CN104345530A - Display light source module - Google Patents
Display light source module Download PDFInfo
- Publication number
- CN104345530A CN104345530A CN201310326062.7A CN201310326062A CN104345530A CN 104345530 A CN104345530 A CN 104345530A CN 201310326062 A CN201310326062 A CN 201310326062A CN 104345530 A CN104345530 A CN 104345530A
- Authority
- CN
- China
- Prior art keywords
- beam splitter
- wavelength conversion
- light beam
- wheel
- rotating wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2066—Reflectors in illumination beam
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种显示光源模块。The invention relates to a display light source module.
背景技术Background technique
近年来随着投影装置的制造技术的提升,轻薄短小的投影装置已成为市场的主流,因此用以提供投影装置的光束的显示光源模块亦需趋向小尺寸发展,以配合投影装置的尺寸的需求。然而一旦缩小了显示光源模块的体积,显示光源模块内能够摆放的元件便有限。如此一来,如何在有限的元件当中,仍然维持高效率与低耗能的光源输出,为目前业界努力改善的问题之一。In recent years, with the improvement of the manufacturing technology of projection devices, light, thin and short projection devices have become the mainstream of the market. Therefore, the display light source module used to provide the light beam of the projection device also needs to be developed in a small size to meet the size of the projection device. . However, once the volume of the display light source module is reduced, the components that can be placed in the display light source module are limited. In this way, how to maintain high-efficiency and low-power-consumption light source output with limited components is one of the problems that the industry is currently striving to improve.
发明内容Contents of the invention
本发明的目的在于提供一种显示光源模块,包含光源、旋转轮、致动器、波长转换轮与光学模块。光源用以提供第一光束,第一光束具有第一波长。旋转轮包含穿透区与反射区。致动器连接旋转轮。致动器用以旋转旋转轮,使得穿透区与反射区依时序位于第一光束的行经路径上。波长转换轮包含第一波长转换区。第一波长转换区用以将第一光束转换为具第二波长的第二光束。光学模块用以将穿透旋转轮的穿透区的第一光束导引至波长转换轮,将自旋转轮的反射区反射的第一光束导引至目标位置,且将来自波长转换轮的第一波长转换区的第二光束导引至目标位置。The object of the present invention is to provide a display light source module, which includes a light source, a rotating wheel, an actuator, a wavelength conversion wheel and an optical module. The light source is used for providing a first light beam, and the first light beam has a first wavelength. The rotating wheel contains a transmissive area and a reflective area. The actuator is connected to the rotating wheel. The actuator is used to rotate the rotary wheel, so that the transmissive area and the reflective area are located on the path of the first light beam in time sequence. The wavelength conversion wheel includes a first wavelength conversion region. The first wavelength conversion region is used for converting the first light beam into a second light beam with a second wavelength. The optical module is used to guide the first light beam passing through the penetrating area of the rotating wheel to the wavelength conversion wheel, guide the first light beam reflected from the reflecting area of the rotating wheel to the target position, and guide the first light beam from the wavelength conversion wheel The second light beam of the first wavelength conversion region is directed to a target location.
在本发明一或多个实施方式中,波长转换轮还包含第二波长转换区。第二波长转换区用以将第一光束转换为具有第三波长的第三光束。致动器还连接波长转换轮,致动器还用以旋转波长转换轮,使得第一波长转换区与第二波长转换区依时序位于穿透旋转轮的第一光束的行经路径上。光学模块还用以将来自波长转换轮的第二波长转换区的第三光束导引至该目标位置。In one or more embodiments of the present invention, the wavelength conversion wheel further includes a second wavelength conversion region. The second wavelength conversion region is used for converting the first light beam into a third light beam with a third wavelength. The actuator is also connected to the wavelength conversion wheel, and the actuator is also used to rotate the wavelength conversion wheel, so that the first wavelength conversion region and the second wavelength conversion region are located on the path of the first beam passing through the rotating wheel in time sequence. The optical module is also used to guide the third light beam from the second wavelength conversion region of the wavelength conversion wheel to the target position.
在本发明一或多个实施方式中,第一波长转换区与第二波长转换区皆呈弧状,第一波长转换区的弧长不同于第二波长转换区的弧长。In one or more embodiments of the present invention, both the first wavelength conversion region and the second wavelength conversion region are arc-shaped, and the arc length of the first wavelength conversion region is different from the arc length of the second wavelength conversion region.
在本发明一或多个实施方式中,旋转轮的反射区与穿透区皆呈弧状,反射区的弧长不同于穿透区的弧长。In one or more embodiments of the present invention, both the reflection area and the penetration area of the rotating wheel are arc-shaped, and the arc length of the reflection area is different from the arc length of the penetration area.
在本发明一或多个实施方式中,光学模块包含第一分光镜、反射镜与第二分光镜。第一分光镜能够允许第一光束通过,且第一分光镜还用以将第二光束反射至第二分光镜。反射镜用以将自旋转轮反射的第一光束反射至第二分光镜。第二分光镜能够允许第二光束通过,且第二分光镜还用以将来自反射镜的第一光束反射至目标位置。In one or more embodiments of the present invention, the optical module includes a first beam splitter, a reflection mirror and a second beam splitter. The first beam splitter can allow the first beam to pass through, and the first beam splitter is also used to reflect the second beam to the second beam splitter. The reflecting mirror is used for reflecting the first light beam reflected from the rotating wheel to the second beam splitter. The second beam splitter can allow the second beam to pass through, and the second beam splitter is also used to reflect the first beam from the mirror to the target position.
在本发明一或多个实施方式中,光学模块包含第一分光镜、反射镜与第二分光镜。第一分光镜能够允许第二光束通过,且第一分光镜还用以将来自旋转轮的第一光束反射至波长转换轮。反射镜用以将自旋转轮反射的第一光束反射至第二分光镜。第二分光镜能够允许第一光束通过,且第二分光镜还用以将第二光束反射至目标位置。In one or more embodiments of the present invention, the optical module includes a first beam splitter, a reflection mirror and a second beam splitter. The first beam splitter can allow the second light beam to pass through, and the first beam splitter is also used to reflect the first beam from the rotating wheel to the wavelength conversion wheel. The reflecting mirror is used for reflecting the first light beam reflected from the rotating wheel to the second beam splitter. The second beam splitter can allow the first beam to pass through, and the second beam splitter is also used to reflect the second beam to the target position.
在本发明一或多个实施方式中,光学模块包含反射镜、第一分光镜与第二分光镜。反射镜用以将自旋转轮反射的第一光束反射至第一分光镜。第一分光镜能够允许第二光束通过,且第一分光镜还用以将来自反射镜的第一光束反射至波长转换轮。第二分光镜能够允许第一光束通过,且第二分光镜还用以将第二光束反射至目标位置。In one or more embodiments of the present invention, the optical module includes a reflection mirror, a first beam splitter, and a second beam splitter. The reflecting mirror is used for reflecting the first light beam reflected from the rotating wheel to the first beam splitter. The first beam splitter can allow the second light beam to pass through, and the first beam splitter is also used to reflect the first beam from the reflection mirror to the wavelength conversion wheel. The second beam splitter can allow the first beam to pass through, and the second beam splitter is also used to reflect the second beam to the target position.
在本发明一或多个实施方式中,光学模块包含第一分光镜、反射镜与第二分光镜。第一分光镜能够允许第一光束通过,且第一分光镜还用以将第二光束反射至反射镜。反射镜用以将来自第一分光镜的第二光束反射至第二分光镜。第二分光镜能够允许第一光束通过,且第二分光镜还用以将第二光束反射至目标位置。In one or more embodiments of the present invention, the optical module includes a first beam splitter, a reflection mirror and a second beam splitter. The first beam splitter can allow the first beam to pass through, and the first beam splitter is also used to reflect the second beam to the mirror. The reflecting mirror is used for reflecting the second light beam from the first beam splitter to the second beam splitter. The second beam splitter can allow the first beam to pass through, and the second beam splitter is also used to reflect the second beam to the target position.
在本发明一或多个实施方式中,显示光源模块还包含多个透镜,分别置于光源与旋转轮之间、置于光学模块与波长转换轮之间,以及置于第一光束通过旋转轮后的行经路径上。In one or more embodiments of the present invention, the display light source module further includes a plurality of lenses, respectively placed between the light source and the rotating wheel, between the optical module and the wavelength conversion wheel, and placed between the first light beam passing through the rotating wheel on the following path.
因此,本发明的有益效果在于,上述的显示光源模块因仅需一光源即可依序产生不同波长的光束,且光学模块的元件亦少于一般的显示光源模块,因此上述的显示光源模块具有元件量少的好处,也因此显示光源模块的体积得以缩小,还能节省显示光源模块的元件成本。Therefore, the beneficial effect of the present invention is that the above-mentioned display light source module can sequentially generate light beams of different wavelengths because only one light source is needed, and the components of the optical module are less than the general display light source module, so the above-mentioned display light source module has The advantage of less components is that the size of the display light source module can be reduced, and the component cost of the display light source module can also be saved.
附图说明Description of drawings
图1A绘示依照本发明一实施方式的显示光源模块于第一时序的光路示意图。FIG. 1A is a schematic diagram of an optical path showing a light source module at a first time sequence according to an embodiment of the present invention.
图1B绘示依照图1A的显示光源模块于其他时序的光路示意图。FIG. 1B is a schematic diagram of the light path of the display light source module in other time sequences according to FIG. 1A .
图2绘示图1A的旋转轮的主视图。FIG. 2 is a front view of the rotating wheel in FIG. 1A .
图3绘示图1A的波长转换轮的主视图。FIG. 3 is a front view of the wavelength conversion wheel shown in FIG. 1A .
图4绘示本发明另一实施方式的显示光源模块的光路示意图。FIG. 4 is a schematic diagram of an optical path of a display light source module according to another embodiment of the present invention.
图5绘示本发明再一实施方式的显示光源模块的光路示意图。FIG. 5 is a schematic diagram of an optical path of a display light source module according to yet another embodiment of the present invention.
图6绘示本发明又一实施方式的显示光源模块的光路示意图。FIG. 6 is a schematic diagram of an optical path of a display light source module according to another embodiment of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100:光源100: light source
102、212、214、216、218、222、224、226、228、402:路径102, 212, 214, 216, 218, 222, 224, 226, 228, 402: path
200:旋转轮200: Spin Wheel
210:反射区210: reflection area
220:穿透区220: Penetration Zone
300:致动器300: Actuator
400:波长转换轮400: wavelength conversion wheel
410:绿光转换区410: Green light conversion area
420:红光转换区420: Red light conversion area
502、504、506、508:光学模块502, 504, 506, 508: optical modules
512、514、516、518:第一分光镜512, 514, 516, 518: the first beam splitter
522、524、526、528:反射镜522, 524, 526, 528: mirrors
532、534、536、538:第二分光镜532, 534, 536, 538: the second beam splitter
542、544、546、548、810、820、830:透镜542, 544, 546, 548, 810, 820, 830: lens
900:目标位置900: target position
具体实施方式Detailed ways
以下将以附图揭示本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些实务上的细节是非必要的。此外,为简化附图起见,一些公知惯用的结构与元件在附图中将以简单示意的方式绘示。A number of embodiments of the present invention will be disclosed below with the accompanying drawings. For the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some well-known and commonly used structures and elements will be shown in a simple and schematic manner in the drawings.
请同时参照图1A与图1B。图1A绘示依照本发明一实施方式的显示光源模块于第一时序的光路示意图。图1B绘示依照图1A的显示光源模块于其他时序的光路示意图。请先参照图1A。显示光源模块包含光源100、旋转轮200、致动器300、波长转换轮400与光学模块502。光源100用以提供第一光束,第一光束具有第一波长。举例而言,在本实施方式中,第一光束可为蓝色光束。在第一时序,由光源100发出的蓝色光束经由路径102打至旋转轮200上,被旋转轮200反射至光学模块502中。蓝色光束接着沿着路径212而被光学模块502导引至目标位置900。其中目标位置900例如可放置光导管或者光调制器,然而本发明不以此为限。Please refer to FIG. 1A and FIG. 1B at the same time. FIG. 1A is a schematic diagram of an optical path showing a light source module at a first time sequence according to an embodiment of the present invention. FIG. 1B is a schematic diagram of the light path of the display light source module in other time sequences according to FIG. 1A . Please refer to FIG. 1A first. The display light source module includes a light source 100 , a rotating wheel 200 , an actuator 300 , a wavelength conversion wheel 400 and an optical module 502 . The light source 100 is used for providing a first light beam with a first wavelength. For example, in this embodiment, the first light beam may be a blue light beam. At the first timing, the blue light beam emitted by the light source 100 strikes the rotating wheel 200 via the path 102 , and is reflected by the rotating wheel 200 into the optical module 502 . The blue light beam is then guided by optical module 502 along path 212 to target location 900 . Wherein the target position 900 may place, for example, a light pipe or a light modulator, but the present invention is not limited thereto.
接着请参照图1B。在第二时序,蓝色光束沿着路径102打至旋转轮200上。穿透旋转轮200后,蓝色光束进入光学模块502,被光学模块502沿着路径222而导引至波长转换轮400。波长转换轮400能够将蓝色光束转换为具第二波长的第二光束,其中第二光束例如为绿色光束。绿色光束接着进入光学模块502,被光学模块502沿着路径402而导引至目标位置900。如此一来,经由本实施方式的显示光源模块,即可依时序得到不同波长的光束。应注意的是,在图1A及图1B所绘示的光路示意图中,虚线箭头路径皆示意性地绘示光束的行经路径。Then please refer to FIG. 1B . In the second sequence, the blue light beam hits the rotating wheel 200 along the path 102 . After passing through the rotating wheel 200 , the blue light beam enters the optical module 502 and is guided by the optical module 502 to the wavelength conversion wheel 400 along the path 222 . The wavelength conversion wheel 400 is capable of converting the blue light beam into a second light beam with a second wavelength, wherein the second light beam is, for example, a green light beam. The green light beam then enters the optical module 502 and is guided by the optical module 502 along the path 402 to the target location 900 . In this way, light beams with different wavelengths can be obtained in time sequence through the display light source module of this embodiment. It should be noted that, in the optical path schematic diagrams shown in FIG. 1A and FIG. 1B , the dotted arrow paths both schematically represent the traveling path of the light beam.
图2绘示图1A的旋转轮200的主视图。详细而言,旋转轮200包含反射区210与穿透区220。致动器300(如图1A所绘示)连接旋转轮200,用以旋转旋转轮200,使得反射区210与穿透区220分别于第一时序与第二时序位于蓝色光束的行经路径上。如此一来,当于第一时序时,蓝色光束可被旋转轮200上的反射区210所反射;当于第二时序时,蓝色光束可穿透旋转轮200上的穿透区220。FIG. 2 is a front view of the rotating wheel 200 shown in FIG. 1A . In detail, the rotating wheel 200 includes a reflection area 210 and a transmission area 220 . The actuator 300 (as shown in FIG. 1A ) is connected to the rotating wheel 200 for rotating the rotating wheel 200 so that the reflective area 210 and the transmissive area 220 are located on the path of the blue light beam at the first timing and the second timing respectively. . In this way, at the first time sequence, the blue light beam can be reflected by the reflective area 210 on the rotating wheel 200 ; and at the second time sequence, the blue light beam can pass through the penetrating area 220 on the rotating wheel 200 .
图3绘示图1A的波长转换轮400的主视图。波长转换轮400包含第一波长转换区,其中第一波长转换区例如为绿光转换区410。绿光转换区410能够将蓝色光束转换为绿色光束。因此在第二时序中,绿光转换区410可置放于路径222(如图1B所标示)上,使得在第二时序中,蓝色光束能够打至绿光转换区410而转换为绿色光束。上述的绿光转换区410例如可包含发绿光的荧光粉,然而本发明不以此为限。FIG. 3 is a front view of the wavelength conversion wheel 400 shown in FIG. 1A . The wavelength conversion wheel 400 includes a first wavelength conversion region, wherein the first wavelength conversion region is, for example, a green light conversion region 410 . The green light conversion region 410 is capable of converting blue light beams into green light beams. Therefore, in the second timing sequence, the green light conversion region 410 can be placed on the path 222 (as shown in FIG. 1B ), so that in the second timing sequence, the blue light beam can hit the green light conversion region 410 and be converted into a green light beam. . The above-mentioned green light conversion region 410 may include, for example, phosphors emitting green light, but the present invention is not limited thereto.
然而在本实施方式中,波长转换轮400可还包含第二波长转换区,其中第二波长转换区例如为红光转换区420。红光转换区420能够将蓝色光束转换为具红光波长的红色光束,因此本实施方式的显示光源模块能够依时序提供红绿蓝三原色的光束。上述的红光转换区420例如可包含发红光的荧光粉,然而本发明不以此为限。However, in this embodiment, the wavelength conversion wheel 400 may further include a second wavelength conversion region, wherein the second wavelength conversion region is, for example, the red light conversion region 420 . The red light conversion region 420 can convert the blue light beam into a red light beam with a red wavelength. Therefore, the display light source module of this embodiment can provide the light beams of the three primary colors of red, green and blue in time sequence. The above-mentioned red light converting region 420 may include, for example, red-emitting phosphor, but the present invention is not limited thereto.
请回到图1B。详细而言,致动器300可还连接波长转换轮400,且致动器300还用以旋转波长转换轮400,使得图3的绿光转换区410与红光转换区420能够依时序位于穿透旋转轮200的蓝色光束的行径路径(即路径222)上。如此一来,在第二时序时,蓝色光束可穿透旋转轮200而到达绿光转换区410。在一第三时序时,蓝色光束可穿透旋转轮200而到达红光转换区420,因此蓝色光束被转换成红色光束。红色光束接着进入光学模块502,被光学模块502沿着路径402而导引至目标位置900。Please return to Figure 1B. In detail, the actuator 300 can also be connected to the wavelength conversion wheel 400, and the actuator 300 is also used to rotate the wavelength conversion wheel 400, so that the green light conversion region 410 and the red light conversion region 420 in FIG. on the path (namely path 222 ) of the blue light beam passing through the rotating wheel 200 . In this way, at the second timing, the blue light beam can penetrate the rotating wheel 200 and reach the green light conversion area 410 . At a third timing, the blue light beam can penetrate the rotating wheel 200 and reach the red light conversion region 420 , so the blue light beam is converted into a red light beam. The red beam then enters the optical module 502 and is guided by the optical module 502 along the path 402 to the target location 900 .
请回到图3。另一方面,因在第一时序中,蓝色光束并不会到达波长转换轮400上,因此在此时序中,波长转换轮400位于路径222(如图1B所标示)的区域430可以不具有波长转换的功能,以减少波长转换轮400的成本,然而本发明不以此为限。Please go back to Figure 3. On the other hand, because in the first sequence, the blue light beam does not reach the wavelength conversion wheel 400, so in this sequence, the region 430 of the wavelength conversion wheel 400 located on the path 222 (marked in FIG. 1B ) may not have The function of wavelength conversion is used to reduce the cost of the wavelength conversion wheel 400 , but the present invention is not limited thereto.
如此一来,通过上述的结构,显示光源模块即可依时序产生不同波长的光束。接下来将详细叙述如何通过本实施方式的显示光源模块达成不同波长的光束。In this way, through the above structure, the display light source module can generate light beams with different wavelengths in time sequence. Next, how to achieve light beams with different wavelengths through the display light source module of this embodiment will be described in detail.
请回到图1A。光学模块502包含第一分光镜512、反射镜522与第二分光镜532。第一分光镜512能够允许蓝色光束通过,且第一分光镜512还用以将绿色光束与红色光束反射至第二分光镜532。反射镜522用以将自旋转轮200反射的蓝色光束反射至第二分光镜532。第二分光镜532能够允许绿色光束与红色光束通过,且第二分光镜532还用以将来自反射镜522的蓝色光束反射至目标位置900。光学模块502可还包含透镜542,置于反射镜522与第二分光镜532之间。另外,显示光源模块可还包含多个透镜810、820与830。透镜810置于光源100与旋转轮200之间,透镜820与830置于光学模块502与波长转换轮400之间,且透镜810、820与830皆置于蓝色光束的行经路径上。Please return to Figure 1A. The optical module 502 includes a first beam splitter 512 , a reflector 522 and a second beam splitter 532 . The first beam splitter 512 can allow the blue beam to pass through, and the first beam splitter 512 is also used to reflect the green beam and the red beam to the second beam splitter 532 . The mirror 522 is used to reflect the blue light beam reflected from the rotating wheel 200 to the second beam splitter 532 . The second beam splitter 532 can allow the green beam and the red beam to pass through, and the second beam splitter 532 is also used to reflect the blue beam from the reflector 522 to the target position 900 . The optical module 502 may further include a lens 542 disposed between the mirror 522 and the second beam splitter 532 . In addition, the display light source module may further include a plurality of lenses 810 , 820 and 830 . The lens 810 is placed between the light source 100 and the rotating wheel 200 , the lenses 820 and 830 are placed between the optical module 502 and the wavelength conversion wheel 400 , and the lenses 810 , 820 and 830 are all placed on the path of the blue light beam.
于第一时序,致动器300将旋转轮200的反射区210(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的区域430(如图3所绘示)旋转至路径222(如图1B所绘示)上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束被旋转轮200的反射区210反射至光学模块502中,因此被光学模块502依照路径212导引至目标位置900。首先蓝色光束先到达反射镜522,被反射镜522反射,穿透透镜542后到达第二分光镜532,因此被第二分光镜532反射至目标位置900。At the first timing, the actuator 300 rotates the reflective region 210 (as shown in FIG. 2 ) of the rotating wheel 200 to the path of the blue light beam, and rotates the region 430 of the wavelength conversion wheel 400 (as shown in FIG. 3 ). shown) rotate onto path 222 (shown in FIG. 1B ). The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . The blue light beam is reflected by the reflective area 210 of the rotating wheel 200 into the optical module 502 , and thus guided by the optical module 502 to the target position 900 according to the path 212 . Firstly, the blue light beam first reaches the reflector 522 , is reflected by the reflector 522 , passes through the lens 542 and reaches the second beam splitter 532 , and is therefore reflected by the second beam splitter 532 to the target position 900 .
接着请参照图1B。于第二时序,致动器300将旋转轮200的穿透区220(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的绿光转换区410(如图3所绘示)旋转至路径222上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束依照路径222,依序穿透旋转轮200的穿透区220与第一分光镜512,经过透镜820与830的聚光而到达波长转换轮400的绿光转换区410。绿光转换区410使得蓝色光束转换为绿色光束,接着绿色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块502依照路径402导引至目标位置900。首先绿色光束先到达第一分光镜512,因此被第一分光镜512反射至第二分光镜532。绿色光束接着穿透第二分光镜532而到达目标位置900。Then please refer to FIG. 1B . In the second sequence, the actuator 300 rotates the transmissive region 220 (as shown in FIG. 3 ) rotate onto path 222 . The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . The blue light beam passes through the transmission area 220 of the rotating wheel 200 and the first beam splitter 512 sequentially according to the path 222 , and reaches the green light conversion area 410 of the wavelength conversion wheel 400 after being condensed by the lenses 820 and 830 . The green light conversion area 410 converts the blue light beam into a green light beam, and then the green light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 502 to the target position 900 according to the path 402 . First, the green light beam first reaches the first beam splitter 512 , and is therefore reflected by the first beam splitter 512 to the second beam splitter 532 . The green light beam then passes through the second beam splitter 532 to reach the target position 900 .
于第三时序,致动器300将旋转轮200的穿透区220(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的红光转换区420(如图3所绘示)旋转至路径222上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束依照路径222而到达波长转换轮400的红光转换区420。红光转换区420使得蓝色光束转换为红色光束,接着红色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块502依照路径402导引至目标位置900。首先红色光束先到达第一分光镜512,因此被第一分光镜512反射至第二分光镜532。红色光束接着穿透第二分光镜532而到达目标位置900。如此一来,致动器300只要依时序重复上述方式分别旋转旋转轮200与波长转换轮400,显示光源模块即可连续产生出蓝色光束、绿色光束与红色光束。In the third sequence, the actuator 300 rotates the transmissive region 220 (as shown in FIG. 3 ) rotate onto path 222 . The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . The blue light beam reaches the red light conversion region 420 of the wavelength conversion wheel 400 according to the path 222 . The red light conversion region 420 converts the blue light beam into a red light beam, and then the red light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 502 to the target position 900 along the path 402 . First, the red light beam first reaches the first beam splitter 512 , and is therefore reflected by the first beam splitter 512 to the second beam splitter 532 . The red light beam then passes through the second beam splitter 532 to reach the target position 900 . In this way, as long as the actuator 300 rotates the rotary wheel 200 and the wavelength conversion wheel 400 in time sequence and repeats the above manner, the display light source module can continuously generate blue light beams, green light beams and red light beams.
综合上述,本实施方式的显示光源模块仅需一光源100即可依序产生蓝色、绿色与红色光束,且以第一分光镜512、反射镜522与第二分光镜532三元件即可达成光学模块502的功能,因此本实施方式的显示光源模块具有元件量少的好处,也因此显示光源模块的体积得以缩小,还能节省显示光源模块的元件成本。To sum up the above, the display light source module of this embodiment only needs one light source 100 to sequentially generate blue, green and red light beams, and it can be achieved by the first beam splitter 512, the reflection mirror 522 and the second beam splitter 532. Due to the function of the optical module 502, the display light source module of this embodiment has the advantage of fewer components, and therefore the volume of the display light source module can be reduced, and the cost of components of the display light source module can also be saved.
应注意的是,虽然上述的致动器300同时控制旋转轮200与波长转换轮400,然而在其他的实施方式中,旋转轮200与波长转换轮400亦可分别连接不同的致动器300。换言之,旋转轮200与波长转换轮400可由不同的致动器300所控制,本发明不以此为限。另一方面,虽然本实施方式的显示光源模块包含透镜810、820、830与542,然而此并不限制本发明。本发明所属领域的技术人员,可视实际需求,弹性选择透镜的数量与其所放置的位置。It should be noted that although the above-mentioned actuator 300 controls the rotating wheel 200 and the wavelength conversion wheel 400 at the same time, in other embodiments, the rotating wheel 200 and the wavelength conversion wheel 400 may also be connected to different actuators 300 respectively. In other words, the rotating wheel 200 and the wavelength conversion wheel 400 can be controlled by different actuators 300 , and the present invention is not limited thereto. On the other hand, although the display light source module of this embodiment includes the lenses 810 , 820 , 830 and 542 , this does not limit the present invention. Those skilled in the art to which the present invention belongs can flexibly select the number of lenses and their positions according to actual needs.
接着请参照图3。显示光源模块可通过设计各波长的光束的光量以控制其白平衡。具体而言,波长转换轮400所产生的光束的光量与时序的长度成正比,换言之,当时序越长时,该时序中所产生的光束的光量便越高。因此在一或多个实施方式中,波长转换轮400的绿光转换区410与红光转换区420可皆呈弧状,且绿光转换区410的弧长可不同于红光转换区420的弧长。以图3为例,绿光转换区410的弧长大于红光转换区420的弧长。如此一来,当波长转换轮400的旋转速率不变的情形下,第二时序与第三时序的时间便不同,因此所产生的绿光与红光的光量亦不同。Then please refer to FIG. 3 . The display light source module can control its white balance by designing the light quantity of the light beams of each wavelength. Specifically, the light intensity of the beam generated by the wavelength conversion wheel 400 is proportional to the length of the time sequence. In other words, the longer the time sequence is, the higher the light intensity of the light beam generated in the time sequence is. Therefore, in one or more embodiments, the green light conversion region 410 and the red light conversion region 420 of the wavelength conversion wheel 400 may both be arc-shaped, and the arc length of the green light conversion region 410 may be different from the arc length of the red light conversion region 420 long. Taking FIG. 3 as an example, the arc length of the green light conversion region 410 is greater than the arc length of the red light conversion region 420 . In this way, when the rotation speed of the wavelength conversion wheel 400 is constant, the time of the second timing sequence and the third timing sequence are different, and thus the amounts of green light and red light generated are also different.
另一方面,请参照图2。类似的,亦可通过设计旋转轮200的反射区210与穿透区220以控制其白平衡。具体而言,在一或多个实施方式中,旋转轮200的反射区210与穿透区220皆呈弧状,且反射区210的弧长不同于穿透区220的弧长。以图2为例,反射区210的弧长小于穿透区220的弧长。另外穿透区220的弧长亦可实质等于波长转换轮400的绿光转换区410与红光转换区420(皆如图3所绘示)的弧长总合。综合上述,通过设计旋转轮200的反射区210与穿透区220、以及波长转换轮400的绿光转换区410与红光转换区420的弧长比例,即可改变显示光源模块的白平衡。On the other hand, please refer to FIG. 2 . Similarly, the white balance can also be controlled by designing the reflective area 210 and the transmissive area 220 of the rotating wheel 200 . Specifically, in one or more embodiments, both the reflective area 210 and the penetrating area 220 of the rotating wheel 200 are arc-shaped, and the arc length of the reflective area 210 is different from the arc length of the penetrating area 220 . Taking FIG. 2 as an example, the arc length of the reflection area 210 is smaller than the arc length of the transmission area 220 . In addition, the arc length of the penetrating region 220 may also be substantially equal to the sum of the arc lengths of the green light conversion region 410 and the red light conversion region 420 (both shown in FIG. 3 ) of the wavelength conversion wheel 400 . In summary, by designing the arc length ratios of the reflective area 210 and the transmissive area 220 of the rotating wheel 200 and the green light conversion area 410 and red light conversion area 420 of the wavelength conversion wheel 400 , the white balance of the display light source module can be changed.
接着请参照图4,其绘示本发明另一实施方式含义显示光源模块的光路示意图。本实施方式与图1A以及图1B的实施方式的不同处在于光学模块的元件。在本实施方式中,光学模块504包含第一分光镜514、反射镜524与第二分光镜534。第一分光镜514能够允许绿色光束与红色光束通过,且第一分光镜514还用以将来自旋转轮200的蓝色光束反射至波长转换轮400。反射镜524用以将自旋转轮200反射的蓝色光束反射至第二分光镜534。第二分光镜534能够允许蓝色光束通过,且第二分光镜534还用以将绿色光束与红色光束反射至目标位置900。光学模块504可还包含透镜544,置于反射镜524与第二分光镜534之间。Next, please refer to FIG. 4 , which shows a schematic diagram of an optical path of a display light source module according to another embodiment of the present invention. The difference between this embodiment and the embodiment shown in FIG. 1A and FIG. 1B lies in the components of the optical module. In this embodiment, the optical module 504 includes a first beam splitter 514 , a reflection mirror 524 and a second beam splitter 534 . The first beam splitter 514 can allow the green beam and the red beam to pass through, and the first beam splitter 514 is also used to reflect the blue beam from the rotating wheel 200 to the wavelength conversion wheel 400 . The mirror 524 is used to reflect the blue light beam reflected from the rotating wheel 200 to the second beam splitter 534 . The second beam splitter 534 can allow the blue beam to pass through, and the second beam splitter 534 is also used to reflect the green beam and the red beam to the target position 900 . The optical module 504 may further include a lens 544 disposed between the mirror 524 and the second beam splitter 534 .
因此于第一时序,致动器300将旋转轮200的反射区210(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的区域430(如图3所绘示)旋转至路径224上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束被旋转轮200的反射区210反射至光学模块504中,因此被光学模块504依照路径214导引至目标位置900。首先蓝色光束先到达反射镜524,被反射镜524反射,穿透透镜544后到达第二分光镜534,因此穿透第二分光镜534而到达目标位置900。Therefore, at the first timing, the actuator 300 rotates the reflective region 210 (as shown in FIG. shown) rotate onto path 224. The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . The blue light beam is reflected by the reflective area 210 of the rotating wheel 200 into the optical module 504 , and thus guided by the optical module 504 to the target position 900 according to the path 214 . Firstly, the blue light beam first reaches the reflector 524 , is reflected by the reflector 524 , passes through the lens 544 and then reaches the second beam splitter 534 , thus passing through the second beam splitter 534 to reach the target position 900 .
于第二时序,致动器300将旋转轮200的穿透区220(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的绿光转换区410(如图3所绘示)旋转至路径224上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束穿透旋转轮200的穿透区220后,依照路径224,被第一分光镜514反射,经过透镜820与830的聚光而到达波长转换轮400的绿光转换区410。绿光转换区410使得蓝色光束转换为绿色光束,接着绿色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块504依照路径404导引至目标位置900。首先绿色光束先穿透第一分光镜514而到达第二分光镜534。绿色光束接着被第二分光镜534反射而到达目标位置900。In the second sequence, the actuator 300 rotates the transmissive region 220 (as shown in FIG. 3 ) rotate onto path 224 . The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . After passing through the penetrating region 220 of the rotating wheel 200 , the blue light beam is reflected by the first beam splitter 514 along the path 224 , and then reaches the green light converting region 410 of the wavelength converting wheel 400 through the condensing of the lenses 820 and 830 . The green light conversion area 410 converts the blue light beam into a green light beam, and then the green light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 504 to the target position 900 along the path 404 . First, the green light beam first passes through the first beam splitter 514 and reaches the second beam splitter 534 . The green light beam is then reflected by the second beam splitter 534 to reach the target position 900 .
于第三时序,致动器300将旋转轮200的穿透区220(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的红光转换区420(如图3所绘示)旋转至路径224上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束穿透旋转轮200的穿透区220后,依照路径224而到达波长转换轮400的红光转换区420。红光转换区420使得蓝色光束转换为红色光束,接着红色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块504依照路径404导引至目标位置900。首先红色光束先穿透第一分光镜514而到达第二分光镜534。红色光束接着被第二分光镜534反射而到达目标位置900。如此一来,致动器300只要依时序重复上述方式分别旋转旋转轮200与波长转换轮400,显示光源模块即可连续产生出蓝色光束、绿色光束与红色光束。至于本实施方式的其他细节因与图1A以及图1B的实施方式相同,因此便不再赘述。In the third sequence, the actuator 300 rotates the transmissive region 220 (as shown in FIG. 3 ) rotate onto path 224 . The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . After the blue light beam penetrates the penetration area 220 of the rotating wheel 200 , it reaches the red light conversion area 420 of the wavelength conversion wheel 400 along the path 224 . The red light conversion region 420 converts the blue light beam into a red light beam, and then the red light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 504 to the target position 900 along the path 404 . First, the red light beam first passes through the first beam splitter 514 and reaches the second beam splitter 534 . The red light beam is then reflected by the second beam splitter 534 to reach the target position 900 . In this way, as long as the actuator 300 rotates the rotary wheel 200 and the wavelength conversion wheel 400 in time sequence and repeats the above manner, the display light source module can continuously generate blue light beams, green light beams and red light beams. As for other details of this embodiment, since they are the same as those in FIG. 1A and FIG. 1B , they will not be repeated here.
接着请参照图5,其绘示本发明再一实施方式的显示光源模块的光路示意图。本实施方式与图1A以及图1B的实施方式的不同处在于光学模块的元件。光学模块506包含反射镜526、第一分光镜516与第二分光镜536。反射镜526用以将自旋转轮200反射的蓝色光束反射至第一分光镜516。第一分光镜516能够允许绿色光束与红色光束通过,且第一分光镜516还用以将来自反射镜526的蓝色光束反射至波长转换轮400。第二分光镜536能够允许蓝色光束通过,且第二分光镜536还用以将绿色光束与红色光束反射至目标位置900。另外光学模块506还包含透镜546,置于旋转轮200与第二分光镜536之间。Next, please refer to FIG. 5 , which shows a schematic diagram of an optical path of a display light source module according to yet another embodiment of the present invention. The difference between this embodiment and the embodiment shown in FIG. 1A and FIG. 1B lies in the components of the optical module. The optical module 506 includes a mirror 526 , a first beam splitter 516 and a second beam splitter 536 . The mirror 526 is used to reflect the blue light beam reflected from the rotating wheel 200 to the first beam splitter 516 . The first beam splitter 516 can allow the green beam and the red beam to pass through, and the first beam splitter 516 is also used to reflect the blue beam from the reflector 526 to the wavelength conversion wheel 400 . The second beam splitter 536 can allow the blue beam to pass through, and the second beam splitter 536 is also used to reflect the green beam and the red beam to the target position 900 . In addition, the optical module 506 further includes a lens 546 disposed between the rotating wheel 200 and the second beam splitter 536 .
因此于第一时序,致动器300将旋转轮200的穿透区220(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的区域430(如图3所绘示)旋转至路径216上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束穿透旋转轮200的穿透区220而进入光学模块506中,因此被光学模块506依照路径226导引至目标位置900。其中蓝色光束穿透透镜546后到达第二分光镜536,因此穿透第二分光镜536而到达目标位置900。Therefore, at the first timing, the actuator 300 rotates the transmissive region 220 (as shown in FIG. shown) rotate onto path 216. The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . The blue light beam penetrates the penetration area 220 of the rotating wheel 200 into the optical module 506 , and thus is guided by the optical module 506 to the target position 900 according to the path 226 . The blue light beam passes through the lens 546 and then reaches the second beam splitter 536 , thus passing through the second beam splitter 536 to reach the target position 900 .
于第二时序,致动器300将旋转轮200的反射区210(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的绿光转换区410(如图3所绘示)旋转至路径216上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束被旋转轮200的反射区210反射后,依照路径216被反射镜526反射,因此到达第一分光镜516。之后蓝色光束被第一分光镜516再度反射,经过透镜820与830的聚光而到达波长转换轮400的绿光转换区410。绿光转换区410使得蓝色光束转换为绿色光束,接着绿色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块506依照路径406导引至目标位置900。首先绿色光束先穿透第一分光镜516而到达第二分光镜536。绿色光束接着被第二分光镜536反射而到达目标位置900。In the second sequence, the actuator 300 rotates the reflective region 210 (as shown in FIG. 2 ) of the rotary wheel 200 to the path of the blue light beam, and rotates the green light conversion region 410 of the wavelength conversion wheel 400 (as shown in FIG. 2 ). 3) rotate onto path 216. The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . After the blue light beam is reflected by the reflection area 210 of the rotating wheel 200 , it is reflected by the reflection mirror 526 along the path 216 , and thus reaches the first beam splitter 516 . Afterwards, the blue light beam is reflected again by the first beam splitter 516 , and is concentrated by the lenses 820 and 830 to reach the green light conversion area 410 of the wavelength conversion wheel 400 . The green light conversion region 410 converts the blue light beam into a green light beam, and then the green light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 506 to the target position 900 along the path 406 . First, the green light beam first passes through the first beam splitter 516 and reaches the second beam splitter 536 . The green light beam is then reflected by the second beam splitter 536 to reach the target position 900 .
于第三时序,致动器300将旋转轮200的反射区210(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的红光转换区420(如图3所绘示)旋转至路径216上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束被旋转轮200的反射区210反射后,依照路径216而到达波长转换轮400的红光转换区420。红光转换区420使得蓝色光束转换为红色光束,接着红色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块506依照路径406导引至目标位置900。首先红色光束先穿透第一分光镜516而到达第二分光镜536。红色光束接着被第二分光镜536反射而到达目标位置900。如此一来,致动器300只要依时序重复上述方式分别旋转旋转轮200与波长转换轮400,显示光源模块即可连续产生出蓝色光束、绿色光束与红色光束。至于本实施方式的其他细节因与图1A以及图1B的实施方式相同,因此便不再赘述。At the third timing, the actuator 300 rotates the reflective region 210 (as shown in FIG. 2 ) of the rotary wheel 200 to the path of the blue light beam, and rotates the red light conversion region 420 of the wavelength conversion wheel 400 (as shown in FIG. 2 ). 3) rotate onto path 216. The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . After being reflected by the reflection area 210 of the rotating wheel 200 , the blue light beam reaches the red light conversion area 420 of the wavelength conversion wheel 400 along the path 216 . The red light conversion region 420 converts the blue light beam into a red light beam, and then the red light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 506 to the target location 900 along the path 406 . First, the red light beam first passes through the first beam splitter 516 and reaches the second beam splitter 536 . The red light beam is then reflected by the second beam splitter 536 to reach the target position 900 . In this way, as long as the actuator 300 rotates the rotary wheel 200 and the wavelength conversion wheel 400 in time sequence and repeats the above manner, the display light source module can continuously generate blue light beams, green light beams and red light beams. As for other details of this embodiment, since they are the same as those in FIG. 1A and FIG. 1B , they will not be repeated here.
接着请参照图6,其绘示本发明又一实施方式的显示光源模块的光路示意图。本实施方式与图1A以及图1B的实施方式的不同处在于光学模块的元件。光学模块508包含第一分光镜518、反射镜528与第二分光镜538。第一分光镜518能够允许蓝色光束通过,且第一分光镜518还用以将绿色光束与红色光束反射至反射镜528。反射镜528用以将来自第一分光镜518的绿色光束与红色光束反射至第二分光镜538。第二分光镜538能够允许蓝色光束通过,且第二分光镜538还用以将绿色光束与红色光束反射至目标位置900。另外光学模块508可还包含透镜548,置于旋转轮200与第二分光镜538之间。Next, please refer to FIG. 6 , which shows a schematic diagram of an optical path of a display light source module according to another embodiment of the present invention. The difference between this embodiment and the embodiment shown in FIG. 1A and FIG. 1B lies in the components of the optical module. The optical module 508 includes a first beam splitter 518 , a reflector 528 and a second beam splitter 538 . The first beam splitter 518 can allow the blue beam to pass through, and the first beam splitter 518 is also used to reflect the green beam and the red beam to the mirror 528 . The mirror 528 is used to reflect the green light beam and the red light beam from the first beam splitter 518 to the second beam splitter 538 . The second beam splitter 538 can allow the blue beam to pass through, and the second beam splitter 538 is also used to reflect the green beam and the red beam to the target position 900 . In addition, the optical module 508 may further include a lens 548 disposed between the rotating wheel 200 and the second beam splitter 538 .
因此于第一时序,致动器300将旋转轮200的反射区210(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的区域430(如图3所绘示)旋转至路径228上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束被旋转轮200的反射区210反射至光学模块508中,因此被光学模块508依照路径218导引至目标位置900。其中蓝色光束穿透透镜548后到达第二分光镜538,因此穿透第二分光镜538而到达目标位置900。Therefore, at the first timing, the actuator 300 rotates the reflective region 210 (as shown in FIG. shown) rotate onto path 228. The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . The blue light beam is reflected by the reflective area 210 of the rotating wheel 200 into the optical module 508 , and thus guided by the optical module 508 to the target location 900 according to the path 218 . The blue light beam passes through the lens 548 and then reaches the second beam splitter 538 , thus passing through the second beam splitter 538 to reach the target position 900 .
于第二时序,致动器300将旋转轮200的穿透区220(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的绿光转换区410(如图3所绘示)旋转至路径228上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束穿透旋转轮200的穿透区220后,依照路径228穿透第一分光镜518,经过透镜820与830的聚光而到达波长转换轮400的绿光转换区410。绿光转换区410使得蓝色光束转换为绿色光束,接着绿色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块508依照路径408导引至目标位置900。首先绿色光束先被第一分光镜518反射至反射镜528,因此被反射镜528反射至第二分光镜538,接着再被第二分光镜538反射至目标位置900。In the second sequence, the actuator 300 rotates the transmissive region 220 (as shown in FIG. 3 ) rotate onto path 228 . The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . After passing through the penetrating area 220 of the rotating wheel 200 , the blue light beam passes through the first beam splitter 518 along the path 228 , and reaches the green light converting area 410 of the wavelength converting wheel 400 through the condensing of the lenses 820 and 830 . The green light conversion region 410 converts the blue light beam into a green light beam, and then the green light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 508 to the target position 900 along the path 408 . Firstly, the green light beam is firstly reflected by the first beam splitter 518 to the mirror 528 , thus reflected by the mirror 528 to the second beam splitter 538 , and then reflected by the second beam splitter 538 to the target position 900 .
于第三时序,致动器300将旋转轮200的穿透区220(如图2所绘示)旋转至蓝色光束的行经路径上,且将波长转换轮400的红光转换区420(如图3所绘示)旋转至路径228上。由光源100发出的蓝色光束穿透透镜810,依照路径102而传至旋转轮200上。蓝色光束穿透旋转轮200的穿透区220后,依照路径228而到达波长转换轮400的红光转换区420。红光转换区420使得蓝色光束转换为红色光束,接着红色光束反射回透镜820与830,通过透镜820与830的收敛,而被光学模块508依照路径408导引至目标位置900。首先红色光束先被第一分光镜518反射至反射镜528,因此被反射镜528反射至第二分光镜538,接着再被第二分光镜538反射至目标位置900。如此一来,致动器300只要依时序重复上述方式分别旋转旋转轮200与波长转换轮400,显示光源模块即可连续产生出蓝色光束、绿色光束与红色光束。至于本实施方式的其他细节因与图1A以及图1B的实施方式相同,因此便不再赘述。In the third sequence, the actuator 300 rotates the transmissive region 220 (as shown in FIG. 3 ) rotate onto path 228 . The blue light beam emitted by the light source 100 passes through the lens 810 and passes to the rotating wheel 200 along the path 102 . After the blue light beam penetrates the penetration area 220 of the rotating wheel 200 , it reaches the red light conversion area 420 of the wavelength conversion wheel 400 along the path 228 . The red light conversion region 420 converts the blue light beam into a red light beam, and then the red light beam is reflected back to the lenses 820 and 830 , passed through the convergence of the lenses 820 and 830 , and guided by the optical module 508 to the target position 900 along the path 408 . First, the red light beam is firstly reflected by the first beam splitter 518 to the reflector 528 , thus reflected by the reflector 528 to the second beam splitter 538 , and then reflected by the second beam splitter 538 to the target position 900 . In this way, as long as the actuator 300 rotates the rotary wheel 200 and the wavelength conversion wheel 400 in time sequence and repeats the above manner, the display light source module can continuously generate blue light beams, green light beams and red light beams. As for other details of this embodiment, since they are the same as those in FIG. 1A and FIG. 1B , they will not be repeated here.
虽然本发明已以实施方式揭示如上,然其并非用以限定本发明,任何本领域的技术人员,在不脱离本发明的精神和范围内,当可作各种更动与润饰,因此本发明的保护范围当视权利要求所界定者为准。Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Any person skilled in the art may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined by the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310326062.7A CN104345530B (en) | 2013-07-30 | 2013-07-30 | Display light source module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310326062.7A CN104345530B (en) | 2013-07-30 | 2013-07-30 | Display light source module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104345530A true CN104345530A (en) | 2015-02-11 |
CN104345530B CN104345530B (en) | 2016-02-10 |
Family
ID=52501463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310326062.7A Active CN104345530B (en) | 2013-07-30 | 2013-07-30 | Display light source module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104345530B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018010487A1 (en) * | 2016-07-13 | 2018-01-18 | 深圳市绎立锐光科技开发有限公司 | Light source and projector |
CN109459906A (en) * | 2017-09-06 | 2019-03-12 | 扬明光学股份有限公司 | Optical system |
CN109557750A (en) * | 2017-09-26 | 2019-04-02 | 中强光电股份有限公司 | Illumination system and projection apparatus using the same |
CN110018605A (en) * | 2018-05-11 | 2019-07-16 | 苏文露 | The mixing light source of projector |
CN110471245A (en) * | 2018-05-10 | 2019-11-19 | 深圳光峰科技股份有限公司 | Light-source system, projection device and lighting apparatus |
CN110500517A (en) * | 2018-05-16 | 2019-11-26 | 上海午井光电科技有限公司 | Reflective laser lighting system |
CN111308842A (en) * | 2018-12-12 | 2020-06-19 | 深圳光峰科技股份有限公司 | Light source system and display equipment |
WO2020216262A1 (en) * | 2019-04-24 | 2020-10-29 | 深圳光峰科技股份有限公司 | Light source system and projection system |
CN111856859A (en) * | 2019-04-24 | 2020-10-30 | 深圳光峰科技股份有限公司 | Light source system and display device |
WO2021008332A1 (en) * | 2019-07-12 | 2021-01-21 | 深圳光峰科技股份有限公司 | Light source system and display device |
CN113156751A (en) * | 2020-01-23 | 2021-07-23 | 明基智能科技(上海)有限公司 | Projection device |
CN113885286A (en) * | 2019-09-03 | 2022-01-04 | 美商晶典有限公司 | Laser projection optical light source structure |
CN114624947A (en) * | 2022-01-27 | 2022-06-14 | 无锡视美乐激光显示科技有限公司 | Wavelength conversion device, light source device and projection system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011154168A (en) * | 2010-01-27 | 2011-08-11 | Casio Computer Co Ltd | Light source unit and projector |
CN102591119A (en) * | 2011-10-29 | 2012-07-18 | 明基电通有限公司 | Light source module and projecting apparatus using same |
WO2013046483A1 (en) * | 2011-09-26 | 2013-04-04 | 日立コンシューマエレクトロニクス株式会社 | Light source device |
US20130169954A1 (en) * | 2008-08-22 | 2013-07-04 | Ciencia, Inc. | Versatile surface plasmon resonance analyzer with an integral surface plasmon resonance enhanced fluorescence mode |
CN103207507A (en) * | 2012-01-11 | 2013-07-17 | 中强光电股份有限公司 | Light source module and projection device |
-
2013
- 2013-07-30 CN CN201310326062.7A patent/CN104345530B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130169954A1 (en) * | 2008-08-22 | 2013-07-04 | Ciencia, Inc. | Versatile surface plasmon resonance analyzer with an integral surface plasmon resonance enhanced fluorescence mode |
JP2011154168A (en) * | 2010-01-27 | 2011-08-11 | Casio Computer Co Ltd | Light source unit and projector |
WO2013046483A1 (en) * | 2011-09-26 | 2013-04-04 | 日立コンシューマエレクトロニクス株式会社 | Light source device |
CN102591119A (en) * | 2011-10-29 | 2012-07-18 | 明基电通有限公司 | Light source module and projecting apparatus using same |
CN103207507A (en) * | 2012-01-11 | 2013-07-17 | 中强光电股份有限公司 | Light source module and projection device |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107621744A (en) * | 2016-07-13 | 2018-01-23 | 深圳市光峰光电技术有限公司 | Light source and projector |
WO2018010487A1 (en) * | 2016-07-13 | 2018-01-18 | 深圳市绎立锐光科技开发有限公司 | Light source and projector |
CN109459906A (en) * | 2017-09-06 | 2019-03-12 | 扬明光学股份有限公司 | Optical system |
CN109459906B (en) * | 2017-09-06 | 2022-02-25 | 扬明光学股份有限公司 | Optical system |
CN109557750B (en) * | 2017-09-26 | 2021-06-15 | 中强光电股份有限公司 | Illumination system and projection device using illumination system |
CN109557750A (en) * | 2017-09-26 | 2019-04-02 | 中强光电股份有限公司 | Illumination system and projection apparatus using the same |
CN110471245A (en) * | 2018-05-10 | 2019-11-19 | 深圳光峰科技股份有限公司 | Light-source system, projection device and lighting apparatus |
CN110018605A (en) * | 2018-05-11 | 2019-07-16 | 苏文露 | The mixing light source of projector |
CN110500517A (en) * | 2018-05-16 | 2019-11-26 | 上海午井光电科技有限公司 | Reflective laser lighting system |
CN111308842A (en) * | 2018-12-12 | 2020-06-19 | 深圳光峰科技股份有限公司 | Light source system and display equipment |
WO2020216262A1 (en) * | 2019-04-24 | 2020-10-29 | 深圳光峰科技股份有限公司 | Light source system and projection system |
CN111856859A (en) * | 2019-04-24 | 2020-10-30 | 深圳光峰科技股份有限公司 | Light source system and display device |
CN111856859B (en) * | 2019-04-24 | 2023-03-10 | 深圳光峰科技股份有限公司 | Light source system and display device |
WO2021008332A1 (en) * | 2019-07-12 | 2021-01-21 | 深圳光峰科技股份有限公司 | Light source system and display device |
US11917338B2 (en) | 2019-07-12 | 2024-02-27 | Appotronics Corporation Limited | Light source system and display apparatus |
CN113885286A (en) * | 2019-09-03 | 2022-01-04 | 美商晶典有限公司 | Laser projection optical light source structure |
CN113156751A (en) * | 2020-01-23 | 2021-07-23 | 明基智能科技(上海)有限公司 | Projection device |
CN114624947A (en) * | 2022-01-27 | 2022-06-14 | 无锡视美乐激光显示科技有限公司 | Wavelength conversion device, light source device and projection system |
Also Published As
Publication number | Publication date |
---|---|
CN104345530B (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104345530A (en) | Display light source module | |
TWI480585B (en) | Display Illuminating Module | |
CN105204279B (en) | Light-source system and projector equipment | |
CN106523955B (en) | Illumination system and projection device | |
KR102088741B1 (en) | Light-emitting device and projection system | |
EP2960575B1 (en) | Illumination apparatus and projection-type image display apparatus having the same | |
CN102692799B (en) | Light source system | |
CN102720954B (en) | Light emitting device and light emitting system | |
CN205992115U (en) | Light-source system and projector equipment | |
CN107111221A (en) | Lighting apparatus with Wavelength converter | |
JP6186752B2 (en) | Light source device and projection device | |
CN202615106U (en) | Light-emitting device and projection system | |
CN102455512B (en) | Illumination device and projection device | |
CN110928124A (en) | Light source device and projection system | |
CN102540675A (en) | Light source system and projection device comprising same | |
CN205176468U (en) | Light source module and projection equipment | |
US20170052362A1 (en) | Phosphor wheel and wavelength converting device applying the same | |
JP6804135B2 (en) | Light source device and projector | |
CN110703552A (en) | Illumination system and projection apparatus | |
CN105388692A (en) | Projector red and blue laser light source system | |
CN109643050A (en) | Lighting device and image projection device | |
CN203204288U (en) | A semiconductor lighting source | |
CN102650809B (en) | Light source system and projection device including the light source system | |
US10288992B2 (en) | Laser light source for projector and laser projection device | |
CN102854623A (en) | Light-splitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |