CN104517883B - A kind of method that utilization ion implantation technique prepares semiconductor-on-insulator (ssoi) material - Google Patents
A kind of method that utilization ion implantation technique prepares semiconductor-on-insulator (ssoi) material Download PDFInfo
- Publication number
- CN104517883B CN104517883B CN201310447631.3A CN201310447631A CN104517883B CN 104517883 B CN104517883 B CN 104517883B CN 201310447631 A CN201310447631 A CN 201310447631A CN 104517883 B CN104517883 B CN 104517883B
- Authority
- CN
- China
- Prior art keywords
- single crystal
- thin film
- crystal thin
- substrate
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 90
- 239000012212 insulator Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000005468 ion implantation Methods 0.000 title claims abstract description 33
- 239000013078 crystal Substances 0.000 claims abstract description 78
- 239000010409 thin film Substances 0.000 claims abstract description 70
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 239000004065 semiconductor Substances 0.000 claims abstract description 37
- 239000012535 impurity Substances 0.000 claims abstract description 18
- 238000000137 annealing Methods 0.000 claims abstract description 13
- 239000010408 film Substances 0.000 claims abstract description 8
- 238000001179 sorption measurement Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 63
- 150000002500 ions Chemical class 0.000 claims description 60
- 238000005516 engineering process Methods 0.000 claims description 31
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 14
- 238000002513 implantation Methods 0.000 claims description 14
- 229910052732 germanium Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 9
- 229910005898 GeSn Inorganic materials 0.000 claims description 9
- 238000004321 preservation Methods 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 238000003486 chemical etching Methods 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 238000004299 exfoliation Methods 0.000 claims 3
- 239000002019 doping agent Substances 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 208000037656 Respiratory Sounds Diseases 0.000 abstract 1
- 230000004888 barrier function Effects 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- -1 H ions Chemical class 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种半导体材料的制备方法,特别是涉及一种利用离子注入技术制备绝缘体上半导体材料的方法。The invention relates to a method for preparing a semiconductor material, in particular to a method for preparing a semiconductor material on an insulator by ion implantation technology.
背景技术Background technique
近年来,绝缘体上硅(SOI)材料以其独特的绝缘埋层结构,能降低衬底的寄生电容和漏电电流,在低压、低功耗、高温、抗辐射器件等诸多领域得到了广泛的应用。绝缘体上硅在相关领域中应用技术已经非常成熟,绝缘体上应变硅(sSOI)也日益得到了相关技术人员的重视,绝缘体上锗硅(SGOI)结合了锗硅材料和绝缘体上硅的优势,不仅能减小衬底的寄生电容和漏电电流,还能提高载流子迁移率,同样得到了广泛的关注。制备更小尺寸、更高性能的器件一直是半导体工业发展的目标和方向,随着超大规模集成电路技术进入到22nm节点及以下,对集成电路的特征尺寸提出了更高要求。为了使基于绝缘上材料的器件进一步缩微化,就要求绝缘体上材料的厚度更薄,超薄绝缘体上材料应运而生。In recent years, silicon-on-insulator (SOI) materials have been widely used in many fields such as low-voltage, low-power consumption, high-temperature, and radiation-resistant devices because of their unique insulating buried layer structure, which can reduce the parasitic capacitance and leakage current of the substrate. . The application technology of silicon-on-insulator in related fields has been very mature, and strained silicon-on-insulator (sSOI) has also received increasing attention from relevant technical personnel. Silicon-germanium-on-insulator (SGOI) combines the advantages of silicon-germanium materials and silicon-on-insulator, not only It can reduce the parasitic capacitance and leakage current of the substrate, and can also improve the carrier mobility, which has also received extensive attention. Manufacturing smaller-sized, higher-performance devices has always been the goal and direction of the development of the semiconductor industry. As VLSI technology enters the 22nm node and below, higher requirements are placed on the feature size of integrated circuits. In order to further miniaturize devices based on materials-on-insulator, the thickness of materials-on-insulator is required to be thinner, and ultra-thin materials-on-insulator have emerged as the times require.
通常绝缘体上材料需要通过材料的制备和层转移两个过程得到,比较常见的层转移实现技术是键合和剥离工艺。而传统的智能剥离方法剥离面很厚,剥离裂纹大,剥离后得到的绝缘体上材料表面很粗糙,难以制备超薄的绝缘体上材料;并且由于需要较高的注入剂量,不仅增加了生产时间和成本,还对晶体损伤较大,制备出高质量的超薄绝缘体上材料难度更大。Usually, the material on the insulator needs to be obtained through two processes of material preparation and layer transfer. The more common layer transfer realization technology is the bonding and peeling process. However, the traditional intelligent peeling method has a thick peeling surface, large peeling cracks, and the surface of the material on the insulator obtained after peeling is very rough, making it difficult to prepare ultra-thin materials on the insulator; and due to the need for a higher injection dose, it not only increases the production time and The cost and the damage to the crystal are relatively large, and it is more difficult to prepare high-quality ultra-thin materials on insulators.
因而,如何提供一种低注入剂量的制备高质量绝缘体上半导体材料的方法,已成为本领域从业者亟待解决的技术问题。Therefore, how to provide a method for preparing a high-quality semiconductor-on-insulator material with a low implant dose has become an urgent technical problem to be solved by practitioners in the field.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种利用离子注入技术制备绝缘体上半导体材料的方法,用于解决现有技术中制备绝缘体上半导体材料需要较高剂量的离子注入,且难度大、成本高等问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a method for preparing semiconductor-on-insulator materials using ion implantation technology, which is used to solve the need for higher doses of ion implantation in the prior art to prepare semiconductor-on-insulator materials, Moreover, it is difficult and costly.
为实现上述目的及其他相关目的,本发明提供一种利用离子注入技术制备绝缘体上半导体材料的方法,至少包括以下步骤:In order to achieve the above purpose and other related purposes, the present invention provides a method for preparing a semiconductor-on-insulator material using ion implantation technology, which at least includes the following steps:
1)提供第一衬底,于所述第一衬底表面形成掺杂的单晶薄膜;1) providing a first substrate, and forming a doped single crystal thin film on the surface of the first substrate;
2)于所述单晶薄膜表面形成缓冲层,于所述缓冲层表面形成顶层半导体材料;2) forming a buffer layer on the surface of the single crystal thin film, and forming a top semiconductor material on the surface of the buffer layer;
3)从所述顶层半导体材料表面将杂质离子注入至所述单晶薄膜;3) implanting impurity ions into the single crystal thin film from the surface of the top semiconductor material;
4)从所述顶层半导体材料表面将剥离离子注入至所述单晶薄膜下方第一衬底中的预设深度的位置;4) implanting lift-off ions from the surface of the top-layer semiconductor material to a position at a predetermined depth in the first substrate below the single crystal thin film;
5)提供表面具有绝缘层的第二衬底,并将所述绝缘层与所述顶层半导体材料进行键合;5) providing a second substrate with an insulating layer on the surface, and bonding the insulating layer to the top semiconductor material;
6)进行退火处理,使所述单晶薄膜吸附所述剥离离子,最终使所述第一衬底与所述缓冲层从该单晶薄膜处分离,最后去除所述缓冲层。6) Perform annealing treatment to make the single crystal thin film absorb the stripping ions, finally separate the first substrate and the buffer layer from the single crystal thin film, and finally remove the buffer layer.
作为本发明的利用离子注入技术制备绝缘体上半导体材料的方法一种优选方案,所述单晶薄膜的厚度不大于10nm。As a preferred solution of the method for preparing a semiconductor-on-insulator material using ion implantation technology of the present invention, the thickness of the single crystal thin film is not greater than 10 nm.
作为本发明的利用离子注入技术制备绝缘体上半导体材料的方法一种优选方案,所述单晶薄膜为单层单晶或两层单晶以上形成的超晶格结构,且所述单晶薄膜的材料包括Si、Ge、SiGe、GeSn、GaAs及AlGaAs中的一种。As a preferred solution of the method for preparing semiconductor-on-insulator materials using ion implantation technology in the present invention, the single crystal thin film is a superlattice structure formed of a single-layer single crystal or more than two layers of single crystal, and the single-crystal thin film The material includes one of Si, Ge, SiGe, GeSn, GaAs and AlGaAs.
进一步地,所述单晶薄膜的掺杂离子包括C、B、P、Ga、In、As及Sb中的一种或两种以上,掺杂离子的总浓度为1E18/cm3~1E22/cm3。Further, the doping ions of the single crystal thin film include one or more of C, B, P, Ga, In, As and Sb, and the total concentration of doping ions is 1E18/cm 3 -1E22/cm 3 .
作为本发明的利用离子注入技术制备绝缘体上半导体材料的方法一种优选方案,所述缓冲层的材料为Si、Ge、SiGe、GeSn、GaAs、AlGaAs中的一种,其厚度不小于30nm,并且,所述缓冲层的材料不同于所述单晶薄膜。As a preferred solution of the method for preparing a semiconductor-on-insulator material using ion implantation technology in the present invention, the material of the buffer layer is one of Si, Ge, SiGe, GeSn, GaAs, AlGaAs, and its thickness is not less than 30nm, and , the material of the buffer layer is different from the single crystal thin film.
作为本发明的利用离子注入技术制备绝缘体上半导体材料的方法一种优选方案,所述顶层半导体材料的材料包括Si、Ge、SiGe、GeSn、GaAs及AlGaAs中的一种,厚度为5nm~200nm。As a preferred solution of the method for preparing a semiconductor-on-insulator material using ion implantation technology in the present invention, the material of the top layer semiconductor material includes one of Si, Ge, SiGe, GeSn, GaAs and AlGaAs, and the thickness is 5nm-200nm.
作为本发明的利用离子注入技术制备绝缘体上半导体材料的方法一种优选方案,所述杂质离子包括Si、Ge、H、He中的一种,注入剂量不小于1E16/cm2。As a preferred solution of the method for preparing a semiconductor-on-insulator material using ion implantation technology of the present invention, the impurity ions include one of Si, Ge, H, and He, and the implantation dose is not less than 1E16/cm 2 .
作为本发明的利用离子注入技术制备绝缘体上半导体材料的方法一种优选方案,所述剥离离子为H离子,注入剂量为1E16/cm2~4E16/cm2,所述预设深度为单晶薄膜下方20nm~150nm。As a preferred solution of the method for preparing semiconductor-on-insulator materials using ion implantation technology in the present invention, the stripping ions are H ions, the implantation dose is 1E16/cm 2 to 4E16/cm 2 , and the preset depth is a single crystal thin film 20nm to 150nm below.
作为本发明的利用离子注入技术制备绝缘体上半导体材料的方法一种优选方案,步骤6)中,采用化学腐蚀法去除所述缓冲层。As a preferred solution of the method for preparing a semiconductor-on-insulator material using ion implantation technology in the present invention, in step 6), the buffer layer is removed by chemical etching.
如上所述,本发明提供一种利用离子注入技术制备绝缘体上半导体材料的方法,包括步骤:1)提供第一衬底,于所述第一衬底表面形成掺杂的单晶薄膜;2)于所述单晶薄膜表面形成缓冲层,于所述缓冲层表面形成顶层半导体材料;3)从所述顶层半导体材料表面将杂质离子注入至所述单晶薄膜;4)从所述顶层半导体材料表面将剥离离子注入至所述单晶薄膜下方第一衬底中的预设深度的位置;5)提供表面具有绝缘层的第二衬底,并将所述绝缘层与所述顶层半导体材料进行键合;6)进行退火处理,使所述单晶薄膜吸附所述剥离离子,最终使所述第一衬底与所述缓冲层从该单晶薄膜处分离,最后去除所述缓冲层。本发明结合了离子共注与掺杂单晶薄膜剥离的双重作用,有效的降低了剥离剂量。先注入杂质离子使单晶薄膜产生应力增加其对H离子的吸附能力,再通过H离子注入退火后实现剥离。若杂质离子采用He,则一方面可以增加单晶薄膜的应力,另一方面He可以作为剥离离子,大大降低H离子的注入量,剥离裂纹发生在超薄的单晶薄膜处,裂纹很小,可获得高质量的绝缘体上半导体材料。As mentioned above, the present invention provides a method for preparing a semiconductor-on-insulator material using ion implantation technology, comprising the steps of: 1) providing a first substrate, and forming a doped single crystal thin film on the surface of the first substrate; 2) forming a buffer layer on the surface of the single crystal thin film, and forming a top semiconductor material on the surface of the buffer layer; 3) implanting impurity ions into the single crystal thin film from the surface of the top semiconductor material; 4) injecting impurity ions from the top semiconductor material Implanting lift-off ions into the first substrate below the single crystal thin film at a predetermined depth; 5) providing a second substrate with an insulating layer on the surface, and bonding the insulating layer to the top semiconductor material bonding; 6) performing annealing treatment to make the single crystal thin film absorb the stripping ions, finally separate the first substrate and the buffer layer from the single crystal thin film, and finally remove the buffer layer. The invention combines the dual functions of ion co-implantation and stripping of the doped single crystal thin film, and effectively reduces the stripping dosage. Impurity ions are implanted first to cause stress in the single crystal film to increase its adsorption capacity for H ions, and then the stripping is achieved after H ion implantation and annealing. If He is used as the impurity ion, on the one hand, the stress of the single crystal film can be increased, and on the other hand, He can be used as the stripping ion, which greatly reduces the implantation amount of H ions. The stripping crack occurs at the ultra-thin single crystal film, and the crack is very small. High quality semiconductor-on-insulator materials are available.
附图说明Description of drawings
图1显示为本发明的利用离子注入技术制备绝缘体上半导体材料的方法步骤流程示意图。FIG. 1 is a schematic flowchart of the steps of the method for preparing a semiconductor-on-insulator material using ion implantation technology according to the present invention.
图2显示为本发明的利用离子注入技术制备绝缘体上半导体材料的方法步骤1)所呈现的结构示意图。FIG. 2 shows a schematic structural view of step 1) of the method for preparing a semiconductor-on-insulator material by using ion implantation technology according to the present invention.
图3显示为本发明的利用离子注入技术制备绝缘体上半导体材料的方法步骤2)所呈现的结构示意图。FIG. 3 shows a schematic structural diagram presented in step 2) of the method for preparing a semiconductor-on-insulator material using ion implantation technology according to the present invention.
图4显示为本发明的利用离子注入技术制备绝缘体上半导体材料的方法步骤3)所呈现的结构示意图。FIG. 4 shows a schematic structural diagram presented in step 3) of the method for preparing a semiconductor-on-insulator material using ion implantation technology according to the present invention.
图5显示为本发明的利用离子注入技术制备绝缘体上半导体材料的方法步骤4)所呈现的结构示意图。FIG. 5 shows a schematic structural diagram presented in step 4) of the method for preparing a semiconductor-on-insulator material using ion implantation technology according to the present invention.
图6显示为本发明的利用离子注入技术制备绝缘体上半导体材料的方法步骤5)所呈现的结构示意图。FIG. 6 shows a schematic structural diagram presented in step 5) of the method for preparing a semiconductor-on-insulator material by using ion implantation technology according to the present invention.
图7~图9显示为本发明的利用离子注入技术制备绝缘体上半导体材料的方法步骤6)所呈现的结构示意图。7 to 9 show the structural schematic diagrams presented in step 6) of the method for preparing a semiconductor-on-insulator material by utilizing ion implantation technology according to the present invention.
元件标号说明Component designation description
101 第一衬底101 First Substrate
102 单晶薄膜102 single crystal thin film
103 缓冲层103 buffer layer
104 顶层半导体材料104 Top Semiconductor Materials
105 绝缘层105 insulating layer
106 第二衬底106 Second substrate
S11~S16 步骤S11~S16 steps
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1~图9。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figure 1 to Figure 9. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
如图1~图9所示,一种利用离子注入技术制备绝缘体上半导体材料的方法,至少包括以下步骤:As shown in Figures 1 to 9, a method for preparing a semiconductor-on-insulator material using ion implantation technology at least includes the following steps:
如图1~图2所示,首先进行步骤1)S11,提供第一衬底101,于所述第一衬底101表面形成掺杂的单晶薄膜102。As shown in FIGS. 1 to 2 , step 1) S11 is firstly performed to provide a first substrate 101 and form a doped single crystal thin film 102 on the surface of the first substrate 101 .
作为示例,所述第一衬底101为Si衬底。所述掺杂的单晶薄膜102的厚度不大于10nm,所述单晶薄膜102为单层单晶或两层单晶以上形成的超晶格结构,其材料包括Si、Ge、SiGe、GeSn、GaAs及AlGaAs中的一种,所述单晶薄膜102的掺杂离子包括C、B、P、Ga、In、As及Sb中的一种或两种以上,掺杂离子的总浓度为1E18/cm3~1E22/cm3。具体地,在本实施例中,提供一Si衬底,采用气相外延法于其表面形成掺杂有B的SiGe单晶薄膜102,其中,所述SiGe单晶薄膜102的厚度为3nm,B的浓度为3E19/cm3。由于该单晶薄膜102的厚度非常薄,其内部具有应力,并且具有浓度较大的离子掺杂浓度,在后续的智能剥离过程中可以很高效的吸附用于剥离的离子(如H离子等)而最终断裂,剥离表面基本没有单晶薄膜102残留,最多只有部分的毛刺存在,可以达到非常良好的剥离效果。As an example, the first substrate 101 is a Si substrate. The thickness of the doped single crystal thin film 102 is not more than 10nm, and the single crystal thin film 102 is a superlattice structure formed of a single-layer single crystal or more than two layers of single crystal, and its materials include Si, Ge, SiGe, GeSn, One of GaAs and AlGaAs, the doping ions of the single crystal thin film 102 include one or more of C, B, P, Ga, In, As and Sb, and the total concentration of doping ions is 1E18/ cm 3 ~1E22/cm 3 . Specifically, in this embodiment, a Si substrate is provided, and a SiGe single crystal thin film 102 doped with B is formed on its surface by vapor phase epitaxy, wherein, the thickness of the SiGe single crystal thin film 102 is 3 nm, and the thickness of the B The concentration is 3E19/cm 3 . Since the thickness of the single crystal film 102 is very thin, there is stress inside it, and it has a high ion doping concentration, it can efficiently absorb ions (such as H ions, etc.) for stripping in the subsequent intelligent stripping process. In the final fracture, there is basically no single crystal thin film 102 remaining on the peeled surface, and at most only some burrs exist, which can achieve a very good peeling effect.
如图1及图3所示,然后进行步骤2)S12,于所述单晶薄膜102表面形成缓冲层103,于所述缓冲层103表面形成顶层半导体材料104。As shown in FIG. 1 and FIG. 3 , step 2) S12 is then performed to form a buffer layer 103 on the surface of the single crystal thin film 102 , and to form a top semiconductor material 104 on the surface of the buffer layer 103 .
作为示例,采用气相外延法于所述单晶薄膜102表面形成缓冲层103,所述缓冲层103的材料为Si、Ge、SiGe、GeSn、GaAs、AlGaAs中的一种,其厚度不小于30nm,并且,所述缓冲层103的材料不同于所述单晶薄膜102。在本实施例中,所述缓冲层103的材料为Si,厚度为60nm。所述缓冲层103可以大大提高后续顶层半导体材料104的生长质量,并且可以保证后续离子剥离过程不会对顶层半导体材料104引入缺陷等影响。As an example, a buffer layer 103 is formed on the surface of the single crystal thin film 102 by vapor phase epitaxy, the material of the buffer layer 103 is one of Si, Ge, SiGe, GeSn, GaAs, AlGaAs, and its thickness is not less than 30nm, Moreover, the material of the buffer layer 103 is different from that of the single crystal thin film 102 . In this embodiment, the buffer layer 103 is made of Si and has a thickness of 60 nm. The buffer layer 103 can greatly improve the growth quality of the subsequent top-layer semiconductor material 104 , and can ensure that the subsequent ion stripping process will not introduce defects and other effects on the top-layer semiconductor material 104 .
作为示例,所述顶层半导体材料104的材料包括Si、Ge、SiGe、GeSn、GaAs及AlGaAs中的一种,厚度为5nm~200nm。在本实施例中,所述顶层半导体材料104的材料为SiGe,其厚度为70nm。当然,在其它的实施例中,所述顶层半导体材料104也可以是依据需求所选择的其它预期的半导体材料,并不限定于此处所列举的几种。As an example, the material of the top layer semiconductor material 104 includes one of Si, Ge, SiGe, GeSn, GaAs and AlGaAs, and the thickness is 5 nm˜200 nm. In this embodiment, the material of the top semiconductor material 104 is SiGe, and its thickness is 70nm. Certainly, in other embodiments, the top-layer semiconductor material 104 may also be other expected semiconductor materials selected according to requirements, and is not limited to the ones listed here.
如图1及图4所示,接着进行步骤3)S13,从所述顶层半导体材料104表面将杂质离子注入至所述单晶薄膜102。As shown in FIG. 1 and FIG. 4 , step 3) S13 is then performed, and impurity ions are implanted into the single crystal thin film 102 from the surface of the top semiconductor material 104 .
作为示例,所述杂质离子包括Si、Ge、H、He中的一种,注入剂量不小于1E16/cm2。所述杂质离子的注入可以增加所述单晶薄膜102中的应力,以提高后续剥离过程中,单晶薄膜102对H离子的吸附作用。在本实施例中,所述杂质离子为He,注入剂量为1E16/cm2,采用He作为杂质离子,一方面可以增加所述单晶薄膜102的应力,另一方面He可以作为剥离离子,大大降低后续H离子所需的注入量,降低工艺成本,提高剥离的质量。As an example, the impurity ions include one of Si, Ge, H, and He, and the implantation dose is not less than 1E16/cm 2 . The implantation of impurity ions can increase the stress in the single crystal thin film 102, so as to improve the adsorption of H ions by the single crystal thin film 102 during the subsequent stripping process. In this embodiment, the impurity ions are He, and the implantation dose is 1E16/cm 2 . Using He as the impurity ions can increase the stress of the single crystal thin film 102 on the one hand, and on the other hand, He can be used as stripping ions, greatly The required implantation amount of subsequent H ions is reduced, the process cost is reduced, and the stripping quality is improved.
如图1及图5所示,然后进行步骤4)S14,从所述顶层半导体材料104表面将剥离离子注入至所述单晶薄膜102下方第一衬底101中的预设深度的位置。As shown in FIG. 1 and FIG. 5 , then proceed to step 4) S14 , implanting lift-off ions from the surface of the top semiconductor material 104 to a predetermined depth in the first substrate 101 below the single crystal thin film 102 .
作为示例,所述剥离离子为H离子,注入剂量为1E16/cm2~4E16/cm2,所述预设深度为单晶薄膜102下方20nm~150nm。在本实施例中,H离子的注入剂量为1E16/cm2,其注入位置为所单晶薄膜102下方距述第一衬底101表面50nm深度的地方。当然,在其它的实施例中,所述剥离离子也可以选择为He,并不限定于此处的H离子。As an example, the stripping ions are H ions, the implantation dose is 1E16/cm 2 -4E16/cm 2 , and the preset depth is 20 nm - 150 nm below the single crystal thin film 102 . In this embodiment, the implantation dose of H ions is 1E16/cm 2 , and the implantation position is a place below the single crystal thin film 102 at a depth of 50 nm from the surface of the first substrate 101 . Certainly, in other embodiments, the stripping ions may also be selected as He, and are not limited to H ions here.
如图1及图6所示,接着进行步骤5)S15,提供表面具有绝缘层105的第二衬底106,并将所述绝缘层105与所述顶层半导体材料104进行键合。As shown in FIG. 1 and FIG. 6 , step 5) S15 is performed next, providing a second substrate 106 with an insulating layer 105 on its surface, and bonding the insulating layer 105 to the top semiconductor material 104 .
作为示例,所述第二衬底106为表面具有氧化层的Si衬底。具体地,键合前先采用N2对所述绝缘层105及顶层半导体材料104表面进行等离子处理,然后再将其进行键合。As an example, the second substrate 106 is a Si substrate with an oxide layer on its surface. Specifically, N 2 is used to perform plasma treatment on the surface of the insulating layer 105 and the top semiconductor material 104 before bonding, and then bond them.
如图1及图7~图9所示,最后进行步骤6)S16,进行退火处理,使所述单晶薄膜102吸附所述剥离离子,最终使所述第一衬底101与所述缓冲层103从该单晶薄膜102处分离,最后去除所述缓冲层103。As shown in FIG. 1 and FIG. 7 to FIG. 9, step 6) S16 is finally carried out to perform annealing treatment, so that the single crystal thin film 102 absorbs the stripping ions, and finally the first substrate 101 and the buffer layer 103 is separated from the single crystal thin film 102, and finally the buffer layer 103 is removed.
作为示例,本实施例中采用的退火的气氛为O2。所述退火处理包括步骤:首先,于300℃左右进行第一次保温,保温时间为120min左右,以加强所述绝缘层105及所述顶层半导体材料104的键合强度;然后,于600℃左右进行第二次保温,保温时间为30min左右,使所述单晶薄膜102吸附所述第一衬底101中的剥离离子,剥离离子逐渐聚集后产生大量的气泡,最终使所述单晶薄膜102断裂,实现所述第一衬底101与所述缓冲层103的剥离。As an example, the annealing atmosphere used in this embodiment is O 2 . The annealing treatment includes the following steps: firstly, conduct the first heat preservation at about 300°C for about 120 minutes to strengthen the bonding strength between the insulating layer 105 and the top semiconductor material 104; then, heat at about 600°C Carry out the second heat preservation, and the heat preservation time is about 30 minutes, so that the single crystal thin film 102 absorbs the exfoliated ions in the first substrate 101, and the exfoliated ions gradually gather to generate a large number of bubbles, and finally the single crystal thin film 102 breaking to realize the peeling off of the first substrate 101 and the buffer layer 103 .
作为示例,采用化学腐蚀法去除所述缓冲层103。As an example, the buffer layer 103 is removed by chemical etching.
如上所述,本发明提供一种利用离子注入技术制备绝缘体上半导体材料的方法,包括步骤:1)提供第一衬底101,于所述第一衬底101表面形成掺杂的单晶薄膜102;2)于所述单晶薄膜102表面形成缓冲层103,于所述缓冲层103表面形成顶层半导体材料104;3)从所述顶层半导体材料104表面将杂质离子注入至所述单晶薄膜102;4)从所述顶层半导体材料104表面将剥离离子注入至所述单晶薄膜102下方第一衬底101中的预设深度的位置;5)提供表面具有绝缘层105的第二衬底106,并将所述绝缘层105与所述顶层半导体材料104进行键合;6)进行退火处理,使所述单晶薄膜102吸附所述剥离离子,最终使所述第一衬底101与所述缓冲层103从该单晶薄膜102处分离,最后去除所述缓冲层103。本发明结合了离子共注与掺杂单晶薄膜102剥离的双重作用,有效的降低了剥离剂量。先注入杂质离子使单晶薄膜102产生应力增加其对H离子的吸附能力,再通过H离子注入退火后实现剥离。若杂质离子采用He,则一方面可以增加单晶薄膜102的应力,另一方面He可以作为剥离离子,大大降低H离子的注入量,剥离裂纹发生在超薄的单晶薄膜102处,裂纹很小,可获得高质量的绝缘体上半导体材料。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。As mentioned above, the present invention provides a method for preparing a semiconductor-on-insulator material using ion implantation technology, including the steps: 1) providing a first substrate 101, and forming a doped single crystal film 102 on the surface of the first substrate 101 ; 2) forming a buffer layer 103 on the surface of the single crystal thin film 102, and forming a top semiconductor material 104 on the surface of the buffer layer 103; 3) implanting impurity ions from the surface of the top semiconductor material 104 into the single crystal thin film 102 ; 4) Implanting lift-off ions from the surface of the top semiconductor material 104 to a position at a predetermined depth in the first substrate 101 below the single crystal thin film 102; 5) Providing a second substrate 106 with an insulating layer 105 on its surface , and bond the insulating layer 105 with the top layer semiconductor material 104; 6) perform annealing treatment to make the single crystal thin film 102 absorb the stripping ions, and finally make the first substrate 101 and the The buffer layer 103 is separated from the single crystal thin film 102, and finally the buffer layer 103 is removed. The present invention combines the dual functions of ion co-implantation and stripping of the doped single crystal thin film 102, effectively reducing the stripping dosage. Impurity ions are implanted first to generate stress in the single crystal thin film 102 to increase its ability to absorb H ions, and then the stripping is achieved after H ion implantation and annealing. If impurity ion adopts He, then can increase the stress of single crystal film 102 on the one hand; Small, high-quality semiconductor-on-insulator materials can be obtained. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310447631.3A CN104517883B (en) | 2013-09-26 | 2013-09-26 | A kind of method that utilization ion implantation technique prepares semiconductor-on-insulator (ssoi) material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310447631.3A CN104517883B (en) | 2013-09-26 | 2013-09-26 | A kind of method that utilization ion implantation technique prepares semiconductor-on-insulator (ssoi) material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104517883A CN104517883A (en) | 2015-04-15 |
CN104517883B true CN104517883B (en) | 2017-08-15 |
Family
ID=52792991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310447631.3A Active CN104517883B (en) | 2013-09-26 | 2013-09-26 | A kind of method that utilization ion implantation technique prepares semiconductor-on-insulator (ssoi) material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104517883B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107346725B (en) * | 2016-05-05 | 2021-03-12 | 上海芯晨科技有限公司 | Stripping and transferring method of III-group nitride film |
DE102016112139B3 (en) * | 2016-07-01 | 2018-01-04 | Infineon Technologies Ag | A method of reducing an impurity concentration in a semiconductor body |
CN105895801B (en) * | 2016-07-06 | 2018-09-25 | 中国科学院上海微系统与信息技术研究所 | The method for preparing monocrystalline oxide resistance-variable storing device using ion implanting lift-off technology |
CN106449369B (en) * | 2016-11-24 | 2020-04-28 | 清华大学 | Semiconductor-on-insulator structure and method of fabrication |
CN106373870B (en) * | 2016-11-24 | 2020-06-02 | 清华大学 | Semiconductor structure and preparation method |
CN112309946B (en) * | 2019-07-29 | 2023-07-04 | 复旦大学 | A method for peeling off ferroelectric single crystal thin film |
CN112382563A (en) * | 2020-11-13 | 2021-02-19 | 济南晶正电子科技有限公司 | Ion implantation thin film wafer separation method, single crystal thin film, and electronic component |
CN115207206B (en) * | 2022-09-16 | 2022-12-06 | 济南晶正电子科技有限公司 | Near-stoichiometric composite film and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1666330A (en) * | 2002-07-09 | 2005-09-07 | S.O.I.Tec绝缘体上硅技术公司 | Transfer of a thin layer from a wafer comprising a buffer layer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004021420A2 (en) * | 2002-08-29 | 2004-03-11 | Massachusetts Institute Of Technology | Fabrication method for a monocrystalline semiconductor layer on a substrate |
US20040192067A1 (en) * | 2003-02-28 | 2004-09-30 | Bruno Ghyselen | Method for forming a relaxed or pseudo-relaxed useful layer on a substrate |
US6992025B2 (en) * | 2004-01-12 | 2006-01-31 | Sharp Laboratories Of America, Inc. | Strained silicon on insulator from film transfer and relaxation by hydrogen implantation |
US20060270190A1 (en) * | 2005-05-25 | 2006-11-30 | The Regents Of The University Of California | Method of transferring a thin crystalline semiconductor layer |
-
2013
- 2013-09-26 CN CN201310447631.3A patent/CN104517883B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1666330A (en) * | 2002-07-09 | 2005-09-07 | S.O.I.Tec绝缘体上硅技术公司 | Transfer of a thin layer from a wafer comprising a buffer layer |
Also Published As
Publication number | Publication date |
---|---|
CN104517883A (en) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104517883B (en) | A kind of method that utilization ion implantation technique prepares semiconductor-on-insulator (ssoi) material | |
CN103633010B (en) | Doping superthin layer absorption is utilized to prepare the method for material on ultrathin insulating body | |
CN102820253B (en) | Preparation method of high mobility ratio double channel material based on silicon-on-insulator (SOI) substrate | |
CN103943547B (en) | Enhanced absorption based method for preparing material-on-insulator | |
CN105140171B (en) | The preparation method of material on a kind of insulator | |
US8440550B2 (en) | Method for forming strained layer with high Ge content on substrate and semiconductor structure | |
CN103972148B (en) | Manufacturing method for materials on ultrathin insulator | |
CN102290369B (en) | Thin GOI (germanium-on-insulator) wafer and preparation method thereof | |
CN102347219A (en) | Method for forming composite functional material structure | |
CN102184882A (en) | Method for forming composite functional material structure | |
CN102737963B (en) | Method for preparing semiconductor material through ion injection and fixed-point adsorption technologies | |
CN104425341B (en) | A kind of method that low dosage injection prepares semiconductor-on-insulator (ssoi) material | |
CN104752309B (en) | Remove the preparation method of material on the insulator of position controllable precise | |
CN106601663B (en) | SOI substrate and preparation method thereof | |
CN103311172A (en) | SOI (Silicon On Insulator) substrate formation method | |
CN103632930B (en) | Utilize superthin layer absorption to prepare the method for ultrathin modified material on insulator | |
CN104425342B (en) | A kind of preparation method of the controllable semiconductor-on-insulator (ssoi) material of thickness | |
CN105428300B (en) | The method that adsorption stripping prepares material on insulator | |
CN103219275B (en) | There is the preparation method of SGOI or sSOI of high relaxation and fabricating low-defect-density | |
CN105428302A (en) | Method of preparing material-over-insulator by utilizing low-temperature peeling technology | |
CN103165511B (en) | Method for manufacturing germanium on insulator (GOI) | |
CN101740463A (en) | Method to prepare strained silicon materials in insulators by anneal through oxygen implantation. | |
CN102751184B (en) | Method for reducing surface roughness of Si | |
CN104752308B (en) | A kind of method that material on insulator is prepared based on Hybrid Heating | |
CN115527922A (en) | Manufacturing method of semiconductor structure and semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |