CN104711527A - Method for magnetron sputtering low-temperature preparation of TiN film - Google Patents
Method for magnetron sputtering low-temperature preparation of TiN film Download PDFInfo
- Publication number
- CN104711527A CN104711527A CN201310681582.XA CN201310681582A CN104711527A CN 104711527 A CN104711527 A CN 104711527A CN 201310681582 A CN201310681582 A CN 201310681582A CN 104711527 A CN104711527 A CN 104711527A
- Authority
- CN
- China
- Prior art keywords
- target
- film
- magnetron sputtering
- sputtering
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001755 magnetron sputter deposition Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 31
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title claims abstract 12
- 238000002360 preparation method Methods 0.000 title description 2
- 239000010408 film Substances 0.000 claims abstract description 48
- 239000010409 thin film Substances 0.000 claims abstract description 20
- 238000004544 sputter deposition Methods 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 150000002500 ions Chemical class 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 13
- 239000010936 titanium Chemical group 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 239000013077 target material Substances 0.000 claims description 7
- 238000005137 deposition process Methods 0.000 claims description 5
- 238000005477 sputtering target Methods 0.000 claims description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 239000012495 reaction gas Substances 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 125000004429 atom Chemical group 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 238000011109 contamination Methods 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims 1
- 125000004433 nitrogen atom Chemical group N* 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000003746 surface roughness Effects 0.000 abstract description 6
- 238000009776 industrial production Methods 0.000 abstract description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 25
- 238000007733 ion plating Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种反应磁控溅射低温制备TiN薄膜的方法,通过对传统磁控溅射技术的改进,在真空室内引入一等离子体区域,采用中频脉冲直流或直流溅射溅射Ti金属靶,并控制工作气体压强、温度、时间、溅射功率等工艺条件,在衬底上沉积TiN薄膜。使用本方法可以在低温环境下性能良好的TiN薄膜,薄膜的结晶度、致密性及硬度得到提高,表面粗糙度小,薄膜与衬底有较高的结合力,很难产生局部脱落。本发明可以为硬质薄膜的实验研究或工业生产提供样品。The invention relates to a method for preparing TiN thin films by reactive magnetron sputtering at low temperature. Through the improvement of traditional magnetron sputtering technology, a plasma region is introduced into a vacuum chamber, and a Ti metal target is sputtered by intermediate frequency pulse direct current or direct current sputtering. , and control the working gas pressure, temperature, time, sputtering power and other process conditions to deposit TiN thin film on the substrate. The method can produce a TiN thin film with good performance in low temperature environment, the crystallinity, compactness and hardness of the thin film are improved, the surface roughness is small, the thin film and the substrate have high binding force, and it is difficult to produce local shedding. The invention can provide samples for the experimental research or industrial production of the hard film.
Description
技术领域technical field
本发明属于硬质薄膜领域。特别是涉及一种低温环境下等离子体辅助磁控溅射法制备TiN薄膜,利用等离子体辅助孪生靶脉冲直流磁控溅射技术制备了TiN硬质薄膜的新工艺。The invention belongs to the field of hard films. In particular, it relates to a new process for preparing TiN thin films by plasma-assisted magnetron sputtering in a low-temperature environment, and a new process for preparing TiN hard films by using plasma-assisted twin-target pulsed DC magnetron sputtering technology.
背景技术Background technique
氮化钛(TiN)薄膜作为一种多功能材料,它具有高温稳定性、高硬度、低电导率、低摩擦系数、耐腐蚀等性质,在硬质涂层、耐高温涂层以及装饰涂层等多个领域有着广泛的应用。同时,由于其具有优良的太阳光谱选择特性和高温抗氧化特性,氮化钛薄膜在中高温太阳能选择吸收涂层的应用方面备受关注。制备氮化钛薄膜的方法有很多,主要有电弧离子镀和磁控溅射两种镀膜方法。电弧离子镀法由于沉积速度快,薄膜与基底结合力强因而在工业生产上应用广泛,然而这种弧蒸发制备的薄膜会保留有阴极材料射出的微米级颗粒,致使薄膜表面粗糙度与摩擦系数增大,薄膜致密性受到影响,因此限制了电弧离子镀法向高性能薄膜领域的迈进。相对于电弧离子镀法,磁控溅射法可以获得表面粗糙度低,均匀性良好的氮化钛薄膜。但是传统的磁控溅射法也有它的不足之处,磁场约束的高密度等离子体区只能分布在靶面附近,而整个真空室内的等离子体密度低。在镀膜过程中由于离化率低,在保证高的沉积速率的同时很难获得高化学计量比的氮化钛薄膜,而且,为了保证氮化钛薄膜的结晶度,整个沉积过程须保持在恒定高温(通常为300℃)环境下。这就大大地限制了待镀工件的尺寸和种类,例如绝大多数摩擦与模具零部件常用材料、数据存储领域(Data Storage)和微机电领域中的硅片通道(TSV)均要求镀膜过程温度不超过200-250℃。从而制约了传统磁控溅射镀膜技术的生产效率和应用范围。As a multifunctional material, titanium nitride (TiN) film has high temperature stability, high hardness, low electrical conductivity, low friction coefficient, corrosion resistance and other properties, and is used in hard coatings, high temperature resistant coatings and decorative coatings. It has a wide range of applications in many fields. At the same time, due to its excellent solar spectrum selectivity and high temperature oxidation resistance, titanium nitride thin films have attracted much attention in the application of medium and high temperature solar selective absorption coatings. There are many methods for preparing titanium nitride thin films, mainly including arc ion plating and magnetron sputtering. The arc ion plating method is widely used in industrial production due to its fast deposition rate and strong bonding force between the film and the substrate. However, the film prepared by this arc evaporation will retain the micron-sized particles ejected from the cathode material, resulting in a decrease in the surface roughness and friction coefficient of the film. Increase, the compactness of the film is affected, thus limiting the advancement of the arc ion plating method to the field of high-performance thin films. Compared with the arc ion plating method, the magnetron sputtering method can obtain a titanium nitride film with low surface roughness and good uniformity. However, the traditional magnetron sputtering method also has its shortcomings. The high-density plasma region confined by the magnetic field can only be distributed near the target surface, and the plasma density in the entire vacuum chamber is low. Due to the low ionization rate in the coating process, it is difficult to obtain a high stoichiometric titanium nitride film while ensuring a high deposition rate. Moreover, in order to ensure the crystallinity of the titanium nitride film, the entire deposition process must be kept constant. High temperature (usually 300°C) environment. This greatly limits the size and type of workpieces to be plated. For example, most of the materials commonly used in friction and mold parts, data storage (Data Storage) and silicon chip channels (TSV) in the field of micro-electromechanical systems require the coating process temperature Not exceeding 200-250°C. Therefore, the production efficiency and application range of the traditional magnetron sputtering coating technology are restricted.
发明内容Contents of the invention
本发明的目的是,提供一种TiN硬质涂层的制备方法。该方法采用等离子体反应磁控溅射技术,沉积温度为低温环境,所制备的TiN硬质薄膜性能良好。The object of the present invention is to provide a preparation method of TiN hard coating. The method adopts the plasma reactive magnetron sputtering technology, the deposition temperature is a low temperature environment, and the prepared TiN hard film has good performance.
本发明首先采用孪生靶脉冲直流磁控溅射方法,通过在真空室内引入一等离子体区,提高真空室内等离子体密度,当基片经过溅射Ti靶附近等离子体区域与氮气反应后进入等离子体源产生的等离子体区进一步氮化,可以生成高化学计量比的TiN薄膜。并且由工艺要求,沉积温度可以恒定在室温或是低温状态,实现了氮化钛薄膜的低温(室温-200℃)沉积。The present invention first adopts the twin target pulsed DC magnetron sputtering method, by introducing a plasma region in the vacuum chamber to increase the plasma density in the vacuum chamber, when the substrate passes through the plasma region near the sputtering Ti target and reacts with nitrogen, it enters the plasma The plasma region generated by the source is further nitridated, and a TiN film with a high stoichiometric ratio can be formed. And depending on the process requirements, the deposition temperature can be kept at room temperature or at a low temperature state, realizing the low temperature (room temperature-200°C) deposition of titanium nitride thin films.
用作产生等离子体源可以是阳极层线性离子源、射频离子源、霍尔离子源或考夫曼离子源。The source used to generate the plasma may be an anode layer linear ion source, a radio frequency ion source, a Hall ion source or a Kaufmann ion source.
用作产生等离子体源的非平衡磁场磁控溅射阴极,其靶材料需要采用难溅射靶材,例如氧化铝或氧化钛等材料,无论采用何种材料,最终要将射频电源功率控制在100-1000W范围内,用以保证在薄膜沉积过程中,用作等离子体产生源的靶材无任何材料被溅射出来,以免造成薄膜污染,即射频电源加到靶材的最大功率要小于靶材被溅出的最小功率。The unbalanced magnetic field magnetron sputtering cathode used as a plasma source needs to use hard-to-sputter target materials, such as aluminum oxide or titanium oxide. No matter what material is used, the power of the RF power supply must be controlled at In the range of 100-1000W, it is used to ensure that during the film deposition process, no material is sputtered out of the target used as the plasma generation source, so as not to cause film pollution, that is, the maximum power added to the target by the RF power supply is less than that of the target The minimum power at which the material is splashed.
用于制备TiN硬质涂层的磁控溅射阴极采用中频电源或脉冲直流电源,溅射靶材为Ti金属,制备薄膜时,控制工作气体(氩气)压强在0.1Pa-3Pa;控制反应气体(氮气)与工作气体(氩气)的压强比1:5-50;温度恒定在室温-200℃的某一值;溅射电源电流在1A-30A等条件,在衬底上沉积TiN薄膜。The magnetron sputtering cathode used to prepare TiN hard coating adopts intermediate frequency power supply or pulsed DC power supply, and the sputtering target material is Ti metal. When preparing thin films, control the pressure of the working gas (argon) at 0.1Pa-3Pa; control the reaction The pressure ratio of gas (nitrogen) to working gas (argon) is 1:5-50; the temperature is constant at a certain value from room temperature to 200°C; the sputtering power supply current is 1A-30A, etc., to deposit TiN film on the substrate .
本发明优点:Advantage of the present invention:
1)与传统磁控溅射法制备TiN硬质薄膜相比,本技术制备的薄膜结晶度、致密性及硬度得到提高,表面粗糙度小,薄膜与衬底有较高的结合力,很难产生局部脱落1) Compared with the TiN hard film prepared by the traditional magnetron sputtering method, the crystallinity, compactness and hardness of the film prepared by this technology are improved, the surface roughness is small, the film and the substrate have a high bonding force, and it is difficult to Partial exfoliation
2)与传统磁控溅射法制备TiN硬质薄膜相比,本发明方法增大了真空室内等离子体区,提高了真空室内气体离化率,使用Ti、N元素反应更充分。利于沉积高化学计量比TiN薄膜。2) Compared with the traditional magnetron sputtering method to prepare TiN hard film, the method of the present invention enlarges the plasma area in the vacuum chamber, improves the gas ionization rate in the vacuum chamber, and uses Ti and N elements to react more fully. Facilitate the deposition of high stoichiometric ratio TiN film.
3)整个沉积过程中,真空室维持在:室温~100℃,为低温环境,在不破坏高速钢等基片的前提下沉积TiN薄膜,这样就增加了待镀工件材料的种类。利于氮化钛在多领域的应用。附图说明3) During the entire deposition process, the vacuum chamber is maintained at room temperature to 100°C, which is a low-temperature environment, and TiN thin films are deposited without damaging substrates such as high-speed steel, which increases the types of workpiece materials to be plated. It is beneficial to the application of titanium nitride in many fields. Description of drawings
图1新型等离子体辅助磁控溅射结构示意图;1、公转盘,2、孪生靶,3、公转盘公转轴,4、工件盘自转轴,5、工件架,6、RF等离子体产生源;Fig. 1 Schematic diagram of the new plasma-assisted magnetron sputtering structure; 1. Revolving disk, 2. Twin target, 3. Revolving disk axis, 4. Workpiece disk rotation axis, 5. Workpiece frame, 6. RF plasma generation source;
图2不同等离子体功率下制备薄膜透过率曲线;Fig. 2 transmittance curves of films prepared under different plasma powers;
图3不同等离子体功率下制备薄膜的微观结构。Fig. 3 Microstructure of films prepared under different plasma powers.
具体实施方式Detailed ways
使用设备:use equipment:
薄膜沉积装置为ACSP70/73型多功能离子镀膜试验机。实验设备含有:一台北科仪机械泵和一台日本大阪真空的分子泵构成真空系统;真空室内有一个公转圆盘,圆盘上有若干齿轮链带的自转工件架,公转与自转比为1:20,每个工件架高度约为510mm;真空室内含有若干加热管,使真空室内受热均匀,保证真空室和衬底温度误差<0.5℃;一台10KW脉冲直流电源和一台10KW双极性脉冲偏压电源,溅射电源频率为40kHz,溅射过程中两个靶交替的作为阴极和阳极,在负半周期内出现靶材溅射,正半周期内中和靶面的积累电荷,有效地防止了靶材中毒和阳极消失现象;用作等离子体产生源的磁控溅射阴极面积仍为563mm(长)×106mm(宽),表面靶材采用北京有色金属研究院生产的氧化铝陶瓷靶,采用常州瑞思杰尔电子科技有限公司的RSG3500型射频电源与PSG-IVA型射频自动匹配器,射频电源最大功率为3.5kw;The thin film deposition device is ACSP70/73 multifunctional ion coating tester. The experimental equipment includes: a Taikeyi mechanical pump and a molecular pump from Osaka Vacuum, Japan to form a vacuum system; there is a revolution disc in the vacuum chamber, and there are several gear chain belts on the disc, and the rotation ratio is 1. :20, the height of each workpiece rack is about 510mm; there are several heating tubes in the vacuum chamber to make the vacuum chamber heated evenly, and to ensure that the temperature error between the vacuum chamber and the substrate is <0.5°C; a 10KW pulsed DC power supply and a 10KW bipolar Pulse bias power supply, the frequency of sputtering power supply is 40kHz, the two targets are alternately used as cathode and anode during the sputtering process, target sputtering occurs in the negative half cycle, and the accumulated charge on the target surface is neutralized in the positive half cycle, effectively The phenomenon of target poisoning and anode disappearance is effectively prevented; the magnetron sputtering cathode area used as a plasma generation source is still 563mm (length) × 106mm (width), and the surface target is made of alumina ceramics produced by Beijing Institute of Nonferrous Metals The target adopts the RSG3500 RF power supply and PSG-IVA RF automatic matching device of Changzhou Ruisijieer Electronic Technology Co., Ltd., and the maximum power of the RF power supply is 3.5kw;
新型等离子体辅助磁控溅射结构示意图1;1、公转盘,2、孪生靶,3、公转盘公转轴,4、工件盘自转轴,5、工件架,6、RF等离子体产生源;Schematic diagram of the new plasma-assisted magnetron sputtering structure 1; 1. Revolving disk, 2. Twin target, 3. Revolving disk axis, 4. Workpiece disk rotation axis, 5. Workpiece holder, 6. RF plasma source;
整个真空室为圆筒形结构。The entire vacuum chamber is a cylindrical structure.
公转盘由上下圆盘及若干支撑杆组成,公转轴通过上下圆盘圆心,公转盘绕公转轴匀速旋转,公转转速在5-30r/min范围内可调。公转盘旋转方向按等离子体源与溅射靶相对位置设定。The revolution disk is composed of upper and lower disks and several support rods. The revolution axis passes through the center of the upper and lower disks, and the revolution disk rotates at a constant speed around the revolution axis. The revolution speed is adjustable within the range of 5-30r/min. The rotation direction of the revolving disk is set according to the relative position of the plasma source and the sputtering target.
孪生靶电源采用脉冲直流电源,孪生靶形状为矩形或圆柱形,孪生靶磁场采用非平衡磁场,靶背面采用循环水冷结构。孪生靶材料均为Ti,溅射过程中两个靶交替的作为阴极和阳极,在负半周期内出现靶材溅射,正半周期内中和靶面的积累电荷。The twin target power supply adopts pulsed DC power supply, the twin target shape is rectangular or cylindrical, the twin target magnetic field adopts an unbalanced magnetic field, and the back of the target adopts a circulating water cooling structure. The twin target materials are both Ti. During the sputtering process, the two targets are alternately used as cathode and anode. Target sputtering occurs in the negative half cycle, and the accumulated charge on the target surface is neutralized in the positive half cycle.
工件架为圆柱形或圆筒形,工件架均匀分布在公转轴圆周上,且保证所有工件架上基片靶基距是相同的。根据工艺要求,工件架数量可以在空间允许下尽可能多,工件架直径、靶基距亦可按工艺调整。The workpiece holders are cylindrical or cylindrical, and the workpiece holders are evenly distributed on the circumference of the revolution axis, and it is ensured that the substrate-target base distances on all the workpiece holders are the same. According to the process requirements, the number of workpiece racks can be as many as the space allows, and the diameter of the workpiece racks and the target base distance can also be adjusted according to the process.
电机与公转盘由垫板传动,工件架和公转盘之间有齿轮传动,电机带动公转盘,公转盘带动工件架自转。工件架的自转速度由公转速度和它们间的转速比决定公转与自转比为1:20。The motor and the revolving disk are driven by a backing plate, and there is a gear transmission between the workpiece holder and the revolving disk, the motor drives the revolving disk, and the revolving disk drives the workpiece holder to rotate. The rotation speed of the workpiece frame is determined by the revolution speed and the speed ratio between them. The ratio of revolution and rotation is 1:20.
等离子体产生源采用射频电源与射频自动匹配器配套使用,通过射频自动匹配器,反射功率可以控制到0w;射频电源功率输入到真空室内一非平衡磁场磁控溅射阴极(或称之为非平衡磁场磁控溅射靶),非平衡磁场磁控溅射靶材料需要采用难溅射靶材,例如氧化铝、氧化钛等材料,射频电源功率控制在1000W范围内,用以保证靶材无任何溅射。The plasma generation source adopts the radio frequency power supply and the radio frequency automatic matching device to be used together. Through the radio frequency automatic matching device, the reflected power can be controlled to 0w; Balanced magnetic field magnetron sputtering target), unbalanced magnetic field magnetron sputtering target material needs to use difficult sputtering target materials, such as alumina, titanium oxide and other materials, and the power of the radio frequency power supply is controlled within the range of 1000W to ensure that the target is free of sputtering. any sputtering.
孪生靶与等离子体发生源固定在真空室壁上,两者距离小于1/2真空室圆周长,且二者位置可互换,这与公转盘旋转方向直接相关。孪生靶的前表面装有气动挡板,每次镀膜前,先只通入工作气体,进行靶面清洗,直到靶面金属氧化物被溅射掉,能够溅射出纯金属,再通入反应气体,待溅射过程以及公转盘转速稳定后,再开挡板,进行薄膜沉积。The twin target and the plasma source are fixed on the wall of the vacuum chamber, the distance between them is less than 1/2 of the circumference of the vacuum chamber, and the positions of the two are interchangeable, which is directly related to the rotation direction of the revolution disk. The front surface of the twin target is equipped with a pneumatic baffle. Before each coating, only the working gas is introduced to clean the target surface until the metal oxide on the target surface is sputtered off, and pure metal can be sputtered, and then the reaction gas is introduced. After the sputtering process and the rotation speed of the orbiting disk are stable, the baffle is opened to deposit the film.
需要说明的是:非平衡磁场孪生靶或非平衡磁场单靶都可以用做Ti靶。It should be noted that either the unbalanced magnetic field twin target or the unbalanced magnetic field single target can be used as the Ti target.
具体的工艺参数:Specific process parameters:
离子源功率0~3.5kw调节;Ti靶电流:1~15A调节;基底偏压:-80~-200V;靶基距:120mm;氩气流量:200~300sccm;氮气流量:12~30sccm;本底真空度:5×10-3Pa至5×10-4Pa之间;工作气压:0.1~1Pa调节。Ion source power 0~3.5kw adjustment; Ti target current: 1~15A adjustment; base bias voltage: -80~-200V; target base distance: 120mm; argon flow: 200~300sccm; nitrogen flow: 12~30sccm; Bottom vacuum: 5×10 -3 Pa to 5×10 -4 Pa; working pressure: 0.1~1Pa adjustment.
实施例1:Example 1:
将尺寸为40×40×5mm的钢片和φ20的硅片经过清洗干燥后放入设备真空室,抽真空至<3Pa,开高阀、加热管,待温度稳定在100℃,真空抽至5×10-3Pa,充氩气,用质量流量计控制氩气进气流量,使其稳定在0.5Pa,开启公转盘,转速稳定在5r/min,无离子源辅助,Ti靶电源电流至9A,使Ti起辉,逐步增加负偏压-80V。通入氮气,质量流量计控制氮气进气流量18sccm。打开挡板,开始计时,通过控制沉积时间制备厚度不同的TiN硬质薄膜。Put the 40×40×5mm steel sheet and φ20 silicon sheet into the vacuum chamber of the equipment after cleaning and drying, vacuumize to <3Pa, open the high valve and heating pipe, wait for the temperature to stabilize at 100°C, and vacuum to 5 ×10 -3 Pa, filled with argon gas, using a mass flow meter to control the argon gas intake flow rate to keep it stable at 0.5 Pa, turn on the revolution disk, the speed is stable at 5r/min, without ion source assistance, the Ti target power supply current is up to 9A , to make Ti glow, gradually increase the negative bias -80V. Nitrogen is introduced, and the mass flow meter controls the nitrogen intake flow rate to 18 sccm. Open the baffle, start timing, and prepare TiN hard films with different thicknesses by controlling the deposition time.
所制备的薄膜利用美国PE公司的Lambda950紫外-可见-近红外分光光度计进行了透过率测试,测试结果如图2所示a曲线,从图中可以看出,在无等离子体辅助时氮化钛薄膜反射率较低。利用原子力显微镜对所制备的薄膜进行了微观形貌的测试,测试结果如图3(a)所示,测试结果表明氮化钛薄膜表面粗糙,颗粒尺寸不一,形状无规律。The prepared film was tested for transmittance by using a Lambda950 UV-Vis-NIR spectrophotometer from PE Company in the United States. The test results are shown in the curve a in Figure 2. The reflectivity of TiO film is low. The microscopic morphology of the prepared film was tested by atomic force microscope. The test results are shown in Figure 3(a). The test results show that the surface of the titanium nitride film is rough, the particle size is different, and the shape is irregular.
实施例2:Example 2:
将尺寸为40×40×5mm的钢片和φ20的硅片经过清洗干燥后放入设备真空室,抽真空至<3Pa,开高阀、加热管,待温度稳定在100℃,真空抽至5×10-3Pa,充氩气,用质量流量计控制氩气进气流量,使其稳定在0.5Pa,开启公转盘,转速稳定在5r/min,逐步增加离子源功率至500W,Ti靶电源电流至9A,使Ti起辉,逐步增加负偏压-80V。通入氮气,质量流量计控制氮气进气流量18sccm。打开挡板,开始计时,通过控制沉积时间制备厚度不同的TiN硬质薄膜。Put the 40×40×5mm steel sheet and the φ20 silicon sheet into the vacuum chamber of the equipment after cleaning and drying, vacuumize to <3Pa, open the high valve and heating pipe, wait for the temperature to stabilize at 100°C, and vacuum to 5 ×10-3Pa, fill with argon, use a mass flow meter to control the argon gas intake flow rate to keep it stable at 0.5Pa, turn on the revolution disk, and keep the speed at 5r/min, gradually increase the ion source power to 500W, Ti target power supply current To 9A, make Ti glow, and gradually increase the negative bias -80V. Nitrogen is introduced, and the mass flow meter controls the nitrogen intake flow rate to 18 sccm. Open the baffle, start timing, and prepare TiN hard films with different thicknesses by controlling the deposition time.
利用光度计对所制备的薄膜进行了透过率测试,测试结果如图2所示b曲线,从图中可以看出,施加等离子体辅助后氮化钛薄膜反射率变高。利用原子力显微镜对所制备的薄膜进行了微观形貌的测试,测试结果如图3(b)所示,测试结果表明随着等离子体源功率增加,薄膜的结晶度、致密性及硬度得到提高,表面粗糙度小,薄膜与衬底有较高的结合力,很难产生局部脱落。A photometer was used to test the transmittance of the prepared film, and the test results are shown in the curve b in Figure 2. It can be seen from the figure that the reflectance of the titanium nitride film becomes higher after plasma assistance is applied. The microscopic morphology of the prepared film was tested using an atomic force microscope. The test results are shown in Figure 3(b). The test results show that as the power of the plasma source increases, the crystallinity, compactness and hardness of the film are improved. The surface roughness is small, the film and the substrate have a high bonding force, and it is difficult to produce local shedding.
本发明通过对传统磁控溅射技术的改进,在真空室内引入一等离子体区域,采用中频脉冲直流或直流溅射溅射Ti金属靶,并控制工作气体压强、温度、时间、溅射功率等工艺条件,在衬底上沉积TiN薄膜。使用本方法可以在低温环境下性能良好的TiN薄膜,薄膜的结晶度、致密性及硬度得到提高,表面粗糙度小,薄膜与衬底有较高的结合力,很难产生局部脱落。本发明可以为硬质薄膜的实验研究或工业生产提供样品。The invention introduces a plasma region in the vacuum chamber by improving the traditional magnetron sputtering technology, adopts intermediate frequency pulse direct current or direct current sputtering to sputter the Ti metal target, and controls the working gas pressure, temperature, time, sputtering power, etc. Process conditions, deposit TiN film on the substrate. The method can produce a TiN thin film with good performance in low temperature environment, the crystallinity, compactness and hardness of the thin film are improved, the surface roughness is small, the thin film and the substrate have high binding force, and it is difficult to produce local shedding. The invention can provide samples for the experimental research or industrial production of the hard film.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310681582.XA CN104711527A (en) | 2013-12-11 | 2013-12-11 | Method for magnetron sputtering low-temperature preparation of TiN film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310681582.XA CN104711527A (en) | 2013-12-11 | 2013-12-11 | Method for magnetron sputtering low-temperature preparation of TiN film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104711527A true CN104711527A (en) | 2015-06-17 |
Family
ID=53411238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310681582.XA Pending CN104711527A (en) | 2013-12-11 | 2013-12-11 | Method for magnetron sputtering low-temperature preparation of TiN film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104711527A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105234439A (en) * | 2015-11-23 | 2016-01-13 | 江苏切剀刀具有限公司 | Cutter blade and preparation method thereof |
CN106011765A (en) * | 2016-07-12 | 2016-10-12 | 广东振华科技股份有限公司 | Magnetron sputtering vacuum coating equipment |
CN108570642A (en) * | 2018-07-25 | 2018-09-25 | 衡阳舜达精工科技有限公司 | A kind of C film low temperature controllable deposition method and device |
CN109338319A (en) * | 2018-11-02 | 2019-02-15 | 太原理工大学 | A method for improving the strength and toughness of titanium-aluminum-nitrogen coating on the surface of cemented carbide |
CN111893441A (en) * | 2019-05-06 | 2020-11-06 | 领凡新能源科技(北京)有限公司 | Preparation method of film and reaction chamber |
CN113463054A (en) * | 2021-07-09 | 2021-10-01 | 大连理工大学 | Full magnetron sputtering multilayer composite metallization method for dielectric filter |
CN114335439A (en) * | 2021-12-30 | 2022-04-12 | 中国工程物理研究院电子工程研究所 | Plasma-induced growth of highly crystalline thin film electrode and preparation method of thin film battery |
CN114408852A (en) * | 2020-10-13 | 2022-04-29 | 天津工业大学 | A new type of micro-nano structured CaF2 film with hydrophobic anti-reflection and preparation method thereof |
CN114672775A (en) * | 2020-12-24 | 2022-06-28 | 中国科学院微电子研究所 | Sputtering device and wafer coating method |
CN115433915A (en) * | 2022-09-06 | 2022-12-06 | 遨天科技(北京)有限公司 | Equipment for spraying welding layer on cathode tube |
CN116005108A (en) * | 2022-11-29 | 2023-04-25 | 星弧涂层新材料科技(苏州)股份有限公司 | Composite hydrogen-resistant coating processing method and composite hydrogen-resistant coating |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1338530A (en) * | 2001-04-20 | 2002-03-06 | 大连理工大学 | Plasma intensified non-balance magnetically controlled sputter method |
KR20120131615A (en) * | 2011-05-26 | 2012-12-05 | 한국세라믹기술원 | Complex nitride coating film with excellent hardness and abration resistance and method of manufacturing the same |
CN103074586A (en) * | 2013-01-23 | 2013-05-01 | 中国科学院金属研究所 | Low-temperature and low-damage multifunctional composite coating device and method |
-
2013
- 2013-12-11 CN CN201310681582.XA patent/CN104711527A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1338530A (en) * | 2001-04-20 | 2002-03-06 | 大连理工大学 | Plasma intensified non-balance magnetically controlled sputter method |
KR20120131615A (en) * | 2011-05-26 | 2012-12-05 | 한국세라믹기술원 | Complex nitride coating film with excellent hardness and abration resistance and method of manufacturing the same |
CN103074586A (en) * | 2013-01-23 | 2013-05-01 | 中国科学院金属研究所 | Low-temperature and low-damage multifunctional composite coating device and method |
Non-Patent Citations (3)
Title |
---|
卢春灿: "外部等离子体辅助磁控溅射低温沉积氮化钛薄膜的研究", 《中国学位论文全文数据库》 * |
张以忱: "中频非平衡磁控溅射制备硬质复合薄膜的研究", 《中国学位论文全文数据库》 * |
张以忱等: "中频非平衡磁控溅射制备Ti-N-C膜", 《东北大学学报》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105234439A (en) * | 2015-11-23 | 2016-01-13 | 江苏切剀刀具有限公司 | Cutter blade and preparation method thereof |
CN106011765A (en) * | 2016-07-12 | 2016-10-12 | 广东振华科技股份有限公司 | Magnetron sputtering vacuum coating equipment |
CN108570642A (en) * | 2018-07-25 | 2018-09-25 | 衡阳舜达精工科技有限公司 | A kind of C film low temperature controllable deposition method and device |
CN108570642B (en) * | 2018-07-25 | 2024-05-03 | 衡阳舜达精工科技有限公司 | Low-temperature controllable deposition method and device for carbon film |
CN109338319A (en) * | 2018-11-02 | 2019-02-15 | 太原理工大学 | A method for improving the strength and toughness of titanium-aluminum-nitrogen coating on the surface of cemented carbide |
CN111893441A (en) * | 2019-05-06 | 2020-11-06 | 领凡新能源科技(北京)有限公司 | Preparation method of film and reaction chamber |
CN114408852A (en) * | 2020-10-13 | 2022-04-29 | 天津工业大学 | A new type of micro-nano structured CaF2 film with hydrophobic anti-reflection and preparation method thereof |
CN114672775A (en) * | 2020-12-24 | 2022-06-28 | 中国科学院微电子研究所 | Sputtering device and wafer coating method |
CN113463054B (en) * | 2021-07-09 | 2022-08-09 | 大连理工大学 | Full magnetron sputtering multilayer composite metallization method for dielectric filter |
CN113463054A (en) * | 2021-07-09 | 2021-10-01 | 大连理工大学 | Full magnetron sputtering multilayer composite metallization method for dielectric filter |
CN114335439A (en) * | 2021-12-30 | 2022-04-12 | 中国工程物理研究院电子工程研究所 | Plasma-induced growth of highly crystalline thin film electrode and preparation method of thin film battery |
CN115433915A (en) * | 2022-09-06 | 2022-12-06 | 遨天科技(北京)有限公司 | Equipment for spraying welding layer on cathode tube |
CN116005108A (en) * | 2022-11-29 | 2023-04-25 | 星弧涂层新材料科技(苏州)股份有限公司 | Composite hydrogen-resistant coating processing method and composite hydrogen-resistant coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104711527A (en) | Method for magnetron sputtering low-temperature preparation of TiN film | |
CN103668092B (en) | A kind of plasma-aid magnetron sputtering deposition method | |
CN103695858B (en) | A kind of multi-functional full-automatic ion film coating machine for cutter coat deposition and using method thereof | |
CN103668095B (en) | A kind of high power pulse plasma enhancing combined magnetic-controlled sputter deposition apparatus and using method thereof | |
CN108396295A (en) | Curved surface magnetic control sputtering cathode, closed magnetic field coating magnetron sputtering apparatus and its application process | |
CN105714256A (en) | Method for low-temperature preparation of DLC film through magnetron sputtering | |
CN104141109B (en) | Method for in-situ synthesis of composite TiC-DLC coating on surface of titanium | |
CN107267916A (en) | It is a kind of in method of the carbide surface by Deposited By Dc Magnetron Sputtering W N hard films | |
CN111349901A (en) | A kind of preparation method of high temperature resistant alumina thick film coating for cutting tool | |
CN101457359A (en) | Method for preparing Ti-Si-N nanocrystalline-amorphous composite superhard coating | |
CN1793416A (en) | Apparatus and tech., for composite preparing metal film | |
CN100387754C (en) | A kind of preparation method of chromium-containing diamond-like carbon film | |
CN111575652A (en) | Vacuum coating equipment and vacuum coating method | |
CN101403101A (en) | Quick solid-ceramic coating ion plating apparatus | |
CN104060231A (en) | TaN-Ag hard thin film and preparation method | |
CN102094173B (en) | In-situ plasma Ti/Cu composite coating plating process | |
CN103215556B (en) | A kind of built-up type spectral selectivity absorbing membranous layer quick sedimentation process | |
CN107217238A (en) | A kind of preparation method of titanium-aluminum-zirconium nitride plated film carbide drill | |
CN106637116B (en) | A simple preparation method of secondary electron emission film | |
CN116288201A (en) | Iron-carbon alloy target and film preparation method thereof | |
CN116623131A (en) | A kind of crystalline Cu/amorphous MgCuY anti-corrosion multilayer film and preparation method thereof | |
CN211256073U (en) | Device for preparing low oxygen content easily oxidized thin film by ion plating in non-ultra-high vacuum environment | |
CN108505006A (en) | A method of using the pure Ti films of magnetron sputtering deposition nanometer | |
CN103898457B (en) | TiWN hard nanometer structural membrane and preparation method | |
CN110484887A (en) | A kind of rare-earth permanent magnet surface fast vacuum aluminum plating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150617 |
|
WD01 | Invention patent application deemed withdrawn after publication |