CN104601269B - Master-salve clock synchronous method and system - Google Patents
Master-salve clock synchronous method and system Download PDFInfo
- Publication number
- CN104601269B CN104601269B CN201410852588.3A CN201410852588A CN104601269B CN 104601269 B CN104601269 B CN 104601269B CN 201410852588 A CN201410852588 A CN 201410852588A CN 104601269 B CN104601269 B CN 104601269B
- Authority
- CN
- China
- Prior art keywords
- time
- message
- protocol conversion
- conversion device
- synchronization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信技术领域,尤其涉及一种主从时钟同步方法及系统。The present invention relates to the technical field of communication, in particular to a master-slave clock synchronization method and system.
背景技术Background technique
随着智能电网的建设,电力系统中保护、自动业务及线路状态实时传感装置等新业务对时间同步提出了更高的要求,但配置在各个变电站、发电厂的时间同步系统尚未成网,难以达到各个变电站之间的时间高度统一。With the construction of the smart grid, new services such as protection, automatic services, and line status real-time sensing devices in the power system have put forward higher requirements for time synchronization, but the time synchronization systems configured in various substations and power plants have not yet been networked. It is difficult to achieve a high degree of uniformity between the various substations.
基于目前的技术发展和网络现状,采用精确时钟同步协议(Precision TimeProtocol,简称为PTP)技术经由同步数字体系(Synchronous Digital Hierarchy,简称为SDH)网络传输时间同步信号是最好的解决方案之一。其中,PTP技术是从时钟可从Follow_Up报文中获取Sync报文发送时刻的精确值T1,从时钟测量其接收到Sync报文的时刻为T2,从时钟发送Delay_Req报文的时间为T3,从时钟可从Delay_Resp报文中获取主时钟收到Delay_Req报文的精确时间T4。计算主从时钟之间的时间偏差的前提是双向传输路由对称。Based on the current technological development and network status, using the Precision Time Protocol (PTP) technology to transmit time synchronization signals via the Synchronous Digital Hierarchy (SDH) network is one of the best solutions. Among them, the PTP technology is that the slave clock can obtain the accurate value T1 of the sending time of the Sync message from the Follow_Up message. The clock can obtain the precise time T4 when the main clock receives the Delay_Req message from the Delay_Resp message. The premise of calculating the time offset between the master and slave clocks is that the bidirectional transmission routes are symmetrical.
实际环境中,SDH网络传输链路双向路径不一致,必然引入时延差,原先的PTP算法并不完全适用。而且,PTP技术传输的是以太网报文,SDH网络传输的是基于E1的三阶高密度双极性码(High Density Bipolar of Order 3,简称为HDB3码),传输时需要经过协议转换,但两协议的传输速率相差很大,必然会引入一定的时延,且不同的协议转换装置转换时延不一致。因此,在SDH网络传输PTP时间同步信号过程中,由于协议转换和双向传输链路不对称导致的时延,影响了主从时钟之间时间偏差的计算精度,进而影响传输时间同步信号的精度。In the actual environment, the two-way path of the SDH network transmission link is inconsistent, which inevitably introduces a delay difference, and the original PTP algorithm is not fully applicable. Moreover, the PTP technology transmits Ethernet packets, and the SDH network transmits E1-based third-order high-density bipolar codes (High Density Bipolar of Order 3, referred to as HDB3 codes), which require protocol conversion during transmission, but The transmission rates of the two protocols differ greatly, and a certain time delay will inevitably be introduced, and the conversion time delays of different protocol conversion devices are inconsistent. Therefore, in the process of transmitting PTP time synchronization signals in the SDH network, the time delay caused by the protocol conversion and the asymmetry of the two-way transmission link affects the calculation accuracy of the time deviation between the master and slave clocks, which in turn affects the accuracy of the transmission time synchronization signal.
发明内容Contents of the invention
本发明提供了一种主从时钟同步方法及系统,以至少解决目前采用PTP技术经由SDH网络传输时间同步信号的过程中,存在协议转换时延以及双向传输路径不一致的时延,影响时间偏差计算精度的问题。The present invention provides a master-slave clock synchronization method and system to at least solve the problem of protocol conversion delay and inconsistent bidirectional transmission path delay in the current process of transmitting time synchronization signals via SDH network using PTP technology, which affects the calculation of time deviation A question of precision.
根据本发明的一个方面,提供了一种主从时钟同步方法,包括:从时钟接收主时钟在第一时刻T1发送的同步报文,并记录接收到所述同步报文的第二时刻T2;所述从时钟接收所述主时钟发送的同步跟随报文,并从所述同步跟随报文中获取发送时刻T1-t1+t4,其中,所述发送时刻T1-t1+t4是第二协议转换装置对所述第一时刻T1进行调整后得到的时刻,所述第二协议转换装置与所述从时钟相连;t1是所述同步报文到达与所述主时钟相连的第一协议转换装置的时刻;t4是所述同步报文离开所述第二协议转换装置的时刻;所述从时钟向所述主时钟发送延迟请求报文,并记录发送所述延迟请求报文的第三时刻T3,其中所述主时钟在第四时刻T4接收到所述延迟请求报文;所述从时钟接收所述主时钟发送的延迟响应报文,并从所述延迟响应报文中获取接收时刻T4+t1’-t4’,其中,所述接收时刻T4+t1’-t4’是所述第二协议转换装置对所述第四时刻T4进行调整后得到的时刻,t1’是所述延迟请求报文到达所述第二协议转换装置的时刻,t4’是所述延迟请求报文离开所述第一协议转换装置的时刻;所述从时钟根据所述第二时刻T2、所述第三时刻T3、所述发送时刻T1-t1+t4和所述接收时刻T4+t1’-t4’计算所述主时钟与所述从时钟之间的时间偏差,并根据所述时间偏差修正所述从时钟的时间。According to one aspect of the present invention, a master-slave clock synchronization method is provided, including: the slave clock receives the synchronization message sent by the master clock at the first time T1, and records the second time T when the synchronization message is received 2 ; the slave clock receives the synchronization following message sent by the master clock, and obtains the sending time T 1 -t1+t4 from the synchronization following message, wherein the sending time T 1 -t1+t4 is The second protocol conversion device adjusts the first time T1 to obtain the time, and the second protocol conversion device is connected to the slave clock; t1 is the arrival of the synchronization message at the first time connected to the master clock The time of a protocol conversion device; t4 is the time when the synchronization message leaves the second protocol conversion device; the slave clock sends a delay request message to the master clock, and records the time of sending the delay request message At the third moment T3, the master clock receives the delay request message at the fourth moment T4; the slave clock receives the delay response message sent by the master clock, and receives the delay response message from the delay response message Obtaining the receiving time T 4 +t1'-t4', wherein the receiving time T 4 +t1'-t4' is the time obtained after the second protocol conversion device adjusts the fourth time T4, t1' is the time when the delay request message arrives at the second protocol conversion device, and t4' is the time when the delay request message leaves the first protocol conversion device; the slave clock is based on the second time T 2 , the third time T 3 , the sending time T 1 -t1+t4 and the receiving time T 4 +t1'-t4' calculate the time offset between the master clock and the slave clock, And correct the time of the slave clock according to the time deviation.
在一个实施例中,所述从时钟按照以下公式计算所述主时钟与所述从时钟之间的时间偏差offset:offset=(T2-T1+T3-T4+t4’-t1’+t1-t4)/2。In one embodiment, the slave clock calculates the time offset offset between the master clock and the slave clock according to the following formula: offset=(T 2 -T 1 +T 3 -T 4 +t4'-t1' +t1-t4)/2.
在一个实施例中,在从时钟接收主时钟在第一时刻T1发送的同步报文之前,所述方法还包括:所述第一协议转换装置接收所述同步报文,记录所述同步报文到达所述第一协议转换装置的时刻t1,并通过SDH网络输出所述同步报文;所述第二协议转换装置接收所述同步报文,将所述同步报文发送给所述从时钟,并记录所述同步报文离开所述第二协议转换装置的时刻t4。In one embodiment, before the slave clock receives the synchronization message sent by the master clock at the first time T1, the method further includes: the first protocol conversion device receives the synchronization message, and records the synchronization message The time t1 when the text arrives at the first protocol conversion device, and outputs the synchronization message through the SDH network; the second protocol conversion device receives the synchronization message and sends the synchronization message to the slave clock , and record the time t4 when the synchronization message leaves the second protocol conversion device.
在一个实施例中,在所述从时钟接收所述主时钟发送的同步跟随报文之前,所述方法还包括:所述第一协议转换装置接收所述同步跟随报文,将所述同步跟随报文中携带的第一时刻T1调整为T1-t1,并通过所述SDH网络输出所述同步跟随报文;所述第二协议转换装置接收所述同步跟随报文,将所述同步跟随报文中携带的时刻T1-t1调整为T1-t1+t4,并将所述同步跟随报文发送给所述从时钟。In an embodiment, before the slave clock receives the synchronization follow message sent by the master clock, the method further includes: the first protocol conversion device receives the synchronization follow message, and converts the synchronization follow message to The first moment T1 carried in the message is adjusted to T1 - t1 , and the synchronization following message is output through the SDH network; the second protocol conversion device receives the synchronization following message, and converts the synchronization following message to The time T 1 -t1 carried in the following message is adjusted to T 1 -t1+t4, and the synchronization following message is sent to the slave clock.
在一个实施例中,在所述从时钟接收所述主时钟发送的延迟响应报文之前,所述方法还包括:所述第二协议转换装置接收所述延迟请求报文,记录所述延迟请求报文到达所述第二协议转换装置的时刻t1’,并通过SDH网络输出所述延迟请求报文;所述第一协议转换装置接收所述延迟请求报文,将所述延迟请求报文发送给所述主时钟,并记录所述延迟请求报文离开所述第一协议转换装置的时刻t4’;所述主时钟接收到所述延迟请求报文后,输出所述延迟响应报文;所述第一协议转换装置接收所述延迟响应报文,将所述延迟响应报文中携带的第四时刻T4调整为T4-t4’,并通过所述SDH网络输出所述延迟响应报文;所述第二协议转换装置接收所述延迟响应报文,将所述延迟响应报文中携带的时刻T4-t4’调整为T4+t1’-t4’,并将所述延迟响应报文发送给所述从时钟。In one embodiment, before the slave clock receives the delay response message sent by the master clock, the method further includes: the second protocol conversion device receives the delay request message, and records the delay request The time t1' when the message arrives at the second protocol conversion device, and output the delay request message through the SDH network; the first protocol conversion device receives the delay request message and sends the delay request message to the master clock, and record the time t4' when the delay request message leaves the first protocol conversion device; after receiving the delay request message, the master clock outputs the delay response message; The first protocol conversion device receives the delayed response message, adjusts the fourth time T4 carried in the delayed response message to T4 - t4', and outputs the delayed response message through the SDH network ; The second protocol conversion device receives the delayed response message, adjusts the time T 4 -t4' carried in the delayed response message to T 4 +t1'-t4', and sends the delayed response message text sent to the slave clock.
根据本发明的另一个方面,提供了一种主从时钟同步系统,包括:主时钟、第一协议转换装置、第二协议转换装置和从时钟;所述第一协议转换装置和所述第二协议转换装置之间通过SDH网络传输报文;所述主时钟,用于向所述从时钟发送同步报文、同步跟随报文和延迟响应报文,以及接收来自所述从时钟的延迟请求报文,其中,所述同步跟随报文携带有所述主时钟发送所述同步报文的第一时刻T1,所述延迟响应报文携带有所述主时钟接收到所述延迟请求报文的第四时刻T4;所述第一协议转换装置,与所述主时钟连接,所述第一协议转换装置包括:第一记录模块和第一调整模块;其中,所述第一记录模块,用于记录并存储所述同步报文到达所述第一协议转换装置的时刻t1和所述延迟请求报文离开所述第一协议转换装置的时刻t4’;所述第一调整模块,用于将所述同步跟随报文中携带的第一时刻T1调整为T1-t1,以及将所述延迟响应报文中携带的第四时刻T4调整为T4-t4’;所述第二协议转换装置,与所述从时钟连接,所述第二协议转换装置包括:第二记录模块和第二调整模块;其中,所述第二记录模块,用于记录并存储所述同步报文离开所述第二协议转换装置的时刻t4和所述延迟请求报文到达所述第二协议转换装置的时刻t1’;所述第二调整模块,用于将所述同步跟随报文携带的时刻T1-t1调整为T1-t1+t4,以及将所述延迟响应报文携带的时刻T4-t4’调整为T4+t1’-t4’;所述从时钟包括:第一收发模块和计算模块;其中,所述第一收发模块,用于接收所述同步报文,并记录接收到所述同步报文的第二时刻T2;接收所述同步跟随报文,并从所述同步跟随报文中获取调整后的所述主时钟发送所述同步报文的发送时刻T1-t1+t4;发送所述延迟请求报文,并记录发送所述延迟请求报文的第三时刻T3;接收所述延迟响应报文,并从所述延迟响应报文中获取调整后的所述主时钟接收到所述延迟请求报文的接收时刻T4+t1’-t4’;所述计算模块,用于根据所述第二时刻T2、所述第三时刻T3、所述发送时刻T1-t1+t4和所述接收时刻T4+t1’-t4’计算所述主时钟与所述从时钟之间的时间偏差,并根据所述时间偏差修正所述从时钟的时间。According to another aspect of the present invention, a master-slave clock synchronization system is provided, including: a master clock, a first protocol conversion device, a second protocol conversion device, and a slave clock; the first protocol conversion device and the second protocol conversion device The message is transmitted between the protocol conversion devices through the SDH network; the master clock is used to send a synchronization message, a synchronization follow message and a delay response message to the slave clock, and receive a delay request message from the slave clock , wherein the synchronization following message carries the first time T 1 when the master clock sends the synchronization message, and the delay response message carries the time when the master clock receives the delay request message The fourth moment T4: the first protocol conversion device is connected to the master clock, and the first protocol conversion device includes: a first recording module and a first adjustment module; wherein, the first recording module uses record and store the time t1 when the synchronization message arrives at the first protocol conversion device and the time t4' when the delay request message leaves the first protocol conversion device; the first adjustment module is configured to The first time T 1 carried in the synchronization following message is adjusted to T 1 -t1, and the fourth time T 4 carried in the delayed response message is adjusted to T 4 -t4'; the second protocol The conversion device is connected to the slave clock, and the second protocol conversion device includes: a second recording module and a second adjustment module; wherein, the second recording module is used to record and store the synchronization message leaving the The time t4 of the second protocol conversion device and the time t1 ' when the delay request message arrives at the second protocol conversion device; the second adjustment module is used to set the time T1 carried by the synchronization following message -t1 is adjusted to T 1 -t1+t4, and the time T 4 -t4' carried by the delayed response message is adjusted to T 4 +t1'-t4'; the slave clock includes: a first transceiver module and a calculation module; wherein, the first transceiver module is configured to receive the synchronization message, and record the second moment T 2 when the synchronization message is received; receive the synchronization following message, and follow the synchronization message from the Obtain the adjusted sending time T 1 -t1+t4 of the synchronization message from the master clock in the message; send the delay request message, and record the third time T 3 when sending the delay request message ; Receive the delay response message, and obtain the adjusted receiving time T 4 +t1'-t4' when the master clock receives the delay request message from the delay response message; the calculation module , used to calculate the master clock and the time deviation between the slave clocks, and correct the time of the slave clocks according to the time deviation.
在一个实施例中,所述计算模块按照以下公式计算所述主时钟与所述从时钟之间的时间偏差offset:offset=(T2-T1+T3-T4+t4’-t1’+t1-t4)/2。In one embodiment, the calculation module calculates the time offset offset between the master clock and the slave clock according to the following formula: offset=(T 2 -T 1 +T 3 -T 4 +t4'-t1' +t1-t4)/2.
在一个实施例中,所述第一协议转换装置还包括:第二收发模块,用于接收并转发所述同步报文、所述同步跟随报文、所述延迟请求报文和所述延迟响应报文。In one embodiment, the first protocol conversion device further includes: a second transceiver module, configured to receive and forward the synchronization message, the synchronization following message, the delay request message and the delay response message.
在一个实施例中,所述第二协议转换装置还包括:第三收发模块,用于接收并转发所述同步报文、所述同步跟随报文、所述延迟请求报文和所述延迟响应报文。In one embodiment, the second protocol conversion device further includes: a third transceiver module, configured to receive and forward the synchronization message, the synchronization following message, the delay request message and the delay response message.
通过本发明的主从时钟同步方法及系统,经过SDH网络E1通道传输PTP时间同步信号的过程中,考虑了协议转换时延和双向传输路径不一致的不对称时延,配合协议转换装置与主从时钟的关联机制,提高了主从时钟之间时间偏差的计算精度,进而根据该时间偏差进行的时钟同步,也较为可靠,且实现方法简单。Through the master-slave clock synchronization method and system of the present invention, in the process of transmitting the PTP time synchronization signal through the E1 channel of the SDH network, the protocol conversion delay and the asymmetric delay of the bidirectional transmission path inconsistency are considered, and the protocol conversion device and the master-slave The clock association mechanism improves the calculation accuracy of the time deviation between the master and slave clocks, and the clock synchronization based on the time deviation is also more reliable and the implementation method is simple.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的限定。在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention, and constitute a part of the application. The schematic embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute a limitation to the present invention. In the attached picture:
图1是本发明实施例的主从时钟同步方法的流程图;Fig. 1 is the flowchart of the master-slave clock synchronization method of the embodiment of the present invention;
图2是本发明实施例的协议报文的传输示意图;Fig. 2 is a schematic diagram of the transmission of a protocol message according to an embodiment of the present invention;
图3是本发明实施例的主从时钟同步系统的结构框图。FIG. 3 is a structural block diagram of a master-slave clock synchronization system according to an embodiment of the present invention.
具体实施方式detailed description
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例提供了一种主从时钟同步方法,能够解决SDH网络传输PTP时间同步信号过程中引入的协议转换时延和双向传输链路不对称的时延问题,得出主从时钟之间的精确时间偏差。The embodiment of the present invention provides a master-slave clock synchronization method, which can solve the problem of protocol conversion delay and bidirectional transmission link asymmetry introduced in the SDH network transmission of PTP time synchronization signals, and obtains the master-slave clock synchronization method. precise time offset.
主时钟发送基于PTP技术的以太网报文,经过E1/Ethernet协议转换装置(位于主时钟一侧,相当于下述的第一协议转换装置)将其转换成E1信号,在SDH网络中传输后,经过E1/Ethernet协议转换装置(位于从时钟一侧,相当于下述的第二协议转换装置)将E1信号转换成以太网报文,该以太网报文被从时钟接收;从时钟采用同样的原理发送PTP报文至主时钟,实现主从时钟之间的同步报文的传递。The master clock sends Ethernet messages based on PTP technology, which are converted into E1 signals by the E1/Ethernet protocol conversion device (located on the side of the master clock, equivalent to the first protocol conversion device described below), and then transmitted in the SDH network , the E1 signal is converted into an Ethernet message through the E1/Ethernet protocol conversion device (located on the side of the slave clock, which is equivalent to the following second protocol conversion device), and the Ethernet message is received by the slave clock; the slave clock adopts the same The principle is to send PTP messages to the master clock to realize the transmission of synchronization messages between the master and slave clocks.
图1是本发明实施例的主从时钟同步方法的流程图,如图1所示,该方法包括以下步骤:Fig. 1 is the flowchart of the master-slave clock synchronization method of the embodiment of the present invention, as shown in Fig. 1, the method comprises the following steps:
步骤S101,从时钟接收主时钟在第一时刻T1发送的同步报文(Sync),并记录接收到同步报文的第二时刻T2。Step S101 , the slave clock receives a synchronization message (Sync) sent by the master clock at the first time T 1 , and records the second time T 2 when the synchronization message is received.
步骤S102,从时钟接收主时钟发送的同步跟随报文(Follow_Up),并从同步跟随报文中获取发送时刻T1-t1+t4,其中,发送时刻T1-t1+t4是第二协议转换装置对第一时刻T1进行调整后得到的时刻,第二协议转换装置与从时钟相连;t1是同步报文到达与主时钟相连的第一协议转换装置的时刻;t4是同步报文离开第二协议转换装置的时刻。Step S102, the slave clock receives the synchronization follow-up message (Follow_Up) sent by the master clock, and obtains the sending time T 1 -t1+t4 from the synchronization following message, wherein the sending time T 1 -t1+t4 is the second protocol conversion The time obtained after the device adjusts the first time T1, the second protocol conversion device is connected to the slave clock; t1 is the time when the synchronization message arrives at the first protocol conversion device connected to the master clock; t4 is the time when the synchronization message leaves the first protocol conversion device The moment of the two-protocol conversion device.
步骤S103,从时钟向主时钟发送延迟请求报文(Delay_Req),并记录发送延迟请求报文的第三时刻T3,其中主时钟在第四时刻T4接收到延迟请求报文。Step S103, the slave clock sends a delay request message (Delay_Req) to the master clock, and records the third time T 3 when the delay request message is sent, wherein the master clock receives the delay request message at the fourth time T 4 .
步骤S104,从时钟接收主时钟发送的延迟响应报文(Delay_Resp),并从延迟响应报文中获取接收时刻T4+t1’-t4’,其中,接收时刻T4+t1’-t4’是第二协议转换装置对第四时刻T4进行调整后得到的时刻,t1’是延迟请求报文到达第二协议转换装置的时刻,t4’是延迟请求报文离开第一协议转换装置的时刻。Step S104, the slave clock receives the delay response message (Delay_Resp) sent by the master clock, and obtains the reception time T 4 +t1'-t4' from the delay response message, wherein the reception time T 4 +t1'-t4' is The time obtained by the second protocol conversion device after adjusting the fourth time T4, t1' is the time when the delay request message arrives at the second protocol conversion device, and t4' is the time when the delay request message leaves the first protocol conversion device.
步骤S105,从时钟根据第二时刻T2、第三时刻T3、发送时刻T1-t1+t4和接收时刻T4+t1’-t4’计算主时钟与从时钟之间的时间偏差,并根据时间偏差修正从时钟的时间。Step S105, the slave clock calculates the time offset between the master clock and the slave clock according to the second time T 2 , the third time T 3 , the sending time T 1 -t1+t4 and the receiving time T 4 +t1'-t4', and Correct the time of the slave clock according to the time offset.
通过上述主从时钟同步方法,经过SDH网络E1通道传输PTP时间同步信号的过程中,考虑了协议转换时延和双向传输路径不一致的不对称时延,配合协议转换装置与主从时钟的关联机制,提高了主从时钟之间时间偏差的计算精度,进而根据该时间偏差进行的时钟同步,也较为可靠,且实现方法简单。Through the above-mentioned master-slave clock synchronization method, in the process of transmitting the PTP time synchronization signal through the E1 channel of the SDH network, the protocol conversion delay and the asymmetric delay of the bidirectional transmission path inconsistency are considered, and the association mechanism between the protocol conversion device and the master-slave clock is considered. , the calculation accuracy of the time deviation between the master and slave clocks is improved, and the clock synchronization based on the time deviation is also relatively reliable, and the implementation method is simple.
在一个实施例中,从时钟按照以下公式计算主时钟与从时钟之间的时间偏差offset:offset=(T2-T1+T3-T4+t4’-t1’+t1-t4)/2。下面对该公式的由来进行说明。In one embodiment, the slave clock calculates the time offset offset between the master clock and the slave clock according to the following formula: offset=(T 2 -T 1 +T 3 -T 4 +t4'-t1'+t1-t4)/ 2. The origin of this formula will be described below.
主时钟的时间同步信号经过E1/Ethernet协议转换装置和SDH网络到达从时钟的过程中,各协议报文的传输示意图如图2所示。When the time synchronization signal of the master clock reaches the slave clock through the E1/Ethernet protocol conversion device and the SDH network, the transmission diagram of each protocol message is shown in Figure 2.
在图2中,假设Sync报文从主时钟发出经过E1/Ethernet协议转换装置A的转换时延值为△T1,经过SDH网络传输的路径时延为delay1,经过E1/Ethernet协议转换装置B的转换时延值为△T2。In Figure 2 , it is assumed that the Sync message is sent from the main clock and passes through the E1/Ethernet protocol conversion device A. The conversion delay value of △T 2 .
假设Delay_Req报文由从时钟发出经过E1/Ethernet协议转换装置B的转换时延值为△T4,经过SDH网络传输的路径时延为delay2,经过E1/Ethernet协议转换装置A的转换时延值为△T3。Assuming that the Delay_Req message is sent from the slave clock, the conversion delay value of the E1/Ethernet protocol conversion device B is △T 4 , the path delay of the SDH network transmission is delay2, and the conversion delay value of the E1/Ethernet protocol conversion device A is is ΔT 3 .
现有的PTP技术主从时钟时间偏差的计算方法是建立在双向传输路由对称的前提下,即从时钟可从Follow_Up报文中获取主时钟发送Sync报文的时刻T1,从时钟测量其接收到Sync报文的时刻为T2,从时钟发送Delay_Req报文的时刻为T3,从时钟可从Delay_Resp报文中获取主时钟收到Delay_Req报文的时刻T4。当双向传输路由对称时,可得出主从时钟之间的时间偏差offset和传输路径时延值delay的关系式如下:The calculation method of the time deviation of the master-slave clock in the existing PTP technology is based on the premise that the two-way transmission route is symmetrical, that is, the slave clock can obtain the time T 1 when the master clock sends the Sync message from the Follow_Up message, and the slave clock measures its reception time T 1 . The time when the Sync message arrives is T 2 , the time when the slave clock sends the Delay_Req message is T 3 , and the slave clock can obtain the time T 4 when the master clock receives the Delay_Req message from the Delay_Resp message. When the two-way transmission route is symmetrical, the relationship between the time offset offset between the master and slave clocks and the transmission path delay value delay can be obtained as follows:
采用SDH网络传输基于PTP技术的时间同步信号的过程中,考虑E1/Ethernet协议转换时延和SDH网络双向传输路径的不一致性,将式(1)修改为:In the process of using the SDH network to transmit the time synchronization signal based on PTP technology, considering the E1/Ethernet protocol conversion delay and the inconsistency of the SDH network bidirectional transmission path, the formula (1) is modified as:
整理得:Organized:
offset=(T2-T1+T3-T4+delay2-delay1+ΔT3+ΔT4-ΔT1-ΔT2)/2 (3)offset=(T 2 -T 1 +T 3 -T 4 +delay2-delay1+ΔT 3 +ΔT 4 -ΔT 1 -ΔT 2 )/2 (3)
由图2可知,Sync报文从主时钟发出到达E1/Ethernet协议转换装置A的时刻为t1,协议转换结束准备发送至SDH网络的时刻为t2,则t2-t1得到转换时延值为△T1。同理,Sync报文到达E1/Ethernet协议转换装置B的时刻为t3,协议转换结束准备发送至从时钟的时刻为t4,t4-t3得转换时延值△T2,即:It can be seen from Figure 2 that the time when the Sync message is sent from the main clock and arrives at the E1/Ethernet protocol conversion device A is t1, and the time when the protocol conversion is completed and ready to be sent to the SDH network is t2, then the conversion delay value obtained from t2-t1 is △T 1 . Similarly, the time when the Sync message arrives at the E1/Ethernet protocol conversion device B is t3, the time when the protocol conversion is completed and ready to be sent to the slave clock is t4, and the conversion delay value ΔT 2 is obtained from t4-t3, namely:
同理,Delay_Req报文由从时钟发出到达主时钟过程中的转换时延值如下:Similarly, the conversion delay value of the Delay_Req message from the slave clock to the master clock is as follows:
式(5)中,t1’是Delay_Req报文到达E1/Ethernet协议转换装置B的时刻,t2’是协议转换结束准备发送至SDH网络的时刻,即Delay_Req报文离开协议转换装置B的时刻,t3’是Delay_Req报文到达协议转换装置A的时刻,t4’是Delay_Req报文离开协议转换装置A的时刻。In formula (5), t1' is the time when the Delay_Req message arrives at the E1/Ethernet protocol conversion device B, and t2' is the time when the protocol conversion is completed and ready to be sent to the SDH network, that is, the time when the Delay_Req message leaves the protocol conversion device B, and t3 ' is the time when the Delay_Req message arrives at the protocol conversion device A, and t4' is the time when the Delay_Req message leaves the protocol conversion device A.
将式(4)和式(5)代入式(3),得:Substituting formula (4) and formula (5) into formula (3), we get:
offset=(T2-T1+T3-T4+delay2-delay1+t4’-t3’+t2’-t1’-t2+t1-t4+t3)/2 (6)offset=(T 2 -T 1 +T 3 -T 4 +delay2-delay1+t4'-t3'+t2'-t1'-t2+t1-t4+t3)/2 (6)
由图2可知,Sync报文在SDH网络中传输的路径时延值delay1可由t3-t2表示,Delay_Req报文经SDH网络传输的路径时延值delay2可由t3’-t2’表示,因此有下式成立:It can be seen from Figure 2 that the path delay value delay1 of the Sync message transmitted in the SDH network can be represented by t3-t2, and the path delay value delay2 of the Delay_Req message transmitted through the SDH network can be represented by t3'-t2', so the following formula Established:
将式(7)代入式(6)中,整理得:Substituting formula (7) into formula (6), we can get:
offset=(T2-T1+T3-T4+t4’-t1’+t1-t4)/2 (8)offset=(T 2 -T 1 +T 3 -T 4 +t4'-t1'+t1-t4)/2 (8)
由式(8)可得,主从时钟之间的时间偏差与Sync报文到达E1/Ethernet协议转换装置A的时刻、Sync报文离开E1/Ethernet协议转换装置B的时刻、Delay_Req报文到达E1/Ethernet协议转换装置B的时刻、、Delay_Req报文离开E1/Ethernet协议转换装置A的时刻有关。即在报文传输过程中,明确Sync报文和Delay_Req报文在不同位置的时刻值,就能准确地计算出主从时钟之间的时间偏差,具体需要明确记录的时刻值如下:从时钟接收到Sync报文的时刻;主时钟发送Sync报文时刻的精确值;从时钟发送Delay_Req报文的时刻;主时钟收到Delay_Req报文的时刻的精确值;Sync报文到达与主时钟直连的协议转换装置的时刻;Sync报文离开与从时钟直连的协议转换装置的时刻;Delay_Req报文离开与主时钟直连的协议转换装置的时刻;Delay_Req报文到达与从时钟直连的协议转换装置的时刻。From formula (8), it can be obtained that the time deviation between the master and slave clocks and the time when the Sync message arrives at the E1/Ethernet protocol conversion device A, the time when the Sync message leaves the E1/Ethernet protocol conversion device B, and the time when the Delay_Req message arrives at the E1 /Ethernet protocol conversion device B is related to the time when the Delay_Req message leaves the E1/Ethernet protocol conversion device A. That is, during the message transmission process, the time deviation between the master and slave clocks can be accurately calculated by clarifying the time values of the Sync message and the Delay_Req message at different positions. The specific time values that need to be clearly recorded are as follows: The slave clock receives The time when the Sync message arrives; the exact value of the time when the master clock sends the Sync message; the time when the slave clock sends the Delay_Req message; the exact value of the time when the master clock receives the Delay_Req message; the Sync message arrives at the The moment of the protocol conversion device; the moment when the Sync message leaves the protocol conversion device directly connected to the slave clock; the moment when the Delay_Req message leaves the protocol conversion device directly connected to the master clock; the Delay_Req message arrives at the protocol conversion directly connected to the slave clock moment of installation.
具体的,可以在E1/Ethernet协议转换装置中增加模块,用于记录报文到达和离开的时刻,存储记录的时刻,以及根据记录的时刻调整报文中携带的时刻信息。例如,记录并存储Sync报文到达协议转换装置A的时刻t1和离开协议转换装置B的时刻t4,根据记录的时刻将Follow_up报文中携带的时刻T1调整为T1-t1+t4;记录并存储Delay_Req报文到达协议转换装置B的时刻t1’和离开协议转换装置A的时刻t4’,根据记录的时刻将Delay_Resp报文中携带的时刻T4调整为T4+t1’-t4’。在具体实现时,可以通过关联机制,配置与主时钟直连的协议转换装置仅记录并存储Sync报文到达协议转换装置的时刻t1和Delay_Req报文离开协议转换装置的时刻t4’;配置与从时钟直连的协议转换装置仅记录并存储Sync报文离开协议转换装置的时刻t4和Delay_Req报文到达协议转换装置的时刻t1’;然后分别对相应报文所携带的时刻信息进行调整。Specifically, a module can be added to the E1/Ethernet protocol conversion device for recording the arrival and departure time of the message, storing the recorded time, and adjusting the time information carried in the message according to the recorded time. For example, record and store the time t1 when the Sync message arrives at the protocol conversion device A and the time t4 when it leaves the protocol conversion device B, and adjust the time T1 carried in the Follow_up message to T1 - t1 +t4 according to the recorded time; record And store the time t1' when the Delay_Req message arrives at the protocol conversion device B and the time t4' when it leaves the protocol conversion device A , and adjust the time T4 carried in the Delay_Resp message to T4 + t1'-t4' according to the recorded time. In specific implementation, the protocol conversion device directly connected to the master clock can be configured to only record and store the time t1 when the Sync message arrives at the protocol conversion device and the time t4' when the Delay_Req message leaves the protocol conversion device through an association mechanism; The protocol conversion device directly connected to the clock only records and stores the time t4 when the Sync message leaves the protocol conversion device and the time t1' when the Delay_Req message arrives at the protocol conversion device; and then adjusts the time information carried by the corresponding messages respectively.
具体的记录时刻和调整时刻的方法如下:The specific methods of recording time and adjusting time are as follows:
1)主时钟在第一时刻T1发送同步报文之后,第一协议转换装置接收同步报文,记录同步报文到达第一协议转换装置的时刻t1,并通过SDH网络输出同步报文; 1 ) after the master clock sends the synchronization message at the first moment T1, the first protocol conversion device receives the synchronization message, records the time t1 when the synchronization message arrives at the first protocol conversion device, and outputs the synchronization message through the SDH network;
第二协议转换装置接收同步报文,将同步报文发送给从时钟,并记录同步报文离开第二协议转换装置的时刻t4;The second protocol conversion device receives the synchronization message, sends the synchronization message to the slave clock, and records the time t4 when the synchronization message leaves the second protocol conversion device;
主时钟发送同步跟随报文之后,第一协议转换装置接收同步跟随报文,将同步跟随报文中携带的第一时刻T1调整为T1-t1,并通过SDH网络输出同步跟随报文;After the master clock sends the synchronous following message, the first protocol conversion device receives the synchronous following message, adjusts the first moment T1 carried in the synchronous following message to T1- t1 , and outputs the synchronous following message through the SDH network;
第二协议转换装置接收同步跟随报文,将同步跟随报文中携带的时刻T1-t1调整为T1-t1+t4,并将同步跟随报文发送给从时钟。The second protocol conversion device receives the synchronization following message, adjusts the time T 1 -t1 carried in the synchronization following message to T 1 -t1+t4, and sends the synchronization following message to the slave clock.
2)从时钟在第三时刻T3发送延迟请求报文之后,第二协议转换装置接收延迟请求报文,记录延迟请求报文到达第二协议转换装置的时刻t1’,并通过SDH网络输出延迟请求报文;2) After the slave clock sends the delay request message at the third moment T3, the second protocol conversion device receives the delay request message, records the time t1' when the delay request message arrives at the second protocol conversion device, and outputs the delay through the SDH network request message;
第一协议转换装置接收延迟请求报文,将延迟请求报文发送给主时钟,并记录延迟请求报文离开第一协议转换装置的时刻t4’;The first protocol conversion device receives the delay request message, sends the delay request message to the master clock, and records the moment t4' when the delay request message leaves the first protocol conversion device;
主时钟在第四时刻T4接收到延迟请求报文后,输出延迟响应报文;After the master clock receives the delay request message at the fourth moment T4, it outputs a delay response message;
第一协议转换装置接收延迟响应报文,将延迟响应报文中携带的第四时刻T4调整为T4-t4’,并通过SDH网络输出延迟响应报文;The first protocol conversion device receives the delayed response message, adjusts the fourth moment T4 carried in the delayed response message to T4 - t4', and outputs the delayed response message through the SDH network;
第二协议转换装置接收延迟响应报文,将延迟响应报文中携带的时刻T4-t4’调整为T4+t1’-t4’,并将延迟响应报文发送给从时钟。The second protocol conversion device receives the delay response message, adjusts the time T 4 -t4' carried in the delay response message to T 4 +t1'-t4', and sends the delay response message to the slave clock.
由此可见,主从时钟采用PTP技术通过SDH网络传输时间同步信号时,E1/Ethernet协议转换装置引入了协议转换时延和SDH网络双向传输路径不一致的不对称时延,在原有PTP算法(要求双向传输路径对称,即双向时延一致)的基础上,将转换时延和不对称时延纳入计算过程,得出较为准确的主从时钟时间偏差,进而根据该时间偏差进行的时钟同步,也较为可靠。It can be seen that when the master-slave clock adopts PTP technology to transmit the time synchronization signal through the SDH network, the E1/Ethernet protocol conversion device introduces the protocol conversion time delay and the inconsistent asymmetric delay of the two-way transmission path of the SDH network. In the original PTP algorithm (required Two-way transmission path symmetry, that is, the two-way delay is consistent), and the conversion delay and asymmetric delay are included in the calculation process to obtain a more accurate master-slave clock time deviation, and then the clock synchronization based on the time deviation is also more reliable.
基于同一发明构思,本发明实施例还提供了一种主从时钟同步系统,可以用于实现上述实施例所描述的方法,如下面的实施例所述。由于主从时钟同步系统解决问题的原理与主从时钟同步方法相似,因此主从时钟同步系统的实施可以参见主从时钟同步方法的实施,重复之处不再赘述。以下所使用的术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的系统较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。Based on the same inventive concept, an embodiment of the present invention also provides a master-slave clock synchronization system, which can be used to implement the methods described in the above embodiments, as described in the following embodiments. Since the problem-solving principle of the master-slave clock synchronization system is similar to the master-slave clock synchronization method, the implementation of the master-slave clock synchronization system can refer to the implementation of the master-slave clock synchronization method, and the repetition will not be repeated. The term "module" used hereinafter may be a combination of software and/or hardware that realizes a predetermined function. Although the systems described in the following embodiments are preferably implemented in software, implementations in hardware, or a combination of software and hardware are also possible and contemplated.
图3是本发明实施例的主从时钟同步系统的结构框图,如图3所示,该系统包括:主时钟31、第一协议转换装置32、第二协议转换装置33和从时钟34,第一协议转换装置32和第二协议转换装置33之间通过SDH网络传输报文。下面对该结构进行具体说明。Fig. 3 is the structural block diagram of the master-slave clock synchronization system of the embodiment of the present invention, as shown in Fig. 3, this system comprises: master clock 31, first protocol conversion device 32, second protocol conversion device 33 and slave clock 34, the first Messages are transmitted between the first protocol conversion device 32 and the second protocol conversion device 33 through the SDH network. This structure will be specifically described below.
主时钟31,用于向从时钟34发送同步报文、同步跟随报文和延迟响应报文,以及接收来自从时钟34的延迟请求报文,其中,同步跟随报文携带有主时钟发送同步报文的第一时刻T1,延迟响应报文携带有主时钟接收到延迟请求报文的第四时刻T4;The master clock 31 is used to send a synchronization message, a synchronization following message and a delay response message to the slave clock 34, and receive a delay request message from the slave clock 34, wherein the synchronization following message carries a synchronization message sent by the master clock. The first time T 1 of the message, the delay response message carries the fourth time T 4 when the master clock receives the delay request message;
第一协议转换装置32,与主时钟31连接,第一协议转换装置32包括:第一记录模块321和第一调整模块322;The first protocol conversion device 32 is connected to the master clock 31, and the first protocol conversion device 32 includes: a first recording module 321 and a first adjustment module 322;
其中,第一记录模块321,用于记录并存储同步报文到达第一协议转换装置的时刻t1和延迟请求报文离开第一协议转换装置的时刻t4’;Wherein, the first recording module 321 is used to record and store the time t1 when the synchronization message arrives at the first protocol conversion device and the time t4' when the delay request message leaves the first protocol conversion device;
第一调整模块322,连接至第一记录模块321,用于将同步跟随报文中携带的第一时刻T1调整为T1-t1,以及将延迟响应报文中携带的第四时刻T4调整为T4-t4’;The first adjustment module 322, connected to the first recording module 321, is used to adjust the first time T1 carried in the synchronization following message to T1 - t1 , and adjust the fourth time T4 carried in the delay response message adjusted to T4 - t4';
第二协议转换装置33,与从时钟34连接,第二协议转换装置33包括:第二记录模块331和第二调整模块332;The second protocol conversion device 33 is connected to the slave clock 34, and the second protocol conversion device 33 includes: a second recording module 331 and a second adjustment module 332;
其中,第二记录模块331,用于记录并存储同步报文离开第二协议转换装置的时刻t4和延迟请求报文到达第二协议转换装置的时刻t1’;Wherein, the second recording module 331 is used to record and store the time t4 when the synchronization message leaves the second protocol conversion device and the time t1' when the delay request message arrives at the second protocol conversion device;
第二调整模块332,连接至第二记录模块331,用于将同步跟随报文携带的时刻T1-t1调整为T1-t1+t4,以及将延迟响应报文携带的时刻T4-t4’调整为T4+t1’-t4’;The second adjustment module 332, connected to the second recording module 331, is used to adjust the time T 1 -t1 carried by the synchronization following message to T 1 -t1+t4, and the time T 4 -t4 carried by the delayed response message 'Adjust to T 4 + t1'-t4';
从时钟34包括:第一收发模块341和计算模块342;The slave clock 34 includes: a first transceiver module 341 and a computing module 342;
其中,第一收发模块341,用于接收同步报文,并记录接收到同步报文的第二时刻T2;接收同步跟随报文,并从同步跟随报文中获取调整后的主时钟发送同步报文的发送时刻T1-t1+t4;发送延迟请求报文,并记录发送延迟请求报文的第三时刻T3;接收延迟响应报文,并从延迟响应报文中获取调整后的主时钟接收到延迟请求报文的接收时刻T4+t1’-t4’;Among them, the first transceiver module 341 is used to receive the synchronization message, and record the second moment T2 when the synchronization message is received; receive the synchronization follow message, and obtain the adjusted master clock from the synchronization follow message to send the synchronization The sending time T 1 -t1+t4 of the message; sending the delay request message, and recording the third moment T 3 of sending the delay request message; receiving the delay response message, and obtaining the adjusted master from the delay response message The time T 4 +t1'-t4' at which the clock receives the delay request message;
计算模块342,连接至第一收发模块341,用于根据第二时刻T2、第三时刻T3、发送时刻T1-t1+t4和接收时刻T4+t1’-t4’计算主时钟与从时钟之间的时间偏差,并根据时间偏差修正从时钟的时间。 The calculation module 342, connected to the first transceiver module 341 , is used to calculate the master clock and The time deviation between the slave clocks, and correct the time of the slave clocks according to the time deviation.
通过上述主从时钟同步系统,经过SDH网络E1通道传输PTP时间同步信号的过程中,考虑了协议转换时延和双向传输路径不一致的不对称时延,配合协议转换装置与主从时钟的关联机制,提高了主从时钟之间时间偏差的计算精度,进而根据该时间偏差进行的时钟同步,也较为可靠,且实现方法简单。Through the above-mentioned master-slave clock synchronization system, in the process of transmitting the PTP time synchronization signal through the E1 channel of the SDH network, the protocol conversion delay and the asymmetric delay due to inconsistent bidirectional transmission paths are considered, and the association mechanism between the protocol conversion device and the master-slave clock is considered. , the calculation accuracy of the time deviation between the master and slave clocks is improved, and the clock synchronization based on the time deviation is also relatively reliable, and the implementation method is simple.
计算模块342按照以下公式计算主时钟与从时钟之间的时间偏差offset:The calculation module 342 calculates the time offset offset between the master clock and the slave clock according to the following formula:
offset=(T2-T1+T3-T4+t4’-t1’+t1-t4)/2。offset=(T 2 -T 1 +T 3 -T 4 +t4'-t1'+t1-t4)/2.
第一协议转换装置32还包括:第二收发模块,用于接收并转发同步报文、同步跟随报文、延迟请求报文和延迟响应报文。The first protocol conversion device 32 also includes: a second transceiver module, configured to receive and forward a synchronization message, a synchronization following message, a delay request message and a delay response message.
第二协议转换装置33还包括:第三收发模块,用于接收并转发同步报文、同步跟随报文、延迟请求报文和延迟响应报文。The second protocol conversion device 33 also includes: a third transceiver module, configured to receive and forward a synchronization message, a synchronization following message, a delay request message and a delay response message.
综上所述,主从时钟采用PTP技术通过SDH网络传输时间同步信号时,E1/Ethernet协议转换装置引入了协议转换时延和SDH网络双向传输路径不一致的不对称时延,配合协议转换装置与主从时钟的关联机制,在原有PTP算法(要求双向传输路径对称,即双向时延一致)的基础上,将转换时延和不对称时延纳入计算过程,得出较为准确的主从时钟时间偏差,提高了主从时钟之间时间偏差的计算精度,进而根据该时间偏差进行的时钟同步,也较为可靠。To sum up, when the master-slave clock uses PTP technology to transmit time synchronization signals through the SDH network, the E1/Ethernet protocol conversion device introduces the protocol conversion delay and the asymmetric delay of the bidirectional transmission path of the SDH network. Cooperate with the protocol conversion device and The association mechanism of the master-slave clock is based on the original PTP algorithm (requiring that the two-way transmission path is symmetrical, that is, the two-way delay is consistent), and the conversion delay and asymmetric delay are included in the calculation process to obtain a more accurate master-slave clock time The deviation improves the calculation accuracy of the time deviation between the master and slave clocks, and the clock synchronization based on the time deviation is also more reliable.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、系统、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, systems, and computer program products according to embodiments of the invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410852588.3A CN104601269B (en) | 2014-12-31 | 2014-12-31 | Master-salve clock synchronous method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410852588.3A CN104601269B (en) | 2014-12-31 | 2014-12-31 | Master-salve clock synchronous method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104601269A CN104601269A (en) | 2015-05-06 |
CN104601269B true CN104601269B (en) | 2016-12-28 |
Family
ID=53126811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410852588.3A Active CN104601269B (en) | 2014-12-31 | 2014-12-31 | Master-salve clock synchronous method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104601269B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104935584B (en) * | 2015-06-01 | 2018-06-15 | 广州广哈通信股份有限公司 | A kind of time service method and apparatus and system based on circuit transmission mode |
CN109218007B (en) * | 2017-07-03 | 2022-11-01 | 中兴通讯股份有限公司 | Path selection method, device and storage medium |
JP6984482B2 (en) * | 2018-02-22 | 2021-12-22 | オムロン株式会社 | Communication systems, communication devices and communication methods |
CN112865900B (en) * | 2019-11-27 | 2025-01-28 | 中兴通讯股份有限公司 | A time synchronization method, device, system and storage medium |
CN115733572B (en) * | 2021-08-31 | 2024-10-29 | 南宁富联富桂精密工业有限公司 | Clock synchronization method based on accurate time protocol, electronic device and storage medium |
CN114095109A (en) * | 2021-11-17 | 2022-02-25 | 深圳市领创星通科技有限公司 | A clock synchronization method, device, equipment and storage medium |
CN115276869B (en) * | 2022-07-25 | 2025-03-04 | 中国电信股份有限公司 | Clock synchronization method, device, electronic device and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101330374A (en) * | 2007-06-18 | 2008-12-24 | 大唐移动通信设备有限公司 | Method and system for synchronizing clock of transmission network as well as subordinate clock side entity |
CN101425865A (en) * | 2007-10-31 | 2009-05-06 | 大唐移动通信设备有限公司 | Method and system for synchronizing clock of transmission network as well as subordinate clock side entity |
CN102098155A (en) * | 2011-03-18 | 2011-06-15 | 北京国智恒电力管理科技有限公司 | Method for realizing sub-microsecond synchronization accuracy based on PTP (Precision Time Protocol) |
CN102387155A (en) * | 2011-11-29 | 2012-03-21 | 浙江省电力公司 | Delay-constant PTP (peer to peer) signal protocol conversion system and implementation method thereof |
-
2014
- 2014-12-31 CN CN201410852588.3A patent/CN104601269B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101330374A (en) * | 2007-06-18 | 2008-12-24 | 大唐移动通信设备有限公司 | Method and system for synchronizing clock of transmission network as well as subordinate clock side entity |
CN101425865A (en) * | 2007-10-31 | 2009-05-06 | 大唐移动通信设备有限公司 | Method and system for synchronizing clock of transmission network as well as subordinate clock side entity |
CN102098155A (en) * | 2011-03-18 | 2011-06-15 | 北京国智恒电力管理科技有限公司 | Method for realizing sub-microsecond synchronization accuracy based on PTP (Precision Time Protocol) |
CN102387155A (en) * | 2011-11-29 | 2012-03-21 | 浙江省电力公司 | Delay-constant PTP (peer to peer) signal protocol conversion system and implementation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104601269A (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104601269B (en) | Master-salve clock synchronous method and system | |
US9256247B2 (en) | Method and apparatus for communicating time information between time aware devices | |
CN113259038B (en) | Time synchronization method, node, device and storage medium | |
CN102859941B (en) | Renewal to the accumulative residence time being grouped in packet exchange communication network | |
CN103929293B (en) | Asymmetric delay time synchronization method and system | |
TWI485996B (en) | Apparatus and method for enabling a passive optical network on supporting time synchronization | |
JP5518191B2 (en) | Method and system for optical transmission network carrying time synchronization protocol | |
WO2018006686A1 (en) | Method, apparatus and device for optimizing time synchronization between communication network devices | |
CN102244603B (en) | Method, equipment and system for transmitting message bearing time | |
CN102412955B (en) | Time deviation acquisition methods when optical fiber is asymmetric between master-slave equipment and communication system | |
CN108599888A (en) | A kind of distributed network clock synchronizing system | |
CN102082653B (en) | Method, system and device for clock synchronization | |
CN102332973A (en) | A Real-time Communication and Clock Synchronization Method of Chain Network | |
CN108650050A (en) | A kind of distributed network clock synchronous method | |
KR20170105573A (en) | Time synchronization method, apparatus, system and storage medium in OTN network | |
CN111342926A (en) | Method for optimizing time synchronization of PTP (precision time protocol) in asymmetric network | |
CN107786294B (en) | A centralized 1588 implementation system and method | |
CN104184534A (en) | Method for achieving accuracy of transparent clock path delay of IEEE1588 protocol | |
CN107786293A (en) | Method for synchronizing time, clock equipment, from clockwork and clock synchronization system | |
CN104243079A (en) | Microsecond clock synchronization method for real-time Ethernet | |
CN106688207A (en) | Method for determining the propagation time of a telegram in a communication network and corresponding network components | |
CN114389735A (en) | A Clock Synchronization Method Based on IEEE802.1AS Redundant Master Clock | |
CN108683472A (en) | A kind of clock synchronizing method based on Time delay measurement | |
EP3080933B1 (en) | Method and devices for synchronization using linear programming | |
WO2020132834A1 (en) | Method and device for stamping processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |