CN104758066B - Equipment for surgical navigation and surgical robot - Google Patents
Equipment for surgical navigation and surgical robot Download PDFInfo
- Publication number
- CN104758066B CN104758066B CN201510227049.5A CN201510227049A CN104758066B CN 104758066 B CN104758066 B CN 104758066B CN 201510227049 A CN201510227049 A CN 201510227049A CN 104758066 B CN104758066 B CN 104758066B
- Authority
- CN
- China
- Prior art keywords
- moment
- attitude
- positioning
- spatial
- positioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manipulator (AREA)
Abstract
提供一种用于手术导航的设备及手术机器人。所述设备包括:光学跟踪定位装置,用于检测待定位装置的第一空间位置和第一姿态;加速度跟踪定位装置,用于检测待定位装置的空间线性加速度和空间角加速度;融合定位装置,用于根据检测到的第一空间位置和第一姿态以及待定位装置的空间线性加速度和空间角加速度确定待定位装置的第二空间位置和第二姿态作为待定位装置的空间位置和姿态。根据所述设备,能够实现对手术中的待定位装置进行连续的、精确的空间定位,且成本低、运算量小。
Provided are a device for surgical navigation and a surgical robot. The device includes: an optical tracking and positioning device for detecting the first spatial position and a first posture of the device to be positioned; an acceleration tracking and positioning device for detecting the spatial linear acceleration and spatial angular acceleration of the device to be positioned; the fusion positioning device, It is used to determine the second spatial position and second posture of the device to be positioned as the spatial position and posture of the device to be positioned according to the detected first spatial position and first posture and the spatial linear acceleration and spatial angular acceleration of the device to be positioned. According to the device, the continuous and precise spatial positioning of the device to be positioned in the operation can be realized, and the cost is low and the calculation amount is small.
Description
技术领域technical field
本发明涉及医疗器械技术领域,更具体地讲,涉及一种用于手术导航的设备及手术机器人。The present invention relates to the technical field of medical instruments, and more specifically, relates to a device for surgical navigation and a surgical robot.
背景技术Background technique
机器人不仅应用于工业领域,在医疗领域也已得到推广应用。手术机器人(Surgical Robot)的问世不过短短10年,已经取得重大进展。手术机器人是一组器械的组合装置,它通常由一个探头(内窥镜或超声探头等)、手术器械、微型摄像头、操纵杆、多个机械臂等器件组装而成,此外,还包括手术导航系统。目前使用的手术机器人的工作原理是:医生坐在电脑显示屏前,通过显示屏观察病人体内的病灶情况,通过远程操控机器人手中的手术器械将病灶精确切除(或修复)。Robots are not only used in the industrial field, but also in the medical field. In just 10 years since the advent of Surgical Robot, significant progress has been made. Surgical robot is a combination device of a set of instruments, which is usually assembled by a probe (endoscope or ultrasound probe, etc.), surgical instruments, miniature cameras, joysticks, multiple robotic arms, etc. In addition, it also includes surgical navigation system. The working principle of the currently used surgical robot is: the doctor sits in front of the computer monitor, observes the condition of the lesion in the patient's body through the monitor, and accurately removes (or repairs) the lesion by remotely controlling the surgical instruments in the hands of the robot.
图1示出现有的手术机器人的示例,包括远程操纵杆、手术器械、超声探头、多个机械臂(分别用于夹持手术器械、超声探头等)以及手术导航系统,医生通过远程操纵杆来控制机械臂(即控制被夹持在机械臂末端的手术器械和超声探头)来进行手术,在医生面前显示的是实时超声图像,图像中有对应于实际位置的人体手术区域以及手术器械模型,医生以实时超声图像提供的信息为依据操纵机械臂进行手术操作。显而易见,想要顺利地进行手术,必须要获取手术器械与人体手术区域的实时的、精确的空间位置关系。Figure 1 shows an example of an existing surgical robot, including a remote joystick, a surgical instrument, an ultrasonic probe, a plurality of mechanical arms (respectively used to clamp surgical instruments, ultrasonic probes, etc.) and a surgical navigation system. Control the robotic arm (that is, control the surgical instruments and ultrasonic probes clamped at the end of the robotic arm) to perform surgery. What is displayed in front of the doctor is a real-time ultrasonic image. In the image, there are human surgical areas and surgical instrument models corresponding to the actual position Doctors operate the robotic arm based on information provided by real-time ultrasound images. Obviously, in order to perform the operation smoothly, it is necessary to obtain the real-time and precise spatial position relationship between the surgical instrument and the operating area of the human body.
手术导航系统即在手术中提供手术器械与人体手术区域实时空间位置关系的设备,图1所示出的手术机器人的手术导航系统为最常见的NDI Polaris光学跟踪定位系统,使用方式如下:机械臂处于初始状态,机械臂末端分别夹持有手术器械和超声探头,手术器械和超声探头分别固连有定位标志点阵列(例如,被动刚体),将定位传感器安置在三角支架上,将支架放置在合适的位置后不再移动,以其作为世界坐标系的参考点;开启定位传感器,获取手术器械的初始位置和超声探头的初始位置(即,在世界坐标系下的绝对位置);开始实际操作,利用超声探头获取人体手术区域的在世界坐标系中的空间位置和姿态,以及手术器械在世界坐标系中的空间位置和姿态,为医生提供实时的导航信息(计算机根据此空间位置信息以三维形式生成并显示人体手术区域的超声画面和手术器械模型。Surgical navigation system is a device that provides real-time spatial positional relationship between surgical instruments and human surgical area during surgery. The surgical navigation system of surgical robot shown in Figure 1 is the most common NDI Polaris optical tracking and positioning system. It is used as follows: Robotic arm In the initial state, the end of the mechanical arm holds the surgical instrument and the ultrasonic probe respectively, and the surgical instrument and the ultrasonic probe are fixedly connected with an array of positioning marker points (for example, a passive rigid body). The positioning sensor is placed on the triangular bracket, and the bracket is placed on the No longer move after a suitable position, use it as the reference point of the world coordinate system; turn on the positioning sensor, obtain the initial position of the surgical instrument and the initial position of the ultrasonic probe (that is, the absolute position in the world coordinate system); start the actual operation , use the ultrasonic probe to obtain the spatial position and posture of the human surgical area in the world coordinate system, as well as the spatial position and posture of the surgical instruments in the world coordinate system, and provide real-time navigation information for the doctor (the computer uses this spatial position information in three-dimensional The form generates and displays ultrasound images of the human surgical field and models of surgical instruments.
然而,现有的光学跟踪定位系统还存在一定的弊端,主要集中在:手术过程中无法保证光学跟踪定位系统对待定位装置进行连续有效的定位(即,无法保证一直定位正常),而一旦定位失效,手术就会因医生无法获取待定位装置的实时位置信息而中断。However, the existing optical tracking and positioning system still has certain disadvantages, which mainly focus on: the optical tracking and positioning system cannot ensure continuous and effective positioning of the positioning device during the operation (that is, it cannot guarantee that the positioning is always normal), and once the positioning fails , the operation will be interrupted because the doctor cannot obtain the real-time position information of the device to be positioned.
发明内容Contents of the invention
本发明的示例性实施例在于提供一种用于手术导航的设备及手术机器人,以克服现有的手术导航系统无法保证对待定位装置进行连续定位的问题。An exemplary embodiment of the present invention is to provide a surgical navigation device and a surgical robot, so as to overcome the problem that the existing surgical navigation system cannot guarantee the continuous positioning of the device to be positioned.
根据本发明的一方面,提供一种用于手术导航的设备,所述设备包括:光学跟踪定位装置,用于检测待定位装置的第一空间位置和第一姿态;加速度跟踪定位装置,用于检测待定位装置的空间线性加速度和空间角加速度;融合定位装置,用于根据检测到的第一空间位置和第一姿态以及待定位装置的空间线性加速度和空间角加速度确定待定位装置的第二空间位置和第二姿态作为待定位装置的空间位置和姿态。According to one aspect of the present invention, there is provided a device for surgical navigation, the device comprising: an optical tracking and positioning device for detecting the first spatial position and a first attitude of the device to be positioned; an acceleration tracking and positioning device for Detecting the spatial linear acceleration and spatial angular acceleration of the device to be positioned; the fusion positioning device is used to determine the second position of the device to be positioned according to the detected first spatial position and first posture and the spatial linear acceleration and spatial angular acceleration of the device to be positioned. The spatial position and the second posture serve as the spatial position and posture of the device to be positioned.
可选地,融合定位装置根据在第一时刻检测到的待定位装置的第一空间位置和第一姿态以及在第一时刻与第二时刻之间检测到的待定位装置的空间线性加速度和空间角加速度,确定待定位装置在第二时刻的第二空间位置和第二姿态,其中,第一时刻早于第二时刻。Optionally, the fusion positioning device detects the first spatial position and the first attitude of the device to be positioned at the first moment and the spatial linear acceleration and spatial linear acceleration of the device to be positioned detected between the first moment and the second moment. The angular acceleration is used to determine a second spatial position and a second posture of the device to be positioned at a second moment, wherein the first moment is earlier than the second moment.
可选地,第一时刻是光学跟踪定位装置开始处于定位失效状态之前最后一次检测到第一空间位置和第一姿态的时刻,第二时刻是光学跟踪定位装置开始处于定位失效状态时或之后的时刻,其中,在光学跟踪定位装置处于定位失效状态之前,融合定位装置将第一空间位置和第一姿态作为待定位装置的空间位置和姿态。Optionally, the first moment is the moment when the first spatial position and the first posture are detected for the last time before the optical tracking and positioning device starts to be in the positioning failure state, and the second moment is when the optical tracking and positioning device starts to be in the positioning failure state or after time, wherein, before the optical tracking and positioning device is in a positioning failure state, the fusion positioning device uses the first spatial position and the first posture as the spatial position and posture of the device to be positioned.
可选地,融合定位装置根据第一时刻与第二时刻之间检测到的待定位装置的空间线性加速度和空间角加速度计算待定位装置在第一时刻与第二时刻之间的空间位置变化和姿态变化,并根据第一时刻检测到的待定位装置的第一空间位置和第一姿态,以及在第一时刻与第二时刻之间的空间位置变化和姿态变化确定待定位装置在第二时刻的第二空间位置和第二姿态。Optionally, the fusion and positioning device calculates the spatial position change and Attitude changes, and according to the first spatial position and first attitude of the device to be positioned detected at the first moment, and the spatial position change and posture change between the first moment and the second moment to determine the position of the device to be positioned at the second moment The second spatial position and the second posture of .
可选地,融合定位装置根据第i时刻与第i-1时刻之间检测到的待定位装置的空间线性加速度和空间角加速度计算待定位装置在第i-1时刻与第i时刻之间的空间位置变化和姿态变化,并根据计算得到的第i-1时刻的待定位装置的第二空间位置和第二姿态,以及在第i-1时刻与第i时刻之间的空间位置变化和姿态变化确定待定位装置在第i时刻的第二空间位置和第二姿态,其中,i为大于等于3的整数,第i-1时刻早于第i时刻。Optionally, the fusion positioning device calculates the distance of the device to be positioned between the i-1th moment and the i-th moment according to the spatial linear acceleration and spatial angular acceleration of the device to be positioned detected between the i-th moment and the i-1th moment Spatial position change and posture change, and according to the calculated second spatial position and second posture of the device to be positioned at the i-1th moment, and the spatial position change and posture between the i-1th moment and the i-th moment The change determines the second spatial position and the second posture of the device to be positioned at the i-th moment, where i is an integer greater than or equal to 3, and the i-1th moment is earlier than the i-th moment.
可选地,在光学跟踪定位装置处于定位正常状态时,融合定位装置将第一空间位置和第一姿态作为待定位装置的空间位置和姿态。Optionally, when the optical tracking and positioning device is in a normal positioning state, the fusion positioning device uses the first spatial position and the first posture as the spatial position and posture of the device to be positioned.
可选地,光学跟踪定位装置包括定位传感器和定位标志点阵列,其中,当定位传感器检测不到定位标志点阵列,或者定位传感器检测到定位标志点阵列处于特定姿态时,融合定位装置确定光学跟踪定位装置处于定位失效状态;当定位传感器检测到定位标志点阵列且检测到定位标志点阵列没有处于特定姿态时,融合定位装置确定光学跟踪定位装置处于定位正常状态。Optionally, the optical tracking and positioning device includes a positioning sensor and a positioning mark point array, wherein, when the positioning sensor detects no positioning mark point array, or the positioning sensor detects that the positioning mark point array is in a specific posture, the fusion positioning device determines that the optical tracking The positioning device is in a positioning failure state; when the positioning sensor detects the positioning mark point array and detects that the positioning mark point array is not in a specific posture, the fusion positioning device determines that the optical tracking positioning device is in a normal positioning state.
可选地,加速度跟踪定位装置包括空间三向陀螺仪、空间三向加速度传感器、无线通信装置和电源,其中,无线通信装置将包括空间三向加速度传感器检测到的待定位装置的空间线性加速度、空间三向陀螺仪检测到的待定位装置的空间角加速度、以及加速度跟踪定位装置的标识信息的信息发送到融合定位装置。Optionally, the acceleration tracking and positioning device includes a spatial three-directional gyroscope, a spatial three-directional acceleration sensor, a wireless communication device and a power supply, wherein the wireless communication device will include the spatial linear acceleration of the device to be positioned detected by the spatial three-directional acceleration sensor, The spatial angular acceleration of the device to be positioned detected by the spatial three-way gyroscope and the identification information of the acceleration tracking and positioning device are sent to the fusion positioning device.
可选地,所述设备还包括:报警装置,当光学跟踪定位装置处于定位失效状态超过预定时间段时,提示操作者光学跟踪定位装置处于定位失效状态已超过预定时间段。Optionally, the device further includes: an alarm device for prompting an operator that the optical tracking and positioning device has been in the positioning failure state for more than a predetermined time period when the optical tracking and positioning device has been in the positioning failure state for more than a predetermined period of time.
可选地,所述预定时间段通过下述方式确定:从一时刻开始,对待定位装置的第一空间位置和第一姿态、第二空间位置和第二姿态进行连续检测,将空间位置误差初次大于空间位置误差阈值或姿态误差初次大于姿态误差阈值的时刻与所述一时刻之间的时间差作为预定时间段,其中,空间位置误差为在同一时刻检测到的待定位装置的第一空间位置与第二空间位置之间的误差,姿态误差为在同一时刻检测到的待定位装置的第一姿态与第二姿态之间的误差。Optionally, the predetermined period of time is determined in the following manner: starting from a moment, the first spatial position and the first posture, the second spatial position and the second posture of the device to be positioned are continuously detected, and the spatial position error is initially Greater than the spatial position error threshold or the time difference between the moment when the attitude error is greater than the attitude error threshold for the first time and the moment is taken as a predetermined time period, wherein the spatial position error is the first spatial position and the first spatial position of the device to be positioned detected at the same time The error between the second spatial positions, the attitude error is the error between the first attitude and the second attitude of the device to be positioned detected at the same moment.
可选地,光学跟踪定位装置以定位传感器的位置为参考点来检测第一空间位置和第一姿态,其中,定位传感器被固定于手术室的预定位置。Optionally, the optical tracking and positioning device uses the position of the positioning sensor as a reference point to detect the first spatial position and the first posture, wherein the positioning sensor is fixed at a predetermined position in the operating room.
可选地,加速度跟踪定位装置固定于待定位装置上或固定于夹持待定位装置的机械臂末端上。Optionally, the acceleration tracking and positioning device is fixed on the device to be positioned or fixed on the end of the mechanical arm clamping the device to be positioned.
可选地,待定位装置包括手术器械和手术成像设备中的至少一个。Optionally, the device to be located includes at least one of a surgical instrument and a surgical imaging device.
根据本发明的另一方面,提供一种手术机器人,包括:用于夹持待定位装置的机械臂,以及所述用于手术导航的设备。According to another aspect of the present invention, a surgical robot is provided, including: a mechanical arm for clamping a device to be positioned, and the device for surgical navigation.
根据本发明示例性实施例的用于手术导航的设备及手术机器人,能够实现对手术中的待定位装置进行连续的、精确的空间定位,且成本低、运算量小。According to the device for surgical navigation and the surgical robot according to the exemplary embodiments of the present invention, continuous and precise spatial positioning of the device to be positioned during surgery can be realized, and the cost is low and the amount of calculation is small.
将在接下来的描述中部分阐述本发明总体构思另外的方面和/或优点,还有一部分通过描述将是清楚的,或者可以经过本发明总体构思的实施而得知。Additional aspects and/or advantages of the present general inventive concept will be partially set forth in the following description, and some will be clear from the description, or can be learned through practice of the present general inventive concept.
附图说明Description of drawings
图1示出根据本发明示例性实施例的现有的手术机器人的示例;FIG. 1 shows an example of an existing surgical robot according to an exemplary embodiment of the present invention;
图2示出根据本发明示例性实施例的用于手术导航的设备的结构框图。Fig. 2 shows a structural block diagram of a device for surgical navigation according to an exemplary embodiment of the present invention.
具体实施方式detailed description
现将详细参照本发明的实施例,所述实施例的示例在附图中示出,其中,相同的标号始终指的是相同的部件。以下将通过参照附图来说明所述实施例,以便解释本发明。Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like numerals refer to like parts throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
图2示出根据本发明示例性实施例的用于手术导航的设备的结构框图。如图2所示,根据本发明示例性实施例的用于手术导航的设备包括:光学跟踪定位装置10、加速度跟踪定位装置20和融合定位装置30。这些装置可由数字信号处理器、现场可编程门阵列等通用硬件处理器来实现,也可通过专用芯片等专用硬件处理器来实现,还可完全通过计算机程序来以软件方式实现。Fig. 2 shows a structural block diagram of a device for surgical navigation according to an exemplary embodiment of the present invention. As shown in FIG. 2 , the device for surgical navigation according to an exemplary embodiment of the present invention includes: an optical tracking and positioning device 10 , an acceleration tracking and positioning device 20 and a fusion positioning device 30 . These devices can be realized by general-purpose hardware processors such as digital signal processors and field programmable gate arrays, or can be realized by dedicated hardware processors such as dedicated chips, or can be completely realized in software through computer programs.
具体说来,光学跟踪定位装置10用于检测待定位装置的第一空间位置和第一姿态。Specifically, the optical tracking and positioning device 10 is used to detect a first spatial position and a first attitude of the device to be positioned.
这里,第一空间位置为通过光学跟踪定位装置10检测到的待定位装置的位置,相应地,第一姿态为通过光学跟踪定位装置10检测到的待定位装置的姿态。Here, the first spatial position is the position of the device to be positioned detected by the optical tracking and positioning device 10 , and correspondingly, the first posture is the posture of the device to be positioned detected by the optical tracking and positioning device 10 .
光学跟踪定位装置10可通过现有的光学跟踪定位系统来实现,例如,可包括定位传感器(例如,双目红外摄像机等)和定位标志点阵列(例如,红外反光标记球、被动刚体等)。定位标志点阵列的各定位标志点可在同一平面内且以特定的构型(例如,各定位标志点的姿态均不同)被固定连接在一起,可被固定于待定位装置上或固定于夹持待定位装置的机械臂末端上(即,与待定位装置保持相对静止),定位传感器基于定位标志点阵列的构型,通过检测定位标志点阵列的空间位置和姿态来确定待定位装置的空间位置和姿态。The optical tracking and positioning device 10 can be implemented by an existing optical tracking and positioning system, for example, it can include a positioning sensor (eg, a binocular infrared camera, etc.) and an array of positioning marker points (eg, an infrared reflective marker ball, a passive rigid body, etc.). The positioning marker points of the positioning marker point array can be fixedly connected together in the same plane and in a specific configuration (for example, the postures of each positioning marker point are different), and can be fixed on the device to be positioned or fixed on a clip. On the end of the mechanical arm of the device to be positioned (that is, relatively stationary with the device to be positioned), the positioning sensor determines the space of the device to be positioned by detecting the spatial position and posture of the array of positioning mark points based on the configuration of the positioning mark point array. position and posture.
待定位装置可以是手术成像设备(例如,超声探头等)、手术器械等手术中需要进行定位的装置,对此不作限制。The device to be positioned may be a surgical imaging device (for example, an ultrasonic probe, etc.), a surgical instrument, and other devices that need to be positioned during surgery, without limitation.
加速度跟踪定位装置20用于检测待定位装置的空间线性加速度和空间角加速度。具体说来,加速度跟踪定位装置20检测待定位装置分别沿三个相互垂直的方向(例如,光学跟踪定位装置10所基于的世界坐标系(即,参考坐标系)的三个坐标轴的方向)的线性加速度,以及待定位装置的三个角加速度(即,俯仰角、滚转角以及偏航角的加速度)。The acceleration tracking and positioning device 20 is used to detect the spatial linear acceleration and spatial angular acceleration of the device to be positioned. Specifically, the acceleration tracking and positioning device 20 detects that the device to be positioned is along three mutually perpendicular directions (for example, the directions of the three coordinate axes of the world coordinate system (ie, the reference coordinate system) on which the optical tracking and positioning device 10 is based) The linear acceleration of , and the three angular accelerations of the device to be positioned (ie, the acceleration of pitch angle, roll angle and yaw angle).
可被固定于待定位装置上或固定于夹持待定位装置的机械臂末端上(即,与待定位装置保持相对静止)。It can be fixed on the device to be positioned or fixed on the end of the mechanical arm clamping the device to be positioned (that is, keep relatively stationary with the device to be positioned).
加速度跟踪定位装置20可通过各种能够检测空间线性加速度和空间角速度的装置来实现。作为示例,加速度跟踪定位装置20可包括:空间三向陀螺仪(未示出)、空间三向加速度传感器(未示出)、无线通信装置(未示出)和电源(未示出),其中,无线通信装置将包括空间三向加速度传感器检测到的待定位装置的空间线性加速度、空间三向陀螺仪检测到的待定位装置的空间角加速度、以及加速度跟踪定位装置20的标识信息的信息发送到融合定位装置30。The acceleration tracking and positioning device 20 can be realized by various devices capable of detecting spatial linear acceleration and spatial angular velocity. As an example, the acceleration tracking and positioning device 20 may include: a spatial three-directional gyroscope (not shown), a spatial three-directional acceleration sensor (not shown), a wireless communication device (not shown) and a power supply (not shown), wherein , the wireless communication device sends information including the spatial linear acceleration of the device to be positioned detected by the spatial three-way acceleration sensor, the spatial angular acceleration of the device to be positioned detected by the spatial three-way gyroscope, and the identification information of the acceleration tracking and positioning device 20 to the fusion positioning device 30.
这里,加速度跟踪定位装置20的标识信息为指示该加速度跟踪定位装置20的信息(例如,该加速度跟踪定位装置20的ID等)。无线通信装置以无线通信方式(例如,蓝牙、WIFI等方式)将上述信息发送到融合定位装置30。电源为空间三向陀螺仪、空间三向加速度传感器和无线通信装置供电。Here, the identification information of the acceleration tracking and positioning device 20 is information indicating the acceleration tracking and positioning device 20 (eg, the ID of the acceleration tracking and positioning device 20 , etc.). The wireless communication device sends the above information to the fusion positioning device 30 in a wireless communication manner (for example, Bluetooth, WIFI, etc.). The power supply supplies power for the space three-way gyroscope, the space three-way acceleration sensor and the wireless communication device.
融合定位装置30用于根据检测到的第一空间位置和第一姿态以及待定位装置的空间线性加速度和空间角加速度确定待定位装置的第二空间位置和第二姿态作为待定位装置的空间位置和姿态。The fusion positioning device 30 is used to determine the second spatial position and the second posture of the device to be positioned as the spatial position of the device to be positioned according to the detected first spatial position and first posture and the spatial linear acceleration and spatial angular acceleration of the device to be positioned and gesture.
这里,第二空间位置为根据光学跟踪定位装置10检测到的第一空间位置,以及加速度跟踪定位装置20检测到的待定位装置的空间线性加速度所确定的待定位装置的空间位置。相应地,第二姿态为根据光学跟踪定位装置10检测到的第一姿态,以及加速度跟踪定位装置20检测到的待定位装置的空间角加速度所确定的待定位装置的姿态。Here, the second spatial position is the spatial position of the device to be positioned determined according to the first spatial position detected by the optical tracking and positioning device 10 and the spatial linear acceleration of the device to be positioned detected by the acceleration tracking and positioning device 20 . Correspondingly, the second posture is the posture of the device to be positioned determined according to the first posture detected by the optical tracking and positioning device 10 and the spatial angular acceleration of the device to be positioned detected by the acceleration tracking and positioning device 20 .
作为示例,融合定位装置30可根据在第一时刻检测到的待定位装置的第一空间位置和第一姿态以及在第一时刻与第二时刻之间检测到的待定位装置的空间线性加速度和空间角加速度,确定待定位装置在第二时刻的第二空间位置和第二姿态,其中,第一时刻早于第二时刻。As an example, the fusion positioning device 30 may detect the first spatial position and the first posture of the device to be positioned at the first moment and the spatial linear acceleration and The spatial angular acceleration is used to determine a second spatial position and a second posture of the device to be positioned at a second moment, wherein the first moment is earlier than the second moment.
例如,融合定位装置30可根据第一时刻与第二时刻之间检测到的待定位装置的空间线性加速度和空间角加速度计算待定位装置在第一时刻与第二时刻之间的空间位置变化和姿态变化,并根据第一时刻检测到的待定位装置的第一空间位置和第一姿态,以及在第一时刻与第二时刻之间的空间位置变化和姿态变化确定待定位装置在第二时刻的第二空间位置和第二姿态。For example, the fusion positioning device 30 can calculate the spatial position change and sum of the spatial position of the device to be positioned between the first moment and the second moment according to the spatial linear acceleration and spatial angular acceleration of the device to be positioned detected between the first moment and the second moment. Attitude changes, and according to the first spatial position and first attitude of the device to be positioned detected at the first moment, and the spatial position change and posture change between the first moment and the second moment to determine the position of the device to be positioned at the second moment The second spatial position and the second posture of .
具体说来,融合定位装置30可通过对第一时刻与第二时刻之间检测到的待定位装置的空间线性加速度进行二次积分,来得到待定位装置在第二时刻相较于第一时刻的相对空间位置变化,然后结合第一时刻检测到的待定位装置的第一空间位置确定出待定位装置在第二时刻的第二空间位置;相应地,融合定位装置30可通过对第一时刻与第二时刻之间检测到的待定位装置的空间角加速度进行二次积分,来得到待定位装置在第二时刻相较于第一时刻的相对姿态变化,然后结合第一时刻检测到的待定位装置的第一姿态确定出待定位装置在第二时刻的第二姿态。Specifically, the fusion positioning device 30 can obtain the acceleration of the device to be positioned at the second moment compared with the first moment by performing quadratic integration on the spatial linear acceleration of the device to be positioned detected between the first moment and the second moment. The relative spatial position of the device to be positioned changes, and then combined with the first spatial position of the device to be positioned detected at the first moment to determine the second spatial position of the device to be positioned at the second moment; Perform secondary integration with the spatial angular acceleration of the device to be positioned detected between the second moment to obtain the relative posture change of the device to be positioned at the second moment compared to the first moment, and then combine the detected The first posture of the positioning device determines the second posture of the device to be positioned at the second moment.
作为示例,第一时刻可以是光学跟踪定位装置10开始处于定位失效状态之前最后一次检测到第一空间位置和第一姿态的时刻,第二时刻可以是光学跟踪定位装置10开始处于定位失效状态时或之后的时刻,其中,在光学跟踪定位装置10处于定位失效状态之前,融合定位装置30将第一空间位置和第一姿态作为待定位装置的空间位置和姿态。As an example, the first moment may be the moment when the first spatial position and the first attitude are detected for the last time before the optical tracking and positioning device 10 starts to be in the positioning failure state, and the second moment may be when the optical tracking and positioning device 10 starts to be in the positioning failure state Or at a later moment, wherein, before the optical tracking and positioning device 10 is in the positioning failure state, the fusion positioning device 30 uses the first spatial position and the first posture as the spatial position and posture of the device to be positioned.
换言之,在光学跟踪定位装置10处于定位失效状态之前一直通过光学跟踪定位装置10来确定待定位装置的空间位置和姿态,一旦光学跟踪定位装置10处于定位失效状态,融合定位装置30将基于光学跟踪定位装置10处于定位失效状态之前最后一次检测到的第一空间位置和第一姿态作为起始空间位置和姿态,结合加速度跟踪定位装置20在第一时刻相较于第二时刻的空间位置变化和姿态变化来确定的待定位装置在第二时刻的第二空间位置和第二姿态,作为待定位装置在第二时刻的空间位置和第二姿态。In other words, the optical tracking and positioning device 10 has been used to determine the spatial position and posture of the device to be positioned before the optical tracking and positioning device 10 is in the positioning failure state. Once the optical tracking and positioning device 10 is in the positioning failure state, the fusion positioning device 30 will The first spatial position and the first posture detected last time before the positioning device 10 is in the positioning failure state are used as the initial spatial position and posture, combined with the acceleration tracking and positioning device 20 at the first moment compared with the second moment. The second spatial position and the second posture of the device to be positioned at the second moment determined by changing the posture are used as the spatial position and the second posture of the device to be positioned at the second moment.
这里,光学跟踪定位装置10处于定位失效状态即光学跟踪定位装置10不能够准确检测待定位装置的空间位置和姿态。例如,当定位传感器检测不到定位标志点阵列,或者定位传感器检测到定位标志点阵列处于特定姿态(例如,定位传感器检测到定位标志点阵列处于一条直线的姿态等)时,融合定位装置30可确定光学跟踪定位装置处于定位失效状态。当定位传感器检测到定位标志点阵列且检测到定位标志点阵列没有处于特定姿态时,融合定位装置30可确定光学跟踪定位装置处于定位正常状态。Here, the optical tracking and positioning device 10 is in a positioning failure state, that is, the optical tracking and positioning device 10 cannot accurately detect the spatial position and attitude of the device to be positioned. For example, when the positioning sensor cannot detect the array of positioning marker points, or the positioning sensor detects that the array of positioning marker points is in a specific posture (for example, the positioning sensor detects that the array of positioning marker points is in a straight line posture, etc.), the fusion positioning device 30 can Determine that the optical tracking and positioning device is in a positioning failure state. When the positioning sensor detects the array of positioning marker points and detects that the array of positioning marker points is not in a specific posture, the fusion positioning device 30 may determine that the optical tracking positioning device is in a normal positioning state.
例如,如果定位标志点阵列超出定位传感器的有效检测范围、定位传感器与定位标志点阵列之间的光学通路受到遮挡,则定位传感器检测不到定位标志点阵列。For example, if the array of positioning mark points exceeds the effective detection range of the positioning sensor, and the optical path between the positioning sensor and the array of positioning mark points is blocked, the positioning sensor cannot detect the array of positioning mark points.
此外,融合定位装置30还可根据第i时刻与第i-1时刻之间检测到的待定位装置的空间线性加速度和空间角加速度计算待定位装置在第i-1时刻与第i时刻之间的空间位置变化和姿态变化,并根据计算得到的第i-1时刻的待定位装置的第二空间位置和第二姿态,以及在第i-1时刻与第i时刻之间的空间位置变化和姿态变化确定待定位装置在第i时刻的第二空间位置和第二姿态,其中,i为大于等于3的整数,第i-1时刻早于第i时刻。In addition, the fusion positioning device 30 can also calculate the distance between the i-1 time and the i-th time of the device to be located according to the spatial linear acceleration and the spatial angular acceleration of the device to be located detected between the i-1 time and the i-1 time. The spatial position change and attitude change of the , and according to the calculated second spatial position and second attitude of the device to be positioned at the i-1th moment, and the spatial position change and The attitude change determines the second spatial position and the second attitude of the device to be positioned at the i-th moment, where i is an integer greater than or equal to 3, and the i-1th moment is earlier than the i-th moment.
即,在第二时刻之后的时刻,可以计算得到的上一时刻的第二空间位置和第二姿态作为起始空间位置和姿态,结合当前时刻相对于上一时刻的待定位装置的空间位置变化和姿态变化来确定当前时刻的待定位装置的第二空间位置和第二姿态。通过上述方式,可降低运算量、提高运算速度。That is, at the moment after the second moment, the calculated second spatial position and second attitude at the previous moment can be used as the initial spatial position and attitude, combined with the change of the spatial position of the device to be positioned at the current moment relative to the previous moment and attitude changes to determine the second spatial position and second attitude of the device to be positioned at the current moment. Through the above method, the calculation amount can be reduced and the calculation speed can be improved.
此外,融合定位装置30也可根据第i时刻与第一时刻之间检测到的待定位装置的空间线性加速度和空间角加速度计算待定位装置在第一时刻与第i时刻之间的空间位置变化和姿态变化,并根据第一时刻的待定位装置的第一空间位置和第一姿态,以及在第一时刻与第i时刻之间的空间位置变化和姿态变化确定待定位装置在第i时刻的第二空间位置和第二姿态。In addition, the fusion positioning device 30 can also calculate the spatial position change of the device to be positioned between the first moment and the ith time according to the spatial linear acceleration and spatial angular acceleration of the device to be positioned detected between the i-th moment and the first moment and posture change, and determine the position of the device to be positioned at the ith moment according to the first spatial position and the first posture of the device to be positioned at the first moment, and the spatial position change and posture change between the first moment and the ith moment A second spatial position and a second attitude.
此外,作为示例,在光学跟踪定位装置10处于定位正常状态时,融合定位装置30可将第一空间位置和第一姿态作为待定位装置的空间位置和姿态。即,只要光学跟踪定位装置10处于定位正常状态,就通过光学跟踪定位装置10来确定待定位装置的空间位置和姿态,只要光学跟踪定位装置10处于定位失效状态,就将融合定位装置30根据光学跟踪定位装置10处于定位失效状态之前最后一次检测到的第一空间位置和第一姿态作为起始空间位置和姿态,结合加速度跟踪定位装置20检测到的待定位装置的空间线性加速度和空间角加速度计算得到的第二空间位置和第二姿态作为待定位装置的空间位置和姿态。In addition, as an example, when the optical tracking and positioning device 10 is in a normal positioning state, the fusion positioning device 30 may use the first spatial position and the first posture as the spatial position and posture of the device to be positioned. That is, as long as the optical tracking and positioning device 10 is in the normal positioning state, the spatial position and posture of the device to be positioned will be determined by the optical tracking and positioning device 10; as long as the optical tracking and positioning device 10 is in the positioning failure state, the fusion positioning device 30 will The first spatial position and the first posture detected last time before the tracking and positioning device 10 is in the positioning failure state are used as the initial spatial position and posture, combined with the spatial linear acceleration and spatial angular acceleration of the device to be positioned detected by the acceleration tracking and positioning device 20 The calculated second spatial position and second attitude are used as the spatial position and attitude of the device to be positioned.
通过上述方式能够实现在传统的光学跟踪定位装置10无法有效、准确地检测待定位装置的空间位置和姿态的情况下,仍能够准确、有效地检测待定位装置的空间位置和姿态,从而实现手术过程的连续定位,不会使手术过程由于光学跟踪定位装置10的定位失效而受到影响。并且,成本较低、运算量较小,便于实际应用和推广。Through the above method, it can be realized that when the traditional optical tracking and positioning device 10 cannot effectively and accurately detect the spatial position and posture of the device to be positioned, it can still accurately and effectively detect the spatial position and posture of the device to be positioned, thereby realizing the operation The continuous positioning of the process will not affect the surgical process due to the failure of the positioning of the optical tracking and positioning device 10 . Moreover, the cost is low and the calculation amount is small, which is convenient for practical application and popularization.
此外,考虑到加速度跟踪定位装置20随着时间的增加检测精度会降低,检测一定时间段后将无法满足精度要求,可在光学跟踪定位装置10处于定位正常状态时,将光学跟踪定位装置10检测到的数据作为待定位装置的空间位置和姿态,既保证手术过程中的定位连续性,也保证手术过程中的定位准确性。In addition, considering that the detection accuracy of the acceleration tracking and positioning device 20 will decrease as time increases, and the accuracy requirements will not be met after a certain period of time, the optical tracking and positioning device 10 can be detected when the optical tracking and positioning device 10 is in a normal positioning state. The obtained data is used as the spatial position and attitude of the device to be positioned, which not only ensures the continuity of positioning during the operation, but also ensures the accuracy of positioning during the operation.
此外,根据本发明示例性实施例的用于手术导航的设备还可包括:报警装置(未示出)。In addition, the device for surgical navigation according to an exemplary embodiment of the present invention may further include: an alarm device (not shown).
报警装置用于当光学跟踪定位装置10处于定位失效状态超过预定时间段时,提示操作者光学跟踪定位装置10处于定位失效状态已超过预定时间段。从而,操作者可进行相应的处理以保证光学跟踪定位装置10进入定位正常状态,从而保证定位的精确性。The alarm device is used to remind the operator that the optical tracking and positioning device 10 has been in the positioning failure state for more than a predetermined time period when the optical tracking and positioning device 10 has been in the positioning failure state for more than a predetermined period of time. Therefore, the operator can perform corresponding processing to ensure that the optical tracking and positioning device 10 enters into a normal positioning state, thereby ensuring the accuracy of positioning.
所述预定时间段与选用的加速度跟踪定位装置20(例如,空间三向陀螺仪、空间三向加速度传感器)有关,作为示例,所述预定时间段可通过下述方式确定:从一时刻开始,对待定位装置的第一空间位置和第一姿态、第二空间位置和第二姿态进行连续检测,将空间位置误差Error_distance初次大于空间位置误差阈值或姿态误差Error_angle初次大于姿态误差阈值的时刻与所述一时刻之间的时间差作为预定时间段,其中,空间位置误差Error_distance为在同一时刻检测到的待定位装置的第一空间位置与第二空间位置之间的误差,姿态误差Error_angle为在同一时刻检测到的待定位装置的第一姿态与第二姿态之间的误差,例如,可通过下述公式计算得到:The predetermined time period is related to the selected acceleration tracking and positioning device 20 (for example, a three-way gyroscope in space, a three-way acceleration sensor in space). As an example, the predetermined time period can be determined in the following manner: from a moment, The first spatial position and the first attitude, the second spatial position and the second attitude of the positioning device are continuously detected, and the time when the spatial position error Error_distance is greater than the spatial position error threshold or the attitude error Error_angle is greater than the attitude error threshold for the first time is compared with the The time difference between a moment is used as a predetermined time period, wherein the spatial position error Error_distance is the error between the first spatial position and the second spatial position of the device to be positioned detected at the same time, and the attitude error Error_angle is detected at the same time The error between the first posture and the second posture of the device to be positioned, for example, can be calculated by the following formula:
其中,x0,y0,z0指示某一时刻检测到的待定位装置的第一空间位置,x1,y1,z1指示该某一时刻检测到的待定位装置的第二空间位置,Tx0,Ty0,Tz0指示该某一时刻检测到的待定位装置的第一姿态,Tx1,Ty1,Tz1指示该某一时刻检测到的待定位装置的第二姿态。Among them, x 0 , y 0 , z 0 indicate the first spatial position of the device to be positioned detected at a certain moment, and x 1 , y 1 , z 1 indicate the second spatial position of the device to be positioned detected at this certain moment , T x0 , T y0 , T z0 indicate the first posture of the device to be positioned detected at the certain moment, and T x1 , T y1 , T z1 indicate the second posture of the device to be positioned detected at the certain moment.
应该理解,所述一时刻可以是任意时刻,也可以是特定时刻。所述某一时刻为所述一时刻之后的时刻。空间位置误差阈值及姿态误差阈值可以根据具体实际情况等进行设定。It should be understood that the moment may be any moment or a specific moment. The certain time is a time after the one time. The spatial position error threshold and the attitude error threshold can be set according to actual conditions.
此外,现有技术中一般会将定位传感器的位置作为世界坐标系的参考点,定位传感器通常被放置于距手术台距离较近的三角支架上,以尽量保证定位标志点阵列在定位传感器的检测范围内,然而,容易出现在手术过程中定位传感器被意外移动的情况,而这将导致世界坐标系的改变,进而影响定位的准确性。In addition, in the prior art, the position of the positioning sensor is generally used as the reference point of the world coordinate system, and the positioning sensor is usually placed on a tripod that is relatively close to the operating table to ensure that the position of the positioning marker point array can be detected by the positioning sensor as much as possible. Within the range, however, it is prone to the situation that the positioning sensor is accidentally moved during the operation, and this will cause a change in the world coordinate system, thereby affecting the accuracy of positioning.
作为示例,光学跟踪定位装置10可以定位传感器的位置为参考点来检测第一空间位置和第一姿态,其中,定位传感器被固定于手术室的预定位置。As an example, the optical tracking and positioning device 10 may use the position of the positioning sensor as a reference point to detect the first spatial position and the first posture, wherein the positioning sensor is fixed at a predetermined position in the operating room.
由于根据本发明示例性实施例的用于手术导航的设备能够保证:即使定位标志点阵列偶尔超出定位传感器的检测范围,也能够利用加速度跟踪定位装置20进行定位。因此,可适当降低对定位传感器的放置位置的要求,可考虑将定位传感器固定于手术室内距手术台距离稍远的、较偏僻的预定位置,以大大降低被移动的可能性,从而保证整个定位过程中的世界坐标系(即,参考坐标系)的稳定性,提高定位的准确性。Because the device for surgical navigation according to the exemplary embodiment of the present invention can ensure that even if the array of positioning marker points occasionally exceeds the detection range of the positioning sensor, the positioning device 20 can be used for positioning by acceleration tracking. Therefore, the requirements for the location of the positioning sensor can be appropriately reduced, and it can be considered to fix the positioning sensor at a relatively remote predetermined position in the operating room that is slightly far from the operating table, so as to greatly reduce the possibility of being moved, thereby ensuring the overall positioning. The stability of the world coordinate system (ie, the reference coordinate system) in the process improves the accuracy of positioning.
此外,根据本发明示例性实施例的用于手术导航的设备可被包括在手术机器人中,手术机器人还可包括:用于夹持待定位装置的机械臂。Furthermore, the apparatus for surgical navigation according to an exemplary embodiment of the present invention may be included in a surgical robot, and the surgical robot may further include: a robot arm for gripping a device to be positioned.
应该理解,手术机器人除具有根据本发明示例性实施例的用于手术导航的设备、用于夹持待定位装置的机械臂之外,还可具有其作为手术机器人执行其自身功能的其他器件,对此不作限制。It should be understood that, in addition to the equipment for surgical navigation according to the exemplary embodiment of the present invention and the mechanical arm for clamping the device to be positioned, the surgical robot can also have other devices that perform its own functions as a surgical robot, There is no limit to this.
根据本发明示例性实施例的用于手术导航的设备及手术机器人,能够实现对手术中的待定位装置进行连续的、精确的空间定位,且成本低、运算量小。According to the device for surgical navigation and the surgical robot according to the exemplary embodiments of the present invention, continuous and precise spatial positioning of the device to be positioned during surgery can be realized, and the cost is low and the amount of calculation is small.
虽然已表示和描述了本发明的一些示例性实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本发明的原理和精神的情况下,可以对这些实施例进行修改。While a few exemplary embodiments of the present invention have been shown and described, it should be understood by those skilled in the art that such modifications may be made without departing from the principles and spirit of the invention, the scope of which is defined by the claims and their equivalents. Examples are modified.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510227049.5A CN104758066B (en) | 2015-05-06 | 2015-05-06 | Equipment for surgical navigation and surgical robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510227049.5A CN104758066B (en) | 2015-05-06 | 2015-05-06 | Equipment for surgical navigation and surgical robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104758066A CN104758066A (en) | 2015-07-08 |
CN104758066B true CN104758066B (en) | 2017-05-10 |
Family
ID=53640414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510227049.5A Active CN104758066B (en) | 2015-05-06 | 2015-05-06 | Equipment for surgical navigation and surgical robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104758066B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12220150B2 (en) | 2019-12-31 | 2025-02-11 | Auris Health, Inc. | Aligning medical instruments to access anatomy |
US12295672B2 (en) | 2017-06-23 | 2025-05-13 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
CN104966394A (en) * | 2015-07-10 | 2015-10-07 | 新博医疗技术有限公司 | Wireless communication system for coordinate measurement |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
US10930007B2 (en) * | 2015-12-14 | 2021-02-23 | Koninklijke Philips N.V. | System and method for medical device tracking |
KR102558061B1 (en) | 2017-03-31 | 2023-07-25 | 아우리스 헬스, 인코포레이티드 | A robotic system for navigating the intraluminal tissue network that compensates for physiological noise |
CN107174343A (en) * | 2017-06-26 | 2017-09-19 | 南京普爱医疗设备股份有限公司 | Three-dimensional orthopedic surgical navigational spatial registration method based on infrared optics alignment system |
WO2019125964A1 (en) | 2017-12-18 | 2019-06-27 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
US11806085B2 (en) * | 2018-01-10 | 2023-11-07 | Covidien Lp | Guidance for placement of surgical ports |
CN108403146B (en) * | 2018-03-20 | 2020-06-30 | 余夏夏 | Three-dimensional ultrasonic imaging method and device based on multi-sensor information fusion |
JP7225259B2 (en) | 2018-03-28 | 2023-02-20 | オーリス ヘルス インコーポレイテッド | Systems and methods for indicating probable location of instruments |
KR102499906B1 (en) | 2018-05-30 | 2023-02-16 | 아우리스 헬스, 인코포레이티드 | System and Method for Position Sensor-Based Branch Prediction |
KR102455671B1 (en) | 2018-05-31 | 2022-10-20 | 아우리스 헬스, 인코포레이티드 | Image-Based Airway Analysis and Mapping |
WO2019231990A1 (en) | 2018-05-31 | 2019-12-05 | Auris Health, Inc. | Robotic systems and methods for navigation of luminal network that detect physiological noise |
CN109171817B (en) * | 2018-09-05 | 2021-12-07 | 浙江深博医疗技术有限公司 | Three-dimensional breast ultrasonic scanning method and ultrasonic scanning system |
WO2020069404A1 (en) | 2018-09-28 | 2020-04-02 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
CN109431605A (en) * | 2018-10-09 | 2019-03-08 | 北京术锐技术有限公司 | A kind of percutaneous puncture robot system and its application method based on flexible surgical arm |
CN112842533B (en) * | 2018-10-09 | 2023-09-05 | 北京术锐机器人股份有限公司 | Flexible surgical tool and vascular intervention surgical robot system |
EP3927271A4 (en) * | 2019-02-18 | 2022-11-30 | Covidien LP | ADJUSTMENT ARM TILT JOINT ESTIMATOR |
WO2021038469A1 (en) | 2019-08-30 | 2021-03-04 | Auris Health, Inc. | Systems and methods for weight-based registration of location sensors |
WO2021038495A1 (en) | 2019-08-30 | 2021-03-04 | Auris Health, Inc. | Instrument image reliability systems and methods |
WO2021137109A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment techniques for percutaneous access |
KR20220123273A (en) | 2019-12-31 | 2022-09-06 | 아우리스 헬스, 인코포레이티드 | Anatomical feature identification and targeting |
CN111923043A (en) * | 2020-07-30 | 2020-11-13 | 苏州富鑫林光电科技有限公司 | Multi-manipulator positioning method based on multi-sensor fusion |
CN112155734B (en) * | 2020-09-29 | 2022-01-28 | 苏州微创畅行机器人有限公司 | Readable storage medium, bone modeling and registering system and bone surgery system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375071A (en) * | 1989-08-16 | 1991-03-29 | Nagashima Ika Kikai Kk | Seat position irradiating surgical treatment system using linear acceleration irradiating device |
EP1574825A1 (en) * | 2004-03-12 | 2005-09-14 | Xitact S.A. | Device for determining the longitudinal and angular position of a rotationally symmetrical apparatus |
CN1711976A (en) * | 2005-07-21 | 2005-12-28 | 复旦大学 | A Surgical Navigation Tool |
CN101721251A (en) * | 2009-11-10 | 2010-06-09 | 上海交通大学医学院附属第九人民医院 | Device for combining surgical navigation system with endoscope system and application thereof |
CN101978243A (en) * | 2008-03-25 | 2011-02-16 | 奥索瑟夫特公司 | Tracking system and method |
CN102599876A (en) * | 2012-03-08 | 2012-07-25 | 珠海迈德豪医用科技有限公司 | Endoscope having automatic positioning and viewing unit |
CN103705307A (en) * | 2013-12-10 | 2014-04-09 | 中国科学院深圳先进技术研究院 | Surgical navigation system and medical robot |
CN104224089A (en) * | 2014-09-15 | 2014-12-24 | 天津大学 | Endoscope system with anti-interference capacity and surgical navigation function |
-
2015
- 2015-05-06 CN CN201510227049.5A patent/CN104758066B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375071A (en) * | 1989-08-16 | 1991-03-29 | Nagashima Ika Kikai Kk | Seat position irradiating surgical treatment system using linear acceleration irradiating device |
EP1574825A1 (en) * | 2004-03-12 | 2005-09-14 | Xitact S.A. | Device for determining the longitudinal and angular position of a rotationally symmetrical apparatus |
CN1711976A (en) * | 2005-07-21 | 2005-12-28 | 复旦大学 | A Surgical Navigation Tool |
CN101978243A (en) * | 2008-03-25 | 2011-02-16 | 奥索瑟夫特公司 | Tracking system and method |
CN101721251A (en) * | 2009-11-10 | 2010-06-09 | 上海交通大学医学院附属第九人民医院 | Device for combining surgical navigation system with endoscope system and application thereof |
CN102599876A (en) * | 2012-03-08 | 2012-07-25 | 珠海迈德豪医用科技有限公司 | Endoscope having automatic positioning and viewing unit |
CN103705307A (en) * | 2013-12-10 | 2014-04-09 | 中国科学院深圳先进技术研究院 | Surgical navigation system and medical robot |
CN104224089A (en) * | 2014-09-15 | 2014-12-24 | 天津大学 | Endoscope system with anti-interference capacity and surgical navigation function |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12295672B2 (en) | 2017-06-23 | 2025-05-13 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
US12220150B2 (en) | 2019-12-31 | 2025-02-11 | Auris Health, Inc. | Aligning medical instruments to access anatomy |
Also Published As
Publication number | Publication date |
---|---|
CN104758066A (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104758066B (en) | Equipment for surgical navigation and surgical robot | |
JP7170784B2 (en) | Systems and methods for re-centering imaging devices and input controls | |
CN103705307B (en) | Surgical navigation system and medical robot | |
US11565427B2 (en) | Robot system | |
US20170042625A1 (en) | Robotic interface positioning determination systems and methods | |
CN105082161A (en) | Robot vision servo control device of binocular three-dimensional video camera and application method of robot vision servo control device | |
US20150134113A1 (en) | Method for operating a robot | |
JP2012171088A (en) | Master operation input device, and master-slave manipulator | |
CN110587595A (en) | Method for operating a robot, data storage device, robot and robot system | |
CN104688351A (en) | Non-blocking positioning method for surgical instrument based on two binocular vision systems | |
JP2001287179A (en) | Industrial robot teaching system | |
CN115869069A (en) | Surgical robot control method, device, equipment, medium and system | |
CN115429432A (en) | Readable storage medium, surgical robot system and adjustment system | |
US12048493B2 (en) | Camera tracking system identifying phantom markers during computer assisted surgery navigation | |
WO2023040897A1 (en) | Method and system for calculating spatial registration pose of surgical robot | |
US20230363827A1 (en) | Accuracy check and automatic calibration of tracked instruments | |
CN119257750A (en) | Surgical robot system and control method for surgical robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |