CN104673816A - PCr-NHEJ (non-homologous end joining) carrier as well as construction method of pCr-NHEJ carrier and application of pCr-NHEJ carrier in site-specific knockout of bacterial genes - Google Patents
PCr-NHEJ (non-homologous end joining) carrier as well as construction method of pCr-NHEJ carrier and application of pCr-NHEJ carrier in site-specific knockout of bacterial genes Download PDFInfo
- Publication number
- CN104673816A CN104673816A CN201510097590.9A CN201510097590A CN104673816A CN 104673816 A CN104673816 A CN 104673816A CN 201510097590 A CN201510097590 A CN 201510097590A CN 104673816 A CN104673816 A CN 104673816A
- Authority
- CN
- China
- Prior art keywords
- pcr
- seq
- vector
- nhej
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明属于基因工程技术领域,具体涉及一种pCr-NHEJ载体及其构建方法及其用于细菌基因定点敲除的应用。本发明的pCr-NHEJ载体的序列具有SEQ ID NO: 1所示的序列。该pCr-NHEJ载体在定点敲除细菌基因中的应用。本发明的技术原理在于:NHEJ与CRISPR-Cas9联合应用,以实现在CRISPR-Cas9系统切割细菌基因组DNA造成DNA断裂后,NHEJ系统即可自动连接DNA断端,使细菌存活,而无需人工引入与靶序列具有同源性的双链DAN修复DNA断端,从而简化CRISPR-Cas9技术的操作步骤。
The invention belongs to the technical field of genetic engineering, and in particular relates to a pCr-NHEJ vector, a construction method thereof and an application for targeted knockout of bacterial genes. The sequence of the pCr-NHEJ vector of the present invention has the sequence shown in SEQ ID NO: 1. Application of the pCr-NHEJ vector in site-directed knockout of bacterial genes. The technical principle of the present invention is: the joint application of NHEJ and CRISPR-Cas9, in order to realize that after the CRISPR-Cas9 system cuts the bacterial genome DNA and causes DNA breaks, the NHEJ system can automatically connect the DNA ends, so that the bacteria can survive without manual introduction and Double-stranded DNA with homology to the target sequence repairs DNA breaks, thereby simplifying the operation steps of CRISPR-Cas9 technology.
Description
技术领域 technical field
[本发明涉及基因工程技术领域,具体涉及一种pCr-NHEJ载体及其构建方法及其用于细菌基因定点敲除的应用。 [ The present invention relates to the technical field of genetic engineering, in particular to a pCr-NHEJ vector and its construction method and its application for bacterial gene knockout.
背景技术 Background technique
2013年出版的《Science》报道了一种简单、高效的基因定点编辑技术——CRISPR-Cas9(clustered regularly interspaced short palindromic repeat; CRISPR-associated,CRISPR-Cas9)。该技术系统由一种来自链球菌的Cas9核酸酶、一个序列恒定的tracrRNA(trans-activating crRNA)和一个与靶基因特异性互补的20nt-crRNA(CRISPR RNAs)组成。tracrRNA的3’端形成的高级结构结合并激活Cas9,tracrRNA的5’端与crRNA的3’端互补连接,而crRNA的5’端与靶基因互补配对,由此引导Cas9到达并切断靶序列。现在已经把两种小RNA 融合成一条RNA 链,简称sgRNA(single guide RNA),采用sgRNA进行操作更便捷。由于该技术只需要针对靶基因设计一段特异性的crRNA序列,即可快捷地实现基因的定点敲除。这一技术不仅彻底改变了传统基因组定点编辑技术的概念,并在短短两年内被成功应用于对多种生物的基因组进行定点敲除、敲入或者突变。 "Science" published in 2013 reported a simple and efficient gene-directed editing technology - CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat; CRISPR-associated, CRISPR-Cas9). The technology system consists of a Cas9 nuclease from Streptococcus, a sequence-constant tracrRNA (trans-activating crRNA) and a 20nt-crRNA (CRISPR RNAs) specifically complementary to the target gene. The advanced structure formed by the 3' end of tracrRNA binds and activates Cas9, the 5' end of tracrRNA is complementary to the 3' end of crRNA, and the 5' end of crRNA is complementary to the target gene, thereby guiding Cas9 to reach and cut off the target sequence. Now two small RNAs have been fused into one RNA chain, referred to as sgRNA (single guide RNA), and it is more convenient to use sgRNA to operate. Because this technology only needs to design a specific crRNA sequence for the target gene, it can quickly realize the targeted knockout of the gene. This technology has not only completely changed the concept of traditional genome editing technology, but has been successfully applied to genome knockout, knockin or mutation of various organisms in just two years.
sgRNA 分子由间隔序列(spacer)和trancrRNA两段序列构成:1)间隔序列长度为20nt,与基因的靶位点互补,它位于PAM(Protospacer-Adjacent Motif)序列(NGG)的5’端,需要根据靶基因序列单独设计;2)tracrRNA序列恒定,能结合并激活Cas9蛋白质。在spacer的引导下,sgRNA将活化的Cas9蛋白带至基因的靶位点,在PAM序列上游3-8碱基间将靶基因的DNA 双链切断,形成钝性末端的断裂。在真核细胞中,Cas9切断双链DNA后,细胞可自主产生同源重组(homologous recombination,HR)或者非同源末端连接(Non-homologous End Joining, NHEJ)两种机制修复受损DNA,产生插入突变、移码突变、基因敲入等。 The sgRNA molecule is composed of a spacer sequence (spacer) and a trancrRNA sequence: 1) The spacer sequence is 20nt in length and is complementary to the target site of the gene. It is located at the 5' end of the PAM (Protospacer-Adjacent Motif) sequence (NGG). Individually designed according to the target gene sequence; 2) The tracrRNA sequence is constant and can bind and activate the Cas9 protein. Under the guidance of the spacer, the sgRNA brings the activated Cas9 protein to the target site of the gene, and cuts the DNA double strand of the target gene between 3-8 bases upstream of the PAM sequence, forming a blunt end break. In eukaryotic cells, after Cas9 cuts double-stranded DNA, the cell can autonomously produce homologous recombination (homologous recombination, HR) or non-homologous end joining (Non-homologous End Joining, NHEJ) two mechanisms to repair damaged DNA, resulting in Insertion mutation, frameshift mutation, gene knock-in, etc.
sgRNA 和Cas9 基因和sgRNA编码DNA可位于同一个或不同质粒中,在相应启动子的调控下,在细胞内表达。此外,sgRNA也可以通过体外转录合成,与Cas9质粒共转化宿主细胞。 sgRNA and Cas9 genes and sgRNA-encoding DNA can be located in the same or different plasmids, and expressed in cells under the control of corresponding promoters. In addition, sgRNA can also be synthesized by in vitro transcription and co-transform host cells with the Cas9 plasmid.
在CRISPR-Cas9技术发明以前,细菌的基因敲除主要依靠基于同源重组技术。这种技术存在效率低下,操作过程复杂,需要耗费长的时间筛选阳性克隆等缺点。研究表明,与上述同源重组技术相比,CRISPR-Cas9 技术具有以下有点:1)效率高,CRISPR-Cas9 技术敲除目的基因是同源重组技术的1000倍;2)可采用同一个CRISPR-Cas9 载体同时或先后对多个靶点进行敲除3)操作简便,只需要根据靶基因设计一条或者两条sgRNA,并将sgRNA的编码DNA克隆入载体,然后转化细菌即可实现基因敲除。 Before the invention of CRISPR-Cas9 technology, gene knockout in bacteria mainly relied on homologous recombination technology. This technique has disadvantages such as low efficiency, complex operation process, and long time for screening positive clones. Studies have shown that compared with the above-mentioned homologous recombination technology, CRISPR-Cas9 technology has the following advantages: 1) High efficiency, CRISPR-Cas9 technology knockout target gene is 1000 times that of homologous recombination technology; 2) The same CRISPR-Cas9 technology can be used The Cas9 vector knocks out multiple targets at the same time or successively 3) It is easy to operate, only need to design one or two sgRNAs according to the target gene, clone the coding DNA of the sgRNA into the vector, and then transform the bacteria to achieve gene knockout.
然而,由于绝大部分细菌不具备自主的非同源末端链接系统,Cas9蛋白切割细菌基因组DNA造成的DSB将直接导致细菌死亡,基因敲除操作也随之失败。因此,现有技术中,为避免细菌死亡,需要同时通过电穿孔转化向细菌内导入与靶序列具有高度同源性的线性双链DNA,从而增加了操作步骤和费用。由于构建同源线性双链DNA需要经过多次PCR并连接PCR产物,进一步增加了操作步骤和费用。因此,现有技术的CRISPR-Cas9系统存在操作繁琐、操作难度大、基因敲除效率仍然不够高的缺点。 However, since most bacteria do not have an autonomous non-homologous end-joining system, the DSB caused by Cas9 protein cutting bacterial genomic DNA will directly lead to bacterial death, and the gene knockout operation will also fail. Therefore, in the prior art, in order to avoid bacterial death, it is necessary to introduce linear double-stranded DNA with high homology to the target sequence into the bacteria through electroporation transformation at the same time, thereby increasing the operation steps and costs. Since the construction of homologous linear double-stranded DNA requires multiple PCRs and ligation of PCR products, the operation steps and costs are further increased. Therefore, the CRISPR-Cas9 system of the prior art has the disadvantages of cumbersome operation, high difficulty of operation, and insufficient gene knockout efficiency.
发明内容 Contents of the invention
本发明的目的之一在于针对现有技术的不足,提供一种pCr-NHEJ载体,该pCr-NHEJ载体能够用于细菌基因敲除,具有基因敲除效率高的优点。 One of the objectives of the present invention is to provide a pCr-NHEJ vector for the deficiencies of the prior art, which can be used for bacterial gene knockout and has the advantage of high gene knockout efficiency.
本发明的目的之二在于针对现有技术的不足,提供一种pCr-NHEJ载体的构建方法,该pCr-NHEJ载体的构建方法具有操作简单、操作难度低的优点。 The second object of the present invention is to provide a method for constructing a pCr-NHEJ vector in view of the deficiencies in the prior art. The method for constructing a pCr-NHEJ vector has the advantages of simple operation and low operation difficulty.
本发明的目的之三在于针对现有技术的不足,提供pCr-NHEJ载体用于细菌基因定点敲除的应用。 The third object of the present invention is to provide the application of pCr-NHEJ vector for site-directed knockout of bacterial genes in view of the deficiencies in the prior art.
为了实现上述目的之一,本发明采用如下技术方案: In order to achieve one of the above objects, the present invention adopts the following technical solutions:
提供一种pCr-NHEJ载体,所述pCr-NHEJ载体的序列具有SEQ ID NO: 1所示的序列。 A pCr-NHEJ vector is provided, the sequence of the pCr-NHEJ vector has the sequence shown in SEQ ID NO: 1.
为了实现上述目的之二,本发明采用如下技术方案: In order to achieve the above-mentioned object two, the present invention adopts the following technical solutions:
提供上述所述一种pCr-NHEJ载体在定点敲除细菌基因中的应用。 The application of the aforementioned pCr-NHEJ vector in site-directed knockout of bacterial genes is provided.
为了实现上述目的之三,本发明采用如下技术方案: In order to achieve the above object three, the present invention adopts the following technical solutions:
提供一种pCr-NHEJ载体的构建方法,包括如下步骤: A method for constructing a pCr-NHEJ carrier is provided, comprising the steps of:
(1)采用革兰阴性菌的广宿主质粒PBBR1MCS-2(GI:773412)作为基础载体;cas9 (1) The broad host plasmid P BBR1MCS-2 (GI: 773412) of Gram-negative bacteria was used as the basic vector; cas9
(2)采用带有用于mRNA转录的原核启动子PLtetO-1的上游引物和下游引物分别扩增如下三个蛋白基因:cas9(GI:674296984)、ku(GI:444893469)和ligD(GI:444893469),分别得到cas9扩增产物、ku扩增产物和ligD扩增产物;其中,cas9、ku和ligD三个蛋白基因的开放读码框均位于独立的PLtetO-1下游,以便使cas9、ku和ligD三个蛋白基因的表达均受该启动子的调控;所述cas9扩增产物、所述ku扩增产物和所述ligD扩增产物之间带有15nt的碱基重叠; (2) Using the upstream and downstream primers with prokaryotic promoter PLtetO-1 for mRNA transcription to amplify the following three protein genes: cas9 (GI:674296984), ku (GI:444893469) and ligD (GI:444893469 ) to obtain cas9 amplification products, ku amplification products and ligD amplification products respectively; among them, the open reading frames of the three protein genes of cas9 , ku and ligD are all located downstream of the independent PLtetO-1, so that cas9 , ku and ligD The expression of the three protein genes of ligD is regulated by the promoter; there is a 15nt base overlap between the cas9 amplification product, the ku amplification product and the ligD amplification product;
(3)所述cas9扩增产物的3’端与所述ku扩增产物的5’端,所述ku扩增产物的3’端与所述ligD扩增产物3’端之间,均带有15nt的碱基重叠,通过in-fusion PCR连接所述cas9扩增产物、所述ku扩增产物和所述ligD扩增产物,得到第一连接物; (3) Between the 3' end of the cas9 amplification product and the 5' end of the ku amplification product, and between the 3' end of the ku amplification product and the 3' end of the ligD amplification product, there are There is a 15nt base overlap, and the cas9 amplification product, the ku amplification product and the ligD amplification product are connected by in-fusion PCR to obtain a first connection;
(4)用限制性核酸内切酶KpnI和HindIII进行双酶切基础载体PBBR1MCS-2,得到基础载体的酶切产物;所述酶切产物经凝胶电泳、切胶并采用DNA回收试剂盒纯化酶切产物;然后采用in-fusion PCR连接所述纯化后的酶切产物和第一连接物,得到载体pNHEJ; (4) Double-digest the base vector P BBR1MCS-2 with restriction endonucleases KpnI and HindIII to obtain the digested product of the basic vector; the digested product is subjected to gel electrophoresis, gel cutting and DNA recovery kit purifying the digested product; then using in-fusion PCR to connect the purified digested product and the first linker to obtain the vector pNHEJ;
(5)利用NotI和SpeI双酶切所述载体pNHEJ,得到载体pNHEJ的酶切产物; (5) Using NotI and SpeI to double-digest the vector pNHEJ to obtain the digested product of the vector pNHEJ;
(6)向所述载体pNHEJ中同时引入相邻的两个倒置的BsaI酶切位点和相邻的两个倒置的BsmAI酶切位点,用于转录形成能够同时结合目的基因两个位置的sgRNA;其中,带有相邻的两个倒置的BsaI酶切位点的DNA片段为DBsaI,带有相邻的两个倒置的BsmAI酶切位点的DNA片段为DBsmAI; (6) Simultaneously introduce two adjacent inverted BsaI restriction sites and two adjacent inverted BsmAI restriction sites into the vector pNHEJ for transcription to form a gene that can simultaneously bind to two positions of the target gene sgRNA; wherein, the DNA fragment with two adjacent inverted BsaI restriction sites is DBsaI, and the DNA fragment with two adjacent inverted BsmAI restriction sites is DBsmAI;
(7)通过in-fusion PCR将DBsaI、DBsmAI进行链接,得到第二连接产物; (7) Linking DBsaI and DBsmAI by in-fusion PCR to obtain the second linking product;
(8)通过in-fusion PCR将所述第二连接产物和载体pNHEJ的酶切产物连接起来,获得用于敲除靶基因的CRISPR-Cas9系统,即pCr-NHEJ载体。 (8) Ligate the second ligation product and the digested product of the vector pNHEJ by in-fusion PCR to obtain the CRISPR-Cas9 system for knocking out the target gene, namely the pCr-NHEJ vector.
上述技术方案中,所述步骤(2)中,采用具有SEQ ID NO: 2所示序列的引物PPLtetO-1-cas9U和具有SEQ ID NO: 3所示序列的引物PCas9D扩增所述cas9蛋白基因,得到cas9扩增产物; In the above technical scheme, in the step (2), the cas9 protein gene is amplified using the primer PPLtetO-1-cas9U having the sequence shown in SEQ ID NO: 2 and the primer PCas9D having the sequence shown in SEQ ID NO: 3 , to obtain the cas9 amplification product;
采用具有SEQ ID NO: 4所示序列的引物PPLtetO-1-KuU和具有SEQ ID NO: 5所示序列的引物PkuD扩增所述ku蛋白基因,得到ku扩增产物; Using primer PPLtetO-1-KuU having the sequence shown in SEQ ID NO: 4 and primer PkuD having the sequence shown in SEQ ID NO: 5 to amplify the ku protein gene to obtain ku amplification products;
采用具有SEQ ID NO: 6所示序列的引物PLtetO-1-ligDU和具有SEQ ID NO: 7所示序列的引物PligDD扩增所述ligD蛋白基因,得到ligD扩增产物。 The ligD protein gene was amplified by using the primer PLtetO-1-ligDU having the sequence shown in SEQ ID NO: 6 and the primer PligDD having the sequence shown in SEQ ID NO: 7 to obtain the ligD amplification product.
上述技术方案中,所述步骤(6)中,带有相邻的两个倒置的BsaI酶切位点的DNA片段DBsaI的构建如下: In the above technical scheme, in the step (6), the construction of the DNA fragment DBsaI with two adjacent inverted BsaI restriction sites is as follows:
首先直接合成具有SEQ ID NO: 8所示序列的DNA序列BsaIU和具有SEQ ID NO: 9所示序列的DNA序列BsaID,其中,BsaIU的3’端和BsaID的5’端有15nt的重叠序列;其中,BsaID含有tracrRNA序列; First directly synthesize the DNA sequence BsaIU with the sequence shown in SEQ ID NO: 8 and the DNA sequence BsaID with the sequence shown in SEQ ID NO: 9, wherein the 3' end of BsaIU and the 5' end of BsaID have a 15nt overlapping sequence; Wherein, BsaID contains tracrRNA sequence;
通过in-fusion PCR将BsaIU和BsaID连接起来;然后采用具有SEQ ID NO: 10所示序列的引物PBsaIU和具有SEQ ID NO: 11所示序列的引物PBsaID,PCR扩增,即得到带有相邻的两个倒置的BsaI酶切位点的DNA片段DBsaI。 Connect BsaIU and BsaID by in-fusion PCR; Then adopt primer PBsaIU with sequence shown in SEQ ID NO: 10 and primer PBsaID with sequence shown in SEQ ID NO: 11, PCR amplification, promptly obtain DNA fragment DBsaI with two inverted BsaI restriction sites.
上述技术方案中,所述步骤(6)中,带有相邻的两个倒置的BsmAI酶切位点的DNA片段DBsmAI的构建如下: In the above technical scheme, in the step (6), the construction of the DNA fragment DBsmAI with two adjacent inverted BsmAI restriction sites is as follows:
首先直接合成具有SEQ ID NO: 12所示序列的DNA序列BsmAIU和具有SEQ ID NO: 13所示序列的DNA序列BsmAID;其中,BsmAID含有tracrRNA序列; First directly synthesize the DNA sequence BsmAIU with the sequence shown in SEQ ID NO: 12 and the DNA sequence BsmAID with the sequence shown in SEQ ID NO: 13; wherein, BsmAID contains the tracrRNA sequence;
通过in-fusion PCR将所述DNA序列BsmAIU和所述DNA序列BsmAID连接起来;然后采用具有SEQ ID NO: 14所示序列的引物PBsmAIU和具有SEQ ID NO: 15所示序列的引物PBsmAID,进行PCR扩增,即得到带有相邻的两个倒置的BsmAI酶切位点的DNA片段DBsmAI。 Connect the DNA sequence BsmAIU and the DNA sequence BsmAID by in-fusion PCR; then use primer PBsmAIU with the sequence shown in SEQ ID NO: 14 and primer PBsmAID with the sequence shown in SEQ ID NO: 15 to carry out PCR Amplify to obtain the DNA fragment DBsmAI with two adjacent inverted BsmAI restriction sites.
上述所述的一种pCr-NHEJ载体的构建方法所构建的pCr-NHEJ载体在定点敲除细菌基因中的应用。 Application of the pCr-NHEJ vector constructed by the above-mentioned construction method of a pCr-NHEJ vector in site-directed knockout of bacterial genes.
本发明与现有技术相比较,有益效果在于: Compared with the prior art, the present invention has beneficial effects as follows:
(1)本发明的一种pCr-NHEJ载体,该pCr-NHEJ载体能够用于细菌基因敲除,具有基因敲除效率高的优点。 (1) A pCr-NHEJ vector of the present invention, the pCr-NHEJ vector can be used for bacterial gene knockout, and has the advantage of high gene knockout efficiency.
(2)本发明的一种pCr-NHEJ载体的构建方法,该pCr-NHEJ载体的构建方法具有操作简单、操作难度低的优点。 (2) A method for constructing a pCr-NHEJ vector of the present invention, the method for constructing a pCr-NHEJ vector has the advantages of simple operation and low operation difficulty.
(3)本发明提供pCr-NHEJ载体用于细菌基因定点敲除的应用,具有技术操作简单、操作难度低和基因敲除效率高的优点。 (3) The present invention provides the application of the pCr-NHEJ vector for targeted knockout of bacterial genes, which has the advantages of simple technical operation, low operation difficulty and high gene knockout efficiency.
(4)为省去PCR及PCR产物的连接步骤,本发明在一种广宿主质粒PBBR1MCS-2的基础上,构建了适合于多种革兰阴性细菌基因敲除的pCr-NHEJ载体,并向pCr-NHEJ载体中引入结核分枝杆菌的非同源末端链接系统( Non-homologous end joining,NHEJ )——ku和ligD基因。其中,Ku能够结合于DNA断端并募集DNA连接酶LigD,而LigD能够不依赖模板DNA,直接连接断裂DNA的末端。本申请采用结核分枝杆菌的NHEJ系统连接Cas9切割DNA所形成的断端,使接受基因敲除的细菌基因组DNA恢复环形结构,并使细菌得以存活(技术原理见图2)。 (4) In order to save the connection steps of PCR and PCR products, the present invention constructs a pCr-NHEJ vector suitable for gene knockout of various Gram-negative bacteria on the basis of a broad host plasmid P BBR1MCS-2, and The non-homologous end joining system (Non-homologous end joining, NHEJ) of Mycobacterium tuberculosis—ku and ligD genes—was introduced into the pCr-NHEJ vector. Among them, Ku can bind to DNA breaks and recruit DNA ligase LigD, and LigD can directly connect the ends of broken DNA without relying on template DNA. This application uses the NHEJ system of Mycobacterium tuberculosis to connect the broken end formed by Cas9 cutting DNA, so that the genomic DNA of the knocked-out bacteria can restore the circular structure and allow the bacteria to survive (see Figure 2 for the technical principle).
(5)采用本发明的技术实现只需构建靶基因的CRIPR-Cas9质粒,并进行质粒转化,构建pCr-NHEJ载体,无需同时转化线性同源DNA,即可实现对细菌基因组的敲除。本发明的技术操作更加简单,操作难度大大降低,基因敲除的效率达到87.5%~100%。 (5) Using the technology of the present invention, it is only necessary to construct the CRIPR-Cas9 plasmid of the target gene, and carry out plasmid transformation to construct the pCr-NHEJ vector, without simultaneously transforming linear homologous DNA, the knockout of the bacterial genome can be realized. The technical operation of the invention is simpler, the operation difficulty is greatly reduced, and the gene knockout efficiency reaches 87.5%-100%.
(6)本发明的一种pCr-NHEJ载体的构建方法,步骤(2)中,由于cas9扩增产物、ku扩增产物和ligD扩增产物之间带有15nt的碱基重叠,以便于采用In-fusion PCR连接使得cas9扩增产物、ku扩增产物和ligD扩增产物均位于独立的启动子调控下。 (6) In the method for constructing a pCr-NHEJ vector of the present invention, in step (2), since there is a base overlap of 15 nt between the cas9 amplification product, the ku amplification product and the ligD amplification product, it is convenient to use In-fusion PCR ligation made cas9 amplification products, ku amplification products and ligD amplification products all under the regulation of independent promoters.
(7)本发明的技术原理在于:NHEJ与CRISPR-Cas9联合应用,以实现在CRISPR-Cas9系统切割细菌基因组DNA造成DNA断裂后,NHEJ系统即可自动连接DNA断端,使细菌存活,而无需人工引入与靶序列具有同源性的双链DAN修复DNA断端,从而简化CRISPR-Cas9技术的操作步骤。 (7) The technical principle of the present invention lies in the joint application of NHEJ and CRISPR-Cas9 to realize that after the CRISPR-Cas9 system cuts the bacterial genomic DNA and causes DNA breaks, the NHEJ system can automatically connect the broken ends of the DNA so that the bacteria can survive without Artificially introducing double-stranded DNA with homology to the target sequence to repair DNA breaks, thereby simplifying the operation steps of CRISPR-Cas9 technology.
附图说明 Description of drawings
图1是革兰阴性菌的广宿主质粒PBBR1MCS-2的物理图谱。附图中,MCS,multiple cloning sites,多克隆位点;KmR为卡那霉素抗性基因;mob为质粒结合转移所需的序列;rep为质粒自主复制蛋白基因。 Figure 1 is a physical map of the broad host plasmid P BBR1MCS-2 of Gram-negative bacteria. In the figure, MCS, multiple cloning sites, multiple cloning sites; KmR, kanamycin resistance gene; mob, the sequence required for plasmid binding transfer; rep, the plasmid autonomous replication protein gene.
图2是本发明的技术原理图。 Fig. 2 is a technical schematic diagram of the present invention.
图3是本发明的载体pCr-NHEJ的物理图谱。图3中,在pBBR1MCS的多克隆位点上构建;双BsaI和双BsmAI为spacer DNA序列插入位点。 Fig. 3 is a physical map of the vector pCr-NHEJ of the present invention. In Figure 3, the multiple cloning site of pBBR1MCS is constructed; double BsaI and double BsmAI are spacer DNA sequence insertion sites.
图4是本发明的载体pNHEJ构建过程中的电泳图。图4中,A、B和C为cas9、ku和ligD基因PCR产物电泳图,泳道1均为DNA marker,从上至下依次为2000、1000、750、500、250和100;D,泳道2为cas9、ku和ligD基因连接后的PCR产物,泳道3为质粒pBBR1MCR的KpnI和HindIII的双酶切结果;E,质粒pNHEJ的电泳结果,箭头所指DNA条带大小为7500bp。 Fig. 4 is an electrophoresis diagram during the construction of the vector pNHEJ of the present invention. In Fig. 4, A, B and C are the electrophoresis diagrams of PCR products of cas9 , ku and li gD genes, and lane 1 is DNA marker, which are 2000, 1000, 750, 500, 250 and 100 from top to bottom; D, lane 2 is the PCR product after joining cas9 , ku and li gD genes, and lane 3 is the double enzyme digestion result of KpnI and HindIII of the plasmid pBBR1MCR; E, the electrophoresis result of the plasmid pNHEJ, the size of the DNA band indicated by the arrow is 7500bp.
图5是本发明的载体pCr-NHEJ构建过程中的电泳图。图5中,A,泳道1-7分别为BsaID、BsaIU、DBsaI、DBsmAI、BsmAIU和BsmAID 的PCR产物;B,为DBsaI和DBsmAI连接的产物;C,质粒pCr-NHEJ的电泳图。 Fig. 5 is an electrophoresis diagram during the construction of the vector pCr-NHEJ of the present invention. In Fig. 5, A, swimming lanes 1-7 are the PCR products of BsaID, BsaIU, DBsaI, DBsmAI, BsmAIU and BsmAID respectively; B, are the products connected with DBsaI and DBsmAI; C, the electrophoresis figure of plasmid pCr-NHEJ.
图6是敲除效率PCR鉴定结果。图6中,A、B和C分别为为大肠杆菌、铜绿假单胞菌和鲍曼不动杆菌的菌落PCR鉴定结果;鉴定的克隆数依次为11、11和8;A和B中的泳道12为阳性对照,C中的泳道5为阳性对照,基因敲除的阳性率分别为100%、100%和87.5%。 Figure 6 is the PCR identification result of knockout efficiency. In Fig. 6, A, B and C are respectively the colony PCR identification results of Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii; the number of identified clones is 11, 11 and 8 in sequence; the swimming lanes in A and B 12 is a positive control, lane 5 in C is a positive control, and the positive rates of gene knockout are 100%, 100% and 87.5%, respectively.
具体实施方式 Detailed ways
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 In order to make the technical problems, technical solutions and beneficial effects solved by the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
其中,本发明构建的pCr-NHEJ载体带有两个sgRNA骨架序列,能够先后通过在BsaI或BsmAI位点插入spacer DNA片段构建基因定点敲除的载体。 Among them, the pCr-NHEJ vector constructed by the present invention has two sgRNA backbone sequences, and can construct a gene-directed knockout vector by inserting spacer DNA fragments at BsaI or BsmAI sites successively.
其中,本发明的一种pCr-NHEJ载体的构建方法,步骤(2)中,采用具有SEQ ID NO: 2所示序列的引物PPLtetO-1-cas9U( gctctagaactagtgGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGATAAGAAATACTCAATAGG),其中,引物PPLtetO-1-cas9U的5’端下划线与pBBR1MCS-2的HindIII酶切产物的末端有15nt相同,以便于用in-fusion PCR连接;粗体字区域为启动子PLtetO-1-1、下划线碱基区域为启动子-33和-10区域。 Wherein, in the method for constructing a pCr-NHEJ vector of the present invention, in step (2), the primer PPLtetO-1-cas9U ( gctctagaactagtg GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCACAAGGAGTATACC ATGGATAAGAAATACTCAATAGG) having the sequence shown in SEQ ID NO: 2 is used, wherein, The underline at the 5' end of primer PPLtetO-1-cas9U is 15 nt identical to the end of the HindIII digested product of pBBR1MCS-2, so as to facilitate in-fusion PCR ligation; the region in bold is the promoter PLtetO-1-1, the underlined base The base regions are promoter -33 and -10 regions.
其中,本发明的一种pCr-NHEJ载体的构建方法,步骤(2)中,采用具有SEQ ID NO: 3所示序列的引物cas9D(agggatgtcaatctcTCAGTCACCTCCTAGCTGACTC),其中,引物cas9D的5’端下划线区与引物PPLtetO-1-KuU的5’端有15nt相同,以便于用in-fusion PCR连接。 Wherein, in the method for constructing a pCr-NHEJ vector of the present invention, in step (2), the primer cas9D ( agggatgtcaatctc TCAGTCACCTCTAGCTGACTC) having the sequence shown in SEQ ID NO: 3 is used, wherein the underlined region at the 5' end of the primer cas9D is aligned with The 5' end of the primer PPLtetO-1-KuU has the same 15nt, so as to be connected by in-fusion PCR.
其中,本发明的一种pCr-NHEJ载体的构建方法,步骤(2)中,采用具有SEQ ID NO: 4所示序列的引物PPLtetO-1-KuU( gctctagaactagtgGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGCGAGCCATTTGGACGGGTT),其中,粗体字部分为启动子PLtetO-1-1序列,粗体字区域为启动子PLtetO-1-1、下划线碱基区域为启动子-33和-10区域。 Wherein, in the construction method of a pCr-NHEJ vector of the present invention, in step (2), the primer PPLtetO-1-KuU ( gctctagaactagtg GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCACAAGGAGTATACC ATGCGAGCCATTTGGACGGGTT) having the sequence shown in SEQ ID NO: 4 is used, wherein, The part in bold is the promoter PLtetO-1-1 sequence, the region in bold is the promoter PLtetO-1-1, and the underlined base region is the promoter-33 and -10 regions.
其中,本发明的一种pCr-NHEJ载体的构建方法,步骤(2)中,采用具有SEQ ID NO: 6所示序列的引物PLtetO-1-ligDU( gctctagaactagtgGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGGTTCGGCGTCGGAG),其中,引物PLtetO-1-ligDU的5’端下划线区域与PkuD的5’端有15nt相同,以便于用in-fusion PCR连接;粗体字区域为启动子PLtetO-1-1、下划线碱基区域为启动子-33和-10区域。 Wherein, in the construction method of a pCr-NHEJ vector of the present invention, in step (2), the primer PLtetO-1-ligDU ( gctctagaactagtg GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCACAAGGAGTATACC ATGGGTTCGGCGTCGGAG) having the sequence shown in SEQ ID NO: 6 is used, wherein, The underlined region at the 5' end of the primer PLtetO-1-ligDU is 15 nt identical to the 5' end of PkuD for in-fusion PCR connection; the bold region is the promoter PLtetO-1-1, and the underlined base region is the promoter Sub-33 and -10 areas.
其中,本发明的一种pCr-NHEJ载体的构建方法,步骤(2)中,采用具有SEQ ID NO: 7所示序列的引物PligDD(GGGAACAAAGCTGG CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTCATTCGCGCACCACCTCACT),其中,引物PligDD的5’端下划线区域与pBBR1MCS-2的KpnI酶切产物的末端有15nt相同,以便于用in-fusion PCR连接;斜体字部分为T7-转录终止因子。 Wherein, in the method for constructing a pCr-NHEJ vector of the present invention, in step (2), the primer PligDD ( GGGAACAAAGCTGG CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAG TCATTCGCGCACCACCTCACT) having the sequence shown in SEQ ID NO: 7 is used, wherein the underlined region at the 5' end of the primer PligDD The end of the KpnI digested product of pBBR1MCS-2 has 15 nt identical to facilitate connection by in-fusion PCR; the italic part is T7-transcription termination factor.
其中,本发明的一种pCr-NHEJ载体的构建方法,在构建带有相邻的两个倒置的BsaI酶切位点的DNA片段DBsaI的过程中,所合成的DNA序列BsaIU(GAGATTGACATCCCTATCAGTGATAGAGATACTGAGCAC gagacc aaa GGTCTC gttttagagctaGAAAtagcaagttaa,SEQ ID NO: 8),其中,粗体字为用于RNA转录的PLtetO-1-2启动子序列。 Among them, in the construction method of a pCr-NHEJ vector of the present invention, in the process of constructing the DNA fragment DBsaI with two adjacent inverted BsaI restriction sites, the synthesized DNA sequence BsaIU ( GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCAC gagacc aaa GGTCTC gttttagagctaGAAAtagcaagttaa, SEQ ID NO: 8), where the bold font is the PLtetO-1-2 promoter sequence for RNA transcription.
其中,本发明的一种pCr-NHEJ载体的构建方法,在构建带有相邻的两个倒置的BsaI酶切位点的DNA片段DBsaI的过程中,所合成的DNA序列BsaID(GAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTC,SEQ ID NO: 9,tracrRNA序列),其中,BsaIU的3’端和BsaID的5’端有15nt的重叠序列,这样即可通过In-fusion PCR将BsaIU和BsaID二个基因片段连接起来。 Wherein, in the construction method of a pCr-NHEJ vector of the present invention, in the process of constructing a DNA fragment DBsaI with two adjacent inverted BsaI restriction sites, the synthesized DNA sequence BsaID (GAAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTC, SEQ ID NO: 9, tracrRNA sequence), wherein, the 3' end of BsaIU and the 5' end of BsaID have a 15nt overlapping sequence, so that the two gene fragments of BsaIU and BsaID can be connected by In-fusion PCR.
其中,本发明的一种pCr-NHEJ载体的构建方法,在构建带有相邻的两个倒置的BsmAI酶切位点的DNA片段DBsmAI的过程中,所合成的DNA序列BsmAIU(GAGATTGACATCCCTATCAGTGATAGAGATACTGAGCAC gagacaaagtctcg ttttagagctaGAAAtagcaagttaa,SEQ ID NO: 12),其中,粗体字为用于RNA转录的PLtetO-1-2启动子序列。 Among them, in the construction method of a pCr-NHEJ vector of the present invention, in the process of constructing the DNA fragment DBsmAI with two adjacent inverted BsmAI restriction sites, the synthesized DNA sequence BsmAIU ( GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCAC gagac aaa gtctcg ttttagagctaGAAAtagcaagttaa, SEQ ID NO: 12), wherein, the bold font is the PLtetO-1-2 promoter sequence for RNA transcription.
其中,本发明的一种pCr-NHEJ载体的构建方法,通过In-fusion PCR将DBsaI、DBsmAI和载体pNHEJ的酶切产物连接起来的过程中,由于PBsaID和PBsmAIU的5’端有15nt的重叠序列,这样即可通过In-fusion PCR将二个基因片段连接起来。而PBsaIU的5’端分别带有与pNHEJ酶切位点NotI的下游有15个碱基的重叠序列,而PBsmAID的5’端与pNHEJ酶切位点SpeI的上游有15个碱基的重叠序列,这样即可通过In-fusion PCR将DBsaI和DBsmAI与经NotI和SpeI双酶切的pNHEJ片段连接起来,从而获得用于敲除靶基因的CRISPR-Cas9系统,即pCr-NHEJ载体。 Among them, in the construction method of a pCr-NHEJ vector of the present invention, in the process of linking the digested product of DBsaI, DBsmAI and vector pNHEJ by In-fusion PCR, since the 5' end of PBsaID and PBsmAIU has a 15nt overlapping sequence , so that the two gene fragments can be connected by In-fusion PCR. The 5' end of PBsaIU has a 15 base overlapping sequence with the downstream of the pNHEJ restriction site NotI, and the 5' end of PBsmAID has a 15 base overlapping sequence with the upstream of the pNHEJ restriction site SpeI , so that DBsaI and DBsmAI can be connected with NotI and SpeI double-digested pNHEJ fragments by In-fusion PCR, so as to obtain the CRISPR-Cas9 system for knocking out the target gene, that is, the pCr-NHEJ vector.
其中,本发明的一种pCr-NHEJ载体的构建方法,所构建的pCr-NHEJ载体带有两个sgRNA骨架序列,因此,该pCr-NHEJ载体能够先后通过在BsaI或BsmAI位点插入spacer DNA片段构建基因定点敲除的载体。 Wherein, in the construction method of a pCr-NHEJ vector of the present invention, the constructed pCr-NHEJ vector has two sgRNA backbone sequences, therefore, the pCr-NHEJ vector can successively insert the spacer DNA fragment at the BsaI or BsmAI site Construction of vectors for targeted knockout of genes.
实施例1。Example 1.
一种pCr-NHEJ载体,该pCr-NHEJ载体的序列具有SEQ ID NO: 1所示的序列。本实施例的pCr-NHEJ载体能够用于细菌基因敲除,具有基因敲除效率高的优点。 A pCr-NHEJ carrier, the sequence of the pCr-NHEJ carrier has the sequence shown in SEQ ID NO: 1. The pCr-NHEJ vector of this example can be used for bacterial gene knockout, and has the advantage of high gene knockout efficiency.
实施例2。Example 2.
实施例1的一种pCr-NHEJ载体在定点敲除细菌基因中的应用。 Application of a pCr-NHEJ vector in Example 1 in site-directed knockout of bacterial genes.
实施例3。Example 3.
实施例1的一种pCr-NHEJ载体的构建方法,包括如下步骤: The construction method of a kind of pCr-NHEJ carrier of embodiment 1, comprises the steps:
(1)采用革兰阴性菌的广宿主质粒PBBR1MCS-2(GI:773412)作为基础载体;cas9 (1) The broad host plasmid P BBR1MCS-2 (GI: 773412) of Gram-negative bacteria was used as the basic vector; cas9
(2)采用带有用于mRNA转录的原核启动子PLtetO-1的上游引物和下游引物分别扩增如下三个蛋白基因:cas9(GI:674296984)、ku(GI:444893469)和ligD(GI:444893469),分别得到cas9扩增产物、ku扩增产物和ligD扩增产物;其中,cas9、ku和ligD三个蛋白基因的开放读码框均位于独立的PLtetO-1下游,以便使cas9、ku和ligD三个蛋白基因的表达均受该启动子的调控;cas9扩增产物、ku扩增产物和ligD扩增产物之间带有15nt的碱基重叠; (2) Using the upstream and downstream primers with prokaryotic promoter PLtetO-1 for mRNA transcription to amplify the following three protein genes: cas9 (GI:674296984), ku (GI:444893469) and ligD (GI:444893469 ) to obtain cas9 amplification products, ku amplification products and ligD amplification products respectively; among them, the open reading frames of the three protein genes of cas9 , ku and ligD are all located downstream of the independent PLtetO-1, so that cas9 , ku and ligD The expression of the three protein genes of ligD are all regulated by the promoter; there is a 15nt base overlap between the cas9 amplification product, the ku amplification product and the ligD amplification product;
(3)cas9扩增产物的3’端与ku扩增产物的5’端,ku扩增产物的3’端与ligD扩增产物3’端之间,均带有15nt的碱基重叠,通过in-fusion PCR连接cas9扩增产物、ku扩增产物和ligD扩增产物,得到第一连接物; (3) There is a base overlap of 15 nt between the 3' end of the cas9 amplification product and the 5' end of the ku amplification product, and the 3' end of the ku amplification product and the 3' end of the ligD amplification product. In-fusion PCR connects the cas9 amplification product, the ku amplification product and the ligD amplification product to obtain the first connection;
(4)用限制性核酸内切酶KpnI和HindIII进行双酶切基础载体PBBR1MCS-2,得到基础载体的酶切产物;酶切产物经凝胶电泳、切胶并采用DNA回收试剂盒纯化酶切产物;然后采用in-fusion PCR连接纯化后的酶切产物和第一连接物,得到载体pNHEJ; (4) Digest the base vector P BBR1MCS-2 with restriction endonucleases KpnI and HindIII to obtain the digested product of the base vector; the digested product is subjected to gel electrophoresis, gel cutting, and DNA recovery kit to purify the enzyme Then use in-fusion PCR to connect the purified digestion product and the first linker to obtain the vector pNHEJ;
(5)利用NotI和SpeI双酶切载体pNHEJ,得到载体pNHEJ的酶切产物; (5) Use NotI and SpeI to double-digest the vector pNHEJ to obtain the digested product of the vector pNHEJ;
(6)向载体pNHEJ中同时引入相邻的两个倒置的BsaI酶切位点和相邻的两个倒置的BsmAI酶切位点,用于转录形成能够同时结合目的基因两个位置的sgRNA;其中,带有相邻的两个倒置的BsaI酶切位点的DNA片段为DBsaI,带有相邻的两个倒置的BsmAI酶切位点的DNA片段为DBsmAI; (6) Simultaneously introduce two adjacent inverted BsaI restriction sites and two adjacent inverted BsmAI restriction sites into the vector pNHEJ for transcription and formation of sgRNA that can simultaneously bind to two positions of the target gene; Wherein, the DNA fragment with two adjacent inverted BsaI restriction sites is DBsaI, and the DNA fragment with two adjacent inverted BsmAI restriction sites is DBsmAI;
(7)通过in-fusion PCR将DBsaI、DBsmAI进行链接,得到第二连接产物; (7) Linking DBsaI and DBsmAI by in-fusion PCR to obtain the second linking product;
(8)通过in-fusion PCR将第二连接产物和载体pNHEJ的酶切产物连接起来,获得用于敲除靶基因的CRISPR-Cas9系统,即pCr-NHEJ载体。 (8) The second ligation product and the restriction product of the vector pNHEJ were connected by in-fusion PCR to obtain the CRISPR-Cas9 system for knocking out the target gene, that is, the pCr-NHEJ vector.
其中,步骤(2)中,采用具有SEQ ID NO: 2所示序列的引物PPLtetO-1-cas9U和具有SEQ ID NO: 3所示序列的引物PCas9D扩增cas9蛋白基因,得到cas9扩增产物; Wherein, in step (2), the cas9 protein gene is amplified by using the primer PPLtetO-1-cas9U having the sequence shown in SEQ ID NO: 2 and the primer PCas9D having the sequence shown in SEQ ID NO: 3 to obtain the cas9 amplification product;
采用具有SEQ ID NO: 4所示序列的引物PPLtetO-1-KuU和具有SEQ ID NO: 5所示序列的引物PkuD扩增ku蛋白基因,得到ku扩增产物; Using the primer PPLtetO-1-KuU having the sequence shown in SEQ ID NO: 4 and the primer PkuD having the sequence shown in SEQ ID NO: 5 to amplify the ku protein gene to obtain the ku amplification product;
采用具有SEQ ID NO: 6所示序列的引物PLtetO-1-ligDU和具有SEQ ID NO: 7所示序列的引物PligDD扩增ligD蛋白基因,得到ligD扩增产物。 The ligD protein gene was amplified by using the primer PLtetO-1-ligDU having the sequence shown in SEQ ID NO: 6 and the primer PligDD having the sequence shown in SEQ ID NO: 7 to obtain the ligD amplification product.
其中,步骤(6)中,带有相邻的两个倒置的BsaI酶切位点的DNA片段DBsaI的构建如下: Wherein, in step (6), the DNA fragment DBsaI with two adjacent inverted BsaI restriction sites is constructed as follows:
首先直接合成具有SEQ ID NO: 8所示序列的DNA序列BsaIU和具有SEQ ID NO: 9所示序列的DNA序列BsaID,其中,BsaIU的3’端和BsaID的5’端有15nt的重叠序列;其中,BsaID含有tracrRNA序列; First directly synthesize the DNA sequence BsaIU with the sequence shown in SEQ ID NO: 8 and the DNA sequence BsaID with the sequence shown in SEQ ID NO: 9, wherein the 3' end of BsaIU and the 5' end of BsaID have a 15nt overlapping sequence; Wherein, BsaID contains tracrRNA sequence;
通过in-fusion PCR将BsaIU和BsaID连接起来;然后采用具有SEQ ID NO: 10所示序列的引物PBsaIU和具有SEQ ID NO: 11所示序列的引物PBsaID,PCR扩增,即得到带有相邻的两个倒置的BsaI酶切位点的DNA片段DBsaI。 Connect BsaIU and BsaID by in-fusion PCR; Then adopt primer PBsaIU with sequence shown in SEQ ID NO: 10 and primer PBsaID with sequence shown in SEQ ID NO: 11, PCR amplification, promptly obtain DNA fragment DBsaI with two inverted BsaI restriction sites.
其中,步骤(6)中,带有相邻的两个倒置的BsmAI酶切位点的DNA片段DBsmAI的构建如下: Wherein, in step (6), the DNA fragment DBsmAI with two adjacent inverted BsmAI restriction sites is constructed as follows:
首先直接合成具有SEQ ID NO: 12所示序列的DNA序列BsmAIU和具有SEQ ID NO: 13所示序列的DNA序列BsmAID;其中,BsmAID含有tracrRNA序列; First directly synthesize the DNA sequence BsmAIU with the sequence shown in SEQ ID NO: 12 and the DNA sequence BsmAID with the sequence shown in SEQ ID NO: 13; wherein, BsmAID contains the tracrRNA sequence;
通过in-fusion PCR将DNA序列BsmAIU和DNA序列BsmAID连接起来;然后采用具有SEQ ID NO: 14所示序列的引物PBsmAIU和具有SEQ ID NO: 15所示序列的引物PBsmAID,进行PCR扩增,即得到带有相邻的两个倒置的BsmAI酶切位点的DNA片段DBsmAI。 The DNA sequence BsmAIU and the DNA sequence BsmAID are connected by in-fusion PCR; then adopt the primer PBsmAIU with the sequence shown in SEQ ID NO: 14 and the primer PBsmAID with the sequence shown in SEQ ID NO: 15 to carry out PCR amplification, namely A DNA fragment DBsmAI with two adjacent inverted BsmAI restriction sites was obtained.
实施例4。Example 4.
实施例1的pCr-NHEJ载体敲除细菌基因的应用如下: The application of the pCr-NHEJ carrier knockout bacterial gene of embodiment 1 is as follows:
为验证载体敲除不同革兰阴性菌基因的效率,本发明将载体应用于对大肠杆菌、铜绿假单胞菌和鲍曼不动杆菌的基因敲除。分别针对大肠杆菌、铜绿假单胞菌和鲍曼不动杆菌的三种外排泵基因tolC(GI:224015931)、RND family drug transporter(locus_tag="A1S_1773")和RND型多重耐药外排泵基因mexA(locus_tag="OU9_00435")分别设计一对spacer DNA序列。采用以下方法设计20nt spacer序列: In order to verify the efficiency of the carrier for knocking out genes of different Gram-negative bacteria, the present invention applies the carrier to gene knockout for Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii. Three efflux pump genes tolC (GI: 224015931), RND family drug transporter (locus_tag="A1S_1773") and RND-type multi-drug resistance efflux pump for Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, respectively Gene mexA (locus_tag="OU9_00435") designed a pair of spacer DNA sequences respectively. The 20nt spacer sequence was designed by the following method:
1) 将上述三个基因ORF的前250nt用在线软件(http://crispr.dbcls.jp/)设计spacer DNA,并在PUBMED上,通过BLAST比对spacer DNA和对应细菌的基因组DNA,去除靠近PAM区12nt重复的spacer DNA,获得脱靶可能性最低的spacer序列。 1) Use the online software (http://crispr.dbcls.jp/) to design the spacer DNA for the first 250nt of the ORF of the above three genes, and compare the spacer DNA with the genomic DNA of the corresponding bacteria by BLAST on PUBMED to remove the The 12nt repeat spacer DNA in the PAM region obtained the spacer sequence with the lowest possibility of off-target.
2) 为将两个20bp spacer编码DNA的序列克隆入,需要同时合成gcaagcacgccttagtaaccspacer DNA的正向和反向序列,并且在正向序列的5’端加上序列“AGCAC”,3’端加上“G”,反向序列的5’端加上“5’-AAAAC-3’”,3’端加上“G”。Spacer DNA的序列如下: 2) In order to clone two 20bp spacer coding DNA sequences, it is necessary to synthesize the forward and reverse sequences of gcaagcacgccttagtaaccspacer DNA at the same time, and add the sequence "AGCAC" to the 5' end of the forward sequence, and add "AGCAC" to the 3' end G", add "5'-AAAAC-3'" to the 5' end of the reverse sequence, and "G" to the 3' end. The sequence of Spacer DNA is as follows:
大肠杆菌spacer DNA: Escherichia coli spacer DNA:
正大spacer DNA1:AGCACaaattgctccccattcttatG(SEQ ID.18) Zhengda spacer DNA1: AGCACaaattgctccccattcttttG (SEQ ID.18)
反大spacer DNA1:AAAACATAAGAATGGGGAGCAATTTG(SEQ ID.19) Anti-large spacer DNA1: AAAACATAAGAATGGGGAGCAATTTG (SEQ ID.19)
正大spacer DNA2:AGCACgcaagcacgccttagtaaccG(SEQ ID.20) Zhengda spacer DNA2: AGCACgcaagcacgccttagtaaccG (SEQ ID.20)
反大spacer DNA2:AAAACGGTTACTAAGGCGTGCTTGCG(SEQ ID.21) Anti-large spacer DNA2: AAAACGGTTACTAAGGCGTGCTTGCG (SEQ ID.21)
铜绿假单胞菌spacer DNA: Pseudomonas aeruginosa spacer DNA:
正铜spacer DNA1:AGCACAACGCCAGCCATGCGTGTACG(SEQ ID.22) Ortho-copper spacer DNA1: AGCACAACGCCAGCCATGCGTGTACG (SEQ ID.22)
反铜spacer DNA1:AAAACGTACACGCATGGCTGGCGTTG(SEQ ID.23) Anticopper spacer DNA1: AAAACGTACACGCATGGCTGGCGTTG (SEQ ID.23)
正铜spacer DNA2:AGCACCATCCTCAAGCGCCTGTTCAG(SEQ ID.24) Copper-positive spacer DNA2: AGCACCATCCTCAAGCGCCTGTTCAG (SEQ ID.24)
反铜spacer DNA2:AAAACTGAACAGGCGCTTGAGGATGG(SEQ ID.25) Anticopper spacer DNA2: AAAACTGAACAGGCGCTTGAGGATGG (SEQ ID.25)
鲍曼不动杆菌spacer DNA: Acinetobacter baumannii spacer DNA:
正鲍spacer DNA1:AGCACTTAAGTTCTTAGGTCAACGGG(SEQ ID.26) Abalone spacer DNA1: AGCACTTAAGTTCTTAGGTCAACGGG (SEQ ID.26)
反鲍spacer DNA2:AAAACCCGTTGACCTAAGAACTTAAG(SEQ ID.27) Anti-Abalone spacer DNA2: AAAACCCGTTGACCTAAGAACTTAAG (SEQ ID.27)
正鲍spacer DNA2:AGCACTTGCCTGTGGCATTGTCTGGG(SEQ ID.28) Abalone spacer DNA2: AGCACTTGCCTGTGGCATTGTCTGGG (SEQ ID.28)
反鲍spacer DNA2:AAAACCCAGACAATGCCACAGGCAAG(SEQ ID.29) Anti-Abalone spacer DNA2: AAAACCCCAGACAATGCCACAGGCAAG (SEQ ID.29)
3) 下面以大spacer1和大spacer2为例作说明,其他spacer DNA的合成方法相同: 3) The following takes large spacer1 and large spacer2 as examples, and the synthesis method of other spacer DNA is the same:
① 合成序列5’-AGCACaaattgctccccattcttat-3’和5’-GATAAGAATGGGGAGCAATTT-3’,将二者等比例混合,加热变性后退火,使二者形成互补链,获得两端带有突出碱基的双链DNA——大spacerD1’: ① Synthesize the sequences 5'-AGCACaaattgctccccattcttt-3' and 5'-GATAAGAATGGGGAGCAATTT-3', mix the two in equal proportions, heat denature and anneal to make the two form complementary chains, and obtain double-stranded DNA with prominent bases at both ends - large spacerD1':
5’-AGCACaaattgctccccattcttat-3’ 5'-AGCACaaattgctccccattcttat-3'
|||||||||||||||||||| |||||||||||||||||||||
3’-TTTAACGAGGGGTAAGAATAG-5’, 3'-TTTAACGAGGGGTAAGAATAG-5',
所获得的双链DNA可插入BsaI或BsmAI酶切位点。 The obtained double-stranded DNA can be inserted into the restriction site of BsaI or BsmAI.
② 合成序列5’-AGCACgcaagcacgccttagtaacc-3’和5’-GGGTTACTAAGGCGTGCTTGC-3’,将二者等比例混合,加热变性后退火,使二者形成互补链,获得两端带有突出碱基的双链DNA——大spacerD2’: ② Synthesize the sequences 5'-AGCACgcaagcacgccttagtaacc-3' and 5'-GGGTTACTAAGGCGTGCTTGC-3', mix the two in equal proportions, heat denature and anneal to make the two form complementary chains, and obtain double-stranded DNA with protruding bases at both ends - large spacerD2':
5’-AGCACgcaagcacgccttagtaacc-3’ 5'-AGCACgcaagcacgccttagtaacc-3'
|||||||||||||||||||| |||||||||||||||||||||
3’-CGTTCGTGCGGAATCATTGGG-5’, 3'-CGTTCGTGCGGAATCATTGGG-5',
所获得的双链DNA可插入BsaI或BsmAI酶切位点。 The obtained double-stranded DNA can be inserted into the restriction site of BsaI or BsmAI.
4) 将大spacerD1’和大spacerD2’先后克隆入pCr-NHEJ经过BsaI或BsmAI酶切位点,构建靶向目的基因的CRISPR-Cas9载体。 4) The large spacerD1' and large spacerD2' were cloned into pCr-NHEJ successively and passed through the BsaI or BsmAI restriction site to construct the CRISPR-Cas9 vector targeting the target gene.
5) 构建成功后,采用电穿孔转化宿主菌,在抗生素平板上筛选抗性克隆,并采用一条位于敲除区域的引物和一条位于非敲除区域的引物进行菌落PCR,扩增靶基因(电泳结果见图6A)。如不能扩增出靶基因,则证明敲除成功,否则表示该菌落的目的基因未敲除成功。针对三个基因的引物对序列如下: 5) After successful construction, transform the host bacteria by electroporation, screen resistant clones on an antibiotic plate, and perform colony PCR with a primer located in the knockout region and a primer in the non-knockout region to amplify the target gene (electrophoresis The results are shown in Figure 6A). If the target gene cannot be amplified, it proves that the knockout is successful, otherwise it means that the target gene of the colony has not been knocked out successfully. The primer pair sequences for the three genes are as follows:
大肠杆菌基因敲除鉴定引物: Escherichia coli gene knockout identification primers:
大P1(SEQ ID.30):5’-CCCATTCTTATCGGCCTGAG-3’ Big P1 (SEQ ID.30): 5'-CCCATTCTTATCGGCCTGAG-3'
大P2(SEQ ID.31):5’-CTTGGCGTTGTACAACGTGG-3’ Big P2 (SEQ ID.31): 5'-CTTGGCGTTGTACAACGTGG-3'
铜绿假单胞菌基因敲除鉴定引物: Pseudomonas aeruginosa gene knockout identification primers:
鲍P1(SEQ ID32.):5’-AAGTTCTTAGGTCAACGGTG-3’ Bao P1 (SEQ ID32.): 5'-AAGTTCTTAGGTCAACGGTG-3'
鲍P2(SEQ ID.33):5’-TGTATGTACAGGCGAACTTC-3’ Bao P2 (SEQ ID.33): 5'-TGTATGTACAGGCGAACTTC-3'
鲍曼不动杆菌基因敲除鉴定引物: Acinetobacter baumannii gene knockout identification primers:
铜P1(SEQ ID.34):5’-AGCCATGCGTGTACTGGTTC-3’ Copper P1 (SEQ ID.34): 5'-AGCCATGCGTGTACTGGTTC-3'
铜P2(SEQ ID.35):5’-GCTGTCGGTTTTCGCCGGAG-3’ Copper P2 (SEQ ID.35): 5'-GCTGTCGGTTTTCGCCGGAG-3'
铜绿假单胞菌和鲍曼不动杆菌感受态制备、电穿孔转化的方法与上述针对大肠杆菌的基因敲除方法完全相同。大肠杆菌、铜绿假单胞菌和鲍曼不动杆菌基因敲除的鉴定结果见图6A、B和C。 The methods for competent preparation and electroporation transformation of Pseudomonas aeruginosa and Acinetobacter baumannii are exactly the same as the above-mentioned gene knockout method for Escherichia coli. The identification results of knockout genes in Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are shown in Figure 6A, B and C.
实施例5。Example 5.
1. cas9、ku、ligD基因的扩增及三个基因片段的连接。1. Amplification of cas9, ku, and ligD genes and connection of three gene fragments.
1) cas9基因扩增:采用引物PPLtetO-1-1-cas9U(SEQ ID.4;)和cas9D(SEQ ID.5;)扩增cas9基因,模板为pCas9质粒(Addgene,GI:669193757)。PCR 反应体系:pfu高保真DNA聚合酶(北京天根)1μL,10×PCR buffer 5μL,上游引物(5μM )1μL,下游引物(5μM )1μL,模板DNA 10ng,补充灭菌超纯水至50μL。 1) Amplification of cas9 gene: primers PPLtetO-1-1-cas9U (SEQ ID.4;) and cas9D (SEQ ID.5;) were used to amplify the cas9 gene, and the template was pCas9 plasmid (Addgene, GI:669193757). PCR reaction system: 1 μL of pfu high-fidelity DNA polymerase (Beijing Tiangen), 5 μL of 10×PCR buffer, 1 μL of upstream primer (5 μM), 1 μL of downstream primer (5 μM), 10 ng of template DNA, supplemented with sterilized ultrapure water to 50 μL.
2) ku基因扩增:采用引物PPLtetO-1-1-KuU(SEQ ID.6;)和PkuD(SEQ ID.7;)扩增ku基因,模板为pET16b-MtKu质粒(Science. 2002, 6; 297(5587):1686-9)。PCR 反应体系:pfu高保真DNA聚合酶1μL,10×PCR buffer 5μL,上游引物(5μM )1μL,下游引物(5μM )1μL,模板DNA 10ng,补充灭菌超纯水至50μL。PCR循环条件:98℃变性10 s,68℃延伸2min,共30 个循环,72℃最后延伸5min。 2) ku gene amplification: the ku gene was amplified using primers PPLtetO-1-1-KuU (SEQ ID.6;) and PkuD (SEQ ID.7;), and the template was the pET16b-MtKu plasmid (Science. 2002, 6; 297(5587):1686-9). PCR reaction system: 1 μL of pfu high-fidelity DNA polymerase, 5 μL of 10×PCR buffer, 1 μL of upstream primer (5 μM), 1 μL of downstream primer (5 μM), 10 ng of template DNA, supplemented with sterilized ultrapure water to 50 μL. PCR cycle conditions: Denaturation at 98°C for 10 s, extension at 68°C for 2 min, a total of 30 cycles, and final extension at 72°C for 5 min.
3) ligD基因扩增:采用引物PPLtetO-1-1-PligDU(SEQ ID.8;)和PligDD(SEQ ID.9;)扩增ku基因,模板为pET16b-MtligD质粒[Science. 2002, 6; 297(5587):1686-9]。PCR 反应体系:pfu高保真DNA聚合酶1μL,10×PCR buffer 5μL,上游引物(5μM )1μL,下游引物(5μM )1μL,模板DNA 10ng,补充灭菌超纯水至50μL。PCR循环条件:98℃变性10 s,68℃延伸2min,共30 个循环,72℃最后延伸5min。 3) ligD gene amplification: the ku gene was amplified using primers PPLtetO-1-1- PligDU (SEQ ID.8;) and PligDD (SEQ ID.9;), and the template was the pET16b-MtligD plasmid [Science. 2002, 6; 297(5587):1686-9]. PCR reaction system: 1 μL of pfu high-fidelity DNA polymerase, 5 μL of 10×PCR buffer, 1 μL of upstream primer (5 μM), 1 μL of downstream primer (5 μM), 10 ng of template DNA, supplemented with sterilized ultrapure water to 50 μL. PCR cycle conditions: Denaturation at 98°C for 10 s, extension at 68°C for 2 min, a total of 30 cycles, and final extension at 72°C for 5 min.
4) PCR产物回收:采用QIAGEN公司的PCR产物回收试剂盒回收上述三种PCR产物。 4) PCR product recovery: The above three PCR products were recovered using a PCR product recovery kit from QIAGEN.
5) cas9、ku、ligD基因的in-fusion PCR连接及扩增:取三个基因的等量的PCR产物,用TBiotech的In-fusion PCR试剂盒进行连接。反应体系:cas9 、ku和ligD的PCR产物按照摩尔比1:1:1的比例混合(DNA总量为1μg),5×In-Fusion HD Enzyme Premix(In-Fusion? HD Cloning Plus,Clontech, TAKARA) 2μL,补充灭菌超纯水至10μL,37℃温育1h,以连接上述三个PCR产物。用引物为PPLtetO-1-cas9U和RPligDD扩增上述连接产物。PCR反应体系:pfu高保真DNA聚合酶1μL,10×PCR buffer 5μL,上游引物(5μM )1μL,下游引物(5μM )1μL,模板1μL。取3μL PCR产物进行电泳。 5) In-fusion PCR ligation and amplification of cas9, ku, and ligD genes: take the same amount of PCR products of the three genes, and use TBiotech's In-fusion PCR kit for ligation. Reaction system: The PCR products of cas9 , ku and ligD were mixed according to the molar ratio of 1:1:1 (the total amount of DNA was 1 μg), 5×In-Fusion HD Enzyme Premix (In-Fusion? HD Cloning Plus, Clontech, TAKARA ) 2 μL, supplemented with sterilized ultrapure water to 10 μL, and incubated at 37°C for 1 h to connect the above three PCR products. The above ligation products were amplified with primers PPLtetO-1-cas9U and RPligDD. PCR reaction system: 1 μL of pfu high-fidelity DNA polymerase, 5 μL of 10×PCR buffer, 1 μL of upstream primer (5 μM), 1 μL of downstream primer (5 μM), and 1 μL of template. Take 3 μL of PCR product for electrophoresis.
2. 广宿主质粒PBBR1MCS-2的质粒转化、提取及酶切。2. Plasmid transformation, extraction and digestion of the broad host plasmid PBBR1MCS-2.
1) 氯化钙法制备大肠杆菌DH5α感受态:用接种环挑取单克隆大肠杆菌的DH5α菌落于2ml LB液体培养基中,37℃振荡培养过夜。将上述过夜培养的细菌按1:100的比例转接至5ml LB液体培养基中振荡培养2-3小时(OD600约0.2<0.4)。将上述生长对数期的菌液置冰上10分钟,4℃离心8000rpm, 30秒,弃去上清。用100mmol/L的氯化钙溶液400μL悬浮菌体,冰浴10分钟,4℃离心,4000rpm,5分钟,弃去上清。再把菌体悬浮在400μL冰上预冷的100mmol/L氯化钙溶液中,此菌液即为感受态细菌,按100μL分装在已消毒的Eppendorf管内,置4℃冰箱中备转化用。 1) Calcium chloride method to prepare E. coli DH5α competent: use an inoculation loop to pick DH5α colonies of monoclonal E. coli into 2ml LB liquid medium, shake and culture overnight at 37°C. The above-mentioned overnight cultured bacteria were transferred to 5ml LB liquid medium at a ratio of 1:100 and cultured with shaking for 2-3 hours (OD 600 about 0.2<0.4). Put the above-mentioned bacterial solution in the logarithmic phase of growth on ice for 10 minutes, centrifuge at 8000 rpm at 4°C for 30 seconds, and discard the supernatant. Suspend the cells in 400 μL of 100 mmol/L calcium chloride solution, bathe in ice for 10 minutes, centrifuge at 4°C at 4000 rpm for 5 minutes, and discard the supernatant. Then suspend the bacteria in 400 μL of 100 mmol/L calcium chloride solution pre-cooled on ice. This bacterial solution is the competent bacteria. Pack 100 μL in sterilized Eppendorf tubes, and put them in a refrigerator at 4 °C for transformation.
2) 质粒转化:将质粒DNA(100ng/μL )1μL加入至100μL感受态细菌中(置于1.5mL离心管中),混匀,置冰上30分钟。然后立即置42℃水浴中热激90秒,取出后立即置冰水浴中冷却2分钟。向细菌中加入900μL SOC液体培养基(无卡那霉素),在37℃摇床上温和摇动,转速200 rpm,1小时。取10μL涂布与1.5%的LB琼脂固体培养基(含卡那霉素50ug/ml)平皿上,于37℃培养12小时,长出单菌落。 2) Plasmid transformation: Add 1 μL of plasmid DNA (100ng/μL) to 100 μL of competent bacteria (in a 1.5mL centrifuge tube), mix well, and place on ice for 30 minutes. Immediately place it in a water bath at 42°C for 90 seconds for heat shock, and immediately place it in an ice-water bath to cool for 2 minutes after taking it out. Add 900 μL of SOC liquid medium (without kanamycin) to the bacteria, shake gently on a shaker at 37°C at 200 rpm for 1 hour. Take 10 μL of coating and 1.5% LB agar solid medium (containing kanamycin 50ug/ml) on a plate, culture at 37°C for 12 hours, and grow a single colony.
3) 质粒扩大培养及大量提取:挑取单菌落,接种于3ml LB液体培养基(含卡那霉素50ug/ml),置37℃摇床上温和摇动,转速200 rpm,培养12小时。采用质粒提取试剂盒(高纯度质粒小提中量试剂盒,北京天根)提取质粒。 3) Plasmid expansion culture and mass extraction: pick a single colony, inoculate in 3ml LB liquid medium (containing kanamycin 50ug/ml), shake gently on a shaker at 37°C at 200 rpm, and incubate for 12 hours. Plasmids were extracted using a plasmid extraction kit (high-purity plasmid mini-extraction kit, Beijing Tiangen).
4) 质粒酶切:反应体系:质粒1μg,KpnI(NEB)和HindIII(NEB)各1μL,10×缓冲液Cutsmart 1μL,补充水至20μL,37℃酶切2小时。酶切产物采用DNA胶回收试剂盒回收(QIAGEN)。 4) Plasmid digestion: Reaction system: 1 μg plasmid, 1 μL each of KpnI (NEB) and HindIII (NEB), 1 μL of 10× buffer Cutsmart, supplemented with water to 20 μL, digested at 37°C for 2 hours. Digested products were recovered using a DNA gel recovery kit (QIAGEN).
3. cas9、ku、ligD基因与载体的连接:取三基因连接片段和酶切后的载体pBBR1MCS-2按照1:1的摩尔比混合(DNA总量为1μg),加入5×In-Fusion HD Enzyme Premix(In-Fusion? HD Cloning Plus,Clontech, TAKARA) 2μL,补充灭菌超纯水至10μL,37℃温育1h,以连接上述两个DNA片段,连接成功即获得pNHEJ。 3. Ligation of cas9, ku, and ligD genes to the vector: Take the three gene ligation fragments and the enzyme-digested vector pBBR1MCS-2 and mix them at a molar ratio of 1:1 (the total amount of DNA is 1 μg), add 5×In-Fusion HD Enzyme Premix (In-Fusion? HD Cloning Plus, Clontech, TAKARA) 2μL, supplemented with sterilized ultrapure water to 10μL, incubated at 37°C for 1h, to connect the above two DNA fragments, pNHEJ was obtained when the connection was successful.
4. sgRNA的设计:首先在PUBMED上获得tolC(GI:224015931)、RND family drug transporter(locus_tag="A1S_1773")和RND型多重耐药外排泵基因mexA(locus_tag="OU9_00435")的基因序列,然后选取开放读码框的前250nt序列作为靶位点,使用在线sgRNA设计软件(http://crispr.dbcls.jp/),在靶基因上寻找spacer序列。序列模式为3’-N20 NGG-5’,spacer即为为与N20互补的序列。然后在pubmed上通过BLAST软件,与铜绿假单胞菌PAO1的全基因组进行比对,去除3’端12个碱基完全重复的spacer序列,以避免发生脱靶效应。 4. Design of sgRNA: first obtain the gene sequences of tolC (GI:224015931), RND family drug transporter (locus_tag="A1S_1773") and RND-type multi-drug resistance efflux pump gene mexA (locus_tag="OU9_00435") on PUBMED , and then select the first 250nt sequence of the open reading frame as the target site, and use the online sgRNA design software (http://crispr.dbcls.jp/) to find the spacer sequence on the target gene. The sequence pattern is 3'-N 20 NGG -5', and the spacer is the sequence complementary to N 20 . Then, BLAST software was used on pubmed to compare with the whole genome of Pseudomonas aeruginosa PAO1, and the 12-base repeat spacer sequence at the 3' end was removed to avoid off-target effects.
5. Spacer DNA的克隆:5. Cloning of Spacer DNA:
由于针对三个基因的载体的构建完全相同,在此仅针对大肠杆菌tolC基因的敲除载体的构建为例进行说明,其他两种载体的构建步骤、实验条件完全相同。 Since the construction of the vectors for the three genes is completely the same, only the construction of the knockout vector of the Escherichia coli tolC gene is described here as an example, and the construction steps and experimental conditions of the other two vectors are completely the same.
双链Spacer DNA的制备:Preparation of double-stranded Spacer DNA:
取合成好的正大spacer DNA1(SEQ ID.18)和反大spacer DNA1(SEQ ID.19)片段,等摩尔浓度混合,然后进行变性、退火。 Take the synthesized Zhengda spacer DNA1 (SEQ ID.18) and anti-big spacer DNA1 (SEQ ID.19) fragments, mix them at equimolar concentrations, and then denature and anneal.
变性、退火体系为:, The denaturation and annealing system is:,
2.5μl 正向 spacer DNA (100μM) 2.5μl forward spacer DNA (100μM)
2.5μl 反向 spacer DNA (100μM) 2.5μl reverse spacer DNA (100μM)
1μl NEB buffer2 1μl NEB buffer2
4μl 灭菌水 4 μl sterile water
在PCR 仪中按照以下程序运行:95℃,5min ;95–85℃ at-2℃/s ;85–25℃ at-0.1℃ /s。退火后,两条DNA单链互补形成双链。正大spacer DNA2(SEQ ID.20)和反大spacer DNA1(SEQ ID.21)的变性退火条件同上。 Run in the PCR instrument according to the following program: 95°C, 5min; 95–85°C at-2°C/s; 85–25°C at-0.1°C/s. After annealing, the two DNA single strands complement each other to form a double strand. The denaturation and annealing conditions of Zhengda spacer DNA2 (SEQ ID.20) and anti-big spacer DNA1 (SEQ ID.21) are the same as above.
双链Spacer DNA的克隆Cloning of double-stranded Spacer DNA
6. 首先对质粒进行单酶切,反应体系:质粒pNHEJ 1μg,BsaI(NEB)或BsmAI(NEB)1μL,10×缓冲液Cutsmart 1μL,补充水至20μL,37℃酶切2小时,然后对酶切产物采用DNA胶回收试剂盒回收(QIAGEN)。将双链Spacer DNA与载体回收片段按照1:1的比例进行混合,加入5×In-Fusion HD Enzyme Premix(In-Fusion? HD Cloning Plus,Clontech, TAKARA) 2μL,补充灭菌超纯水至10μL,37℃温育1h,以连接上述两个DNA片段。连接产物转化大肠杆菌DH5α并提取质粒(氯化钙法感受态制备、质粒转化、提取如前所述)。然后再对质粒进行BsmAI(NEB)或BsaI(NEB)单酶切。反应体系:1μL,10×缓冲液Cutsmart 1μL,补充水至20μL,37℃酶切2小时,然后对酶切产物采用DNA胶回收试剂盒回收(QIAGEN)。将双链Spacer DNA与载体回收片段按照1:1的比例进行混合(DNA总量为1μg),加入5×in-Fusion HD Enzyme Premix(In-Fusion? HD Cloning Plus,Clontech, TAKARA) 2μL,补充灭菌超纯水至10μL,37℃温育1h,以连接上述两个DNA片段。连接成功后即获得基因定点敲除的质粒载体。取连接产物转化大肠杆菌DH5α,并采用前述方法提取质粒。 6. First carry out single enzyme digestion on the plasmid, reaction system: 1 μg of plasmid pNHEJ, 1 μL of BsaI (NEB) or BsmAI (NEB), 1 μL of 10× buffer Cutsmart, add water to 20 μL, digest at 37°C for 2 hours, and then digest with the enzyme The cut products were recovered using a DNA gel recovery kit (QIAGEN). Mix double-stranded Spacer DNA and vector recovery fragments at a ratio of 1:1, add 5×In-Fusion HD Enzyme Premix (In-Fusion? HD Cloning Plus, Clontech, TAKARA) 2 μL, add sterilized ultrapure water to 10 μL , and incubated at 37°C for 1h to ligate the above two DNA fragments. The ligation product was transformed into Escherichia coli DH5α and the plasmid was extracted (competent preparation by calcium chloride method, plasmid transformation, and extraction were as described above). Then the plasmid was digested with BsmAI (NEB) or BsaI (NEB). Reaction system: 1 μL, 1 μL of 10× buffer Cutsmart, supplemented with water to 20 μL, digested at 37°C for 2 hours, and then recovered the digested product with a DNA gel recovery kit (QIAGEN). Mix double-stranded Spacer DNA and vector recovery fragments at a ratio of 1:1 (the total amount of DNA is 1 μg), add 5×in-Fusion HD Enzyme Premix (In-Fusion? HD Cloning Plus, Clontech, TAKARA) 2 μL, supplement Sterilize ultrapure water to 10 μL and incubate at 37°C for 1 h to ligate the above two DNA fragments. After the connection is successful, the plasmid vector for gene site-directed knockout is obtained. The ligated product was transformed into Escherichia coli DH5α, and the plasmid was extracted by the method described above.
注:由于宿主菌DH5α携带TolC基因,因此,在接受质粒后,其TolC基因已经开始接受敲除,其靶基因的相应位点已经被切开,在切除数个碱基后,由NHEJ系统进行连接。如DH5α接受的是敲除铜绿假单胞菌或鲍曼不动杆菌的基因敲除质粒,则理论上不会发生上述情况。 Note: Since the host strain DH5α carries the TolC gene, after accepting the plasmid, the TolC gene has already been knocked out, and the corresponding site of the target gene has been cut. connect. If DH5α receives a gene knockout plasmid that knocks out Pseudomonas aeruginosa or Acinetobacter baumannii, the above situation will not happen theoretically.
基因敲除实验gene knockout experiment
用于电击转化的感受态细菌的制备(大肠杆菌、铜绿假单胞菌和鲍曼不动杆菌的制备方法完全相同,在此一并描述): Preparation of competent bacteria for electroshock transformation (the preparation methods of Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are exactly the same, and are described here):
1) 电转化感受态细胞的制备 1) Preparation of electroporation competent cells
① 用枪头挑取单克隆菌落,投入盛有2ml LB液体培养基的玻璃试管中。37℃,220rpm,培养14-16个小时。 ① Pick up monoclonal colonies with a pipette tip and put them into a glass test tube filled with 2ml LB liquid medium. 37°C, 220rpm, incubate for 14-16 hours.
② 第二天,以体积比1:100的比例转接种于100ml LB液体培养基中,37℃,220rpm,振摇2-3小时,每半小时测一次OD,当OD值达到0.3-0.4时,停止培养。 ② On the second day, inoculate in 100ml LB liquid medium at a volume ratio of 1:100, shake at 37°C and 220rpm for 2-3 hours, measure OD every half hour, when the OD value reaches 0.3-0.4 , stop culturing.
③ 将细菌培养液置于冰上预冷30分钟,随后将菌液分装到50ml 预冷的离心管中,4℃,4000g离心10分钟。 ③ Pre-cool the bacterial culture solution on ice for 30 minutes, then divide the bacterial solution into 50ml pre-cooled centrifuge tubes, and centrifuge at 4000g for 10 minutes at 4°C.
④ 弃上清,离心管中加入少量灭菌超纯水,使沉淀悬浮后,再加入适量灭菌超纯水,4℃,4000rpm离心10分钟。 ④ Discard the supernatant, add a small amount of sterilized ultrapure water to the centrifuge tube to suspend the precipitate, then add an appropriate amount of sterilized ultrapure water, and centrifuge at 4000rpm for 10 minutes at 4°C.
⑤ 重复步骤4。 ⑤ Repeat step 4.
⑥ 弃上清后,加入少量灭菌、冰上预冷的10%甘油,重悬细菌,再加满10%甘油, 4℃, 4000rpm, 离心10min。 ⑥ After discarding the supernatant, add a small amount of sterilized and pre-cooled 10% glycerol on ice to resuspend the bacteria, then fill up with 10% glycerol, centrifuge at 4°C, 4000rpm for 10min.
⑦ 弃上清,每个离心管中加入2ml 10%的甘油,重悬细菌,即用于电转化。 ⑦ Discard the supernatant, add 2ml of 10% glycerol to each centrifuge tube, and resuspend the bacteria, which is used for electrotransformation.
2) 电转化 2) Electroconversion
① 取2 μl针对不同基因的 CRISPR-Cas9载体于1.5ml的离心管中,将其和0.1CM的电极杯一起置于冰上预冷。 ① Take 2 μl of CRISPR-Cas9 vectors targeting different genes in a 1.5ml centrifuge tube, and place it together with a 0.1CM electrode cup on ice for pre-cooling.
② 将40μL解冻的感受态细胞转移至此1.5ml 的离心管中,小心混匀,冰上放置10min。 ② Transfer 40μL of thawed competent cells to this 1.5ml centrifuge tube, mix carefully, and place on ice for 10min.
③ 将此混合物转移至已预冷的电极杯中,轻轻敲击电极杯使混合物均匀进入电极杯的底部; ③ Transfer the mixture to the pre-cooled electrode cup, tap the electrode cup gently to make the mixture evenly enter the bottom of the electrode cup;
④ 将电极杯推入电转化仪,进行电穿孔转化(1.8kV,6mS),电击结束后,立即向电击杯中加入1000μl的SOC液体培养基,重悬细胞后,转移到1.5ml的离心管中。 ④ Push the electrode cup into the electrotransformer for electroporation transformation (1.8kV, 6mS). Immediately after the electroporation, add 1000 μl of SOC liquid medium to the electroporation cup, resuspend the cells, and transfer to a 1.5ml centrifuge tube middle.
⑤ 37℃,220-250rpm复苏1小时。 ⑤ Resuscitate at 37°C, 220-250rpm for 1 hour.
⑥ 取10μL转化产物加90μL SOC涂布于含有卡那霉素(50 μg/ml)的LB平板上,放于37℃温室,过夜培养。 ⑥ Take 10 μL of the transformation product plus 90 μL SOC and spread it on an LB plate containing kanamycin (50 μg/ml), put it in a 37°C greenhouse, and culture overnight.
⑦ 次日挑选菌落,进行菌落PCR鉴定基因敲除阳性率。 ⑦The colony was selected the next day, and the positive rate of gene knockout was identified by colony PCR.
3) 敲除率鉴定 3) Knockout rate identification
采用如前所述的鉴定引物进行PCR。在PCR管中按照下列条件混合PCR反应体系: PCR was performed using identifying primers as previously described. Mix the PCR reaction system in the PCR tube according to the following conditions:
pfu高保真DNA聚合酶1μL,10×PCR buffer 5μL,上游引物(5μM )1μL,下游引物(5μM )1μL,补充灭菌超纯水至50μL,然后从平板上随机选取10个菌落,用接菌针尖挑取极少量的细菌接种于上述PCR反应体系中。然后进行PCR扩增:PCR循环条件:98℃变性10 s,52℃延伸2min,共30 个循环,72℃最后延伸5min。 pfu high-fidelity DNA polymerase 1 μL, 10×PCR buffer 5 μL, upstream primer (5 μM ) 1 μL, downstream primer (5 μM ) 1 μL, add sterilized ultrapure water to 50 μL, then randomly select 10 colonies from the plate, and inoculate A very small amount of bacteria was picked by the needle tip and inoculated into the above PCR reaction system. Then perform PCR amplification: PCR cycle conditions: denaturation at 98°C for 10 s, extension at 52°C for 2 min, a total of 30 cycles, and final extension at 72°C for 5 min.
鉴定结果表明,该方法敲除基因的效率可达到87.5%~100%。 The identification results showed that the gene knockout efficiency of this method could reach 87.5%-100%.
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting the protection scope of the present invention, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand , the technical solution of the present invention may be modified or equivalently replaced without departing from the spirit and scope of the technical solution of the present invention.
基因序列表gene sequence list
<110> 广东医学院 <110> Guangdong Medical College
<120> 一种pCr-NHEJ载体及其构建方法及其用于细菌基因定点敲除的应用 <120> A pCr-NHEJ vector and its construction method and its application for bacterial gene knockout
<160> 15 <160> 15
<210> SEQ ID NO: 1 <210> SEQ ID NO: 1
<211> 12621 <211> 12621
<212> DNA <212> DNA
<213> pCr-NHEJ <213> pCr-NHEJ
<400> SEQ ID NO: 1 <400> SEQ ID NO: 1
ctcgggccgtctcttgggcttgatcggccttcttgcgcatctcacgcgctcctgcggcggcctgtagggcaggctcatacccctgccgaaccgcttttgtcagccggtcggccacggcttccggcgtctcaacgcgctttgagattcccagcttttcggccaatccctgcggtgcataggcgcgtggctcgaccgcttgcgggctgatggtgacgtggcccactggtggccgctccagggcctcgtagaacgcctgaatgcgcgtgtgacgtgccttgctgccctcgatgccccgttgcagccctagatcggccacagcggccgcaaacgtggtctggtcgcgggtcatctgcgctttgttgccgatgaactccttggccgacagcctgccgtcctgcgtcagcggcaccacgaacgcggtcatgtgcgggctggtttcgtcacggtggatgctggccgtcacgatgcgatccgccccgtacttgtccgccagccacttgtgcgccttctcgaagaacgccgcctgctgttcttggctggccgacttccaccattccgggctggccgtcatgacgtactcgaccgccaacacagcgtccttgcgccgcttctctggcagcaactcgcgcagtcggcccatcgcttcatcggtgctgctggccgcccagtgctcgttctctggcgtcctgctggcgtcagcgttgggcgtctcgcgctcgcggtaggcgtgcttgagactggccgccacgttgcccattttcgccagcttcttgcatcgcatgatcgcgtatgccgccatgcctgcccctcccttttggtgtccaaccggctcgacgggggcagcgcaaggcggtgcctccggcgggccactcaatgcttgagtatactcactagactttgcttcgcaaagtcgtgaccgcctacggcggctgcggcgccctacgggcttgctctccgggcttcgccctgcgcggtcgctgcgctcccttgccagcccgtggatatgtggacgatggccgcgagcggccaccggctggctcgcttcgctcggcccgtggacaaccctgctggacaagctgatggacaggctgcgcctgcccacgagcttgaccacagggattgcccaccggctacccagccttcgaccacatacccaccggctccaactgcgcggcctgcggccttgccccatcaatttttttaattttctctggggaaaagcctccggcctgcggcctgcgcgcttcgcttgccggttggacaccaagtggaaggcgggtcaaggctcgcgcagcgaccgcgcagcggcttggccttgacgcgcctggaacgacccaagcctatgcgagtgggggcagtcgaaggcgaagcccgcccgcctgccccccgagcctcacggcggcgagtgcgggggttccaagggggcagcgccaccttgggcaaggccgaaggccgcgcagtcgatcaacaagccccggaggggccactttttgccggagggggagccgcgccgaaggcgtgggggaaccccgcaggggtgcccttctttgggcaccaaagaactagatatagggcgaaatgcgaaagacttaaaaatcaacaacttaaaaaaggggggtacgcaacagctcattgcggcaccccccgcaatagctcattgcgtaggttaaagaaaatctgtaattgactgccacttttacgcaacgcataattgttgtcgcgctgccgaaaagttgcagctgattgcgcatggtgccgcaaccgtgcggcaccctaccgcatggagataagcatggccacgcagtccagagaaatcggcattcaagccaagaacaagcccggtcactgggtgcaaacggaacgcaaagcgcatgaggcgtgggccgggcttattgcgaggaaacccacggcggcaatgctgctgcatcacctcgtggcgcagatgggccaccagaacgccgtggtggtcagccagaagacactttccaagctcatcggacgttctttgcggacggtccaatacgcagtcaaggacttggtggccgagcgctggatctccgtcgtgaagctcaacggccccggcaccgtgtcggcctacgtggtcaatgaccgcgtggcgtggggccagccccgcgaccagttgcgcctgtcggtgttcagtgccgccgtggtggttgatcacgacgaccaggacgaatcgctgttggggcatggcgacctgcgccgcatcccgaccctgtatccgggcgagcagcaactaccgaccggccccggcgaggagccgcccagccagcccggcattccgggcatggaaccagacctgccagccttgaccgaaacggaggaatgggaacggcgcgggcagcagcgcctgccgatgcccgatgagccgtgttttctggacgatggcgagccgttggagccgccgacacgggtcacgctgccgcgccggtagcacttgggttgcgcagcaacccgtaagtgcgctgttccagactatcggctgtagccgcctcgccgccctataccttgtctgcctccccgcgttgcgtcgcggtgcatggagccgggccacctcgacctgaatggaagccggcggcacctcgctaacggattcaccgtttttatcaggctctgggaggcagaataaatgatcatatcgtcaattattacctccacggggagagcctgagcaaactggcctcaggcatttgagaagcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgaccgggtcgaatttgctttcgaatttctgccattcatccgcttattatcacttattcaggcgtagcaccaggcgtttaagggcaccaataactgccttaaaaaaattacgccccgccctgccactcatcgcagtcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgagcgcgcgtaatacgactcactatagggcgaattggagctccaccgcggtggcGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACGAGACCaaaGGTCTCgttttagagctaGAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTTTGACGACGACGACGACGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACGAGACaaaGTCTCgttttagagctaGAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTTTgatcccccgggctgcaggaattcgatatcaGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGGCGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACTGATAAAGTGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCTATTAACGCAAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGATTGTTTGGGAATCTCATTGCTTTGTCATTGGGATTGACCCCTAATTTTAAATCAAATTTTGATTTGGCAGAAGATACTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATAGTGAAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGCGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCTCTATTCCCTATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAGGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGCGTTGAAGATCGGTTTAATACGTCATTAGGTACCTACCATGATTTGCTAAAAATTATCAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATTTTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAAGGAAATGATTGAGGAACGACTTAAAAAGTATGCTAACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCATTATACTGGCTGGGGGCGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAACTTTATGCAGCTTATCAATGATGATAGTTTAACATTCAAGGAAGCTATTCAAAAAGCACAGGTGTCTGGACAAGGCCATAGTTTACATGAACAGATTGCTAACTTAGCTGGCAGTCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAAGTAATGGGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTGCTAACACGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATGCGTATCTTAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAGGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAGACAGGTGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGGATATAAGGAAGTTAGAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGCTGGCTTTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAAAAATTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCAATACGTGAACAAGCAAAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGAACGAAACCGTTACAAATCAATTAAGGAAGTCTTAGATGCAACCCTCATCCATCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGCGAGCCATTTGGACGGGTTCGATCGCCTTCGGGCTGGTGAACGTGCCGGTCAAGGTGTACAGCGCTACCGCAGACCACGACATCAGGTTCCACCAGGTGCACGCCAAGGACAACGGACGCATCCGGTACAAGCGCGTCTGCGAGGCGTGTGGCGAGGTGGTCGACTACCGCGATCTTGCCCGGGCCTACGAGTCCGGCGACGGCCAAATGGTGGCGATCACCGACGACGACATCGCCAGCTTGCCTGAAGAACGCAGCCGGGAGATCGAGGTGTTGGAGTTCGTCCCCGCCGCCGACGTGGACCCGATGATGTTCGACCGCAGCTACTTTTTGGAGCCTGATTCGAAGTCGTCGAAATCGTATGTGCTGCTGGCTAAGACACTCGCCGAGACCGACCGGATGGCGATCGTGCATTTCACGCTGCGCAACAAGACCAGGCTGGCGGCGTTGCGCGTCAAGGATTTCGGCAAGCGAGAGGTGATGATGGTGCACACGTTGCTGTGGCCCGATGAGATCCGCGACCCCGACTTCCCGGTGCTGGACCAGAAGGTGGAGATCAAACCCGCGGAACTCAAGATGGCCGGCCAGGTGGTGGACTCGATGGCCGACGACTTCAATCCGGACCGCTACCACGACACCTACCAGGAGCAGTTACAGGAGCTGATCGACACCAAACTCGAAGGTGGGCAGGCATAAGGTGGGCAGGCATGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGGTTCGGCGTCGGAGCAACGGGTGACGCTGACCAACGCCGACAAGGTGCTCTATCCCGCCACCGGGACCACAAAGTCCGATATCTTCGACTACTACGCCGGTGTTGCCGAAGTCATGCTCGGCCACATCGCGGGACGGCCGGCGACGCGCAAGCGCTGGCCTAACGGCGTCGACCAACCCGCGTTCTTCGAAAAGCAGTTGGCGTTGTCGGCGCCGCCTTGGCTGTCACGTGCAACGGTGGCGCACCGGTCCGGGACGACGACCTATCCGATCATCGATAGCGCAACCGGGCTGGCCTGGATCGCCCAACAGGCGGCGCTGGAGGTGCACGTGCCGCAGTGGCGGTTTGTCGCCGAGCCCGGATCAGGTGAGTTAAATCCGGGCCCGGCAACGCGTTTGGTGTTCGACCTGGACCCGGGCGAAGGCGTGATGATGGCCCAGCTGGCCGAGGTGGCGCGCGCGGTTCGTGATCTTCTCGCCGATATCGGGTTGGTCACCTTCCCGGTCACCAGCGGCAGCAAGGGATTGCATCTGTACACACCGCTGGATGAGCCGGTGAGCAGCAGGGGAGCCACGGTGTTGGCCAAGCGCGTCGCGCAGCGATTGGAGCAGGCGATGCCCGCGTTGGTCACCTCGACCATGACCAAAAGCCTGCGGGCCGGGAAGGTGTTTGTGGACTGGAGCCAGAACAGCGGCTCGAAGACCACCATCGCGCCGTACTCACTACGTGGCCGGACGCATCCGACCGTCGCGGCGCCACGCACCTGGGCGGAGCTCGACGACCCCGCACTGCGTCAGCTCTCCTACGACGAGGTGCTGACCCGGATTGCCCGCGACGGCGATCTGCTCGAGCGGCTGGATGCCGACGCTCCGGTAGCGGACCGGTTGACCCGATACCGCCGCATGCGCGACGCATCGAAAACTCCCGAGCCGATTCCCACGGCGAAACCCGTTACCGGAGACGGCAATACGTTCGTCATCCAGGAGCATCACGCGCGTCGGCCGCACTACGATTTCCGGCTGGAATGCGACGGCGTGCTGGTCTCGTGGGCGGTACCGAAAAACCTGCCCGACAACACATCGGTTAACCATCTAGCGATACACACCGAGGACCACCCGCTGGAATACGCCACGTTCGAGGGCGCGATTCCCAGCGGGGAGTACGGCGCCGGCAAGGTGATCATCTGGGACTCCGGCACTTACGACACCGAGAAGTTCCACGATGACCCGCACACGGGGGAGGTCATCGTGAATCTGCACGGCGGCCGGATCTCTGGGCGTTATGCGCTGATTCGGACCAACGGCGATCGGTGGCTGGCGCACCGCCTAAAGAATCAGAAAGACCAGAAGGTGTTCGAGTTCGACAATCTGGCCCCAATGCTTGCCACGCACGGCACGGTGGCCGGTCTAAAGGCCAGCCAGTGGGCGTTCGAAGGCAAGTGGGACGGCTACCGGTTGCTGGTTGAGGCTGACCACGGCGCCGTGCGGCTGCGGTCCCGCAGCGGGCGCGATGTCACCGCCGAGTATCCGCAATTGCGGGCATTGGCGGAGGATCTCGCCGATCACCACGTGGTGCTGGACGGCGAGGCCGTCGTACTTGACTCCTCTGGTGTGCCCAGCTTCAGCCAGATGCAGAATCGGGGCCGCGACACCCGTGTCGAGTTCTGGGCGTTCGACCTGCTCTACCTCGACGGCCGCGCGCTGCTAGGCACCCGCTACCAAGACCGGCGTAAGCTGCTCGAAACCCTAGCTAACGCAACCAGTCTCACCGTTCCCGAGCTGCTGCCCGGTGACGGCGCCCAAGCGTTTGCGTGCTCGCGCAAGCACGGCTGGGAGGGCGTGATCGCCAAGAGGCGTGACTCGCGCTATCAGCCGGGCCGGCGCTGCGCGTCGTGGGTCAAGGACAAGCACTGGAACACCCAGGAAGTCGTCATTGGTGGCTGGCGCGCCGGGGAAGGCGGGCGCAGCAGTGGCGTCGGGTCGCTGCTCATGGGCATCCCCGGTCCAGGTGGGCTGCAGTTCGCCGGGCGGGTCGGTACCGGCCTCAGCGAACGCGAACTGGCCAACCTCAAGGAGATGCTGGCGCCGCTGCATACCGACGAGTCCCCCTTCGACGTACCACTGCCCGCGCGTGACGCCAAGGGCATCACATATGTCAAGCCGGCGCTGGTTGCAGAGGTGCGCTACAGCGAGTGGACTCCGGAGGGCCGGCTGCGTCAATCAAGCTGGCGTGGGCTGCGGCCGGACAAGAAACCCAGTGAGGTGGTGCGCGAATGAccagcttttgttccctttagtgagggttaattgcgcgcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgcatgcataaaaactgttgtaattcattaagcattctgccgacatggaagccatcacaaacggcatgatgaacctgaatcgccagcggcatcagcaccttgtcgccttgcgtataatatttgcccatgggggtgggcgaagaactccagcatgagatccccgcgctggaggatcatccagccggcgtcccggaaaacgattccgaagcccaacctttcatagaaggcggcggtggaatcgaaatctcgtgatggcaggttgggcgtcgcttggtcggtcatttcgaaccccagagtcccgctcagaagaactcgtcaagaaggcgatagaaggcgatgcgctgcgaatcgggagcggcgataccgtaaagcacgaggaagcggtcagcccattcgccgccaagctcttcagcaatatcacgggtagccaacgctatgtcctgatagcggtccgccacacccagccggccacagtcgatgaatccagaaaagcggccattttccaccatgatattcggcaagcaggcatcgccatgggtcacgacgagatcctcgccgtcgggcatgcgcgccttgagcctggcgaacagttcggctggcgcgagcccctgatgctcttcgtccagatcatcctgatcgacaagaccggcttccatccgagtacgtgctcgctcgatgcgatgtttcgcttggtggtcgaatgggcaggtagccggatcaagcgtatgcagccgccgcattgcatcagccatgatggatactttctcggcaggagcaaggtgagatgacaggagatcctgccccggcacttcgcccaatagcagccagtcccttcccgcttcagtgacaacgtcgagcacagctgcgcaaggaacgcccgtcgtggccagccacgatagccgcgctgcctcgtcctgcagttcattcagggcaccggacaggtcggtcttgacaaaaagaaccgggcgcccctgcgctgacagccggaacacggcggcatcagagcagccgattgtctgttgtgcccagtcatagccgaatagcctctccacccaagcggccggagaacctgcgtgcaatccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcttgatcccctgcgccatcagatccttggcggcaagaaagccatccagtttactttgcagggcttcccaaccttaccagagggcgccccagctggcaattccggttcgcttgctgtccataaaaccgcccagtctagctatcgccatgtaagcccactgcaagctacctgctttctctttgcgcttgcgttttcccttgtccagatagcccagtagctgacattcatcccaggtggcacttttcggggaaatgtgcgcgcccgcgttcctgctggcgctgggcctgtttctggcgctggacttcccgctgttccgtcagcagcttttcgcccacggccttgatgatcgcggcggccttggcctgcatatcccgattcaacggccccagggcgtccagaacgggcttcaggcgctcccgaaggt ctcgggccgtctcttgggcttgatcggccttcttgcgcatctcacgcgctcctgcggcggcctgtagggcaggctcatacccctgccgaaccgcttttgtcagccggtcggccacggcttccggcgtctcaacgcgctttgagattcccagcttttcggccaatccctgcggtgcataggcgcgtggctcgaccgcttgcgggctgatggtgacgtggcccactggtggccgctccagggcctcgtagaacgcctgaatgcgcgtgtgacgtgccttgctgccctcgatgccccgttgcagccctagatcggccacagcggccgcaaacgtggtctggtcgcgggtcatctgcgctttgttgccgatgaactccttggccgacagcctgccgtcctgcgtcagcggcaccacgaacgcggtcatgtgcgggctggtttcgtcacggtggatgctggccgtcacgatgcgatccgccccgtacttgtccgccagccacttgtgcgccttctcgaagaacgccgcctgctgttcttggctggccgacttccaccattccgggctggccgtcatgacgtactcgaccgccaacacagcgtccttgcgccgcttctctggcagcaactcgcgcagtcggcccatcgcttcatcggtgctgctggccgcccagtgctcgttctctggcgtcctgctggcgtcagcgttgggcgtctcgcgctcgcggtaggcgtgcttgagactggccgccacgttgcccattttcgccagcttcttgcatcgcatgatcgcgtatgccgccatgcctgcccctcccttttggtgtccaaccggctcgacgggggcagcgcaaggcggtgcctccggcgggccactcaatgcttgagtatactcactagactttgcttcgcaaagtcgtgaccgcctacggcggctgcggcgccctacgggcttgctctccgggcttcgccctgcgcggtcgctgcgctcccttgccagcccgtg gatatgtggacgatggccgcgagcggccaccggctggctcgcttcgctcggcccgtggacaaccctgctggacaagctgatggacaggctgcgcctgcccacgagcttgaccacagggattgcccaccggctacccagccttcgaccacatacccaccggctccaactgcgcggcctgcggccttgccccatcaatttttttaattttctctggggaaaagcctccggcctgcggcctgcgcgcttcgcttgccggttggacaccaagtggaaggcgggtcaaggctcgcgcagcgaccgcgcagcggcttggccttgacgcgcctggaacgacccaagcctatgcgagtgggggcagtcgaaggcgaagcccgcccgcctgccccccgagcctcacggcggcgagtgcgggggttccaagggggcagcgccaccttgggcaaggccgaaggccgcgcagtcgatcaacaagccccggaggggccactttttgccggagggggagccgcgccgaaggcgtgggggaaccccgcaggggtgcccttctttgggcaccaaagaactagatatagggcgaaatgcgaaagacttaaaaatcaacaacttaaaaaaggggggtacgcaacagctcattgcggcaccccccgcaatagctcattgcgtaggttaaagaaaatctgtaattgactgccacttttacgcaacgcataattgttgtcgcgctgccgaaaagttgcagctgattgcgcatggtgccgcaaccgtgcggcaccctaccgcatggagataagcatggccacgcagtccagagaaatcggcattcaagccaagaacaagcccggtcactgggtgcaaacggaacgcaaagcgcatgaggcgtgggccgggcttattgcgaggaaacccacggcggcaatgctgctgcatcacctcgtggcgcagatgggccaccagaacgccgtggtggtcagccagaagacactttccaagctcatcggac gttctttgcggacggtccaatacgcagtcaaggacttggtggccgagcgctggatctccgtcgtgaagctcaacggccccggcaccgtgtcggcctacgtggtcaatgaccgcgtggcgtggggccagccccgcgaccagttgcgcctgtcggtgttcagtgccgccgtggtggttgatcacgacgaccaggacgaatcgctgttggggcatggcgacctgcgccgcatcccgaccctgtatccgggcgagcagcaactaccgaccggccccggcgaggagccgcccagccagcccggcattccgggcatggaaccagacctgccagccttgaccgaaacggaggaatgggaacggcgcgggcagcagcgcctgccgatgcccgatgagccgtgttttctggacgatggcgagccgttggagccgccgacacgggtcacgctgccgcgccggtagcacttgggttgcgcagcaacccgtaagtgcgctgttccagactatcggctgtagccgcctcgccgccctataccttgtctgcctccccgcgttgcgtcgcggtgcatggagccgggccacctcgacctgaatggaagccggcggcacctcgctaacggattcaccgtttttatcaggctctgggaggcagaataaatgatcatatcgtcaattattacctccacggggagagcctgagcaaactggcctcaggcatttgagaagcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgaccgggtcgaatttgctttcgaatttctgccattcatccgcttattatcacttattcaggcgtagcaccaggcgtttaagggcaccaataactgccttaaaaaaattacgccccgccctgccactcatcgcagtcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaaca aaatattaacgcttacaatttccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgagcgcgcgtaatacgactcactatagggcgaattggagctccaccgcggtggcGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACGAGACCaaaGGTCTCgttttagagctaGAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTTTGACGACGACGACGACGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACGAGACaaaGTCTCgttttagagctaGAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTTTgatcccccgggctgcaggaattcgatatcaGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGGCGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAA CTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACTGATAAAGTGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCTATTAACGCAAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGATTGTTTGGGAATCTCATTGCTTTGTCATTGGGATTGACCCCTAATTTTAAATCAAATTTTGATTTGGCAGAAGATACTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATAGTGAAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGCGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCTCTATTCCCTATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCG GAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAGGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGCGTTGAAGATCGGTTTAATACGTCATTAGGTACCTACCATGATTTGCTAAAAATTATCAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATTTTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAAGGAAATGATTGAGGAACGACTTAAAAAGTATGCTAACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCATTATACTGGCTGGGGGCGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAACTTTATGCAGCTTATCAATGATGATAGTTTAACATTCAAGGAAGCTATTCAAAAAGCACAGGTGTCTGGACAAGGCCATAGTTTACATGAACAGATTGCTAACTTAGCTGGCAGTCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAAGTAATGGGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTT GAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTGCTAACACGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATGCGTATCTTAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAGGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAGACAGGTGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTG ATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGGATATAAGGAAGTTAGAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGCTGGCTTTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAAAAATTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCAATACGTGAACAAGCAAAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGAACGAAACCGTTACAAATCAATTAAGGAAGTCTTAGATGCAACCCTCATCCATCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGCGAGCCATTTGGACGGGTTCGATCGCCTTCGGGCTGGTGAACGTGCCGGTCAAGGTGTACAGCGCTACCGCAGACCACGACATCAGGTTCCACCAGGTGCACGCCAAGGACAACGGACGCATCCGGTACAAGCGCGTCTGCGAGGCGTGTGGCGAGGTGGTCGACTACCGCGATCTTGCCCGGGCCTACGAGTCCGGCGACGGCCAAATGGTGGCGATCACCGACGACGACATCGCCAGCTT GCCTGAAGAACGCAGCCGGGAGATCGAGGTGTTGGAGTTCGTCCCCGCCGCCGACGTGGACCCGATGATGTTCGACCGCAGCTACTTTTTGGAGCCTGATTCGAAGTCGTCGAAATCGTATGTGCTGCTGGCTAAGACACTCGCCGAGACCGACCGGATGGCGATCGTGCATTTCACGCTGCGCAACAAGACCAGGCTGGCGGCGTTGCGCGTCAAGGATTTCGGCAAGCGAGAGGTGATGATGGTGCACACGTTGCTGTGGCCCGATGAGATCCGCGACCCCGACTTCCCGGTGCTGGACCAGAAGGTGGAGATCAAACCCGCGGAACTCAAGATGGCCGGCCAGGTGGTGGACTCGATGGCCGACGACTTCAATCCGGACCGCTACCACGACACCTACCAGGAGCAGTTACAGGAGCTGATCGACACCAAACTCGAAGGTGGGCAGGCATAAGGTGGGCAGGCATGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGGTTCGGCGTCGGAGCAACGGGTGACGCTGACCAACGCCGACAAGGTGCTCTATCCCGCCACCGGGACCACAAAGTCCGATATCTTCGACTACTACGCCGGTGTTGCCGAAGTCATGCTCGGCCACATCGCGGGACGGCCGGCGACGCGCAAGCGCTGGCCTAACGGCGTCGACCAACCCGCGTTCTTCGAAAAGCAGTTGGCGTTGTCGGCGCCGCCTTGGCTGTCACGTGCAACGGTGGCGCACCGGTCCGGGACGACGACCTATCCGATCATCGATAGCGCAACCGGGCTGGCCTGGATCGCCCAACAGGCGGCGCTGGAGGTGCACGTGCCGCAGTGGCGGTTTGTCGCCGAGCCCGGATCAGGTGAGTTAAATCCGGGCCCGGCAACGCGTTTGGTGTTCGACCTGGACCCGGGCGAAGGCGTGATGATGGCCCAGCTGGCCGAGGTGGCGCGCGCGGTTCGTGATCTTCTCGC CGATATCGGGTTGGTCACCTTCCCGGTCACCAGCGGCAGCAAGGGATTGCATCTGTACACACCGCTGGATGAGCCGGTGAGCAGCAGGGGAGCCACGGTGTTGGCCAAGCGCGTCGCGCAGCGATTGGAGCAGGCGATGCCCGCGTTGGTCACCTCGACCATGACCAAAAGCCTGCGGGCCGGGAAGGTGTTTGTGGACTGGAGCCAGAACAGCGGCTCGAAGACCACCATCGCGCCGTACTCACTACGTGGCCGGACGCATCCGACCGTCGCGGCGCCACGCACCTGGGCGGAGCTCGACGACCCCGCACTGCGTCAGCTCTCCTACGACGAGGTGCTGACCCGGATTGCCCGCGACGGCGATCTGCTCGAGCGGCTGGATGCCGACGCTCCGGTAGCGGACCGGTTGACCCGATACCGCCGCATGCGCGACGCATCGAAAACTCCCGAGCCGATTCCCACGGCGAAACCCGTTACCGGAGACGGCAATACGTTCGTCATCCAGGAGCATCACGCGCGTCGGCCGCACTACGATTTCCGGCTGGAATGCGACGGCGTGCTGGTCTCGTGGGCGGTACCGAAAAACCTGCCCGACAACACATCGGTTAACCATCTAGCGATACACACCGAGGACCACCCGCTGGAATACGCCACGTTCGAGGGCGCGATTCCCAGCGGGGAGTACGGCGCCGGCAAGGTGATCATCTGGGACTCCGGCACTTACGACACCGAGAAGTTCCACGATGACCCGCACACGGGGGAGGTCATCGTGAATCTGCACGGCGGCCGGATCTCTGGGCGTTATGCGCTGATTCGGACCAACGGCGATCGGTGGCTGGCGCACCGCCTAAAGAATCAGAAAGACCAGAAGGTGTTCGAGTTCGACAATCTGGCCCCAATGCTTGCCACGCACGGCACGGTGGCCGGTCTAAAGGCCAGCCAGTGGGCGTTCGAAGGCAAGTGGGACGGCTACCGGTTGCTGGTTGAGGCTGACCACGGC GCCGTGCGGCTGCGGTCCCGCAGCGGGCGCGATGTCACCGCCGAGTATCCGCAATTGCGGGCATTGGCGGAGGATCTCGCCGATCACCACGTGGTGCTGGACGGCGAGGCCGTCGTACTTGACTCCTCTGGTGTGCCCAGCTTCAGCCAGATGCAGAATCGGGGCCGCGACACCCGTGTCGAGTTCTGGGCGTTCGACCTGCTCTACCTCGACGGCCGCGCGCTGCTAGGCACCCGCTACCAAGACCGGCGTAAGCTGCTCGAAACCCTAGCTAACGCAACCAGTCTCACCGTTCCCGAGCTGCTGCCCGGTGACGGCGCCCAAGCGTTTGCGTGCTCGCGCAAGCACGGCTGGGAGGGCGTGATCGCCAAGAGGCGTGACTCGCGCTATCAGCCGGGCCGGCGCTGCGCGTCGTGGGTCAAGGACAAGCACTGGAACACCCAGGAAGTCGTCATTGGTGGCTGGCGCGCCGGGGAAGGCGGGCGCAGCAGTGGCGTCGGGTCGCTGCTCATGGGCATCCCCGGTCCAGGTGGGCTGCAGTTCGCCGGGCGGGTCGGTACCGGCCTCAGCGAACGCGAACTGGCCAACCTCAAGGAGATGCTGGCGCCGCTGCATACCGACGAGTCCCCCTTCGACGTACCACTGCCCGCGCGTGACGCCAAGGGCATCACATATGTCAAGCCGGCGCTGGTTGCAGAGGTGCGCTACAGCGAGTGGACTCCGGAGGGCCGGCTGCGTCAATCAAGCTGGCGTGGGCTGCGGCCGGACAAGAAACCCAGTGAGGTGGTGCGCGAATGAccagcttttgttccctttagtgagggttaattgcgcgcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcggg aaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgcatgcataaaaactgttgtaattcattaagcattctgccgacatggaagccatcacaaacggcatgatgaacctgaatcgccagcggcatcagcaccttgtcgccttgcgtataatatttgcccatgggggtgggcgaagaactccagcatgagatccccgcgctggaggatcatccagccggcgtcccggaaaacgattccgaagcccaacctttcatagaaggcggcggtggaatcgaaatctcgtgatggcaggttgggcgtcgcttggtcggtcatttcgaaccccagagtcccgctcagaagaactcgtcaagaaggcgatagaaggcgatgcgctgcgaatcgggagcggcgataccgtaaagcacgaggaagcggtcagcccattcgccgccaagctcttcagcaatatcacgggtagccaacgctatgtcctgatagcggtccgccacacccagccggccacagtcgatgaatccagaaaagcggccattttccaccatgatattcggcaagcaggcatcgccatgggtcacgacgagatcctcgccgtcgggcatgcgcgccttgagcctggcgaacagttcggctggcgcgagcccctgatgctcttcgtccagatcatcctgatcgacaagaccggcttccatccgagtacgtgctcgctcgatgcgatgtttcgcttggtggtcgaatgggcaggtagccggatcaagcgtatgcagccgccgcattgcatcagccatgatggatactttctcggcaggagcaaggtgagatgacaggagatcctgccccggcacttcgcccaatagcagccagtcccttcccgcttcagtgacaacgtcgagcacagctgcgcaaggaacgcccgtcgtggccagccacgatagccgcgctgcctcgtcctgcagttcattcagggca ccggacaggtcggtcttgacaaaaagaaccgggcgcccctgcgctgacagccggaacacggcggcatcagagcagccgattgtctgttgtgcccagtcatagccgaatagcctctccacccaagcggccggagaacctgcgtgcaatccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcttgatcccctgcgccatcagatccttggcggcaagaaagccatccagtttactttgcagggcttcccaaccttaccagagggcgccccagctggcaattccggttcgcttgctgtccataaaaccgcccagtctagctatcgccatgtaagcccactgcaagctacctgctttctctttgcgcttgcgttttcccttgtccagatagcccagtagctgacattcatcccaggtggcacttttcggggaaatgtgcgcgcccgcgttcctgctggcgctgggcctgtttctggcgctggacttcccgctgttccgtcagcagcttttcgcccacggccttgatgatcgcggcggccttggcctgcatatcccgattcaacggccccagggcgtccagaacgggcttcaggcgctcccgaaggt
the
<210> SEQ ID NO: 2 <210> SEQ ID NO: 2
<211> 89 <211> 89
<212> DNA <212>DNA
<213> PPLtetO-1-cas9U <213> PPLtetO-1-cas9U
<400> SEQ ID NO: 2 <400> SEQ ID NO: 2
gctctagaactagtgGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGATAAGAAATACTCAATAGG gctctagaactagtg GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCACAAGGAGTATACC ATGGATAAGAAATACTCAATAGG
the
<210> SEQ ID NO: 3 <210> SEQ ID NO: 3
<211> 37 <211> 37
<212> DNA <212>DNA
<213> cas9D <213> cas9D
<400> SEQ ID NO: 3 <400> SEQ ID NO: 3
agggatgtcaatctcTCAGTCACCTCCTAGCTGACTC agggatgtcaatctc TCAGTCACCTCCTAGCTGACTC
the
<210> SEQ ID NO: 4 <210> SEQ ID NO: 4
<211> 88 <211> 88
<212> DNA <212> DNA
<213> PPLtetO-1-KuU <213> PPLtetO-1-KuU
<400> SEQ ID NO: 4 <400> SEQ ID NO: 4
gctctagaactagtgGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGCGAGCCATTTGGACGGGTT gctctagaactagtg GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCACAAGGAGTATACC ATGCGAGCCATTTGGACGGGTT
the
<210> SEQ ID NO: 5 <210> SEQ ID NO: 5
<211> 23 <211> 23
<212> DNA <212> DNA
<213> PkuD <213> PkuD
<400> SEQ ID NO: 5 <400> SEQ ID NO: 5
ATGCCTGCCCACCTTCGAGTTTG ATGCCTGCCCACCTTCGAGTTTG
the
<210> SEQ ID NO: 6 <210> SEQ ID NO: 6
<211> 84 <211> 84
<212> DNA <212>DNA
<213> PLtetO-1-ligDU <213> PLtetO-1-ligDU
<400> SEQ ID NO: 6 <400> SEQ ID NO: 6
gctctagaactagtgGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACAAGGAGTATACCATGGGTTCGGCGTCGGAG gctctagaactagtg GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCACAAGGAGTATACC ATGGGTTCGGCGTCGGAG
the
<210> SEQ ID NO: 7 <210> SEQ ID NO: 7
<211> 83 <211> 83
<212> DNA <212>DNA
<213> PligDD <213> PligDD
<400> SEQ ID NO: 7 <400> SEQ ID NO: 7
GGGAACAAAGCTGG CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTCATTCGCGCACCACCTCACT GGGAACAAAGCTGG CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTCATTCGCGCACCACCTCACT
the
<210> SEQ ID NO: 8 <210> SEQ ID NO: 8
<211> 81 <211> 81
<212> DNA <212> DNA
<213> BsaIU <213> BsaIU
<400> SEQ ID NO: 8 <400> SEQ ID NO: 8
GAGATTGACATCCCTATCAGTGATAGAGATACTGAGCAC gagacc aaa GGTCTC gttttagagctaGAAAtagcaagttaa GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCAC gagacc aaa GGTCTC gttttagagctaGAAAtagcaagttaa
the
<210> SEQ ID NO: 9 <210> SEQ ID NO: 9
<211> 72 <211> 72
<212> DNA <212> DNA
<213> BsaID <213> BsaID
<400> SEQ ID NO: 9 <400> SEQ ID NO: 9
GAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTC GAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTC
the
<210> SEQ ID NO: 10 <210> SEQ ID NO: 10
<211> 33 <211> 33
<212> DNA <212>DNA
<213> PBsaIU <213> PBSaIU
<400> SEQ ID NO: 10 <400> SEQ ID NO: 10
ctccaccgcggtggcGAGATTGACATCCCTATC ctccaccgcggtggcGAGATTGACATCCCTATC
the
<210> SEQ ID NO: 11 <210> SEQ ID NO: 11
<211> 33 <211> 33
<212> DNA <212> DNA
<213> PBsaID <213> PBsaID
<400> SEQ ID NO: 11 <400> SEQ ID NO: 11
GTCGTCGTCGTCGTCAAAAAAAGCACCGACTCG GTCGTCGTCGTCGTCAAAAAAAGCACCGACTCG
the
<210> SEQ ID NO: 12 <210> SEQ ID NO: 12
<211> 79 <211> 79
<212> DNA <212>DNA
<213> BsmAIU <213> BsmAIU
<400> SEQ ID NO: 12 <400> SEQ ID NO: 12
GAGATTGACATCCCTATCAGTGATAGAGATACTGAGCAC gagacaaagtctcg ttttagagctaGAAAtagcaagttaa GA GATTGA CATCCCTATCAGTGATAGA GATACT GAGCAC gagac aaa gtctcg ttttagagctaGAAAtagcaagttaa
the
<210> SEQ ID NO: 13 <210> SEQ ID NO: 13
<211> 71 <211> 71
<212> DNA <212>DNA
<213> BsmAID <213> BsmAID
<400> SEQ ID NO: 13 <400> SEQ ID NO: 13
GAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTTT GAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTTT
the
<210> SEQ ID NO: 14 <210> SEQ ID NO: 14
<211> 33 <211> 33
<212> DNA <212> DNA
<213> PBsmAIU <213> PBsmAIU
<400> SEQ ID NO: 14 <400> SEQ ID NO: 14
GACGACGACGACGACGAGATTGACATCCCTATC GACGACGACGACGAC GA GATTGA CATCCCTATC
the
<210> SEQ ID NO: 15 <210> SEQ ID NO: 15
<211> 33 <211> 33
<212> DNA <212>DNA
<213> PBsmAID <213> PBsmAID
<400> SEQ ID NO: 15 <400> SEQ ID NO: 15
GCCACCGCGGTGGAGAAAAAAAGCACCGACTCG GCCACCGCGGTGGAGAAAAAAAGCACCGACTCG
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510097590.9A CN104673816A (en) | 2015-03-05 | 2015-03-05 | PCr-NHEJ (non-homologous end joining) carrier as well as construction method of pCr-NHEJ carrier and application of pCr-NHEJ carrier in site-specific knockout of bacterial genes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510097590.9A CN104673816A (en) | 2015-03-05 | 2015-03-05 | PCr-NHEJ (non-homologous end joining) carrier as well as construction method of pCr-NHEJ carrier and application of pCr-NHEJ carrier in site-specific knockout of bacterial genes |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104673816A true CN104673816A (en) | 2015-06-03 |
Family
ID=53309406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510097590.9A Pending CN104673816A (en) | 2015-03-05 | 2015-03-05 | PCr-NHEJ (non-homologous end joining) carrier as well as construction method of pCr-NHEJ carrier and application of pCr-NHEJ carrier in site-specific knockout of bacterial genes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104673816A (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
WO2017024602A1 (en) * | 2015-08-07 | 2017-02-16 | 苏州大学张家港工业技术研究院 | Method for determining non-homologous end joining repair activity |
CN106544353A (en) * | 2016-11-08 | 2017-03-29 | 宁夏医科大学总医院 | A kind of method that utilization CRISPR Cas9 remove Acinetobacter bauamnnii drug resistance gene |
CN106834330A (en) * | 2016-12-30 | 2017-06-13 | 上海科技大学 | A kind of pCasSA plasmids and its application |
CN107298698A (en) * | 2017-06-05 | 2017-10-27 | 佛山科学技术学院 | A non-homologous end system, preparation method and application |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
CN109971778A (en) * | 2017-12-27 | 2019-07-05 | 北京蓝晶微生物科技有限公司 | A vector combination for rapid gene editing in Halomonas and its application |
CN109971789A (en) * | 2019-03-25 | 2019-07-05 | 江南大学 | A gene editing system and its application in Mycobacterium neoaureus |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
CN110791468A (en) * | 2019-10-14 | 2020-02-14 | 江南大学 | Construction method and application of a kind of mycobacteria genetically engineered bacteria |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
CN111850025A (en) * | 2019-04-26 | 2020-10-30 | 中国医学科学院病原生物学研究所 | A kind of gene editing system and method applied to Mycobacterium tuberculosis |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
CN114277047A (en) * | 2021-12-28 | 2022-04-05 | 苏州金唯智生物科技有限公司 | Application of high-throughput screening tool for enabling escherichia coli to obtain effective NHEJ system in escherichia coli gene editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN115747243A (en) * | 2022-08-03 | 2023-03-07 | 中国农业科学院植物保护研究所 | Development and application of plant pathogenic bacterium genome editing tool |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103820454A (en) * | 2014-03-04 | 2014-05-28 | 黄行许 | Method for human PD1 gene specific knockout through CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat) and sgRNA(single guide RNA)for specially targeting PD1 gene |
CN103911376A (en) * | 2014-04-03 | 2014-07-09 | 南京大学 | CRISPR-Cas9 targeted knockout hepatitis b virus cccDNA and specific sgRNA thereof |
US20140242699A1 (en) * | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US20140273231A1 (en) * | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
-
2015
- 2015-03-05 CN CN201510097590.9A patent/CN104673816A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140242699A1 (en) * | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US20140273231A1 (en) * | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
CN103820454A (en) * | 2014-03-04 | 2014-05-28 | 黄行许 | Method for human PD1 gene specific knockout through CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat) and sgRNA(single guide RNA)for specially targeting PD1 gene |
CN103911376A (en) * | 2014-04-03 | 2014-07-09 | 南京大学 | CRISPR-Cas9 targeted knockout hepatitis b virus cccDNA and specific sgRNA thereof |
Non-Patent Citations (3)
Title |
---|
F ANN RAN ET. AL.: "Genome engineering using the CRISPR-Cas9 system", 《NATURE PROTOCOLS》 * |
GONG ET.AL.: "Mechanism of nonhomologous end-joining in mycobacteria:a low-fidelity repair system driven by Ku, ligase D and ligase C", 《NATURE STRUCTURAL & MOLECULAR BIOLOGY》 * |
殷亮: "原核生物的NHEJ修复途径", 《生物技术通报》 * |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
WO2017024602A1 (en) * | 2015-08-07 | 2017-02-16 | 苏州大学张家港工业技术研究院 | Method for determining non-homologous end joining repair activity |
US9863933B2 (en) | 2015-08-07 | 2018-01-09 | Soochow University | Method for determining the repair activity of non-homologous end joining |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
CN106544353A (en) * | 2016-11-08 | 2017-03-29 | 宁夏医科大学总医院 | A kind of method that utilization CRISPR Cas9 remove Acinetobacter bauamnnii drug resistance gene |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
CN106834330B (en) * | 2016-12-30 | 2020-07-31 | 上海科技大学 | pCasSA plasmid and application thereof |
CN106834330A (en) * | 2016-12-30 | 2017-06-13 | 上海科技大学 | A kind of pCasSA plasmids and its application |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN107298698A (en) * | 2017-06-05 | 2017-10-27 | 佛山科学技术学院 | A non-homologous end system, preparation method and application |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
CN109971778A (en) * | 2017-12-27 | 2019-07-05 | 北京蓝晶微生物科技有限公司 | A vector combination for rapid gene editing in Halomonas and its application |
CN109971778B (en) * | 2017-12-27 | 2022-11-18 | 北京蓝晶微生物科技有限公司 | Vector combination for rapid gene editing in halomonas and application thereof |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
CN109971789A (en) * | 2019-03-25 | 2019-07-05 | 江南大学 | A gene editing system and its application in Mycobacterium neoaureus |
CN111850025B (en) * | 2019-04-26 | 2022-04-29 | 中国医学科学院病原生物学研究所 | Gene editing system and method applied to mycobacterium tuberculosis |
CN111850025A (en) * | 2019-04-26 | 2020-10-30 | 中国医学科学院病原生物学研究所 | A kind of gene editing system and method applied to Mycobacterium tuberculosis |
CN110791468B (en) * | 2019-10-14 | 2021-11-23 | 江南大学 | Construction method and application of mycobacterium genetic engineering bacteria |
CN110791468A (en) * | 2019-10-14 | 2020-02-14 | 江南大学 | Construction method and application of a kind of mycobacteria genetically engineered bacteria |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN114277047B (en) * | 2021-12-28 | 2023-10-03 | 苏州金唯智生物科技有限公司 | Application of high-throughput screening tool for obtaining effective NHEJ system from escherichia coli in escherichia coli gene editing |
CN114277047A (en) * | 2021-12-28 | 2022-04-05 | 苏州金唯智生物科技有限公司 | Application of high-throughput screening tool for enabling escherichia coli to obtain effective NHEJ system in escherichia coli gene editing |
CN115747243A (en) * | 2022-08-03 | 2023-03-07 | 中国农业科学院植物保护研究所 | Development and application of plant pathogenic bacterium genome editing tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104673816A (en) | PCr-NHEJ (non-homologous end joining) carrier as well as construction method of pCr-NHEJ carrier and application of pCr-NHEJ carrier in site-specific knockout of bacterial genes | |
US10612043B2 (en) | Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events | |
CN110358767B (en) | Zymomonas mobilis genome editing method based on CRISPR-Cas12a system and application thereof | |
US20080268520A1 (en) | Compositions and methods for recombinational cloning of nucleic acid molecules | |
CN104109687A (en) | Construction and application of Zymomonas mobilis CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-association proteins)9 system | |
US20030077804A1 (en) | Compositions and methods for recombinational cloning of nucleic acid molecules | |
JPS58192900A (en) | Complex plasmid | |
CN107236748B (en) | Recombinant plasmid, construction method and application in mycobacterium precise genome modification | |
CN102703424A (en) | Method for recombination-mediated escherichia coli genome point mutation | |
CN115851664B (en) | I-B CRISPR-Cascade-Cas3 gene editing system and application | |
CN116286931A (en) | Double-plasmid system for rapid gene editing of Ralstonia eutropha and application thereof | |
WO2000029000A9 (en) | Compositions and methods for recombinational cloning of nucleic acid molecules | |
CN104031932A (en) | Zymomonas mobilis-escherichia coli shuttle vector pSUZM1, pSUZM2 and pSUZM3 and construction method thereof | |
CN114317493A (en) | Genome editing system suitable for pseudomonas and construction method and application thereof | |
CN104152482A (en) | RecET recombination system expression plasmids for zymomonas mobilis, as well as construction method and applications thereof | |
CN116355938A (en) | Gene editing carrier system based on micro RNA guide nuclease TnpB and its construction method and application | |
CN107287226B (en) | Cpf 1-based DNA construct and DNA in-vitro splicing method | |
CN104212829A (en) | Series of Zymomonas mobilis expression vectors pSUZM, and construction method thereof | |
CN109811010B (en) | Method for enhancing gene editing efficiency of actinomycetes and application thereof | |
CN114231552B (en) | Novel I-type CRISPR/Cas system and application thereof | |
CN114507683A (en) | SURE strain with Kan resistance gene knocked out and construction method and application thereof | |
JP3058186B2 (en) | Novel cloning and / or expression vectors, their production method and their use | |
CN115976086B (en) | Method for editing bacteria CRISPR-Cas9 gene and application thereof | |
CN118685436B (en) | A simple, rapid and efficient method for constructing RNA interference vector and its application | |
CN112501171B (en) | sgRNA targeting sequences of two specific targeting pig Pax7 genes and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20180622 |