[go: up one dir, main page]

CN104347419B - A kind of ESD protective device and preparation method thereof - Google Patents

A kind of ESD protective device and preparation method thereof Download PDF

Info

Publication number
CN104347419B
CN104347419B CN201310340606.5A CN201310340606A CN104347419B CN 104347419 B CN104347419 B CN 104347419B CN 201310340606 A CN201310340606 A CN 201310340606A CN 104347419 B CN104347419 B CN 104347419B
Authority
CN
China
Prior art keywords
layer
doped semiconductor
semiconductor layer
lightly doped
protection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310340606.5A
Other languages
Chinese (zh)
Other versions
CN104347419A (en
Inventor
赵猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201310340606.5A priority Critical patent/CN104347419B/en
Publication of CN104347419A publication Critical patent/CN104347419A/en
Application granted granted Critical
Publication of CN104347419B publication Critical patent/CN104347419B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种ESD保护器件及其制作方法,所述制作方法包括步骤:1)于硅衬底表面形成Si1‑xGex层,于所述Si1‑xGex层表面制作栅极结构,其中,0<x<1;2)通过离子注入工艺及退火工艺于所述Si1‑xGex层中形成轻掺杂漏;3)去除所述栅极结构两侧下方的Si1‑xGex层,露出所述栅极结构两侧下方的硅衬底;4)采用湿法腐蚀分别于所述栅极结构两侧下方的硅衬底中形成凹槽;5)于所述凹槽中形成轻掺杂半导体层;6)于所述轻掺杂半导体层表面形成重掺杂半导体层,并进行退火使所述重掺杂半导体层内的掺杂离子向所述轻掺杂半导体层及Si1‑xGex层推进,形成源区及漏区。本发明在保证器件稳定性能的同时可有效降低ESD保护器件的触发电压。本发明与CMOS工艺兼容,容易实现产业化。

The invention provides an ESD protection device and a manufacturing method thereof. The manufacturing method comprises the steps of: 1) forming a Si 1-x Ge x layer on the surface of a silicon substrate, and fabricating a gate on the surface of the Si 1-x Ge x layer structure, wherein, 0<x<1; 2) forming a lightly doped drain in the Si 1‑x Ge x layer through an ion implantation process and an annealing process; 3) removing the Si 1 on both sides of the gate structure ‑x Ge x layer, exposing the silicon substrate below both sides of the gate structure; 4) using wet etching to form grooves in the silicon substrate below both sides of the gate structure; forming a lightly doped semiconductor layer in the groove; 6) forming a heavily doped semiconductor layer on the surface of the lightly doped semiconductor layer, and performing annealing so that the dopant ions in the heavily doped semiconductor layer The semiconductor layer and the Si 1‑x Ge x layer are advanced to form source and drain regions. The invention can effectively reduce the trigger voltage of the ESD protection device while ensuring the stable performance of the device. The invention is compatible with the CMOS process and is easy to realize industrialization.

Description

一种ESD保护器件及其制作方法A kind of ESD protection device and manufacturing method thereof

技术领域technical field

本发明涉及一种半导体器件及其制作方法,特别是涉及一种ESD保护器件及其制作方法。The invention relates to a semiconductor device and a manufacturing method thereof, in particular to an ESD protection device and a manufacturing method thereof.

背景技术Background technique

静电是一种客观的自然现象,产生的方式多种,如接触、摩擦、电器间感应等。静电的特点是长时间积聚、高电压、低电量、小电流和作用时间短的特点。静电在多个领域造成严重危害。摩擦起电和人体静电是电子工业中的两大危害,常常造成电子电器产品运行不稳定,甚至损坏。ESD是20世纪中期以来形成的以研究静电的产生、危害及静电防护等的学科,国际上习惯将用于静电防护的器材统称为ESD。Static electricity is an objective natural phenomenon, which can be produced in many ways, such as contact, friction, induction between electrical appliances, etc. Static electricity is characterized by long-term accumulation, high voltage, low power, small current and short action time. Static electricity causes serious harm in many fields. Friction electrification and human body static electricity are two major hazards in the electronics industry, which often cause unstable operation or even damage of electronic and electrical products. ESD is a subject formed since the middle of the 20th century to study the generation, harm and protection of static electricity. It is customary in the world to refer to the equipment used for electrostatic protection as ESD.

随着集成电路工艺的不断发展,晶体管尺寸已经缩减到亚微米甚至深亚微米阶段。器件物理尺寸的减小,大大提高了电路的集成度,但是高集成度器件的可靠性问题也随之而来。ESD(electro-static discharge,静电释放)就是引起电子设备与元器件失效的最主要原因之一。这主要是因为,随着元器件尺寸的缩小,例如场效应元件的栅极氧化层厚度逐渐变薄,这种变化虽然可以大幅度的提高电路的工作效率,但是却可能使电路变得更加脆弱,从而在受到静电冲击时,电路很容易失效。With the continuous development of integrated circuit technology, the size of transistors has been reduced to submicron or even deep submicron stage. The reduction of the physical size of the device has greatly improved the integration of the circuit, but the reliability of the highly integrated device has also followed. ESD (electro-static discharge, electrostatic discharge) is one of the most important causes of failure of electronic equipment and components. This is mainly because, as the size of components shrinks, for example, the thickness of the gate oxide layer of field effect elements gradually becomes thinner. Although this change can greatly improve the working efficiency of the circuit, it may make the circuit more fragile. , so that the circuit is prone to failure when subjected to electrostatic shock.

为了解决由于ESD而造成的电子设备和元器件的可靠性问题,业内考虑在集成电路中引入具有较高性能、较高耐受力的ESD保护器件(也可称之为静电阻抗器)。ESD保护器件一般配置在电路的信号线路与接地端之间,电路正常工作状态下,ESD保护器件两端被中间的介质层隔开,呈现出高阻状态,信号不会通过ESD保护器件而流入接地端。当电路受到ESD影响时,例如人皮肤上的静电施加在电路上时,电路中可能出现一个很大的电压值,大电压的产生使得ESD保护器件两端出现大的电势差,此时ESD保护器件被击穿,由高阻状态转变为导通状态,这样就将静电导入到接地端,进而避免了工作电路因为电压过大造成的损坏。静电导出后ESD保护器件两端的电势差随之消失,ESD保护器件又回到高阻状态。In order to solve the reliability problems of electronic equipment and components caused by ESD, the industry considers the introduction of ESD protection devices (also known as electrostatic resistors) with higher performance and higher tolerance into integrated circuits. The ESD protection device is generally arranged between the signal line of the circuit and the ground terminal. Under the normal working state of the circuit, the two ends of the ESD protection device are separated by the middle dielectric layer, showing a high-impedance state, and the signal will not flow through the ESD protection device. ground terminal. When the circuit is affected by ESD, for example, when the static electricity on the human skin is applied to the circuit, a large voltage value may appear in the circuit, and the generation of large voltage causes a large potential difference at both ends of the ESD protection device. At this time, the ESD protection device When it is broken down, it changes from a high-resistance state to a conduction state, so that static electricity is introduced to the ground terminal, thereby avoiding damage to the working circuit due to excessive voltage. After the static electricity is exported, the potential difference between the two ends of the ESD protection device disappears, and the ESD protection device returns to a high resistance state.

当前,高速信号传输的应用越来越多,对ESD保护器件自身性能的需求也逐渐提高,人们对ESD保护器件的稳定性和触发电压等有了更高的要求。然而,由于材料、工艺等限制,现有的ESD保护器件结构的保护触发电压难以在保证器件稳定性的基础上进一步地降低,这对电子设备、IC电路等的发展极为不利。At present, there are more and more applications of high-speed signal transmission, and the demand for the performance of ESD protection devices is gradually increasing. People have higher requirements for the stability and trigger voltage of ESD protection devices. However, due to the limitations of materials and processes, it is difficult to further reduce the protection trigger voltage of the existing ESD protection device structure on the basis of ensuring device stability, which is extremely unfavorable to the development of electronic equipment and IC circuits.

因此,提供一种稳定且具有较低保护触发电压的ESD保护器件实属必要。Therefore, it is necessary to provide a stable ESD protection device with a lower protection trigger voltage.

发明内容Contents of the invention

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种ESD保护器件及其制作方法,用于解决现有技术中ESD保护器件保护触发电压难以进一步降低的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide an ESD protection device and a manufacturing method thereof, which are used to solve the problem that the protection trigger voltage of the ESD protection device is difficult to further reduce in the prior art.

为实现上述目的及其他相关目的,本发明提供一种ESD保护器件的制作方法,至少包括以下步骤:In order to achieve the above object and other related objects, the present invention provides a method for manufacturing an ESD protection device, which at least includes the following steps:

1)提供一硅衬底,于所述硅衬底表面形成Si1-xGex层,于所述Si1-xGex层表面制作栅极结构,其中,0<x<1;1) Provide a silicon substrate, form a Si 1-x Ge x layer on the surface of the silicon substrate, and fabricate a gate structure on the surface of the Si 1-x Ge x layer, where 0<x<1;

2)通过离子注入工艺及退火工艺于所述Si1-xGex层中形成轻掺杂漏;2) forming a lightly doped drain in the Si 1-x Ge x layer by ion implantation process and annealing process;

3)去除所述栅极结构两侧下方的Si1-xGex层,露出所述栅极结构两侧下方的硅衬底;3) removing the Si 1-x Ge x layer below both sides of the gate structure to expose the silicon substrate below both sides of the gate structure;

4)分别于所述栅极结构两侧下方的硅衬底中形成凹槽;4) Forming grooves in the silicon substrate under both sides of the gate structure respectively;

5)于所述凹槽中形成轻掺杂半导体层;5) forming a lightly doped semiconductor layer in the groove;

6)于所述轻掺杂半导体层表面形成重掺杂半导体层,并进行退火使所述重掺杂半导体层内的掺杂离子向所述轻掺杂半导体层及Si1-xGex层推进,形成源区及漏区。6) Forming a heavily doped semiconductor layer on the surface of the lightly doped semiconductor layer, and performing annealing so that the doping ions in the heavily doped semiconductor layer flow toward the lightly doped semiconductor layer and the Si 1-x Ge x layer Advance to form source and drain regions.

作为本发明的ESD保护器件的制作方法的一种优选方案,所述Si1-xGex层中,x的范围为0.3~0.6。As a preferred solution of the manufacturing method of the ESD protection device of the present invention, in the Si 1-x Ge x layer, x ranges from 0.3 to 0.6.

作为本发明的ESD保护器件的制作方法的一种优选方案,所述Si1-xGex层中掺杂有浓度为5e17/cm3~1e19/cm3的B或BF2As a preferred solution of the manufacturing method of the ESD protection device of the present invention, the Si 1-x Ge x layer is doped with B or BF 2 at a concentration of 5e17/cm 3 -1e19/cm 3 .

作为本发明的ESD保护器件的制作方法的一种优选方案,采用湿法腐蚀工艺分别于所述栅极结构两侧下方的硅衬底中形成凹槽。As a preferred solution of the manufacturing method of the ESD protection device of the present invention, a wet etching process is used to form grooves in the silicon substrate under both sides of the gate structure.

作为本发明的ESD保护器件的制作方法的一种优选方案,步骤4)采用HF、HBr或CH3COOH溶液进行湿法腐蚀。As a preferred solution of the manufacturing method of the ESD protection device of the present invention, step 4) uses HF, HBr or CH 3 COOH solution for wet etching.

作为本发明的ESD保护器件的制作方法的一种优选方案,步骤4)所述凹槽为倒三角形凹槽或U型凹槽,所述凹槽的最大深度为30nm~100nm。As a preferred solution of the manufacturing method of the ESD protection device of the present invention, in step 4), the groove is an inverted triangle groove or a U-shaped groove, and the maximum depth of the groove is 30nm-100nm.

作为本发明的ESD保护器件的制作方法的一种优选方案,所述轻掺杂半导体层及重掺杂半导体层的材料为Si、SiC或SiGe。As a preferred solution of the manufacturing method of the ESD protection device of the present invention, the material of the lightly doped semiconductor layer and the heavily doped semiconductor layer is Si, SiC or SiGe.

本发明还提供一种ESD保护器件,至少包括:The present invention also provides an ESD protection device, comprising at least:

硅衬底,所述硅衬底中具有间隔的两个凹槽;a silicon substrate having two grooves spaced apart therein;

Si1-xGex层,结合于所述两个凹槽之间的硅衬底表面的,且所述Si1-xGex层中形成有轻掺杂漏,其中,0<x<1;A Si 1-x Ge x layer, bonded to the surface of the silicon substrate between the two grooves, and a lightly doped drain is formed in the Si 1-x Ge x layer, where 0<x<1 ;

栅极结构,结合于所述Si1-xGex层表面;a gate structure, combined on the surface of the Si 1-x Ge x layer;

源区和漏区,由填充于两个凹槽底部的轻掺杂半导体层、及结合于所述轻掺杂半导体层表面且与所述轻掺杂漏相连的重掺杂半导体区域形成。The source region and the drain region are formed by a lightly doped semiconductor layer filling the bottom of the two grooves, and a heavily doped semiconductor region bonded to the surface of the lightly doped semiconductor layer and connected to the lightly doped drain.

作为本发明的ESD保护器件的一种优选方案,所述重掺杂半导体区域呈横向延伸至所述Si1-xGex层内一预设深度。As a preferred solution of the ESD protection device of the present invention, the heavily doped semiconductor region extends laterally to a preset depth in the Si 1-x Ge x layer.

作为本发明的ESD保护器件的一种优选方案,所述凹槽为倒三角形凹槽或U型凹槽,所述凹槽的最大深度为30nm~100nm。As a preferred solution of the ESD protection device of the present invention, the groove is an inverted triangle groove or a U-shaped groove, and the maximum depth of the groove is 30nm-100nm.

作为本发明的ESD保护器件的一种优选方案,所述Si1-xGex层中掺杂有浓度为5e17/cm3~1e19/cm3的B或BF2As a preferred solution of the ESD protection device of the present invention, the Si 1-x Ge x layer is doped with B or BF 2 at a concentration of 5e17/cm 3 -1e19/cm 3 .

如上所述,本发明提供一种ESD保护器件及其制作方法,所述制作方法包括步骤:1)于硅衬底表面形成Si1-xGex层,于所述Si1-xGex层表面制作栅极结构,其中,0<x<1;2)通过离子注入工艺及退火工艺于所述Si1-xGex层中形成轻掺杂漏;3)去除所述栅极结构两侧下方的Si1-xGex层,露出所述栅极结构两侧下方的硅衬底;4)采用湿法腐蚀分别于所述栅极结构两侧下方的硅衬底中形成凹槽;5)于所述凹槽中形成轻掺杂半导体层;6)于所述轻掺杂半导体层表面形成重掺杂半导体层,并进行退火使所述重掺杂半导体层内的掺杂离子向所述轻掺杂半导体层及Si1-xGex层推进,形成源区及漏区。本发明在保证器件稳定性能的同时可有效降低ESD保护器件的触发电压,更有效对电路设备进行保护。本发明与现有CMOS工艺兼容,容易实现产业化。As mentioned above, the present invention provides an ESD protection device and a manufacturing method thereof. The manufacturing method includes the steps of: 1) forming a Si 1-x Ge x layer on the surface of a silicon substrate, and forming a Si 1-x Ge x layer on the Si 1-x Ge x layer Fabricate a gate structure on the surface, where 0<x<1; 2) form a lightly doped drain in the Si 1-x Ge x layer by ion implantation and annealing; 3) remove both sides of the gate structure The lower Si 1-x Ge x layer exposes the silicon substrate below both sides of the gate structure; 4) wet etching is used to form grooves in the silicon substrate below both sides of the gate structure; 5 ) forming a lightly doped semiconductor layer in the groove; 6) forming a heavily doped semiconductor layer on the surface of the lightly doped semiconductor layer, and performing annealing so that the dopant ions in the heavily doped semiconductor layer The lightly doped semiconductor layer and the Si 1-x Ge x layer are advanced to form a source region and a drain region. The invention can effectively reduce the trigger voltage of the ESD protection device while ensuring the stable performance of the device, and more effectively protect the circuit equipment. The invention is compatible with the existing CMOS technology, and is easy to realize industrialization.

附图说明Description of drawings

图1显示为本发明的ESD保护器件的制作方法的步骤流程示意图。FIG. 1 is a schematic flow chart showing the steps of the manufacturing method of the ESD protection device of the present invention.

图2~图4显示为本发明的ESD保护器件的制作方法步骤1)所呈现的结构示意图。2 to 4 are schematic structural diagrams presented in step 1) of the manufacturing method of the ESD protection device of the present invention.

图5显示为本发明的ESD保护器件的制作方法的步骤2)所呈现的结构示意图。FIG. 5 shows a schematic structural diagram presented in step 2) of the manufacturing method of the ESD protection device of the present invention.

图6显示为本发明的ESD保护器件的制作方法的步骤3)所呈现的结构示意图。FIG. 6 shows a schematic structural diagram presented in step 3) of the manufacturing method of the ESD protection device of the present invention.

图7显示为本发明的ESD保护器件的制作方法的步骤4)所呈现的结构示意图。FIG. 7 shows a schematic structural diagram presented in step 4) of the manufacturing method of the ESD protection device of the present invention.

图8显示为本发明的ESD保护器件的制作方法的步骤5)所呈现的结构示意图。FIG. 8 shows a schematic structural diagram presented in step 5) of the manufacturing method of the ESD protection device of the present invention.

图9~图10显示为本发明的ESD保护器件的制作方法的步骤6)所呈现的结构示意图。9 to 10 are schematic structural diagrams presented in step 6) of the manufacturing method of the ESD protection device of the present invention.

元件标号说明Component designation description

具体实施方式detailed description

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.

请参阅图1~图10。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figure 1 to Figure 10. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.

如图1~图10所示,本实施例提供一种ESD保护器件的制作方法,至少包括以下步骤:As shown in FIGS. 1 to 10 , this embodiment provides a method for manufacturing an ESD protection device, which at least includes the following steps:

如图1~图4所示,首先进行步骤1)S11,提供一硅衬底101,于所述硅衬底101表面形成Si1-xGex层102,于所述Si1-xGex层102表面制作栅极结构103,其中,0<x<1。As shown in Figures 1 to 4, step 1) S11 is firstly carried out, providing a silicon substrate 101, forming a Si 1-x Ge x layer 102 on the surface of the silicon substrate 101, and forming a Si 1-x Ge x layer 102 on the Si 1-x Ge x A gate structure 103 is formed on the surface of the layer 102, where 0<x<1.

作为示例,所述Si1-xGex层102中,x的范围为0.3~0.6,由于于所述硅衬底101存在晶格大小差异,所述Si1-xGex层102中会引入应力,该应力可以提高Si1-xGex层102作为沟道的性能。As an example, in the Si 1-x Ge x layer 102, x ranges from 0.3 to 0.6. Due to the difference in lattice size in the silicon substrate 101, the Si 1-x Ge x layer 102 will introduce Stress, the stress can improve the performance of the Si 1-x Ge x layer 102 as a channel.

作为示例,所述Si1-xGex层102为Ge含量逐渐增大的梯度Si1-xGex层102,可以减少由于晶格失配而导致大量缺陷的引入,保证Si1-xGex层102的质量。As an example, the Si 1-x Ge x layer 102 is a gradient Si 1-x Ge x layer 102 with a gradually increasing Ge content, which can reduce the introduction of a large number of defects due to lattice mismatch and ensure that the Si 1-x Ge The mass of the x -layer 102 .

作为示例,所述Si1-xGex层102的厚度为20nm~50nm。As an example, the thickness of the Si 1-x Ge x layer 102 is 20 nm˜50 nm.

作为示例,所述Si1-xGex层102中掺杂有浓度为5e17/cm3~1e19/cm3的B或BF2As an example, the Si 1-x Ge x layer 102 is doped with B or BF 2 at a concentration of 5e17/cm 3 -1e19/cm 3 .

需要说明的是,本发明采用的衬底为硅衬底101,但是,在其它的实施过程中,也可以采用其它预期的半导体衬底,如SiGe衬底、SiC衬底等。It should be noted that the substrate used in the present invention is a silicon substrate 101 , however, in other implementation processes, other expected semiconductor substrates, such as SiGe substrates, SiC substrates, etc., may also be used.

作为示例,制作所述栅极结构103包括以下步骤:As an example, fabricating the gate structure 103 includes the following steps:

2-1)于Si1-xGex层102表面形成栅氧层;2-1) forming a gate oxide layer on the surface of the Si 1-x Ge x layer 102;

2-2)于所述栅氧层表面形成多晶硅层;2-2) forming a polysilicon layer on the surface of the gate oxide layer;

2-3)依据栅极结构103的形状刻蚀去除部分的多晶硅层及栅氧层;2-3) Etching and removing part of the polysilicon layer and the gate oxide layer according to the shape of the gate structure 103;

2-4)于所述栅氧层及多晶硅层两侧形成侧墙结构。2-4) Forming sidewall structures on both sides of the gate oxide layer and the polysilicon layer.

作为示例,也可以采用其它的导电材料替代所述多晶硅层,所述侧墙结构可以为二氧化硅、氮化硅或二氧化硅及氮化硅组成的叠层等。As an example, other conductive materials may also be used to replace the polysilicon layer, and the sidewall structure may be silicon dioxide, silicon nitride, or a laminate composed of silicon dioxide and silicon nitride.

如图1及图5所示,接着进行步骤2)S12,通过离子注入工艺及退火工艺于所述Si1- xGex层102中形成轻掺杂漏104。As shown in FIG. 1 and FIG. 5 , step 2) S12 is then performed to form a lightly doped drain 104 in the Si 1- x Ge x layer 102 through an ion implantation process and an annealing process.

作为示例,通过对所述Si1-xGex层102注入P或As,然后进行退火工艺使注入离子扩散形成所述轻掺杂漏104。As an example, the lightly doped drain 104 is formed by implanting P or As into the Si 1-x Ge x layer 102 and then performing an annealing process to diffuse the implanted ions.

如图1及图6所示,然后进行步骤3)S13,去除所述栅极结构103两侧下方的Si1-xGex层102,露出所述栅极结构103两侧下方的硅衬底101。As shown in FIG. 1 and FIG. 6, then proceed to step 3) S13, remove the Si 1-x Ge x layer 102 below the two sides of the gate structure 103, and expose the silicon substrate below the two sides of the gate structure 103 101.

作为示例,采用如ICP刻蚀等干法刻蚀方法去除所述栅极结构103两侧下方的Si1- xGex层102,露出所述栅极结构103两侧下方的硅衬底101。As an example, the Si 1- x Ge x layer 102 under both sides of the gate structure 103 is removed by dry etching such as ICP etching, exposing the silicon substrate 101 under both sides of the gate structure 103 .

如图1及图7所示,接着进行步骤4)S14,分别于所述栅极结构103两侧下方的硅衬底101中形成凹槽105。As shown in FIG. 1 and FIG. 7 , step 4) S14 is then performed to form grooves 105 in the silicon substrate 101 below both sides of the gate structure 103 .

作为示例,采用湿法腐蚀工艺分别于所述栅极结构103两侧下方的硅衬底101中形成凹槽105。具体地,采用HF、HBr或CH3COOH溶液进行湿法腐蚀,在本实施例中,采用HF溶液进行湿法腐蚀。As an example, a wet etching process is used to form grooves 105 in the silicon substrate 101 under both sides of the gate structure 103 respectively. Specifically, HF, HBr or CH 3 COOH solution is used for wet etching, and in this embodiment, HF solution is used for wet etching.

作为示例,所述凹槽105为倒三角形凹槽105或U型凹槽105,所述凹槽105的最大深度为30nm~100nm。As an example, the groove 105 is an inverted triangle groove 105 or a U-shaped groove 105, and the maximum depth of the groove 105 is 30 nm˜100 nm.

当然,所述凹槽105的形状一般受硅衬底101的晶向限制,因此,可以通过改变硅衬底101的晶向改变所述凹槽105的形状。Of course, the shape of the groove 105 is generally limited by the crystal orientation of the silicon substrate 101 , therefore, the shape of the groove 105 can be changed by changing the crystal orientation of the silicon substrate 101 .

如图1及图8所示,然后进行步骤5)S15,于所述凹槽105中形成轻掺杂半导体层106。As shown in FIG. 1 and FIG. 8 , then step 5) S15 is performed to form a lightly doped semiconductor layer 106 in the groove 105 .

作为示例,所述轻掺杂半导体层106的材料为Si、SiC或SiGe。As an example, the material of the lightly doped semiconductor layer 106 is Si, SiC or SiGe.

作为示例,可以通过在气相外延时同时通入如P或As等离子形成所述轻掺杂半导体层106,也可以是先进行气相外延后再通过离子注入工艺和退火工艺形成所述轻掺杂半导体层106。该轻掺杂半导体层106可以有效降低最终的ESD保护器件的触发电压。As an example, the lightly doped semiconductor layer 106 can be formed by simultaneously injecting P or As plasma during vapor phase epitaxy, or the lightly doped semiconductor layer 106 can be formed by ion implantation and annealing after vapor phase epitaxy. semiconductor layer 106 . The lightly doped semiconductor layer 106 can effectively reduce the trigger voltage of the final ESD protection device.

在本实施例中,采用气相外延后再通过离子注入工艺和退火工艺形成所述轻掺杂半导体层106,退火温度为800~950℃,退火的时间为0.5min~10min,退火完成后,所述轻掺杂半导体层106的离子掺杂浓度为5e17/cm3~5e18/cm3In this embodiment, the lightly doped semiconductor layer 106 is formed by ion implantation process and annealing process after vapor phase epitaxy, the annealing temperature is 800-950° C., and the annealing time is 0.5 min-10 min. After the annealing is completed, the The ion doping concentration of the lightly doped semiconductor layer 106 is 5e17/cm 3 -5e18/cm 3 .

如图1及图9~图10所示,最后进行步骤6)S16,于所述轻掺杂半导体层106表面形成重掺杂半导体层107,并进行退火使所述重掺杂半导体层107内的掺杂离子向所述轻掺杂半导体层106及Si1-xGex层102推进,形成重掺杂半导体区域108,完成源区及漏区的制作。As shown in Figure 1 and Figures 9 to 10, step 6) S16 is finally performed to form a heavily doped semiconductor layer 107 on the surface of the lightly doped semiconductor layer 106, and annealing is performed to make the inside of the heavily doped semiconductor layer 107 The dopant ions in the lightly doped semiconductor layer 106 and the Si 1-x Ge x layer 102 advance to form a heavily doped semiconductor region 108 to complete the fabrication of the source region and the drain region.

作为示例,所述重掺杂半导体层107的材料为Si、SiC或SiGe。As an example, the material of the heavily doped semiconductor layer 107 is Si, SiC or SiGe.

作为示例,先通过气相外延法于所述轻掺杂半导体层106表面形成一层半导体层,然后通过离子注入工艺注入剂量较高的P或As离子形成重掺杂半导体层107,最后通过退火工艺使P或As离子向所述轻掺杂半导体层106及Si1-xGex层102推进,形成重掺杂半导体区域108,最终完成ESD保护器件的源区及漏区的制作。As an example, a semiconductor layer is first formed on the surface of the lightly doped semiconductor layer 106 by vapor phase epitaxy, then a higher dose of P or As ions is implanted through an ion implantation process to form a heavily doped semiconductor layer 107, and finally the annealing process Propel P or As ions to the lightly doped semiconductor layer 106 and the Si 1-x Ge x layer 102 to form a heavily doped semiconductor region 108 , and finally complete the fabrication of the source and drain regions of the ESD protection device.

在本实施例中,先采用外延工艺于所述轻掺杂半导体层106表面形成一层半导体层,然后采用离子注入工艺注入P离子形成重掺杂半导体层107,最后进行退火工艺使所述P离子向所述轻掺杂半导体层106及Si1-xGex层102推进形成重掺杂半导体区域108,此处采用的退火温度为950℃~1100℃,退火时间为10s~30s,退火完成后,所述重掺杂半导体区域108的离子掺杂浓度为1e20/cm3~5e20/cm3In this embodiment, an epitaxial process is first used to form a semiconductor layer on the surface of the lightly doped semiconductor layer 106, then P ions are implanted by an ion implantation process to form a heavily doped semiconductor layer 107, and finally an annealing process is performed to make the P The ions advance to the lightly doped semiconductor layer 106 and the Si 1-x Gex layer 102 to form the heavily doped semiconductor region 108, the annealing temperature used here is 950°C-1100°C, the annealing time is 10s-30s, and the annealing is completed Afterwards, the ion doping concentration of the heavily doped semiconductor region 108 is 1e20/cm 3 -5e20/cm 3 .

如图10所示,本实施例还提供一种ESD保护器件,至少包括:As shown in Figure 10, this embodiment also provides an ESD protection device, including at least:

硅衬底101,所述硅衬底101中具有间隔的两个凹槽105;A silicon substrate 101 having two grooves 105 spaced apart in the silicon substrate 101;

Si1-xGex层102,结合于所述两个凹槽105之间的硅衬底101表面的,且所述Si1-xGex层102中形成有轻掺杂漏104,其中,0<x<1;The Si 1-x Ge x layer 102 is bonded to the surface of the silicon substrate 101 between the two grooves 105, and a lightly doped drain 104 is formed in the Si 1-x Ge x layer 102, wherein, 0<x<1;

栅极结构103,结合于所述Si1-xGex层102表面;a gate structure 103, bonded to the surface of the Si 1-x Ge x layer 102;

源区和漏区,由填充于两个凹槽105底部的轻掺杂半导体层106、及结合于所述轻掺杂半导体层106表面且与所述轻掺杂漏104相连的重掺杂半导体区域108形成。The source region and the drain region are composed of a lightly doped semiconductor layer 106 filling the bottom of the two grooves 105, and a heavily doped semiconductor layer bonded to the surface of the lightly doped semiconductor layer 106 and connected to the lightly doped drain 104 Region 108 is formed.

作为示例,所述重掺杂半导体区域呈横向延伸至所述Si1-xGex层内一预设深度。所述预设深度可以通过控制离子掺杂浓度、退火温度及退火时间等参数进行控制。As an example, the heavily doped semiconductor region extends laterally to a predetermined depth in the Si 1-x Ge x layer. The preset depth can be controlled by controlling parameters such as ion doping concentration, annealing temperature and annealing time.

作为示例,所述Si1-xGex层102中掺杂有浓度为5e17/cm3~1e19/cm3的B或BF2As an example, the Si 1-x Ge x layer 102 is doped with B or BF 2 at a concentration of 5e17/cm 3 -1e19/cm 3 .

作为示例,所述Si1-xGex层102中,x的范围为0.3~0.6,由于于所述硅衬底101存在晶格大小差异,所述Si1-xGex层102中会引入应力,该应力可以提高Si1-xGex层102作为沟道的性能。As an example, in the Si 1-x Ge x layer 102, x ranges from 0.3 to 0.6. Due to the difference in lattice size in the silicon substrate 101, the Si 1-x Ge x layer 102 will introduce Stress, the stress can improve the performance of the Si 1-x Ge x layer 102 as a channel.

作为示例,所述Si1-xGex层102为Ge含量逐渐增大的梯度Si1-xGex层102,可以减少由于晶格失配而导致大量缺陷的引入,保证Si1-xGex层102的质量。As an example, the Si 1-x Ge x layer 102 is a gradient Si 1-x Ge x layer 102 with a gradually increasing Ge content, which can reduce the introduction of a large number of defects due to lattice mismatch and ensure that the Si 1-x Ge The mass of the x -layer 102 .

作为示例,所述Si1-xGex层102的厚度为20nm~50nm。As an example, the thickness of the Si 1-x Ge x layer 102 is 20 nm˜50 nm.

作为示例,所述轻掺杂半导体层106的材料为Si、SiC或SiGe。As an example, the material of the lightly doped semiconductor layer 106 is Si, SiC or SiGe.

作为示例,所述凹槽105为倒三角形凹槽105或U型凹槽105,所述凹槽105的最大深度为30nm~100nm。As an example, the groove 105 is an inverted triangle groove 105 or a U-shaped groove 105, and the maximum depth of the groove 105 is 30 nm˜100 nm.

作为示例,所述轻掺杂半导体层106的离子掺杂浓度为5e17~5e18/cm3,所述重掺杂半导体区域108的离子掺杂浓度为1e20/cm3~5e20/cm3As an example, the ion doping concentration of the lightly doped semiconductor layer 106 is 5e17˜5e18/cm 3 , and the ion doping concentration of the heavily doped semiconductor region 108 is 1e20/cm 3 ˜5e20/cm 3 .

综上所述,本发明提供一种ESD保护器件及其制作方法,所述制作方法包括步骤:1)于硅衬底表面形成Si1-xGex层,于所述Si1-xGex层表面制作栅极结构,其中,0<x<1;2)通过离子注入工艺及退火工艺于所述Si1-xGex层中形成轻掺杂漏;3)去除所述栅极结构两侧下方的Si1-xGex层,露出所述栅极结构两侧下方的硅衬底;4)采用湿法腐蚀分别于所述栅极结构两侧下方的硅衬底中形成凹槽;5)于所述凹槽中形成轻掺杂半导体层;6)于所述轻掺杂半导体层表面形成重掺杂半导体层,并进行退火使所述重掺杂半导体层内的掺杂离子向所述轻掺杂半导体层及Si1-xGex层推进,形成源区及漏区。本发明在保证器件稳定性能的同时可有效降低ESD保护器件的触发电压,更有效对电路设备进行保护。本发明与现有CMOS工艺兼容,容易实现产业化。本发明在保证器件稳定性能的同时可有效降低ESD保护器件的触发电压,更有效对电路设备进行保护。本发明与现有CMOS工艺兼容,容易实现产业化。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the present invention provides an ESD protection device and a manufacturing method thereof. The manufacturing method includes the steps of: 1) forming a Si 1-x Ge x layer on the surface of a silicon substrate, and forming a Si 1-x Ge x layer on the Si 1-x Ge x Fabricate a gate structure on the surface of the Si 1-x Ge x layer, where 0<x<1; 2) Form a lightly doped drain in the Si 1-x Ge x layer by ion implantation and annealing; 3) Remove both sides of the gate structure The Si 1-x Ge x layer under the side, exposing the silicon substrate under the two sides of the gate structure; 4) using wet etching to form grooves in the silicon substrate under the two sides of the gate structure; 5) forming a lightly doped semiconductor layer in the groove; 6) forming a heavily doped semiconductor layer on the surface of the lightly doped semiconductor layer, and performing annealing so that the dopant ions in the heavily doped semiconductor layer The lightly doped semiconductor layer and the Si 1-x Ge x layer are advanced to form a source region and a drain region. The invention can effectively reduce the trigger voltage of the ESD protection device while ensuring the stable performance of the device, and more effectively protect the circuit equipment. The invention is compatible with the existing CMOS technology, and is easy to realize industrialization. The invention can effectively reduce the trigger voltage of the ESD protection device while ensuring the stable performance of the device, and more effectively protect the circuit equipment. The invention is compatible with the existing CMOS technology, and is easy to realize industrialization. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.

Claims (11)

1.一种ESD保护器件的制作方法,其特征在于,至少包括以下步骤:1. a preparation method of ESD protection device, is characterized in that, comprises the following steps at least: 1)提供一硅衬底,于所述硅衬底表面形成Si1-xGex层,其中,所述Si1-xGex层为Ge含量逐渐增大的梯度Si1-xGex层,于所述Si1-xGex层表面制作栅极结构,其中,0<x<1;1) A silicon substrate is provided, and a Si 1-x Ge x layer is formed on the surface of the silicon substrate, wherein the Si 1-x Ge x layer is a gradient Si 1-x Ge x layer with gradually increasing Ge content , fabricating a gate structure on the surface of the Si 1-x Ge x layer, wherein 0<x<1; 2)通过离子注入工艺及退火工艺于所述Si1-xGex层中形成轻掺杂漏,其中,所述轻掺杂漏延伸至所述栅极结构下方;2) forming a lightly doped drain in the Si 1-x Ge x layer by an ion implantation process and an annealing process, wherein the lightly doped drain extends below the gate structure; 3)去除所述栅极结构两侧下方的Si1-xGex层,露出所述栅极结构两侧下方的硅衬底;3) removing the Si 1-x Ge x layer under both sides of the gate structure, exposing the silicon substrate under both sides of the gate structure; 4)分别于所述栅极结构两侧下方的硅衬底中形成凹槽;4) forming grooves in the silicon substrate under both sides of the gate structure respectively; 5)于所述凹槽中形成轻掺杂半导体层;5) forming a lightly doped semiconductor layer in the groove; 6)于所述轻掺杂半导体层表面形成重掺杂半导体层,并进行退火使所述重掺杂半导体层内的掺杂离子向所述轻掺杂半导体层及Si1-xGex层推进,形成源区及漏区,其中,所述源区和漏区由填充于两个凹槽底部的轻掺杂半导体层、及结合于所述轻掺杂半导体层表面且与所述轻掺杂漏相连的重掺杂半导体区域形成。6) forming a heavily doped semiconductor layer on the surface of the lightly doped semiconductor layer, and performing annealing so that the doping ions in the heavily doped semiconductor layer flow toward the lightly doped semiconductor layer and the Si 1-x Ge x layer Advance to form a source region and a drain region, wherein the source region and the drain region are composed of a lightly doped semiconductor layer filled at the bottom of the two grooves, and are combined on the surface of the lightly doped semiconductor layer and combined with the lightly doped semiconductor layer A heavily doped semiconductor region connected to the drain is formed. 2.根据权利要求1所述的ESD保护器件的制作方法,其特征在于:所述Si1-xGex层中,x的范围为0.3~0.6。2 . The method for manufacturing an ESD protection device according to claim 1 , characterized in that: in the Si 1-x Ge x layer, x ranges from 0.3 to 0.6. 3.根据权利要求1所述的ESD保护器件的制作方法,其特征在于:所述Si1-xGex层中掺杂有浓度为5e17/cm3~1e19/cm3的B或BF23 . The method for manufacturing an ESD protection device according to claim 1 , wherein the Si 1-x Ge x layer is doped with B or BF 2 at a concentration of 5e17/cm 3 -1e19/cm 3 . 4.根据权利要求1所述的ESD保护器件的制作方法,其特征在于:步骤4)中,采用湿法腐蚀工艺分别于所述栅极结构两侧下方的硅衬底中形成凹槽。4. The manufacturing method of the ESD protection device according to claim 1, characterized in that: in step 4), grooves are respectively formed in the silicon substrate under both sides of the gate structure by using a wet etching process. 5.根据权利要求4所述的ESD保护器件的制作方法,其特征在于:步骤4)采用HF、HBr或CH3COOH溶液进行湿法腐蚀。5 . The manufacturing method of the ESD protection device according to claim 4 , characterized in that: step 4) adopts HF, HBr or CH 3 COOH solution for wet etching. 6 . 6.根据权利要求1所述的ESD保护器件的制作方法,其特征在于:步骤4)所述凹槽为倒三角形凹槽或U型凹槽,所述凹槽的深度为30nm~100nm。6 . The method for manufacturing an ESD protection device according to claim 1 , wherein in step 4), the groove is an inverted triangle groove or a U-shaped groove, and the depth of the groove is 30 nm˜100 nm. 7.根据权利要求1所述的ESD保护器件的制作方法,其特征在于:所述轻掺杂半导体层及重掺杂半导体层的材料为Si、SiC或SiGe。7. The manufacturing method of the ESD protection device according to claim 1, characterized in that: the lightly doped semiconductor layer and the heavily doped semiconductor layer are made of Si, SiC or SiGe. 8.一种ESD保护器件,其特征在于,至少包括硅衬底、Si1-xGex层、栅极结构、源区和漏区:8. A kind of ESD protection device is characterized in that, at least comprises silicon substrate, Si 1-x Ge x layer, gate structure, source region and drain region: 所述硅衬底中具有间隔的两个凹槽;There are two grooves spaced apart in the silicon substrate; 所述Si1-xGex层结合于所述两个凹槽之间的硅衬底表面的,且所述Si1-xGex层中形成有轻掺杂漏,所述轻掺杂漏延伸至所述栅极结构下方,其中,所述Si1-xGex层为Ge含量逐渐增大的梯度Si1-xGex层,0<x<1,所述Si1-xGex层为具有应力的Si1-xGex层;The Si 1-x Ge x layer is bonded to the surface of the silicon substrate between the two grooves, and a lightly doped drain is formed in the Si 1-x Ge x layer, and the lightly doped drain extending below the gate structure, wherein the Si 1-x Ge x layer is a gradient Si 1-x Ge x layer with gradually increasing Ge content, 0<x<1, and the Si 1-x Gex layer is a stressed Si 1-x Ge x layer; 所述栅极结构结合于所述Si1-xGex层表面;The gate structure is bonded to the surface of the Si 1-x Ge x layer; 所述源区和所述漏区,由填充于两个凹槽底部的轻掺杂半导体层、及结合于所述轻掺杂半导体层表面且与所述轻掺杂漏相连的重掺杂半导体区域形成。The source region and the drain region are composed of a lightly doped semiconductor layer filled at the bottom of the two grooves, and a heavily doped semiconductor layer bonded to the surface of the lightly doped semiconductor layer and connected to the lightly doped drain area formation. 9.根据权利要求8所述的ESD保护器件,其特征在于:所述重掺杂半导体区域呈横向延伸至所述Si1-xGex层内一预设深度。9. The ESD protection device according to claim 8, wherein the heavily doped semiconductor region extends laterally to a predetermined depth in the Si 1-x Ge x layer. 10.根据权利要求8所述的ESD保护器件,其特征在于:所述凹槽为倒三角形凹槽或U型凹槽,所述凹槽的深度为30nm~100nm。10 . The ESD protection device according to claim 8 , wherein the groove is an inverted triangle groove or a U-shaped groove, and the depth of the groove is 30 nm˜100 nm. 11 . 11.根据权利要求8所述的ESD保护器件,其特征在于:所述Si1-xGex层中掺杂有浓度为5e17/cm3~1e19/cm3的B或BF211. The ESD protection device according to claim 8, characterized in that: the Si 1-x Ge x layer is doped with B or BF 2 at a concentration of 5e17/cm 3 -1e19/cm 3 .
CN201310340606.5A 2013-08-06 2013-08-06 A kind of ESD protective device and preparation method thereof Active CN104347419B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310340606.5A CN104347419B (en) 2013-08-06 2013-08-06 A kind of ESD protective device and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310340606.5A CN104347419B (en) 2013-08-06 2013-08-06 A kind of ESD protective device and preparation method thereof

Publications (2)

Publication Number Publication Date
CN104347419A CN104347419A (en) 2015-02-11
CN104347419B true CN104347419B (en) 2017-12-22

Family

ID=52502777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310340606.5A Active CN104347419B (en) 2013-08-06 2013-08-06 A kind of ESD protective device and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104347419B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960838B (en) * 2016-01-11 2019-07-02 中芯国际集成电路制造(上海)有限公司 Electrostatic protection device and method of forming the same
CN116487410A (en) * 2022-01-17 2023-07-25 长鑫存储技术有限公司 Semiconductor structure and fabrication method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155123A (en) * 2010-10-15 2013-06-12 国际商业机器公司 Method and structure for pFET junction profile with SiGe channel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172933B2 (en) * 2004-06-10 2007-02-06 Taiwan Semiconductor Manufacturing Company, Ltd. Recessed polysilicon gate structure for a strained silicon MOSFET device
US20090108291A1 (en) * 2007-10-26 2009-04-30 United Microelectronics Corp. Semiconductor device and method for fabricating the same
US8426284B2 (en) * 2011-05-11 2013-04-23 United Microelectronics Corp. Manufacturing method for semiconductor structure
US20120319207A1 (en) * 2011-06-17 2012-12-20 Toshiba America Electronic Components, Inc. Semiconductor device with threshold voltage control and method of fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155123A (en) * 2010-10-15 2013-06-12 国际商业机器公司 Method and structure for pFET junction profile with SiGe channel

Also Published As

Publication number Publication date
CN104347419A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
US10804260B2 (en) Semiconductor structure with doped layers on fins and fabrication method thereof
CN105632931B (en) Manufacturing method of semiconductor device and semiconductor device
CN104934472A (en) FINFET Structure and Method for Fabricating the Same
CN103904117B (en) Semiconductor devices and its manufacture method
CN104517883B (en) A kind of method that utilization ion implantation technique prepares semiconductor-on-insulator (ssoi) material
CN106033777A (en) LDMOS device and method of forming the same
CN105633001A (en) Silicon-on-insulator substrate material and preparation method thereof
CN103021848B (en) Germanium silicon heterojunction tunneling field-effect transistor field-effect transistor and preparation method thereof
CN105633002A (en) Graphic silicon-on-insulator material and preparation method thereof
CN102664153B (en) A kind of superconducting field-effect transistors, its manufacture method and application process
CN104347419B (en) A kind of ESD protective device and preparation method thereof
CN104617140B (en) Recessed trench access transistor device and method of making the same
CN103700631A (en) Preparation method for non-junction MOS FET (metal oxide semiconductor field effect transistor) device
CN104752309A (en) Method of preparing on-insulator material with accurate and controllable stripping position
CN104253157A (en) Thin body switch transistor
CN107275400B (en) Semiconductor structures and methods of forming them
CN116798940A (en) A deep trench device and its manufacturing method
CN103985635A (en) Preparation method of MOS transistor
CN101577279B (en) Irradiation resistant multi-interdigital CMOS device
CN107039498A (en) Semiconductor structure and forming method thereof
CN106206548A (en) Semiconductor device and method for manufacturing the same
CN106653729A (en) Anti-fuse structure and manufacturing method thereof
CN104485354A (en) SOI (Silicon on Insulator) substrate folding grid insulating tunneling enhanced transistor and manufacturing method thereof
CN103681264A (en) Formation method of semiconductor device and formation method of MOS transistor
CN103227171B (en) Semiconductor structure and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant