypropylene-acrylate, polymethyl methacrylate, polyethyl methacrylate, cyanoacrylate, 2 - 1,2-propylene glycol monoacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, hydroxyethyl methacrylate, isobutyl methacrylate, isobutyl methacrylate, Isooctyl methacrylate, 2-methylaminoethyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-hydroxypropyl acrylate, hydroxyethyl acrylate, isooctyl acrylate, vinyl acetate-acrylic acid Butyl ester, polymethyl methacrylate.

紫外光固化-微波固化体系:微波固化方式中的微波固化剂与热固化方式中的热固化剂相同。其技术特点是使用微波固化的方式使热固化剂固化。微波因独特的“分子内”均匀加热方式,使得树脂固化均匀、速度快、易于控制、节省能源、设备投资少,近年来微波代替热固化在热固性树脂及其复合材料固化方面的研究愈来愈受到重视。UV curing-microwave curing system: The microwave curing agent in the microwave curing method is the same as the thermal curing agent in the thermal curing method. Its technical feature is to use microwave curing to cure the thermal curing agent. Due to the unique "intramolecular" uniform heating method of microwave, the resin is cured uniformly, fast, easy to control, energy saving, and less equipment investment. be valued.

紫外光固化-厌氧固化体系:厌氧固化体系中的厌氧固化剂包括:双甲基丙烯酸三缩四乙二醇酯、双甲基丙烯酸多缩乙二醇酯(如美国的乐泰290以及与富马酸双酚A不饱和聚酯混合的乐泰271、乐泰277等)、三缩乙二醇双甲基丙烯酸酯、双甲基丙烯酸乙二醇酯、甲基丙烯酸羟乙酯或羟丙酯(如国产的铁锚302、日本的三键1030)、双酚A环氧酯(如国产Y-150、GY-340等是环氧酯与多缩乙二醇酯的混合物)、甲基丙烯酸羟烷基酚和多元醇的反应产物(如美国的乐泰372、国产的GY-168、铁锚352和BN-601)、聚氨酯、聚氨酯异氢酸酯、甲基丙烯酸羟丙酯、甲基丙烯酸羟丙酯-聚醚、羟丁型聚氨酯、聚氨酯-丙烯酸酯、丙烯酸羟丙酯(HPA)、乙二醇双甲基丙烯酸酯、异丙苯基化过氧氢、丙烯酸邻甲酚醛环氧酯、甲氧基化聚乙二醇甲基丙烯酸酯、邻苯二甲酸二缩三乙二醇酯、甲基丙烯酸β-羟乙酯、三羟甲基丙烷三甲基丙烯酸酯、三缩乙二醇双甲基丙烯酸酯、多缩乙二醇双甲基丙烯酸酯、双甲基丙烯酸硫代二甘醇酯、邻苯二甲酸双(二甘醇丙烯酸酯)、乙氧基化双酚A二甲基丙烯酸酯、二甲基丙烯酸双酚A乙二醇脂、乙二酯甲基丙烯酸酯、缩乙二醇双甲基丙烯酸酯、乙二醇双甲基丙烯酸酯、一缩二乙醇双甲基丙烯酸酯、苯酐缩二乙二醇双甲基丙烯酸酯、环氧树脂(甲基)丙烯酸酯、双甲基丙烯酸一缩二乙二醇酯、双甲基丙烯酸二缩三乙二醇酯、丙烯酸氨基甲酸酯、a-氰基丙烯酸甲酯、a-氰基丙烯酸乙酯、甲基丙烯酸缩水甘油酯、聚乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、甲基丙烯酸双环戊二烯基一氧一乙基酯、甲基丙丙烯酸二甲氨基乙酯。UV curing-anaerobic curing system: the anaerobic curing agent in the anaerobic curing system includes: tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate (such as Loctite 290 in the United States) And Loctite 271, Loctite 277 mixed with fumaric acid bisphenol A unsaturated polyester), triethylene glycol dimethacrylate, diethylene glycol dimethacrylate, hydroxyethyl methacrylate Or hydroxypropyl ester (such as domestic iron anchor 302, Japan's triple bond 1030), bisphenol A epoxy ester (such as domestic Y-150, GY-340, etc. are a mixture of epoxy ester and polyethylene glycol ester) , the reaction product of methacrylate hydroxyalkylphenol and polyol (such as American Loctite 372, domestic GY-168, iron anchor 352 and BN-601), polyurethane, polyurethane isocyanate, hydroxypropyl methacrylate ester, hydroxypropyl methacrylate-polyether, hydroxybutyl urethane, urethane-acrylate, hydroxypropyl acrylate (HPA), ethylene glycol dimethacrylate, cumyl hydroperoxide, acrylic ortho Cresol Novolac Epoxy Ester, Methoxylated Polyethylene Glycol Methacrylate, Triethylene Glycol Phthalate, β-Hydroxyethyl Methacrylate, Trimethylolpropane Trimethacrylate , triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, thiodiethylene glycol dimethacrylate, bis(diethylene glycol acrylate), ethoxy Bisphenol A dimethacrylate, bisphenol A ethylene glycol dimethacrylate, ethylene glycol methacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, a Diethylene glycol dimethacrylate, diethylene glycol dimethacrylate, epoxy resin (meth)acrylate, diethylene glycol dimethacrylate, trimethacrylate Ethylene glycol ester, urethane acrylate, methyl a-cyanoacrylate, ethyl a-cyanoacrylate, glycidyl methacrylate, polyethylene glycol dimethacrylate, triethylene glycol dimethyl Acrylate, dicyclopentadienyl-oxy-ethyl methacrylate, dimethylaminoethyl methacrylate.

紫外光固化-电子束固化体系:电子束固化方式中的电子束固化剂包括:三酚基甲烷缩水甘油醚环氧树脂、二环戊二烯双酚型环氧树脂、双酚A型乙烯基酯树脂(V-411)、环氧乙烯基酯树脂(V-901)、环氧丙烯酸酯树脂(BRT2000)、马来酰亚胺树脂、4,4’-二苯甲烷双马来酰亚胺、双酚A-二苯醚双马来酰亚胺、双酚A顺丁烯二酸乙烯基树脂、乙烯基酯树脂、溴化乙烯基酯树脂、反丁烯二酸混合乙烯基酯树脂、丙烯酸混合乙烯基酯树脂、氨基甲酸酯混合乙烯基酯树脂、橡胶混合乙烯基酯树脂、酚醛环氧乙烯基酯树脂、异氰酸酯混合环氧丙烯酸酯、甲苯二异氰酸酯混合丙烯酸-羟乙酯、羟甲基化双酚型环氧树脂、双酚A丙烯酸酯、聚氨酯丙烯酸酯、双酚A环氧乙烯基酯树脂、双酚A苯并恶嗪-环氧树脂、双酚芴环氧树脂、双酚A型环氧丙烯酸酯树脂、双酚A二缩水甘油醚、双酚A环氧氯丙烯酸酯树脂。UV curing-electron beam curing system: the electron beam curing agent in the electron beam curing method includes: triphenolyl methane glycidyl ether epoxy resin, dicyclopentadiene bisphenol epoxy resin, bisphenol A vinyl Ester resin (V-411), epoxy vinyl ester resin (V-901), epoxy acrylate resin (BRT2000), maleimide resin, 4,4'-diphenylmethane bismaleimide , bisphenol A-diphenyl ether bismaleimide, bisphenol A maleic acid vinyl resin, vinyl ester resin, brominated vinyl ester resin, fumaric acid mixed vinyl ester resin, Acrylic mixed vinyl ester resins, urethane mixed vinyl ester resins, rubber mixed vinyl ester resins, novolac epoxy vinyl ester resins, isocyanate mixed epoxy acrylates, toluene diisocyanate mixed hydroxyethyl acrylates, hydroxy Methylated bisphenol type epoxy resin, bisphenol A acrylate, polyurethane acrylate, bisphenol A epoxy vinyl ester resin, bisphenol A benzoxazine-epoxy resin, bisphenol fluorene epoxy resin, bisphenol Phenol A type epoxy acrylate resin, bisphenol A diglycidyl ether, bisphenol A epoxy chloroacrylate resin.

以下是本发明的具体实施例:The following are specific embodiments of the present invention:

实施例1Example 1

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用自由基型紫外固化剂-热固化剂双重固化体系,导电层1为ITO薄膜。In the substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual curing adhesive, the dual curing adhesive adopts a dual curing system of free radical ultraviolet curing agent-thermal curing agent, and the conductive layer 1 is an ITO film.

制备方法如下:The preparation method is as follows:

①利用洗涤剂、丙酮溶液、乙醇溶液和去离子水对玻璃衬底进行超声清洗,清洗后用干燥氮气吹干;①Use detergent, acetone solution, ethanol solution and deionized water to ultrasonically clean the glass substrate, and dry it with dry nitrogen after cleaning;

②将同乙醇进行1:10稀释的虫胶-双重固化胶(双重固化胶占质量比为0.3%)混合溶液搅拌20小时后,旋涂在玻璃衬底表面,膜厚约为100微米;② Stir the mixed solution of shellac-dual curing glue (dual curing glue accounted for 0.3% by mass) diluted 1:10 with ethanol for 20 hours, then spin-coat it on the surface of the glass substrate with a film thickness of about 100 microns;

其中双重固化胶原料组份配比为:Wherein the proportioning ratio of dual curing rubber raw material components is:

③对基板表面进行紫外固化处理30秒;③UV curing treatment on the surface of the substrate for 30 seconds;

④将基板放入烘烤箱,温度110℃,热固化处理20分钟;(步骤③和④可以相互交换)④Put the substrate into the oven at a temperature of 110°C and heat curing for 20 minutes; (steps ③ and ④ can be interchanged)

⑤将基板放入真空室,在室温条件下,通过DC磁控溅射的手段,在100瓦功率条件下在玻璃衬底表面溅射100纳米厚的ITO透明导电薄膜;⑤Put the substrate into a vacuum chamber, and at room temperature, by means of DC magnetron sputtering, sputter a 100-nanometer-thick ITO transparent conductive film on the surface of the glass substrate under a power condition of 100 watts;

⑥将镀有导电薄膜的柔性衬底再次进行紫外固化处理30秒;⑥UV curing the flexible substrate coated with conductive film for 30 seconds again;

⑦将柔性衬底从玻璃衬底上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the glass substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

实施例2Example 2

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用自由基型紫外固化剂-微波固化剂双重固化体系,导电层1为碳纳米管。In the substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual-curing adhesive, the dual-curing adhesive adopts a dual-curing system of free radical ultraviolet curing agent-microwave curing agent, and the conductive layer 1 is carbon nanotubes.

制备方法如下:The preparation method is as follows:

①利用洗涤剂、丙酮溶液、乙醇溶液和去离子水对玻璃衬底进行超声清洗,清洗后用干燥氮气吹干;①Use detergent, acetone solution, ethanol solution and deionized water to ultrasonically clean the glass substrate, and dry it with dry nitrogen after cleaning;

②将同乙醇进行1:10稀释的虫胶-双重固化胶(双重固化胶占质量比为0.4%)混合溶液搅拌20小时后,旋涂在玻璃衬底表面,膜厚约为300微米;② Stir the mixed solution of shellac-dual curing glue (dual curing glue accounted for 0.4% by mass) diluted 1:10 with ethanol for 20 hours, then spin-coat it on the surface of the glass substrate with a film thickness of about 300 microns;

其中双重固化胶原料组份配比为:Wherein the proportioning ratio of dual curing rubber raw material components is:

③对步骤②得到的基板进行紫外光处理,处理时间30s;③The substrate obtained in step ② is treated with ultraviolet light, and the treatment time is 30s;

④将基板放入微波炉,微波固化处理15分钟;(步骤③和④可以互相交换)④ Put the substrate into the microwave oven and microwave curing for 15 minutes; (steps ③ and ④ can be interchanged)

⑤在②表面喷涂法将碳纳米管水分散液制备导电层,高度20cm,喷涂气压0.3MPa,喷涂速率0.3mL/min,导电层厚度为77nm;⑤ Prepare a conductive layer with carbon nanotube aqueous dispersion in ② surface spraying method, with a height of 20cm, a spraying pressure of 0.3MPa, a spraying rate of 0.3mL/min, and a thickness of the conductive layer of 77nm;

⑥将镀有导电薄膜的柔性衬底再次进行紫外固化处理30秒;⑥UV curing the flexible substrate coated with conductive film for 30 seconds again;

⑦将柔性衬底从玻璃衬底上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the glass substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

实施例3Example 3

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用自由基型紫外光固化剂-厌氧固化剂双重固化体系,导电层1为银纳米线。The substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual-curing adhesive, the dual-curing adhesive adopts a dual-curing system of free radical ultraviolet light curing agent-anaerobic curing agent, and the conductive layer 1 is silver nanowires .

制备方法如下:The preparation method is as follows:

①先对表面粗糙度小于1nm的玻璃衬底进行清洗,分别利用洗涤剂、丙酮、去离子水、异丙醇进行超声清洗,清洗后用干燥氮气吹干;① Clean the glass substrate with a surface roughness less than 1nm first, then use detergent, acetone, deionized water, and isopropanol to perform ultrasonic cleaning, and then dry it with dry nitrogen after cleaning;

②将同乙醇进行1:10稀释的虫胶-双重固化胶(双重固化胶占质量比为0.5%)混合溶液搅拌20小时后,旋涂在玻璃衬底表面,膜厚约为500微米;② Stir the mixed solution of shellac-dual curing glue (dual curing glue accounted for 0.5% by mass) diluted 1:10 with ethanol for 20 hours, then spin-coat it on the surface of the glass substrate, with a film thickness of about 500 microns;

其中双重固化胶原料组份配比为:Wherein the proportioning ratio of dual curing rubber raw material components is:

③对步骤②得到的基板进行紫外固化处理40秒;③UV curing the substrate obtained in step ② for 40 seconds;

④将基板放入真空室,真空环境下进行厌氧固化20分钟;④Put the substrate into the vacuum chamber, and perform anaerobic curing in a vacuum environment for 20 minutes;

⑤在步骤④得到的柔性衬底表面使用喷涂法将银纳米线异丙醇分散液制备导电层,高度20cm,喷涂气压0.3MPa,喷涂速率0.3mL/min,导电层厚度为60nm;⑤ On the surface of the flexible substrate obtained in step ④, use the spray method to prepare a conductive layer from the silver nanowire isopropanol dispersion, the height is 20cm, the spraying pressure is 0.3MPa, the spraying rate is 0.3mL/min, and the thickness of the conductive layer is 60nm;

⑥将镀有导电薄膜的柔性衬底再次进行紫外固化处理60秒;⑥UV curing the flexible substrate coated with conductive film for 60 seconds again;

⑦将柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the rigid substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

实施例4Example 4

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用自由基型紫外光固化-电子束固化体系,导电层1为金铜合金纳米线。In the substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual-curing adhesive, the dual-curing adhesive adopts a free radical UV curing-electron beam curing system, and the conductive layer 1 is gold-copper alloy nanowires.

制备方法如下:The preparation method is as follows:

①先对表面粗糙度小于1nm的玻璃衬底进行清洗,分别利用洗涤剂、丙酮、去离子水、异丙醇进行超声清洗,清洗后用干燥氮气吹干;① Clean the glass substrate with a surface roughness less than 1nm first, then use detergent, acetone, deionized water, and isopropanol to perform ultrasonic cleaning, and then dry it with dry nitrogen after cleaning;

②在玻璃衬底上采用旋涂制备虫胶与双重固化胶混合薄膜(双重固化胶所占质量比为0.8%),所述双重固化胶原料包括以下成份:2. on the glass substrate, adopt spin coating to prepare shellac and double-cured glue mixed film (the mass ratio of double-cured glue is 0.8%), and described double-cured glue raw material comprises following composition:

③对步骤②得到的柔性衬底进行紫外固化处理60秒;③UV curing the flexible substrate obtained in step ② for 60 seconds;

④将基板放入真空室,真空环境下进行电子束固化60分钟;④ Put the substrate into the vacuum chamber, and carry out electron beam curing for 60 minutes in a vacuum environment;

⑤表面喷涂法将金铜合金纳米线水分散液制备导电层,高度20cm,喷涂气压0.3MPa,喷涂速率0.3mL/min,导电层厚度为50nm;⑤The surface spraying method prepares the conductive layer from the gold-copper alloy nanowire aqueous dispersion, the height is 20cm, the spraying pressure is 0.3MPa, the spraying rate is 0.3mL/min, and the thickness of the conductive layer is 50nm;

⑥将镀有导电薄膜的柔性衬底再次进行紫外固化处理60秒;⑥UV curing the flexible substrate coated with conductive film for 60 seconds again;

⑦将柔性衬底从玻璃衬底上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the glass substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

实施例5Example 5

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用阳离子型紫外光固化-热固化体系,导电层1为ITO。In the substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual-curing adhesive, the dual-curing adhesive adopts a cationic UV-curing-heat curing system, and the conductive layer 1 is ITO.

制备方法如下:The preparation method is as follows:

①先对表面粗糙度小于1nm的刚性基板进行清洗,分别利用洗涤剂、丙酮、去离子水、异丙醇进行超声清洗,清洗后用干燥氮气吹干;① Clean the rigid substrate with a surface roughness less than 1nm first, then use detergent, acetone, deionized water, and isopropanol to perform ultrasonic cleaning, and dry it with dry nitrogen after cleaning;

②在刚性基板上采用旋涂制备虫胶与双重固化胶混合薄膜(双重固化胶所占质量比为2%),所述双重固化胶原料包括以下成份:2. adopt spin coating on rigid substrate to prepare shellac and double-cured glue mixed film (the mass ratio of double-cured glue is 2%), and described double-cured glue raw material comprises following composition:

③对基板表面进行紫外固化处理60秒;③UV curing treatment on the surface of the substrate for 60 seconds;

④将基板放入烘烤箱,温度110℃,热固化处理20分钟;(步骤③和④可以相互交换)④Put the substrate into the oven at a temperature of 110°C and heat curing for 20 minutes; (steps ③ and ④ can be interchanged)

⑤在④表面丝网印刷法制备氧化铟锡导电层,导电层厚度为80nm;⑤ Prepare an indium tin oxide conductive layer by screen printing on the surface of ④, and the thickness of the conductive layer is 80nm;

⑥将镀有导电薄膜的柔性衬底再次进行紫外固化处理60秒;⑥UV curing the flexible substrate coated with conductive film for 60 seconds again;

⑦将柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the rigid substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

实施例6Example 6

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用阳离子型紫外固化剂-微波固化剂双重固化体系,导电层1为聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)。The substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual curing adhesive, the dual curing adhesive adopts a cationic UV curing agent-microwave curing agent dual curing system, and the conductive layer 1 is poly(3,4- Ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS).

制备方法如下:The preparation method is as follows:

①先对表面粗糙度小于1nm的刚性基板进行清洗,分别利用洗涤剂、丙酮、去离子水、异丙醇进行超声清洗,清洗后用干燥氮气吹干;① Clean the rigid substrate with a surface roughness less than 1nm first, then use detergent, acetone, deionized water, and isopropanol to perform ultrasonic cleaning, and dry it with dry nitrogen after cleaning;

②在刚性基板上采用旋涂制备虫胶与双重固化胶混合薄膜(双重固化胶所占质量比为2.5%),所述双重固化胶原料包括以下成份:2. on the rigid substrate, adopt spin coating to prepare shellac and double-cured glue mixed film (the mass ratio of double-cured glue is 2.5%), and described double-cured glue raw material comprises following composition:

③对基板表面进行紫外固化处理60秒;③UV curing treatment on the surface of the substrate for 60 seconds;

④将基板放入微波炉,微波固化处理15分钟;(步骤③和④可以互相交换)④ Put the substrate into the microwave oven and microwave curing for 15 minutes; (steps ③ and ④ can be interchanged)

⑤在③表面喷墨打印法制备PEDOT:PSS导电层,导电层厚度为40nm;⑤ Prepare PEDOT:PSS conductive layer in ③ surface inkjet printing method, the thickness of the conductive layer is 40nm;

⑥对柔性衬底表面进行紫外光照射60秒;⑥Irradiate the surface of the flexible substrate with ultraviolet light for 60 seconds;

⑦将步骤⑥中紫外光处理后的柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate after the ultraviolet light treatment in step ⑥ from the rigid substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

实施例7Example 7

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用阳离子型紫外固化剂-厌氧固化剂双重固化体系,导电层1为镍铁异质结纳米线。The substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual curing adhesive, the dual curing adhesive adopts a cationic UV curing agent-anaerobic curing agent dual curing system, and the conductive layer 1 is a nickel-iron heterojunction Nanowires.

制备方法如下:The preparation method is as follows:

①先对表面粗糙度小于1nm的刚性基板进行清洗,分别利用洗涤剂、丙酮、去离子水、异丙醇进行超声清洗,清洗后用干燥氮气吹干;① Clean the rigid substrate with a surface roughness less than 1nm first, then use detergent, acetone, deionized water, and isopropanol to perform ultrasonic cleaning, and dry it with dry nitrogen after cleaning;

②在刚性基板上采用旋涂制备虫胶与双重固化胶混合薄膜(双重固化胶所占质量比为3%),所述双重固化胶原料包括以下成份:2. on the rigid substrate, adopt spin coating to prepare shellac and double-cured glue mixed film (the mass ratio of double-cured glue is 3%), and described double-cured glue raw material comprises following composition:

③对基板表面进行紫外固化处理60秒;③UV curing treatment on the surface of the substrate for 60 seconds;

④将基板放入真空室,真空环境下进行厌氧固化20分钟;④Put the substrate into the vacuum chamber, and perform anaerobic curing in a vacuum environment for 20 minutes;

⑤在表面喷墨打印法制备镍铁异质结纳米线导电层,导电层厚度为70nm;⑤ Prepare the conductive layer of nickel-iron heterojunction nanowires by inkjet printing on the surface, and the thickness of the conductive layer is 70nm;

⑥对镀有导电薄膜的柔性衬底表面进行紫外光照射60秒;⑥Irradiate the surface of the flexible substrate coated with conductive film with ultraviolet light for 60 seconds;

⑦将步骤⑥中紫外光处理后的柔性衬底从刚性基板上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate after the ultraviolet light treatment in step ⑥ from the rigid substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

实施例8Example 8

如图1所示的基板结构,柔性衬底2为掺有双重固化胶的虫胶,双重固化胶采用阳离子型紫外光固化-电子束固化体系,导电层1为金铜合金纳米线。In the substrate structure shown in Figure 1, the flexible substrate 2 is shellac mixed with dual-curing adhesive, the dual-curing adhesive adopts a cationic UV-curing-electron beam curing system, and the conductive layer 1 is gold-copper alloy nanowires.

制备方法如下:The preparation method is as follows:

①先对表面粗糙度小于1nm的玻璃衬底进行清洗,分别利用洗涤剂、丙酮、去离子水、异丙醇进行超声清洗,清洗后用干燥氮气吹干;① Clean the glass substrate with a surface roughness less than 1nm first, then use detergent, acetone, deionized water, and isopropanol to perform ultrasonic cleaning, and then dry it with dry nitrogen after cleaning;

②在玻璃衬底上采用旋涂制备虫胶与双重固化胶混合薄膜(双重固化胶所占质量比为4%),所述双重固化胶原料包括以下成份:2. on the glass substrate, adopt spin coating to prepare shellac and double-cured glue mixed film (the mass ratio of double-cured glue is 4%), and described double-cured glue raw material comprises following composition:

③对步骤②得到的柔性衬底进行紫外固化处理60秒;③UV curing the flexible substrate obtained in step ② for 60 seconds;

④将基板放入真空室,真空环境下进行电子束固化60分钟;④ Put the substrate into the vacuum chamber, and carry out electron beam curing for 60 minutes in a vacuum environment;

⑤表面喷涂法将金铜合金纳米线水分散液制备导电层,高度20cm,喷涂气压0.3MPa,喷涂速率0.3mL/min,导电层厚度为50nm;⑤The surface spraying method prepares the conductive layer from the gold-copper alloy nanowire aqueous dispersion, the height is 20cm, the spraying pressure is 0.3MPa, the spraying rate is 0.3mL/min, and the thickness of the conductive layer is 50nm;

⑥将镀有导电薄膜的柔性衬底再次进行紫外固化处理60秒;⑥UV curing the flexible substrate coated with conductive film for 60 seconds again;

⑦将柔性衬底从玻璃衬底上剥离,形成柔性光电子器件用基板;⑦Peel off the flexible substrate from the glass substrate to form a substrate for flexible optoelectronic devices;

⑧测试柔性光电子器件用基板的降解特性、方阻、表面形貌、水氧透过率和光透过率。⑧Test the degradation characteristics, square resistance, surface morphology, water and oxygen transmittance and light transmittance of substrates for flexible optoelectronic devices.

表1为实施例1-8柔性衬底的光透过率测试结果,一种是掺入了一定量双重固化胶的虫胶,另一种是未掺入双重固化胶的虫胶。Table 1 shows the light transmittance test results of the flexible substrates of Examples 1-8, one is shellac mixed with a certain amount of dual-curing glue, and the other is shellac not mixed with double-curing glue.

实施例Example 掺入双重固化胶后的透光率Light transmittance after doping with dual curing adhesive 未掺入双重固化胶的透光率Light transmittance without dual-cure adhesive 11 81%81% 68%68% 22 78%78% 69%69% 33 81%81% 68%68% 44 82%82% 67%67% 55 76%76% 71%71% 66 77%77% 72%72% 77 71%71% 68%68% 88 77%77% 67%67%

Claims (10)

1. biodegradable base board for flexible optoelectronic part, comprise flexible substrate and conductive layer, conductive layer is positioned at the top of flexible substrate, it is characterized in that, described flexible substrate is the shellac being mixed with dual cure glue, the mass ratio of described dual cure glue in shellac is 0.3-4%, described dual cure glue is made up of dual UV curable paint, described dual UV curable paint is ultraviolet light polymerization-heat cured system, ultraviolet light polymerization-microwave curing system, one or more in ultraviolet light polymerization-anaerobic curing system or ultraviolet light polymerization-electronic beam curing system, described dual UV curable paint by two independently cure stage complete, one of them cure stage is reacted by ultraviolet light polymerization, another cure stage is dark reaction.
2. biodegradable base board for flexible optoelectronic part according to claim 1, is characterized in that, described dual UV curable paint is following system:
1. free radical type ultraviolet light polymerization-heat cured system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, be then heating and curing, then carries out ultraviolet light polymerization; Or be first heating and curing, then carry out ultraviolet light polymerization, then be heating and curing;
2. free radical type ultraviolet light polymerization-microwave curing system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, then carries out microwave curing, then carries out ultraviolet light polymerization; Or first carry out microwave curing, then carry out ultraviolet light polymerization, then heat or microwave curing;
3. free radical type ultraviolet light polymerization-anaerobic curing system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, is not then subject to illumination and substrate under being in anoxia condition can carry out anaerobic curing reaction automatically, then carries out ultraviolet light polymerization;
4. free radical type ultraviolet light polymerization-electronic beam curing system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, then carries out electronic beam curing under vacuo, then carries out ultraviolet light polymerization;
5. cation type ultraviolet photo-curing-heat cured system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, be then heating and curing, then carries out ultraviolet light polymerization; Or be first heating and curing, then carry out ultraviolet light polymerization, then be heating and curing;
6. cation type ultraviolet photo-curing-microwave curing system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, then carries out microwave curing, then carries out ultraviolet light polymerization; Or first carry out microwave curing, then carry out ultraviolet light polymerization, then heat or microwave curing;
7. cation type ultraviolet photo-curing-anaerobic curing system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, is not then subject to illumination and substrate under being in anoxia condition can carry out anaerobic curing reaction automatically, then carries out ultraviolet light polymerization;
Or 8. cation type ultraviolet photo-curing-electronic beam curing system, weight forms:
Solidification process is: first carry out ultraviolet light polymerization, then carries out electronic beam curing under vacuo, then carries out ultraviolet light polymerization.
3. biodegradable base board for flexible optoelectronic part according to claim 2, is characterized in that, described free radical thermal curing agents is ethylenediamine, hexamethylene diamine, triethylene tetramine, ethoxy diethylenetriamine, hydroxyl isopropyl diethylenetriamine, poly-ethanedioic acid adipamide, diformazan ammonia propylamine, 4-methyl-diaminopropane, dicyandiamide, two amido diphenyl sulfones, two aminodiphenylmethane, m-phenylene diamine (MPD), diethyl toluene diamine, N-(aminopropyl)-toluenediamine, dimethylethanolamine, dimethyl Bian amine, triethylbenzyl ammonium chloride, benzyl-dimethylamine, N-benzyl dimethylamine, 2,4,6 ,-three-(dimethylamino methyl)-phenol, phenol formaldehyde (PF) hexamethylene diamine, N, N-dimethyl benzylamine, 2-ethyl imidazol(e), 2-phenylimidazole, glyoxal ethyline, 2-ethyl imidazol(e), 2-ethyl-4-methylimidazole, 1-(2-amino-ethyl)-glyoxal ethyline, maleic anhydride, oxydiphthalic, phthalic anhydride, trimellitic anhydride, tetrabromo-benzene dicarboxylic acid anhydride, gather acetic anhydride in the ninth of the ten Heavenly Stems, sebacic dihydrazide, adipic dihydrazide, carbon acid dihydrazide, grass acid dihydrazide, succinic acid hydrazide ii, adipic dihydrazide, the amino polyacrylamide of N-, decanedioic acid hydrazides, M-phthalic acid hydrazides, to Para Hydroxy Benzoic Acid hydrazides, azelaic acid two hydrazides, isophthalic dihydrazide, ferrocene tetrafluoroborate, triallyl cyanurate, toluene di-isocyanate(TDI), '-diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethyl hexamethylene diisocyanate, dicyclohexyl methyl hydride diisocyanate, XDI, tetramethylxylylene diisocyanate, methyl styrene isocyanates, hexahydrotoluene vulcabond, triphenyl first-4,4', 4'-triisocyanate, diaminodiphenyl-methane, N-is to chlorophenyl-N-N-dimethyl urea, 3-phenyl-1,1-dimethyl urea, 3-rubigan-1,1-dimethyl urea, 4,4 '-diamino-diphenyl bis-phenol, polyurethanes, Lauxite, epoxy-ethylenediamine carbamate, 2,4,6-tri-(dimethylamino methyl) phenol, 2,4-diaminotoluene, polyurethane, methyl-etherified Lauxite, three (3-aminopropyl) amine, 2-amino-ethyl-two (3-aminopropyl) amine, 4,4 '-MDA, 4,4 '-diamino-diphenyl bis-phenol, 4,4 '-diamino-diphenyl sulfone, three (3-aminopropyl) amine, melmac, benzoguanamine resin, hexamethylol melamine resin, hexamethoxymethyl melamine resin, urea-melamine resin, polyester melamine, TCCA ester, aminotriazine resins, urethane acrylate, 4-aminopyridine resin, N-β-aminoethyl amino mylar, α-aminopyridine resin, aminodiphenylether resin, phosphoramidic-resin, hydroxyethylamino mylar, described microwave curing agent and thermal curing agents use same material or different materials, described anaerobic curing agent comprises: methacrylate tetraethylene-glycol ester, methacrylate multicondensed ethylene glycol ester, triethylene Glycol double methyl methacrylate, ethyleneglycol dimethyacrylate, hydroxyethyl methacrylate or hydroxypropyl acrylate, methoxylated polyethylene glycol methacrylate, phthalic acid Triethylene Glycol, β-hydroxyethyl methacry-late, triethylene Glycol double methyl methacrylate, Dimethacryloylethylthioether, phthalic acid two (diethylene glycol (DEG) acrylate), Ethoxylated bisphenol A dimethylacrylate, dimethacrylate bisphenol-A ethylene glycol fat, second diester methacrylate, triethylene-glycol dimethylacrylate, triethlene glycol bismethylacrylate, glycol methacrylate, one diethyl acetal double methyl methacrylate, epoxy resin methacrylate, methacrylate diglycol ester, described electronic beam curing agent comprises: triphenol methylmethane tetraglycidel ether epoxy resin, bicyclopentadiene bisphenol-type epoxy resin, bisphenol A-type vinyl ester resin, epoxy vinyl ester resin, Epocryl, maleimide resin, 4, 4 '-diphenyl methane dimaleimide, bisphenol-A-Diphenyl Ether Bismaleimide, bisphenol-A maleic acid vinylite, ethylene bromide base ester resin, phenol formaldehyde epoxy vinyl ester resin, methylolation bisphenol A type epoxy resin, bisphenol A acrylates, urethane acrylate, bisphenol-A epoxide vinylester resin, bisphenol A benzoxazine-epoxy resin, bisphenol fluorene epoxy resin, bisphenol-a epoxy acrylate resin, one or more in bisphenol A diglycidyl ether or bisphenol-A epoxy chloropropene acid ester resin,
Light trigger is styrax or Benzoin derivative, and described Benzoin derivative is benzoin methyl ether, benzoin ethyl ether, acetophenone derivative or benzoin isopropyl ether; Cation light initiator is one or more in aromatic sulfonium salts, salt compounded of iodine or luxuriant molysite; Sensitising agent be benzophenone, thia anthraquinone or Michler's keton one or more; Auxiliary agent comprises plasticizer, thixotropic agent and filler;
Plasticizer is dioctyl phthalate, dibutyl phthalate, three vinyl butyl ether base phosphates, polyvinyl butyral resin, tributyl 2-acetylcitrate, repefral, diethyl phthalate, hexanedioic acid two (Butoxyethoxy) ethyl ester, isopropyl titanate, tetrabutyl titanate, citrate, trimellitic acid (2-ethyl) own ester, phthalic acid two (2-ethyl) own ester, decanedioic acid two (2-ethyl) own ester, Diethylene Glycol Dibenzoate, phthalic anhydride, dipropylene glycol dibenzoate and chlorosulfonated polyethylene, described coupling agent comprises methylvinyldichlorosilane, methyl hydrogen dichlorosilane, dimethyldichlorosilane, chlorodimethyl silane, vinyl trichlorosilane, γ-aminopropyltrimethoxysilane, dimethyl silicone polymer, poly-hydrogen methylsiloxane, poly-methyl methoxy radical siloxane, γ-methacrylic acid third vinegar base trimethoxy silane, gamma-aminopropyl-triethoxy-silane, γ-glycidol ether propyl trimethoxy silicane, aminopropyl silsesquioxane, γ-methacryloxypropyl trimethoxy silane, chain alkyl trimethoxy silane, vinyltriethoxysilane, vinyltrimethoxy silane, γ-chloropropyl triethoxysilane, two-(the silica-based propyl group of γ-triethoxy), anilinomethyl triethoxysilane, N-β (aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-gamma-aminopropyl-triethoxy-silane, N-β (aminoethyl)-γ-aminopropyltriethoxy dimethoxysilane, γ-(2,3-epoxy third oxygen) propyl trimethoxy silicane, γ-(methacryloxypropyl) oxypropyl trimethyl silane, one or more in γ mercaptopropyitrimethoxy silane or γ-Mercaptopropyltriethoxysilane.
4. biodegradable base board for flexible optoelectronic part according to claim 1, it is characterized in that, the material of described conductive layer is one or more in Graphene, carbon nano-tube, metal simple-substance nano wire, metal alloy nanowires, metal hetero-junction nano wire, zinc oxide, titanium oxide, tin indium oxide or polymer electrode material.
5. biodegradable base board for flexible optoelectronic part according to claim 4, it is characterized in that, one or more in described metal simple-substance nano wire or Fe nanowire, copper nano-wire, nano silver wire, nanowires of gold, aluminium nano wire, nickel nano wire, cobalt nanowire, manganese nano wire, cadmium nano wire, indium nano wire, stannum nanowire, tungsten nanowires or Pt nanowires.
6. biodegradable base board for flexible optoelectronic part according to claim 4, is characterized in that, described metal alloy nanowires is copper-iron alloy nano wire, silver ferroalloy nano wire, bule gold nano wire, alfer nano wire, dilval nano wire, ferro-cobalt nano wire, manganeisen nano wire, cadmium ferroalloy nano wire, indium ferroalloy nano wire, tin ferroalloy nano wire, ferro-tungsten nano wire, pt-fe alloy nano wire, yellow gold nano wire, gold copper nano wire, aluminium copper nano wire, monel nano wire, cobalt-copper alloy nano wire, manganin nano wire, cadmium copper alloy nano wire, gun-metal nano wire, tungsten-copper alloy nano wire, Mock gold nano wire, electrum nano wire, aluminium silver alloy nanowires, bazar metal nano wire, cobalt silver alloy nanowires, manganese silver alloy nanowires, cadmium silver nano wire, indium silver alloy nanowires, sn-ag alloy nano wire, tungsten silver alloy nanowires, platinum-silver alloys nano wire, aluminium gold alloy nano-wire, nickel billon nano wire, cobalt billon nano wire, manganese billon nano wire, cadmium billon nano wire, indium billon nano wire, Sillim's alloy nano-wire, tungsten billon nano wire, cobalt-nickel alloy nano wire, manganese-nickel nano wire, cadmium-nickel alloy nano wire, indium nickel alloy nano wire, tin-nickel alloy nano wire, tungsten nickel nano wire, platinum-nickel alloy nano wire, cadmium manganese alloy nano wire, indium manganese alloy nano wire, tin manganese alloy nano wire, tungsten manganese alloy nano wire, platinum manganese alloy nano wire, indium cadmium alloy nano wire, tin cadmium alloy nano wire, tungsten cadmium alloy nano wire, platinum cadmium alloy nano wire, tin-indium alloy nano wire, tungsten indium alloy nano wire, platinum indium alloy nano wire, tungsten ashbury metal nano wire, one or more in platinum ashbury metal nano wire or platinum-tungsten alloys nano wire.
7. biodegradable base board for flexible optoelectronic part according to claim 4, is characterized in that, described metal hetero-junction nano wire is copper iron heterojunction nano-wire, silver iron heterojunction nano-wire, gold iron heterojunction nano-wire, ferro-aluminum heterojunction nano-wire, ferronickel heterojunction nano-wire, ferro-cobalt heterojunction nano-wire, ferromanganese heterojunction nano-wire, cadmium iron heterojunction nano-wire, indium iron heterojunction nano-wire, tin iron heterojunction nano-wire, ferrotungsten heterojunction nano-wire, platinum iron heterojunction nano-wire, silver-bearing copper heterojunction nano-wire, gold copper heterojunction nano-wire, aluminum copper dissimilar junction nanowire, ambrose alloy heterojunction nano-wire, cobalt copper heterojunction nano-wire, copper-manganese heterojunction nano-wire, cadmium copper heterojunction nano-wire, tin copper heterojunction nano-wire, tungsten copper heterojunction nano-wire, platinoid heterojunction nano-wire, gold and silver heterojunction nano-wire, aluminium silver heterojunction nano-wire, nickeline heterojunction nano-wire, cobalt silver heterojunction nano-wire, manganese silver heterojunction nano-wire, cadmium silver heterojunction nano-wire, indium silver heterojunction nano-wire, tin silver heterojunction nano-wire, tungsten silver heterojunction nano-wire, platinum silver heterojunction nano-wire, aluminium gold heterojunction nano-wire, nickel gold heterojunction nano-wire, cobalt gold heterojunction nano-wire, manganese gold heterojunction nano-wire, cadmium gold heterojunction nano-wire, indium gold heterojunction nano-wire, Sillim's heterojunction nano-wire, tungsten gold heterojunction nano-wire, cobalt nickel heterojunction nano-wire, manganese nickel heterojunction nano-wire, cadmium nickel heterojunction nano-wire, indium nickel heterojunction nano-wire, tin nickel heterojunction nano-wire, tungsten nickel heterojunction nano-wire, platinum nickel heterojunction nano-wire, cadmium manganese heterojunction nano-wire, indium manganese heterojunction nano-wire, tin manganese heterojunction nano-wire, tungsten manganese heterojunction nano-wire, platinum manganese heterojunction nano-wire, indium cadmium heterojunction nano-wire, tin cadmium heterojunction nano-wire, tungsten cadmium heterojunction nano-wire, platinum cadmium heterojunction nano-wire, tin indium heterojunction nano-wire, tungsten indium heterojunction nano-wire, platinum indium heterojunction nano-wire, tungsten tin heterojunction nano-wire, one or more in platinum tin heterojunction nano-wire or platinum tungsten heterojunction nano-wire.
8. biodegradable base board for flexible optoelectronic part according to claim 4, it is characterized in that, described polymer electrode material is poly-(3,4-Ethylenedioxy Thiophene)-poly-(styrene sulfonic acid) or 3,4-polyethylene dioxythiophenes.
9., according to the manufacture method of the arbitrary described biodegradable base board for flexible optoelectronic part of claim 1-8, it is characterized in that, comprise the following steps:
1. the rigid substrates that effects on surface roughness is less than 1nm cleans, and dries up after cleaning with drying nitrogen;
2. roller coat, LB embrane method, blade coating, spin coating, a painting, spraying, czochralski method, the tape casting, dip-coating, inkjet printing, self assembly or silk screen printing is adopted to prepare flexible substrate on the rigid substrate, described flexible substrate is shellac, the dual cure glue that mass ratio is 0.3-4% is mixed with in described shellac, described dual cure glue is made up of dual UV curable paint, and described dual UV curable paint is one or more of ultraviolet light polymerization-heat cured system, ultraviolet light polymerization-microwave curing system, ultraviolet light polymerization-anaerobic curing system and ultraviolet light polymerization-electronic beam curing system.
3. treatment with ultraviolet light is carried out to the flexible substrate that 2. step obtains, carry out photocuring;
4. flexible substrate is put into heating furnace to carry out hot curing or put into microwave oven carrying out microwave curing;
Wherein, 3. and 4. step can exchange, and namely first carries out being heating and curing or microwave curing, then carries out ultraviolet light polymerization;
5. roller coat, LB embrane method, a painting, spraying, czochralski method, inkjet printing or silk screen print method is adopted to prepare conductive layer on flexible substrate surface;
6. again treatment with ultraviolet light is carried out to the flexible substrate that 5. step obtains, carry out photocuring;
7. flexible substrate is peeled off from rigid substrates, form base board for flexible optoelectronic part.
10., according to the manufacture method of the arbitrary described biodegradable base board for flexible optoelectronic part of claim 1-8, it is characterized in that, comprise the following steps:
1. the rigid substrates that surface roughness is less than 1nm cleans, and dries up after cleaning with drying nitrogen;
2. roller coat, LB embrane method, blade coating, spin coating, a painting, spraying, czochralski method, the tape casting, dip-coating, inkjet printing, self assembly or silk screen printing is adopted to prepare flexible substrate on the rigid substrate, described flexible substrate is shellac, the dual cure glue that mass ratio is 0.3-4% is mixed with in described shellac, described dual cure glue is made up of dual UV curable paint, and described dual UV curable paint is one or more of ultraviolet light polymerization-heat cured system, ultraviolet light polymerization-microwave curing system, ultraviolet light polymerization-anaerobic curing system and ultraviolet light polymerization-electronic beam curing system.
3. treatment with ultraviolet light is carried out to the flexible substrate that 2. step obtains, carry out photocuring;
4. flexible substrate is placed under vacuum conditions, carry out anaerobic curing or electronic beam curing process;
5. roller coat, LB embrane method, a painting, spraying, czochralski method, inkjet printing or silk screen print method is adopted to prepare conductive layer on flexible substrate surface;
6. again treatment with ultraviolet light is carried out to the flexible substrate that 5. step obtains, carry out photocuring;
7. flexible substrate is peeled off from rigid substrates, form base board for flexible optoelectronic part.
CN201510194972.3A 2015-04-22 2015-04-22 Biodegradable substrate for flexible optoelectronic device and method for manufacturing same Pending CN104766932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510194972.3A CN104766932A (en) 2015-04-22 2015-04-22 Biodegradable substrate for flexible optoelectronic device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510194972.3A CN104766932A (en) 2015-04-22 2015-04-22 Biodegradable substrate for flexible optoelectronic device and method for manufacturing same

Publications (1)

Publication Number Publication Date
CN104766932A true CN104766932A (en) 2015-07-08

Family

ID=53648652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510194972.3A Pending CN104766932A (en) 2015-04-22 2015-04-22 Biodegradable substrate for flexible optoelectronic device and method for manufacturing same

Country Status (1)

Country Link
CN (1) CN104766932A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106366973A (en) * 2016-08-31 2017-02-01 强新正品(苏州)环保材料科技有限公司 Conductive adhesive capable of being applied to adhesion of circuit components and using method of conductive adhesive
CN108290013A (en) * 2015-11-05 2018-07-17 Tsk实验室欧洲有限公司 Using the method for polymer composition two objects of connection and for the system of cosmetic procedure
CN109666118A (en) * 2018-12-14 2019-04-23 江南大学 A kind of preparation method of fire-retardant multi-arm type epoxy resin
CN112996871A (en) * 2018-09-05 2021-06-18 Swimc有限公司 Modified latent crosslinkers in polymer systems
CN113013019A (en) * 2021-02-03 2021-06-22 沈发明 Silicon wafer surface base treatment method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465409A (en) * 2008-12-31 2009-06-24 电子科技大学 Substrate for flexible organic optoelectronic device and preparation method thereof
US20100002282A1 (en) * 2008-07-03 2010-01-07 Ajjer Llc Metal coatings, conductive nanoparticles and applications of the same
CN102201538A (en) * 2011-04-18 2011-09-28 电子科技大学 Substrate for flexible photoelectronic device and preparation method thereof
CN102201548A (en) * 2011-04-18 2011-09-28 电子科技大学 Substrate for flexible luminescent device and preparation method thereof
CN102201549A (en) * 2011-04-18 2011-09-28 电子科技大学 Substrate for flexible light emitting device and fabrication method thereof
CN102208545A (en) * 2011-04-18 2011-10-05 电子科技大学 Substrate for flexible optoelectronic device and preparation method thereof
CN103302910A (en) * 2013-06-25 2013-09-18 电子科技大学 Biodegradable flexible conductive base plate and preparation method thereof
CN103448308A (en) * 2013-09-18 2013-12-18 电子科技大学 Biodegradable flexible conductive base plate and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002282A1 (en) * 2008-07-03 2010-01-07 Ajjer Llc Metal coatings, conductive nanoparticles and applications of the same
CN101465409A (en) * 2008-12-31 2009-06-24 电子科技大学 Substrate for flexible organic optoelectronic device and preparation method thereof
CN102201538A (en) * 2011-04-18 2011-09-28 电子科技大学 Substrate for flexible photoelectronic device and preparation method thereof
CN102201548A (en) * 2011-04-18 2011-09-28 电子科技大学 Substrate for flexible luminescent device and preparation method thereof
CN102201549A (en) * 2011-04-18 2011-09-28 电子科技大学 Substrate for flexible light emitting device and fabrication method thereof
CN102208545A (en) * 2011-04-18 2011-10-05 电子科技大学 Substrate for flexible optoelectronic device and preparation method thereof
CN103302910A (en) * 2013-06-25 2013-09-18 电子科技大学 Biodegradable flexible conductive base plate and preparation method thereof
CN103448308A (en) * 2013-09-18 2013-12-18 电子科技大学 Biodegradable flexible conductive base plate and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108290013A (en) * 2015-11-05 2018-07-17 Tsk实验室欧洲有限公司 Using the method for polymer composition two objects of connection and for the system of cosmetic procedure
CN108290013B (en) * 2015-11-05 2022-04-05 Tsk实验室欧洲有限公司 Method for connecting two objects using a polymer composition and system for cosmetic procedures
CN106366973A (en) * 2016-08-31 2017-02-01 强新正品(苏州)环保材料科技有限公司 Conductive adhesive capable of being applied to adhesion of circuit components and using method of conductive adhesive
CN112996871A (en) * 2018-09-05 2021-06-18 Swimc有限公司 Modified latent crosslinkers in polymer systems
CN109666118A (en) * 2018-12-14 2019-04-23 江南大学 A kind of preparation method of fire-retardant multi-arm type epoxy resin
CN109666118B (en) * 2018-12-14 2021-02-09 江南大学 Preparation method of flame-retardant multi-arm epoxy resin
CN113013019A (en) * 2021-02-03 2021-06-22 沈发明 Silicon wafer surface base treatment method

Similar Documents

Publication Publication Date Title
CN101465409B (en) Substrate for flexible organic optoelectronic device and preparation method thereof
CN101930990B (en) Active driving organic electroluminescent device and preparation method thereof
CN102208538B (en) Substrate for flexible photoelectronic device and preparation method thereof
CN102208542A (en) Substrate for flexible photoelectronic device and preparation method thereof
CN104766932A (en) Biodegradable substrate for flexible optoelectronic device and method for manufacturing same
CN101916816A (en) A kind of light-emitting diode and its preparation method
CN102208554B (en) Substrate for flexible luminous device and preparation method thereof
CN103409057A (en) Preparation method for anti-electromagnetic shielding coating based on ultraviolet curing of graphene oxide
CN102208558B (en) Substrate for flexible luminescent device and preparation method thereof
CN101205290A (en) Isocyanate-modified epoxy acrylate and preparation method thereof
CN101573827A (en) Dye-sensitized solar cell
CN101787099A (en) Sealing material composition and method for producing sealing material
CN110607141B (en) Adhesives, laminates, packaging materials for batteries, containers for batteries, and batteries
CN102208571A (en) Substrate for flexible luminescent device and preparation method thereof
CN102208548B (en) Flexible optoelectronic device substrate and preparation method thereof
CN102208556B (en) Flexible substrate used in luminescent device and preparation method thereof
CN102208550B (en) Substrate for flexible photoelectronic device and preparation method thereof
CN114015296B (en) Coating liquid for photovoltaic back plate and photovoltaic back plate
CN103579502B (en) A kind of organic field effect tube and preparation method thereof
CN104953034B (en) Degradable base board for flexible optoelectronic part and preparation method thereof
CN102208560A (en) Substrate for flexible luminescent device and preparation method thereof
CN104953029A (en) Biodegradable substrate for flexible optoelectronic device and manufacturing method thereof
CN102270749A (en) A substrate for a flexible light-emitting device and its preparation method
CN111978502B (en) A kind of urethane oil acrylate photocurable resin and preparation method thereof
CN101993513A (en) Sealing material composition and method for producing sealing material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150708