CN104733814B - The miniature self-supported I/Q orthogonal filters of double microwave and millimeter waves - Google Patents
The miniature self-supported I/Q orthogonal filters of double microwave and millimeter waves Download PDFInfo
- Publication number
- CN104733814B CN104733814B CN201410467151.8A CN201410467151A CN104733814B CN 104733814 B CN104733814 B CN 104733814B CN 201410467151 A CN201410467151 A CN 201410467151A CN 104733814 B CN104733814 B CN 104733814B
- Authority
- CN
- China
- Prior art keywords
- layer
- strip line
- line
- parallel resonance
- resonance unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002955 isolation Methods 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims description 23
- 238000010168 coupling process Methods 0.000 claims description 23
- 238000005859 coupling reaction Methods 0.000 claims description 23
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- 101100074846 Caenorhabditis elegans lin-2 gene Proteins 0.000 claims description 8
- 101100497386 Mus musculus Cask gene Proteins 0.000 claims description 8
- 230000005611 electricity Effects 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 12
- 239000000919 ceramic Substances 0.000 abstract description 5
- 238000004891 communication Methods 0.000 abstract description 4
- 238000003780 insertion Methods 0.000 abstract description 3
- 230000037431 insertion Effects 0.000 abstract description 3
- 230000009977 dual effect Effects 0.000 description 8
- 230000010354 integration Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开了一种微型双微波毫米波自负载I/Q正交滤波器,包括自接匹配负载的定向耦合器和两个带状线结构的微波毫米波滤波器。自接匹配负载的定向耦合器包括表面贴装的输入/输出接口、双螺旋结构的宽边耦合带状线以及在隔离端口自接的一个匹配负载,两个微波毫米波滤波器包括表面贴装的输出接口、以带状线结构实现的六级并联谐振单元,上述结构均采用多层低温共烧陶瓷工艺技术实现。本发明具有无需外接负载、可产生正交相位、易调试、插损小、重量轻、体积小、可靠性高、电性能好、温度稳定性好、电性能批量一致性好、成本低等优点,适用于相应毫米波频段的通信、卫星通信等对体积、电性能、温度稳定性和可靠性有苛刻要求的场合和相应的系统中。
The invention discloses a miniature double microwave millimeter wave self-load I/Q orthogonal filter, which comprises a directional coupler with a self-connected matching load and two microwave millimeter wave filters with a strip line structure. The directional coupler with self-connected matched load includes surface-mounted input/output interface, double-helix structure broadside coupled stripline and a matched load self-connected at the isolation port, two microwave and millimeter-wave filters including surface-mounted The output interface and the six-level parallel resonant unit realized by the strip line structure, the above structures are all realized by multi-layer low temperature co-fired ceramic technology. The invention has the advantages of no external load, can generate quadrature phase, easy debugging, small insertion loss, light weight, small size, high reliability, good electrical performance, good temperature stability, good batch consistency of electrical performance, and low cost. , suitable for occasions and corresponding systems that have strict requirements on volume, electrical performance, temperature stability and reliability, such as communication in the corresponding millimeter wave frequency band, satellite communication, etc.
Description
技术领域technical field
本发明涉及一种滤波器,特别是一种微型双微波毫米波自负载I/Q正交滤波器。The invention relates to a filter, in particular to a miniature double microwave millimeter wave self-loaded I/Q quadrature filter.
背景技术Background technique
近年来,随着移动通信、卫星通信及国防电子系统的微型化的迅速发展,高性能、低成本和小型化已经成为目前微波/射频领域的发展方向,对微波滤波器的性能、尺寸、可靠性和成本均提出了更高的要求。在一些国防尖端设备中,现在的使用频段已经相当拥挤,所以卫星通信等尖端设备向着毫米波波段发展,所以微波毫米波波段滤波器已经成为该波段接收和发射支路中的关键电子部件,描述这种部件性能的主要指标有:通带工作频率范围、阻带频率范围、通带插入损耗、阻带衰减、通带输入/输出电压驻波比、插入相移和时延频率特性、温度稳定性、体积、重量、可靠性等。耦合器一直是各种微波集成电路中的重要组成部件,由于直通口与耦合口的输出不同,因此将耦合器与滤波器相连,可以扩大滤波器的使用范围。In recent years, with the rapid development of miniaturization of mobile communication, satellite communication and national defense electronic systems, high performance, low cost and miniaturization have become the development direction of the microwave/radio frequency field. The performance, size and reliability of microwave filters Both sex and cost have put forward higher requirements. In some cutting-edge defense equipment, the current frequency bands are quite crowded, so cutting-edge equipment such as satellite communications are developing towards the millimeter-wave band, so microwave millimeter-wave band filters have become key electronic components in the receiving and transmitting branches of this band, described The main indicators of the performance of this component are: passband operating frequency range, stopband frequency range, passband insertion loss, stopband attenuation, passband input/output voltage standing wave ratio, insertion phase shift and delay frequency characteristics, temperature stability performance, size, weight, reliability, etc. The coupler has always been an important component of various microwave integrated circuits. Since the outputs of the straight-through port and the coupled port are different, connecting the coupler to the filter can expand the scope of use of the filter.
低温共烧陶瓷是一种电子封装技术,采用多层陶瓷技术,能够将无源元件内置于介质基板内部,同时也可以将有源元件贴装于基板表面制成无源/有源集成的功能模块。LTCC技术在成本、集成封装、布线线宽和线间距、低阻抗金属化、设计多样性和灵活性及高频性能等方面都显现出众多优点,已成为无源集成的主流技术。其具有高Q值,便于内嵌无源器件,散热性好,可靠性高,耐高温,冲震等优点,利用LTCC技术,可以很好的加工出尺寸小,精度高,紧密型好,损耗小的微波器件。由于LTCC技术具有三维立体集成优势,在微波频段被广泛用来制造各种微波无源元件,实现无源元件的高度集成。基于LTCC工艺的叠层技术,可以实现三维集成,从而使各种微型微波滤波器具有尺寸小、重量轻、性能优、可靠性高、批量生产性能一致性好及低成本等诸多优点,利用其三维集成结构特点,可以实现由带状线实现的微型双微波毫米波自负载I/Q正交滤波器。Low-temperature co-fired ceramics is an electronic packaging technology. Using multilayer ceramic technology, passive components can be built inside the dielectric substrate, and active components can also be mounted on the surface of the substrate to form passive/active integration functions. module. LTCC technology has many advantages in terms of cost, integrated packaging, wiring line width and line spacing, low impedance metallization, design diversity and flexibility, and high frequency performance, and has become the mainstream technology of passive integration. It has the advantages of high Q value, easy to embed passive devices, good heat dissipation, high reliability, high temperature resistance, shock resistance, etc., using LTCC technology, it can be well processed into small size, high precision, good compactness, low loss small microwave devices. Because LTCC technology has the advantages of three-dimensional integration, it is widely used in the microwave frequency band to manufacture various microwave passive components to achieve high integration of passive components. The stacking technology based on the LTCC process can realize three-dimensional integration, so that various micro microwave filters have many advantages such as small size, light weight, excellent performance, high reliability, good consistency in mass production performance, and low cost. The three-dimensional integrated structure features can realize a miniature dual microwave millimeter wave self-loaded I/Q quadrature filter realized by stripline.
传统的滤波器,例如微带滤波器,通常实现相同的性能参数,所需体积通常会比LTCC工艺实现要大得多,因而在工程应用上的劣势就凸显出来,采用LTCC工艺实现的情况下,会在尽可能小的体积内,实现最优化的性能。而且,传统情况下采用的滤波器,不具有正交功能,而是通过外接正交器实现的。Traditional filters, such as microstrip filters, usually achieve the same performance parameters, and the required volume is usually much larger than that realized by LTCC technology, so the disadvantages in engineering applications are highlighted. In the case of LTCC technology , will achieve optimal performance in as small a volume as possible. Moreover, traditionally used filters do not have an orthogonal function, but are realized by an external orthogonalizer.
发明内容Contents of the invention
本发明的目的在于提供一种由带状线结构和自接匹配负载定向耦合器实现体积小、重量轻、可靠性高、电性能优异、使用方便、适用范围广、成品率高、批量一致性好、造价低、温度性能稳定的微型双微波毫米波自负载I/Q正交滤波器。The purpose of the present invention is to provide a strip line structure and self-connected matching load directional coupler to achieve small size, light weight, high reliability, excellent electrical performance, easy to use, wide application range, high yield, batch consistency Excellent, low cost, stable temperature performance miniature dual microwave millimeter wave self-loaded I/Q quadrature filter.
实现本发明目的的技术方案是:一种微型双微波毫米波自负载I/Q正交滤波器,包括自接匹配负载的定向耦合器和两个微波毫米波滤波器。自接匹配负载的定向耦合器包括表面贴装的50欧姆阻抗输入端口、第一匹配线、第一层双螺旋结构的宽边耦合带状线、第二匹配线、第一输出电感、第二输出电感、第三匹配线、第二层双螺旋结构的宽边耦合带状线、第四匹配线、表面贴装的50欧姆阻抗隔离端口、钽电阻,其中,第一层双螺旋结构的宽边耦合带状线垂直位于第二层双螺旋结构的宽边耦合带状线上方,第一匹配线、第二层双螺旋结构的宽边耦合带状线和第二匹配线在同一平面,第一匹配线与表面贴装的50欧姆阻抗输入端口连接,第二匹配线与第一输出电感连接,第二层双螺旋结构的宽边耦合带状线左端与第一匹配线连接,第二层双螺旋结构的宽边耦合带状线右端与第二匹配线连接;第三匹配线、第一层双螺旋结构的宽边耦合带状线和第四匹配线在同一平面,第三匹配线与第二输出电感连接,第四匹配线与表面贴装的50欧姆阻抗隔离端口连接,第一层双螺旋结构的宽边耦合带状线左端与第三匹配线连接,第一层双螺旋结构的宽边耦合带状线右端与第四匹配线连接,钽电阻的两端分别与表面贴装的50欧姆阻抗隔离端口两端和接地端连接。第一微波毫米波滤波器包括第一输入电感、第一级并联谐振单元、第二级并联谐振单元、第三级并联谐振单元、第四级并联谐振单元、第五级并联谐振单元、第六级并联谐振单元、第三输出电感、表面贴装的50欧姆阻抗第一输出端口、第一Z形级间耦合带状线,各级并联谐振单元均由三层带状线组成,第二层带状线垂直位于第三层带状线上方,第一层带状线垂直位于第二层带状线上方,第一级并联谐振单元由第一层的第一带状线、第二层的第二带状线、第三层的第三带状线、第一微电容并联而成,第二级并联谐振单元由第一层的第四带状线、第二层的第五带状线、第三层的第六带状线、第二微电容并联而成,第三级并联谐振单元由第一层的第七带状线、第二层的第八带状线、第三层的第九带状线、第三微电容并联而成,第四级并联谐振单元由第一层的第十带状线、第二层的第十一带状线、第三层的第十二带状线、第四微电容并联而成,第五级并联谐振单元由第一层的第十三带状线、第二层的第十四带状线、第三层的第十五带状线、第五微电容并联而成,第六级并联谐振单元由第一层的第十六带状线、第二层的第十七带状线、第三层的第十八带状线、第六微电容并联而成,其中,第一级并联谐振单元的第二层的第二带状线与第一输入电感连接,第六级并联谐振单元的第二层的第十七带状线与第三输出电感连接,第三输出电感与表面贴装的50欧姆阻抗第一输出端口连接,第一Z形级间耦合带状线位于并联谐振单元的下面。六级并联谐振单元分别接地,其中第一、三层所有带状线接地端相同,一端是微电容接地,另一端开路,第二层带状线接地端相同,一端接地,另一端开路,且接地端方向与第一、三层接地端相反,第一Z形级间耦合带状线两端均接地。第二微波毫米波滤波器包括第二输入电感、第一级并联谐振单元、第二级并联谐振单元、第三级并联谐振单元、第四级并联谐振单元、第五级并联谐振单元、第六级并联谐振单元、第四输出电感、表面贴装的50欧姆阻抗第二输出端口、第二Z形级间耦合带状线,各级并联谐振单元均由三层带状线组成,第二层带状线垂直位于第三层带状线上方,第一层带状线垂直位于第二层带状线上方,第一级并联谐振单元由第一层的第十九带状线、第二层的第二十带状线、第三层的第二十一带状线、第七微电容并联而成,第二级并联谐振单元由第一层的第二十二带状线、第二层的第二十三带状线、第三层的第二十四带状线、第八微电容并联而成,第三级并联谐振单元由第一层的第二十五带状线、第二层的第二十六带状线、第三层的第二十七带状线、第九微电容并联而成,第四级并联谐振单元由第一层的第二十八带状线、第二层的第二十九带状线、第三层的第三十带状线、第十微电容并联而成,第五级并联谐振单元由第一层的第三十一带状线、第二层的第三十二带状线、第三层的第三十三带状线、第十一微电容并联而成,第六级并联谐振单元由第一层的第三十四带状线、第二层的第三十五带状线、第三层的第三十六带状线、第十二微电容并联而成,其中,第一级并联谐振单元的第二层的第二十带状线与第二输入电感连接,第六级并联谐振单元的第二层的第三十五带状线与第四输出电感连接,第四输出电感与表面贴装的50欧姆阻抗第二输出端口连接,第二Z形级间耦合带状线位于并联谐振单元的下面。六级并联谐振单元分别接地,其中第一、三层所有带状线接地端相同,一端是微电容接地,另一端开路,第二层带状线接地端相同,一端接地,另一端开路,且接地端方向与第一、三层接地端相反,第二Z形级间耦合带状线两端均接地。自接匹配负载的定向耦合器的第一输出电感与第一微波毫米波滤波器的第一输入电感连接,自接匹配负载的定向耦合器的第二输出电感与第二微波毫米波滤波器的第二输入电感连接。The technical solution for realizing the object of the present invention is: a miniature dual microwave millimeter wave self-loaded I/Q orthogonal filter, including a directional coupler with a self-connected matching load and two microwave millimeter wave filters. The directional coupler with self-connected matching load includes a surface-mounted 50-ohm impedance input port, the first matching line, the broadside coupled stripline of the first double-helix structure, the second matching line, the first output inductor, the second The output inductor, the third matching line, the broadside coupled stripline of the second double helix structure, the fourth matching line, the surface mount 50 ohm impedance isolation port, the tantalum resistor, wherein the width of the first double helix structure The edge-coupled stripline is vertically located above the broadside-coupled stripline of the second double helix structure, the first match line, the broadside coupled stripline of the second layer double helix structure and the second matchline are in the same plane, and the second One matching line is connected to the surface mount 50 ohm impedance input port, the second matching line is connected to the first output inductor, the left end of the broadside coupled stripline of the double helix structure of the second layer is connected to the first matching line, and the second layer The right end of the broadside coupled stripline of the double helix structure is connected to the second matching line; the third matching line, the broadside coupled stripline of the first double helix structure and the fourth matching line are in the same plane, and the third matching line is connected to the fourth matching line. The second output inductor is connected, the fourth matching line is connected to the surface-mounted 50 ohm impedance isolation port, the left end of the broadside coupled stripline of the first double helix structure is connected to the third matching line, the first layer of double helix structure The right end of the broadside coupled stripline is connected to the fourth matching line, and the two ends of the tantalum resistor are respectively connected to both ends of the surface-mounted 50-ohm impedance isolation port and the grounding end. The first microwave and millimeter wave filter includes a first input inductance, a first-level parallel resonance unit, a second-level parallel resonance unit, a third-level parallel resonance unit, a fourth-level parallel resonance unit, a fifth-level parallel resonance unit, a sixth Level parallel resonant unit, third output inductor, surface mounted 50 ohm impedance first output port, first Z-shaped inter-level coupling stripline, each level of parallel resonance unit is composed of three-layer stripline, the second layer The stripline is vertically located above the stripline of the third layer, the stripline of the first layer is vertically above the stripline of the second layer, and the first-level parallel resonant unit consists of the first stripline of the first layer, the The second stripline, the third stripline of the third layer, and the first microcapacitor are connected in parallel, and the second-level parallel resonance unit is composed of the fourth stripline of the first layer and the fifth stripline of the second layer. , the sixth stripline of the third layer, and the second microcapacitor are connected in parallel, and the third-level parallel resonant unit is composed of the seventh stripline of the first layer, the eighth stripline of the second layer, and the The ninth stripline and the third microcapacitor are connected in parallel, and the fourth parallel resonance unit is composed of the tenth stripline on the first layer, the eleventh stripline on the second layer, and the twelfth stripline on the third layer. The fifth-level parallel resonant unit consists of the thirteenth stripline on the first layer, the fourteenth stripline on the second layer, and the fifteenth stripline on the third layer , the fifth micro-capacitor connected in parallel, the sixth-level parallel resonant unit consists of the sixteenth stripline on the first layer, the seventeenth stripline on the second layer, the eighteenth stripline on the third layer, the Six microcapacitors are connected in parallel, wherein, the second stripline of the second layer of the first-level parallel resonance unit is connected to the first input inductance, and the seventeenth stripline of the second layer of the sixth-level parallel resonance unit is connected to the The third output inductance is connected, the third output inductance is connected to the first output port of the surface mounted 50 ohm impedance, and the first Z-shaped inter-stage coupling stripline is located under the parallel resonant unit. The six-level parallel resonant units are grounded respectively, in which the first and third layers have the same grounding end of all striplines, one end is a microcapacitor grounding, and the other end is open circuit, the second layer stripline grounding end is the same, one end is grounding, the other end is open circuit, and The direction of the ground terminal is opposite to that of the first and third layer ground terminals, and both ends of the first Z-shaped inter-stage coupling stripline are grounded. The second microwave and millimeter wave filter includes a second input inductance, a first-level parallel resonance unit, a second-level parallel resonance unit, a third-level parallel resonance unit, a fourth-level parallel resonance unit, a fifth-level parallel resonance unit, a sixth Level parallel resonant unit, fourth output inductor, surface mounted 50 ohm impedance second output port, second Z-shaped inter-level coupling stripline, all levels of parallel resonance units are composed of three-layer stripline, the second layer The stripline is vertically above the stripline of the third layer, the stripline of the first layer is vertically above the stripline of the second layer, and the first-level parallel resonant unit consists of the nineteenth stripline of the first layer, the The twentieth stripline of the third layer, the twenty-first stripline of the third layer, and the seventh microcapacitor are connected in parallel, and the second-level parallel resonant unit is composed of the twenty-second stripline of the first layer, the second layer The twenty-third stripline of the third layer, the twenty-fourth stripline of the third layer, and the eighth microcapacitor are connected in parallel, and the third-level parallel resonant unit is composed of the twenty-fifth stripline of the first layer, the second The twenty-sixth stripline of the first layer, the twenty-seventh stripline of the third layer, and the ninth microcapacitor are connected in parallel, and the fourth-level parallel resonant unit is composed of the twenty-eighth stripline of the first layer, the The twenty-ninth stripline on the second layer, the thirtieth stripline on the third layer, and the tenth microcapacitor are connected in parallel, and the fifth-level parallel resonant unit is composed of the thirty-first stripline on the first layer, the The thirty-second stripline on the second layer, the thirty-third stripline on the third layer, and the eleventh microcapacitor are connected in parallel, and the sixth-level parallel resonant unit is formed by the thirty-fourth stripline on the first layer , the thirty-fifth stripline of the second layer, the thirty-sixth stripline of the third layer, and the twelfth microcapacitor are connected in parallel, wherein, the twentieth of the second layer of the first-stage parallel resonant unit The stripline is connected to the second input inductance, the thirty-fifth stripline of the second layer of the sixth parallel resonant unit is connected to the fourth output inductance, and the fourth output inductance is connected to the surface mounted 50 ohm impedance second output Port connection, the second Z-shaped interstage coupling stripline is located below the parallel resonant unit. The six-level parallel resonant units are grounded respectively, in which the first and third layers have the same grounding end of all striplines, one end is a microcapacitor grounding, and the other end is open circuit, the second layer stripline grounding end is the same, one end is grounding, the other end is open circuit, and The direction of the ground terminal is opposite to that of the first and third layer ground terminals, and both ends of the second Z-shaped inter-stage coupling stripline are grounded. The first output inductance of the directional coupler of the self-connected matching load is connected with the first input inductance of the first microwave and millimeter wave filter, and the second output inductance of the directional coupler of the self-connecting matching load is connected with the second microwave and millimeter wave filter. Second input inductor connection.
与现有技术相比,由于本发明采用低损耗低温共烧陶瓷材料和三维立体集成,所带来的显著优点是:(1)带内平坦;(2)无需外接负载;(3)可产生形状相同,相位相差90度的两种信号波形;(4)体积小、重量轻、可靠性高;(5)电性能优异;(6)电路实现结构简单,可实现大批量生产;(7)成本低。Compared with the prior art, since the present invention adopts low-loss low-temperature co-fired ceramic materials and three-dimensional integration, the significant advantages brought are: (1) flat inside the band; (2) no external load; (3) can produce Two signal waveforms with the same shape and a phase difference of 90 degrees; (4) small size, light weight, and high reliability; (5) excellent electrical performance; (6) simple circuit structure and mass production; (7) low cost.
附图说明Description of drawings
图1(a)是本发明微型双微波毫米波自负载I/Q正交滤波器的外形及内部结构示意图;图1(b)是本发明一种微型双微波毫米波自负载I/Q正交滤波器中自接匹配负载的定向耦合器的外形及内部结构示意图;图1(c)是本发明一种微型双微波毫米波自负载I/Q正交滤波器中第一微波毫米波滤波器的外形及内部结构示意图;图1(d)是本发明一种微型双微波毫米波自负载I/Q正交滤波器中第二微波毫米波滤波器的外形及内部结构示意图。Fig. 1 (a) is the appearance and internal structure schematic diagram of miniature double microwave millimeter wave self-load I/Q quadrature filter of the present invention; Fig. 1 (b) is a kind of miniature double microwave millimeter wave self-load I/Q quadrature filter of the present invention Outline and internal structure schematic diagram of the directional coupler of self-connected matching load in the quadrature filter; Fig. 1 (c) is the first microwave millimeter wave filter in a kind of miniature double microwave millimeter wave self-load I/Q quadrature filter of the present invention Figure 1 (d) is a schematic diagram of the appearance and internal structure of the second microwave millimeter wave filter in a kind of miniature dual microwave millimeter wave self-loaded I/Q quadrature filter of the present invention.
图2是本发明微型双微波毫米波自负载I/Q正交滤波器输出端口(P2、P3)的幅频特性曲线。Fig. 2 is the amplitude-frequency characteristic curve of the output port (P2, P3) of the miniature dual microwave millimeter wave self-loaded I/Q quadrature filter of the present invention.
图3是本发明微型双微波毫米波自负载I/Q正交滤波器输入输出端口的驻波特性曲线。Fig. 3 is the standing wave characteristic curve of the input and output ports of the miniature dual microwave millimeter wave self-loaded I/Q quadrature filter of the present invention.
图4是本发明微型双微波毫米波自负载I/Q正交滤波器输出端口(P2)与输出端口(P3)的相位差曲线。Fig. 4 is a phase difference curve between the output port (P2) and the output port (P3) of the miniature dual microwave millimeter wave self-loaded I/Q quadrature filter of the present invention.
具体实施方式detailed description
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
结合图1(a)、(b)、(c)、(d),本发明一种微型双微波毫米波自负载I/Q正交滤波器,该正交滤波器的自接匹配负载的定向耦合器包括表面贴装的50欧姆阻抗输入端口(P1)、第一匹配线(L1)、第一层双螺旋结构的宽边耦合带状线(U1)、第二匹配线(L2)、第一输出电感(Lout1)、第二输出电感(Lout2)、第三匹配线(L3)、第二层双螺旋结构的宽边耦合带状线(U2)、第四匹配线(L4)、表面贴装的50欧姆阻抗隔离端口(P4)、钽电阻(R),其中,第一层双螺旋结构的宽边耦合带状线(U1)垂直位于第二层双螺旋结构的宽边耦合带状线(U2)上方,第一匹配线(L1)、第二层双螺旋结构的宽边耦合带状线(U2)和第二匹配线(L2)在同一平面,第一匹配线(L1)与表面贴装的50欧姆阻抗输入端口(P1)连接,第二匹配线(L2)与第一输出电感(Lout1)连接,第二层双螺旋结构的宽边耦合带状线(U2)左端与第一匹配线(L1)连接,第二层双螺旋结构的宽边耦合带状线(U2)右端与第二匹配线(L2)连接;第三匹配线(L3)、第一层双螺旋结构的宽边耦合带状线(U1)和第四匹配线(L4)在同一平面,第三匹配线(L3)与第二输出电感(Lout2)连接,第四匹配线(L4)与表面贴装的50欧姆阻抗隔离端口(P4)连接,第一层双螺旋结构的宽边耦合带状线(U1)左端与第三匹配线(L3)连接,第一层双螺旋结构的宽边耦合带状线(U1)右端与第四匹配线(L4)连接,钽电阻(R)的两端分别与表面贴装的50欧姆阻抗隔离端口(P4)两端和接地端连接。第一微波毫米波滤波器(F1)包括第一输入电感(Lin1)、第一级并联谐振单元(L11、L21、L31、C1)、第二级并联谐振单元(L12、L22、L32、C2)、第三级并联谐振单元(L13、L23、L33、C3)、第四级并联谐振单元(L14、L24、L34、C4)、第五级并联谐振单元(L15、L25、L35、C5)、第六级并联谐振单元(L16、L26、L36、C6)、第三输出电感(Lout3)、表面贴装的50欧姆阻抗第一输出端口(P2)、第一Z形级间耦合带状线(Z1),各级并联谐振单元均由三层带状线组成,第二层带状线垂直位于第三层带状线上方,第一层带状线垂直位于第二层带状线上方,第一级并联谐振单元(L11、L21、L31、C1)由第一层的第一带状线(L11)、第二层的第二带状线(L21)、第三层的第三带状线(L31)、第一微电容(C1)并联而成,第二级并联谐振单元(L12、L22、L32、C2)由第一层的第四带状线(L12)、第二层的第五带状线(L22)、第三层的第六带状线(L32)、第二微电容(C2)并联而成,第三级并联谐振单元(L13、L23、L33、C3)由第一层的第七带状线(L13)、第二层的第八带状线(L23)、第三层的第九带状线(L33)、第三微电容(C3)并联而成,第四级并联谐振单元(L14、L24、L34、C4)由第一层的第十带状线(L14)、第二层的第十一带状线(L24)、第三层的第十二带状线(L34)、第四微电容(C4)并联而成,第五级并联谐振单元(L15、L25、L35、C5)由第一层的第十三带状线(L15)、第二层的第十四带状线(L25)、第三层的第十五带状线(L35)、第五微电容(C5)并联而成,第六级并联谐振单元(L16、L26、L36、C6)由第一层的第十六带状线(L16)、第二层的第十七带状线(L26)、第三层的第十八带状线(L36)、第六微电容(C6)并联而成,其中,第一级并联谐振单元(L11、L21、L31、C1)的第二层的第二带状线(L21)与第一输入电感(Lin1)连接,第六级并联谐振单元(L16、L26、L36、C6)的第二层的第十七带状线(L26)与第三输出电感(Lout3)连接,第三输出电感(Lout3)与表面贴装的50欧姆阻抗第一输出端口(P2)连接,第一Z形级间耦合带状线(Z1)位于并联谐振单元的下面。六级并联谐振单元分别接地,其中第一、三层所有带状线接地端相同,一端是微电容接地,另一端开路,第二层带状线接地端相同,一端接地,另一端开路,且接地端方向与第一、三层接地端相反,第一Z形级间耦合带状线(Z1)两端均接地。第二微波毫米波滤波器(F2)包括第二输入电感(Lin2)、第一级并联谐振单元(L41、L51、L61、C7)、第二级并联谐振单元(L42、L52、L62、C8)、第三级并联谐振单元(L43、L53、L63、C9)、第四级并联谐振单元(L44、L54、L64、C10)、第五级并联谐振单元(L45、L55、L65、C11)、第六级并联谐振单元(L46、L56、L66、C12)、第四输出电感(Lout4)、表面贴装的50欧姆阻抗第二输出端口(P3)、第二Z形级间耦合带状线(Z2),各级并联谐振单元均由三层带状线组成,第二层带状线垂直位于第三层带状线上方,第一层带状线垂直位于第二层带状线上方,第一级并联谐振单元(L41、L51、L61、C7)由第一层的第十九带状线(L41)、第二层的第二十带状线(L51)、第三层的第二十一带状线(L61)、第七微电容(C7)并联而成,第二级并联谐振单元(L42、L52、L62、C8)由第一层的第二十二带状线(L42)、第二层的第二十三带状线(L52)、第三层的第二十四带状线(L62)、第八微电容(C8)并联而成,第三级并联谐振单元(L43、L53、L63、C9)由第一层的第二十五带状线(L43)、第二层的第二十六带状线(L53)、第三层的第二十七带状线(L63)、第九微电容(C9)并联而成,第四级并联谐振单元(L44、L54、L64、C10)由第一层的第二十八带状线(L44)、第二层的第二十九带状线(L54)、第三层的第三十带状线(L64)、第十微电容(C10)并联而成,第五级并联谐振单元(L45、L55、L65、C11)由第一层的第三十一带状线(L45)、第二层的第三十二带状线(L55)、第三层的第三十三带状线(L65)、第十一微电容(C11)并联而成,第六级并联谐振单元(L46、L56、L66、C12)由第一层的第三十四带状线(L46)、第二层的第三十五带状线(L56)、第三层的第三十六带状线(L66)、第十二微电容(C12)并联而成,其中,第一级并联谐振单元(L41、L51、L61、C7)的第二层的第二十带状线(L51)与第二输入电感(Lin2)连接,第六级并联谐振单元(L46、L56、L66、C12)的第二层的第三十五带状线(L56)与第四输出电感(Lout4)连接,第四输出电感(Lout4)与表面贴装的50欧姆阻抗第二输出端口(P3)连接,第二Z形级间耦合带状线(Z2)位于并联谐振单元的下面。六级并联谐振单元分别接地,其中第一、三层所有带状线接地端相同,一端是微电容接地,另一端开路,第二层带状线接地端相同,一端接地,另一端开路,且接地端方向与第一、三层接地端相反,第二Z形级间耦合带状线(Z2)两端均接地。自接匹配负载的定向耦合器的第一输出电感(Lout1)与第一微波毫米波滤波器(F1)的第一输入电感(Lin1)连接,自接匹配负载的定向耦合器的第二输出电感(Lout2)与第二微波毫米波滤波器(F2)的第二输入电感(Lin2)连接。In conjunction with Fig. 1 (a), (b), (c), (d), a kind of miniature double microwave millimeter wave self-load I/Q quadrature filter of the present invention, the orientation of the self-connection matching load of this quadrature filter The coupler includes a surface-mounted 50-ohm impedance input port (P1), a first matching line (L1), a broadside coupled stripline (U1) of a double-helix structure in the first layer, a second matching line (L2), and a second matching line (L2). One output inductor (Lout1), the second output inductor (Lout2), the third matching line (L3), the broadside coupled stripline (U2) of the second double helix structure, the fourth matching line (L4), surface mount Installed 50 ohm impedance isolation port (P4), tantalum resistor (R), wherein the broadside coupled stripline (U1) of the first double helix structure is vertically located on the broadside coupled stripline of the second double helix structure Above (U2), the first match line (L1), the broadside coupled stripline (U2) of the second double helix structure and the second match line (L2) are in the same plane, and the first match line (L1) and the surface The mounted 50-ohm impedance input port (P1) is connected, the second matching line (L2) is connected to the first output inductor (Lout1), and the left end of the broadside coupled stripline (U2) of the second double-helix structure is connected to the first The matching line (L1) is connected, and the right end of the broadside coupled stripline (U2) of the second layer of double helix structure is connected to the second matching line (L2); the third matching line (L3), the width of the first layer of double helix structure The side-coupled stripline (U1) and the fourth matching line (L4) are in the same plane, the third matching line (L3) is connected to the second output inductor (Lout2), and the fourth matching line (L4) is connected to the surface mount 50 The ohmic impedance isolation port (P4) is connected, the left end of the broadside coupled stripline (U1) of the first layer of double helix structure is connected with the third matching line (L3), the broadside coupled stripline of the first layer of double helix structure ( The right end of U1) is connected to the fourth matching line (L4), and the two ends of the tantalum resistor (R) are respectively connected to the two ends of the surface-mounted 50-ohm impedance isolation port (P4) and the grounding end. The first microwave and millimeter wave filter (F1) includes a first input inductance (Lin1), a first-stage parallel resonant unit (L11, L21, L31, C1), a second-stage parallel resonant unit (L12, L22, L32, C2) , the third parallel resonant unit (L13, L23, L33, C3), the fourth parallel resonant unit (L14, L24, L34, C4), the fifth parallel resonant unit (L15, L25, L35, C5), the fourth Six-stage parallel resonant unit (L16, L26, L36, C6), third output inductor (Lout3), surface-mounted 50-ohm impedance first output port (P2), first Z-shaped interstage coupling stripline (Z1 ), the parallel resonant units at all levels are composed of three layers of striplines, the second layer of striplines is vertically above the third layer of striplines, the first layer of striplines is vertically above the second layer of striplines, the first The stage parallel resonant unit (L11, L21, L31, C1) consists of the first stripline (L11) of the first layer, the second stripline (L21) of the second layer, the third stripline of the third layer ( L31), the first microcapacitor (C1) is connected in parallel, and the second-stage parallel resonant unit (L12, L22, L32, C2) is formed by the fourth stripline (L12) of the first layer, the fifth stripline of the second layer stripline (L22), the sixth stripline (L32) of the third layer, and the second microcapacitor (C2) are connected in parallel, and the third-stage parallel resonant unit (L13, L23, L33, C3) is composed of the first layer The seventh stripline (L13), the eighth stripline (L23) of the second layer, the ninth stripline (L33) of the third layer, and the third microcapacitor (C3) are connected in parallel, and the fourth stage is connected in parallel The resonance unit (L14, L24, L34, C4) consists of the tenth stripline (L14) of the first layer, the eleventh stripline (L24) of the second layer, and the twelfth stripline ( L34) and the fourth microcapacitor (C4) are connected in parallel, and the fifth parallel resonant unit (L15, L25, L35, C5) is composed of the thirteenth strip line (L15) of the first layer and the tenth of the second layer Four striplines (L25), the fifteenth stripline (L35) of the third layer, and the fifth microcapacitor (C5) are connected in parallel, and the sixth parallel resonant unit (L16, L26, L36, C6) is composed of the first The sixteenth stripline (L16) of the first layer, the seventeenth stripline (L26) of the second layer, the eighteenth stripline (L36) of the third layer, and the sixth microcapacitor (C6) are connected in parallel and In which, the second stripline (L21) of the second layer of the first-stage parallel resonant unit (L11, L21, L31, C1) is connected to the first input inductance (Lin1), and the sixth-stage parallel resonant unit (L16 , L26, L36, C6) the seventeenth stripline (L26) of the second layer is connected to the third output inductance (Lout3), and the third output inductance (Lout3) is connected to the surface-mounted 50 ohm impedance first output port (P2) connection, the first Z-shaped interstage coupling stripline (Z1) is located below the parallel resonant unit. The six-level parallel resonant units are grounded respectively, in which the first and third layers have the same grounding end of all striplines, one end is a microcapacitor grounding, and the other end is open circuit, the second layer stripline grounding end is the same, one end is grounding, the other end is open circuit, and The direction of the ground terminal is opposite to that of the first and third layer ground terminals, and both ends of the first Z-shaped inter-stage coupling stripline (Z1) are grounded. The second microwave and millimeter wave filter (F2) includes a second input inductance (Lin2), a first-stage parallel resonant unit (L41, L51, L61, C7), a second-stage parallel resonant unit (L42, L52, L62, C8) , the third parallel resonant unit (L43, L53, L63, C9), the fourth parallel resonant unit (L44, L54, L64, C10), the fifth parallel resonant unit (L45, L55, L65, C11), the fourth Six-level parallel resonant unit (L46, L56, L66, C12), fourth output inductor (Lout4), surface-mounted 50-ohm impedance second output port (P3), second Z-shaped interstage coupling stripline (Z2 ), the parallel resonant units at all levels are composed of three layers of striplines, the second layer of striplines is vertically above the third layer of striplines, the first layer of striplines is vertically above the second layer of striplines, the first The level parallel resonant unit (L41, L51, L61, C7) consists of the nineteenth stripline (L41) of the first layer, the twentieth stripline (L51) of the second layer, the twenty-first stripline of the third layer The stripline (L61) and the seventh microcapacitor (C7) are connected in parallel, and the second-stage parallel resonant unit (L42, L52, L62, C8) is composed of the twenty-second stripline (L42) of the first layer, the second The twenty-third stripline (L52) on the second layer, the twenty-fourth stripline (L62) on the third layer, and the eighth microcapacitor (C8) are connected in parallel, and the third-level parallel resonance unit (L43, L53 , L63, C9) consists of the twenty-fifth stripline (L43) of the first layer, the twenty-sixth stripline (L53) of the second layer, and the twenty-seventh stripline (L63) of the third layer , the ninth micro-capacitor (C9) is connected in parallel, and the fourth-level parallel resonant unit (L44, L54, L64, C10) is composed of the twenty-eighth stripline (L44) of the first layer, the twenty-eighth strip line of the second layer Nine striplines (L54), the thirtieth stripline (L64) of the third layer, and the tenth microcapacitor (C10) are connected in parallel, and the fifth-level parallel resonant unit (L45, L55, L65, C11) is composed of the first The thirty-first stripline (L45) of the first layer, the thirty-second stripline (L55) of the second layer, the thirty-third stripline (L65) of the third layer, the eleventh micro capacitor ( C11) connected in parallel, the sixth parallel resonant unit (L46, L56, L66, C12) consists of the thirty-fourth stripline (L46) of the first layer, the thirty-fifth stripline (L56) of the second layer ), the thirty-sixth stripline (L66) of the third layer, and the twelfth microcapacitor (C12) are connected in parallel, wherein, the second layer of the first-level parallel resonant unit (L41, L51, L61, C7) The twentieth stripline (L51) is connected to the second input inductance (Lin2), and the thirty-fifth stripline (L56) of the second layer of the sixth parallel resonant unit (L46, L56, L66, C12) Connect with the fourth output inductor (Lout4), the fourth output inductor (Lout4) and the surface mount 50 ohm impedance second output port (P 3) Connection, the second Z-shaped inter-stage coupling stripline (Z2) is located below the parallel resonant unit. The six-level parallel resonant units are grounded respectively, in which the first and third layers have the same grounding end of all striplines, one end is a microcapacitor grounding, and the other end is open circuit, the second layer stripline grounding end is the same, one end is grounding, the other end is open circuit, and The direction of the ground terminal is opposite to that of the first and third layer ground terminals, and both ends of the second Z-shaped inter-stage coupling stripline (Z2) are grounded. The first output inductance (Lout1) of the directional coupler connected to the matched load is connected to the first input inductance (Lin1) of the first microwave and millimeter wave filter (F1), and the second output inductance of the directional coupler connected to the matched load is self-connected (Lout2) is connected to the second input inductance (Lin2) of the second microwave millimeter wave filter (F2).
结合图1(a)、(b)、(c)、(d),包括表面贴装的50欧姆阻抗输入端口(P1)、第一匹配线(L1)、第一层双螺旋结构的宽边耦合带状线(U1)、第二匹配线(L2)、第一输出电感(Lout1)、第二输出电感(Lout2)、第三匹配线(L3)、第二层双螺旋结构的宽边耦合带状线(U2)、第四匹配线(L4)、表面贴装的50欧姆阻抗隔离端口(P4)、钽电阻(R)、输入电感(Lin1、Lin2)、第一级并联谐振单元(L11、L21、L31、C1、L41、L51、L61、C7)、第二级并联谐振单元(L12、L22、L32、C2、L42、L52、L62、C8)、第三级并联谐振单元(L13、L23、L33、C3、L43、L53、L63、C9)、第四级并联谐振单元(L14、L24、L34、C4、L44、L54、L64、C10)、第五级并联谐振单元(L15、L25、L35、C5、L45、L55、L65、C11)、第六级并联谐振单元(L16、L26、L36、C6、L46、L56、L66、C12)、输出电感(Lout3、Lout4)、表面贴装的50欧姆阻抗输出端口(P2、P3)、Z形级间耦合带状线(Z1、Z2)和接地端均采用多层低温共烧陶瓷工艺实现。Combined with Figure 1 (a), (b), (c), (d), including the surface mount 50 ohm impedance input port (P1), the first matching line (L1), the broadside of the first double helix structure Coupling stripline (U1), second match line (L2), first output inductance (Lout1), second output inductance (Lout2), third match line (L3), broadside coupling of the second double helix structure Stripline (U2), fourth matching line (L4), surface mount 50 ohm impedance isolation port (P4), tantalum resistors (R), input inductors (Lin1, Lin2), first stage parallel resonant unit (L11 , L21, L31, C1, L41, L51, L61, C7), the second parallel resonance unit (L12, L22, L32, C2, L42, L52, L62, C8), the third parallel resonance unit (L13, L23 , L33, C3, L43, L53, L63, C9), the fourth parallel resonance unit (L14, L24, L34, C4, L44, L54, L64, C10), the fifth parallel resonance unit (L15, L25, L35 , C5, L45, L55, L65, C11), sixth parallel resonant unit (L16, L26, L36, C6, L46, L56, L66, C12), output inductor (Lout3, Lout4), surface mount 50 ohm Impedance output ports (P2, P3), Z-shaped interstage coupling striplines (Z1, Z2) and ground terminals are all realized by multi-layer low temperature co-fired ceramic technology.
一种微型双微波毫米波自负载I/Q正交滤波器,由于是采用多层低温共烧陶瓷工艺实现,其低温共烧陶瓷材料和金属图形在大约900℃温度下烧结而成,所以具有非常高的可靠性和温度稳定性,由于结构采用三维立体集成和多层折叠结构以及外表面金属屏蔽实现接地和封装,从而使体积大幅减小。A miniature dual-microwave millimeter-wave self-loaded I/Q quadrature filter is realized by multi-layer low-temperature co-fired ceramic technology, and its low-temperature co-fired ceramic material and metal pattern are sintered at a temperature of about 900 ° C, so it has Very high reliability and temperature stability, because the structure adopts three-dimensional three-dimensional integration and multi-layer folding structure, and the outer surface metal shielding realizes grounding and packaging, so that the volume is greatly reduced.
本发明微型双微波毫米波自负载I/Q正交滤波器的尺寸仅为11mm×3.2mm×1.5mm,其性能可从图2、图3看出,通带带宽为2.7GHz~2.9GHz,输出端口(P2)与输出端口(P3)在通带内的输出波形基本一致,输入端口回波损耗优于19dB,在通带内,输出端口(P2)与输出端口(P3)的相位差近似为90度。The size of the miniature dual microwave millimeter wave self-loaded I/Q quadrature filter of the present invention is only 11mm × 3.2mm × 1.5mm, and its performance can be seen from Fig. 2 and Fig. 3, the passband bandwidth is 2.7GHz~2.9GHz, The output waveforms of the output port (P2) and the output port (P3) in the passband are basically the same, the return loss of the input port is better than 19dB, and the phase difference between the output port (P2) and the output port (P3) is similar in the passband is 90 degrees.
Claims (3)
- A kind of 1. miniature double self-supported I/Q orthogonal filters of microwave and millimeter wave, it is characterised in that:Including connecing determining for matched load certainly To coupler and two microwave and millimeter wave wave filters;Include surface-pasted 50 ohm resistances from the directional coupler for connecing matched load Anti- input port(P1), the first matched line(L1), the double-stranded broadside coupled striplines of first layer(U1), the second matched line (L2), the first outputting inductance(Lout1), the second outputting inductance(Lout2), the 3rd matched line(L3), second layer double-spiral structure Broadside coupled striplines(U2), the 4th matched line(L4), surface-pasted 50 ohmage isolated port(P4), tantalum resistance (R), wherein, the double-stranded broadside coupled striplines of first layer(U1)It is vertically positioned at the double-stranded broadside coupling of the second layer Close strip line(U2)Top, the first matched line(L1), the double-stranded broadside coupled striplines of the second layer(U2)With second Distribution(L2)In same plane, the first matched line(L1)With surface-pasted 50 ohmage input port(P1)Connection, second Matched line(L2)With the first outputting inductance(Lout1)Connection, the double-stranded broadside coupled striplines of the second layer(U2)Left end With the first matched line(L1)Connection, the double-stranded broadside coupled striplines of the second layer(U2)Right-hand member and the second matched line(L2) Connection;3rd matched line(L3), the double-stranded broadside coupled striplines of first layer(U1)With the 4th matched line(L4)Same One plane, the 3rd matched line(L3)With the second outputting inductance(Lout2)Connection, the 4th matched line(L4)With surface-pasted 50 Europe Nurse impedance isolated port(P4)Connection, the double-stranded broadside coupled striplines of first layer(U1)Left end and the 3rd matched line (L3)Connection, the double-stranded broadside coupled striplines of first layer(U1)Right-hand member and the 4th matched line(L4)Connection, tantalum resistance (R)Both ends respectively with surface-pasted 50 ohmage isolated port(P4)Connected with earth terminal;First microwave and millimeter wave is filtered Ripple device(F1)Including the first input inductance(Lin1), first order parallel resonance unit(L11、L21、L31、C1), the second level it is in parallel Resonant element(L12、L22、L32、C2), third level parallel resonance unit(L13、L23、L33、C3), fourth stage parallel resonance list Member(L14、L24、L34、C4), level V parallel resonance unit(L15、L25、L35、C5), the 6th grade of parallel resonance unit(L16、 L26、L36、C6), the 3rd outputting inductance(Lout3), the surface-pasted output port of 50 ohmage first(P2), it is first Z-shaped Interstage coupling strip line(Z1), parallel resonance units at different levels form by triple layer shape line, and second layer strip line is vertically positioned at the Above triple layer shape line, first layer strip line is vertically positioned above second layer strip line, first order parallel resonance unit(L11、 L21、L31、C1)By the first strip line of first layer(L11), the second layer the second strip line(L21), third layer the 3rd banding Line(L31), first micro- electric capacity(C1)It is formed in parallel, second level parallel resonance unit(L12、L22、L32、C2)By the of first layer Four strip lines(L12), the second layer the 5th strip line(L22), third layer the 6th strip line(L32), second micro- electric capacity(C2) It is formed in parallel, third level parallel resonance unit(L13、L23、L33、C3)By the 7th strip line of first layer(L13), the second layer 8th strip line(L23), third layer the 9th strip line(L33), the 3rd micro- electric capacity(C3)It is formed in parallel, fourth stage parallel resonance Unit(L14、L24、L34、C4)By the tenth strip line of first layer(L14), the second layer the 11st strip line(L24), the 3rd 12nd strip line of layer(L34), the 4th micro- electric capacity(C4)It is formed in parallel, level V parallel resonance unit(L15、L25、L35、 C5)By the 13rd strip line of first layer(L15), the second layer the 14th strip line(L25), third layer the 15th strip line (L35), the 5th micro- electric capacity(C5)It is formed in parallel, the 6th grade of parallel resonance unit(L16、L26、L36、C6)By the tenth of first layer the Six strip lines(L16), the second layer the 17th strip line(L26), third layer the 18th strip line(L36), the 6th micro- electric capacity (C6)It is formed in parallel, wherein, first order parallel resonance unit(L11、L21、L31、C1)The second layer the second strip line(L21) With the first input inductance(Lin1)Connection, the 6th grade of parallel resonance unit(L16、L26、L36、C6)The second layer the 17th band Shape line(L26)With the 3rd outputting inductance(Lout3)Connection, the 3rd outputting inductance(Lout3)With surface-pasted 50 ohmage First output port(P2)Connection, the first Z-shaped interstage coupling strip line(Z1)Below parallel resonance unit;Six grades of parallel resonance units are grounded respectively, wherein first and third layer of all strip line earth terminal is identical, one end is that micro- electric capacity connects Ground, the other end open circuit, second layer strip line earth terminal is identical, one end ground connection, the other end open circuit, and be grounded extreme direction and first, Three layers of earth terminal are on the contrary, the first Z-shaped interstage coupling strip line(Z1)Both ends are grounded;Second microwave and millimeter wave wave filter(F2)Bag Include the second input inductance(Lin2), first order parallel resonance unit(L41、L51、L61、C7), second level parallel resonance unit (L42、L52、L62、C8), third level parallel resonance unit(L43、L53、L63、C9), fourth stage parallel resonance unit(L44、 L54、L64、C10), level V parallel resonance unit(L45、L55、L65、C11), the 6th grade of parallel resonance unit(L46、L56、 L66、C12), the 4th outputting inductance(Lout4), the surface-pasted output port of 50 ohmage second(P3), between the second Z-shaped level Coupling strip line(Z2), parallel resonance units at different levels form by triple layer shape line, and second layer strip line is vertically positioned at third layer Above strip line, first layer strip line is vertically positioned above second layer strip line, first order parallel resonance unit(L41、L51、 L61、C7)By the 19th strip line of first layer(L41), the second layer the 20th strip line(L51), third layer the 21st Strip line(L61), the 7th micro- electric capacity(C7)It is formed in parallel, second level parallel resonance unit(L42、L52、L62、C8)By first layer The 22nd strip line(L42), the second layer the 23rd strip line(L52), third layer the 24th strip line (L62), the 8th micro- electric capacity(C8)It is formed in parallel, third level parallel resonance unit(L43、L53、L63、C9)By the second of first layer 15 strip lines(L43), the second layer the 26th strip line(L53), third layer the 27th strip line(L63), the 9th Micro- electric capacity(C9)It is formed in parallel, fourth stage parallel resonance unit(L44、L54、L64、C10)By the 28th banding of first layer Line(L44), the second layer the 29th strip line(L54), third layer the 30th strip line(L64), the tenth micro- electric capacity(C10) It is formed in parallel, level V parallel resonance unit(L45、L55、L65、C11)By the 31st strip line of first layer(L45), Two layers of the 32nd strip line(L55), third layer the 33rd strip line(L65), the 11st micro- electric capacity(C11)It is in parallel and Into the 6th grade of parallel resonance unit(L46、L56、L66、C12)By the 34th strip line of first layer(L46), the second layer 35th strip line(L56), third layer the 36th strip line(L66), the 12nd micro- electric capacity(C12)It is formed in parallel, its In, first order parallel resonance unit(L41、L51、L61、C7)The second layer the 20th strip line(L51)With the second input electricity Sense(Lin2)Connection, the 6th grade of parallel resonance unit(L46、L56、L66、C12)The second layer the 35th strip line(L56) With the 4th outputting inductance(Lout4)Connection, the 4th outputting inductance(Lout4)With the surface-pasted output end of 50 ohmage second Mouthful(P3)Connection, the second Z-shaped interstage coupling strip line(Z2)Below parallel resonance unit;Six grades of parallel resonance units are grounded respectively, wherein first and third layer of all strip line earth terminal is identical, one end is that micro- electric capacity connects Ground, the other end open circuit, second layer strip line earth terminal is identical, one end ground connection, the other end open circuit, and be grounded extreme direction and first, Three layers of earth terminal are on the contrary, the second Z-shaped interstage coupling strip line(Z2)Both ends are grounded;From the directional coupler for connecing matched load First outputting inductance(Lout1)With the first microwave and millimeter wave wave filter(F1)First input inductance(Lin1)Connection, connects certainly Second outputting inductance of the directional coupler with load(Lout2)With the second microwave and millimeter wave wave filter(F2)Second input electricity Sense(Lin2)Connection.
- 2. miniature double self-supported I/Q orthogonal filters of microwave and millimeter wave according to claim 1, it is characterised in that:Surface 50 ohmage input ports of attachment(P1), the first matched line(L1), the double-stranded broadside coupled striplines of first layer (U1), the second matched line(L2), the first outputting inductance(Lout1), the second outputting inductance(Lout2), the 3rd matched line(L3), Two layers of double-stranded broadside coupled striplines(U2), the 4th matched line(L4), surface-pasted 50 ohmage isolation end Mouthful(P4), tantalum resistance(R), input inductance(Lin1、Lin2), first order parallel resonance unit(L11、L21、L31、C1、L41、 L51、L61、C7), second level parallel resonance unit(L12、L22、L32、C2、L42、L52、L62、C8), third level parallel resonance Unit(L13、L23、L33、C3、L43、L53、L63、C9), fourth stage parallel resonance unit(L14、L24、L34、C4、L44、 L54、L64、C10), level V parallel resonance unit(L15、L25、L35、C5、L45、L55、L65、C11), the 6th grade of parallel connection it is humorous Shake unit(L16、L26、L36、C6、L46、L56、L66、C12), outputting inductance(Lout3、Lout4), it is surface-pasted 50 ohm Impedance output mouth(P2、P3), Z-shaped interstage coupling strip line(Z1、Z2)Multilayer LTCC work is used with earth terminal Skill is realized.
- 3. miniature double self-supported I/Q orthogonal filters of microwave and millimeter wave according to claim 1 or 2, it is characterised in that:It is defeated Inbound port(P1)Pass through the first matched line(L1)With the double-stranded broadside coupled striplines of the second layer(U2)Connection, isolation end Mouthful(P4)Pass through the 4th matched line(L4)With the double-stranded broadside coupled striplines of first layer(U1)Connection, isolated port (P4)Pass through tantalum resistance(R)It is attached with earth terminal, the first output port(P2)Pass through the 3rd outputting inductance(Lout3)With One microwave and millimeter wave wave filter(F1)The 6th grade of parallel resonance unit(L16、L26、L36、C6)The second layer the 17th band Shape line(L26)Connection, the second output port(P3)Pass through the 4th outputting inductance(Lout4)With the second microwave and millimeter wave wave filter (F2)The 6th grade of parallel resonance unit(L46、L56、L66、C12)The second layer the 35th strip line(L56)Connection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410467151.8A CN104733814B (en) | 2014-09-13 | 2014-09-13 | The miniature self-supported I/Q orthogonal filters of double microwave and millimeter waves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410467151.8A CN104733814B (en) | 2014-09-13 | 2014-09-13 | The miniature self-supported I/Q orthogonal filters of double microwave and millimeter waves |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104733814A CN104733814A (en) | 2015-06-24 |
CN104733814B true CN104733814B (en) | 2018-01-05 |
Family
ID=53457455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410467151.8A Expired - Fee Related CN104733814B (en) | 2014-09-13 | 2014-09-13 | The miniature self-supported I/Q orthogonal filters of double microwave and millimeter waves |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104733814B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105006611A (en) * | 2015-06-29 | 2015-10-28 | 南京理工大学 | Microwave and millimeter wave high-suppression band-pass filter group |
CN104966877A (en) * | 2015-06-29 | 2015-10-07 | 南京理工大学 | A kind of L-band miniature balanced filter power splitter |
CN104966867A (en) * | 2015-06-29 | 2015-10-07 | 南京理工大学 | A S-band Miniature Dual Microwave Self-Loaded Orthogonal Power Splitter |
CN105048048A (en) * | 2015-06-29 | 2015-11-11 | 南京理工大学 | L-band microwave self-loading orthogonal power divider |
CN105006612A (en) * | 2015-06-29 | 2015-10-28 | 南京理工大学 | L-band orthogonalizable power dividing filter with built-in resistor |
CN104966878A (en) * | 2015-06-29 | 2015-10-07 | 南京理工大学 | S-band miniature inverter power divider |
CN105048046A (en) * | 2015-06-29 | 2015-11-11 | 南京理工大学 | L-wave band built-in resistor multiphase power dividing filter set |
CN104966876A (en) * | 2015-06-29 | 2015-10-07 | 南京理工大学 | L-band microwave quadrature power splitter |
CN104934673A (en) * | 2015-07-14 | 2015-09-23 | 南京理工大学 | L-band minisize double microwave self-loading orthogonal power divider |
CN104934674A (en) * | 2015-07-14 | 2015-09-23 | 南京理工大学 | L-band minisize double microwave orthogonal power divider |
CN104967423A (en) * | 2015-07-14 | 2015-10-07 | 南京理工大学 | A kind of UHF band miniature duplexer |
CN105070989A (en) * | 2015-08-07 | 2015-11-18 | 南京理工大学 | Out-off-S-band load four-way orthogonal filter based on low temperature co-fired ceramic (LTCC) |
CN105006610A (en) * | 2015-08-07 | 2015-10-28 | 南京理工大学 | LTCC-based L-waveband miniature quadrature filter |
CN105186076A (en) * | 2015-08-07 | 2015-12-23 | 南京理工大学 | LTCC-based S-waveband self-loaded four-path quadrature filter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102610886A (en) * | 2012-03-22 | 2012-07-25 | 南京理工大学常熟研究院有限公司 | L-waveband high stopband rejection micro band-pass filter |
CN103413993A (en) * | 2013-08-01 | 2013-11-27 | 南京理工大学 | Distributed miniature band-pass balance filter |
CN103985929A (en) * | 2014-05-09 | 2014-08-13 | 南京理工大学 | A High Rejection Modular Miniature Bandpass Filter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040178867A1 (en) * | 2003-02-05 | 2004-09-16 | Rahman Mohammed Mahbubur | LTCC based electronically tunable multilayer microstrip-stripline combline filter |
US7518473B2 (en) * | 2007-05-09 | 2009-04-14 | Chi-Liang Ni | Methods for designing switchable and tunable broadband filters using finite-width conductor-backed coplanar waveguide structures |
-
2014
- 2014-09-13 CN CN201410467151.8A patent/CN104733814B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102610886A (en) * | 2012-03-22 | 2012-07-25 | 南京理工大学常熟研究院有限公司 | L-waveband high stopband rejection micro band-pass filter |
CN103413993A (en) * | 2013-08-01 | 2013-11-27 | 南京理工大学 | Distributed miniature band-pass balance filter |
CN103985929A (en) * | 2014-05-09 | 2014-08-13 | 南京理工大学 | A High Rejection Modular Miniature Bandpass Filter |
Also Published As
Publication number | Publication date |
---|---|
CN104733814A (en) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104733814B (en) | The miniature self-supported I/Q orthogonal filters of double microwave and millimeter waves | |
CN104409802B (en) | The self-supported I/Q orthogonal filters of miniature microwave and millimeter wave | |
CN104241747B (en) | Miniature active microwave and millimeter wave I/Q variable phase reversal quadrature filter | |
CN104409806B (en) | Mini active microwave and millimeter wave self-loading I/Q variable phase reversal orthogonal filter | |
CN104377406B (en) | Microwave millimeter wave self-loading multi-orthogonal filter capable of inverting phase | |
CN104078729B (en) | The outer variable paraphase orthogonal filter of load I/Q of miniature microwave and millimeter wave | |
CN104953212A (en) | UHF (ultra high frequency) band type miniature microwave filter bank | |
CN104201444B (en) | How orthogonal a kind of microwave and millimeter wave is active from load inverse filter | |
CN104538711B (en) | Miniature microwave and millimeter wave I/Q filter | |
CN104934667A (en) | SHF-waveband minisize microwave filter bank | |
CN105048048A (en) | L-band microwave self-loading orthogonal power divider | |
CN104409805B (en) | Miniature double microwave and millimeter-wave I/Q orthogonal filter | |
CN104201446B (en) | Microwave millimeter-wave external-load multi-orthogonal inverse filter | |
CN104201445B (en) | A kind of active how orthogonal inverse filter of outer load of microwave and millimeter wave | |
CN104979608A (en) | SHF-band micro microwave filter bank | |
CN105048027A (en) | L-band miniature double-microwave balance power dividing filter | |
CN104934666A (en) | SHF-waveband minisize microwave filter bank | |
CN104953213A (en) | SHF (superhigh frequency) band type miniature duplexer | |
CN104967423A (en) | A kind of UHF band miniature duplexer | |
CN105070988A (en) | S-waveband power dividing filter based on low-temperature co-fired ceramic (LTCC) | |
CN103985932A (en) | A New Structure Micro Bandpass Filter | |
CN104253291A (en) | Novel microwave and millimeter wave broadband filter of strip line structure | |
CN104091983B (en) | The self-supported I/Q of miniature microwave and millimeter wave variable paraphase orthogonal filter | |
CN105870556A (en) | UHF and SHF waveband miniature duplexer | |
CN104103880B (en) | Micro-type microwave and millimeter-wave self-loading I/Q phase invertible orthogonal filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180105 Termination date: 20200913 |
|
CF01 | Termination of patent right due to non-payment of annual fee |