[go: up one dir, main page]

CN104331701A - Insulator external discharge mode identification method based on ultraviolet map - Google Patents

Insulator external discharge mode identification method based on ultraviolet map Download PDF

Info

Publication number
CN104331701A
CN104331701A CN201410569174.XA CN201410569174A CN104331701A CN 104331701 A CN104331701 A CN 104331701A CN 201410569174 A CN201410569174 A CN 201410569174A CN 104331701 A CN104331701 A CN 104331701A
Authority
CN
China
Prior art keywords
eta
image
discharge
ultraviolet
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410569174.XA
Other languages
Chinese (zh)
Inventor
丁培
马飞越
王博
郝金鹏
田禄
周秀
吴旭涛
徐玉华
沙伟燕
李军浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Xian Jiaotong University
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Xian Jiaotong University
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Xian Jiaotong University, Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201410569174.XA priority Critical patent/CN104331701A/en
Publication of CN104331701A publication Critical patent/CN104331701A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2155Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及一种基于紫外图谱的绝缘子外部放电模式识别方法。其特点是,包括如下步骤:a,首先,利用紫外成像仪对绝缘子外部放电进行非接触式检测,并形成紫外放电图像;b,其次,将获得的紫外放电图像进行灰度处理,将彩色图片转化为二值灰度图像;c,然后,对二值灰度图像进行数学形态学滤波,获得清晰的紫外光斑二值灰度图谱;d,根据滤波过后的紫外光斑二值灰度图谱进行不变炬特征参数提取,提取7个不变炬特征参数;e,将7个不变炬特征参数输入神经网络进行放电类型模式识别,输出识别结果。经过试用证明,本发明方法利用紫外检测图谱进行绝缘子外部放电的模式识别,具有识别程度高、方法简单的特点。

The invention relates to an insulator external discharge pattern recognition method based on ultraviolet spectrum. It is characterized in that it includes the following steps: a, firstly, using an ultraviolet imager to conduct non-contact detection of the external discharge of the insulator, and forming an ultraviolet discharge image; b, secondly, performing grayscale processing on the obtained ultraviolet discharge image, and converting the color image to converted into a binary grayscale image; c, then, perform mathematical morphological filtering on the binary grayscale image to obtain a clear binary grayscale spectrum of ultraviolet light spots; d, carry out different Extracting characteristic parameters of variable torches, extracting 7 characteristic parameters of invariable torches; e, inputting 7 characteristic parameters of invariable torches into the neural network for discharge type pattern recognition, and outputting the recognition results. It is proved by trial that the method of the invention uses the ultraviolet detection spectrum to recognize the pattern of the external discharge of the insulator, and has the characteristics of high recognition degree and simple method.

Description

基于紫外图谱的绝缘子外部放电模式识别方法Pattern Recognition Method of Insulator External Discharge Based on Ultraviolet Spectrum

技术领域technical field

本发明涉及一种基于紫外图谱的绝缘子外部放电模式识别方法。The invention relates to an insulator external discharge pattern recognition method based on ultraviolet spectrum.

背景技术Background technique

绝缘子是电力系统中应用最为广泛的绝缘设备,其在线路、变电站中有着大量的应用。绝缘子在运行过程中会由于表面污秽、凝露、毛刺等引发外部放电,长期的外部放电会导致其绝缘性能下降,甚至导致其严重损坏,导致电网事故的发生。国内电网中发生了多起由于绝缘子外部放电引发的事故,因此加强对绝缘子外部放电的检测和分析是避免此类事故的关键。紫外成像检测是一种近年来发展起来,并在现场应用较多的电气设备外部放电非接触式检测方法。目前应用较多的是日盲型紫外检测方法,其具有操作灵活、检测距离远、非接触、灵敏度高、响应速度快、不受日光干扰等特点,在绝缘子、导线等设备的外部放电检测方面得到了广泛应用。通过对绝缘子进行紫外检测,可以直观方面的对其是否发生外部放电进行检测,由于其使用方便,结果直观,在电网中的应用越来越广泛。Insulators are the most widely used insulation equipment in power systems, and have a large number of applications in lines and substations. During operation, insulators will cause external discharge due to surface pollution, condensation, burrs, etc. Long-term external discharge will lead to a decline in their insulation performance, and even lead to serious damage, leading to grid accidents. There have been many accidents caused by external discharge of insulators in the domestic power grid, so strengthening the detection and analysis of external discharge of insulators is the key to avoiding such accidents. Ultraviolet imaging detection is a non-contact detection method for external discharge of electrical equipment developed in recent years and widely used in the field. At present, the sun-blind ultraviolet detection method is widely used, which has the characteristics of flexible operation, long detection distance, non-contact, high sensitivity, fast response speed, and no interference from sunlight. It is used in the external discharge detection of insulators, wires and other equipment. has been widely used. Through the ultraviolet detection of insulators, it is possible to visually detect whether an external discharge has occurred. Because of its convenient use and intuitive results, it is more and more widely used in power grids.

目前的紫外检测结果多以紫外图片或视频的形式进行呈现,其能够给出直观的是否发生放电及放电光子数的量化数值,但无法给出进一步详细的结果,如该绝缘子发生的是表面污秽放电还是表面凝露放电则无法给出,这也限制了对现场检测结果的进一步分析。因此,在获得准确的紫外检测基础上,对其检测图像进行进一步分析,获得更为详细的检测结果,是深入利用该方法,有效分析检测结果的基础。The current UV detection results are mostly presented in the form of UV pictures or videos, which can give an intuitive quantification of whether discharge occurs and the number of discharge photons, but cannot give further detailed results, such as the surface contamination of the insulator. Whether it is discharge or surface condensation discharge cannot be given, which also limits further analysis of on-site test results. Therefore, on the basis of obtaining accurate ultraviolet detection, further analysis of the detection image and obtaining more detailed detection results are the basis for further utilizing this method and effectively analyzing the detection results.

发明内容Contents of the invention

本发明的目的是提供一种基于紫外图谱的绝缘子外部放电模式识别方法,能够准确实现利用紫外图像处理并提取参数从而进行放电模式的识别。The purpose of the present invention is to provide a method for identifying the external discharge pattern of an insulator based on ultraviolet spectrum, which can accurately realize the identification of the discharge pattern by using ultraviolet image processing and extracting parameters.

一种基于紫外图谱的绝缘子外部放电模式识别方法,其特别之处在于,包括如下步骤:An insulator external discharge pattern recognition method based on ultraviolet spectrum, which is particularly characterized in that it includes the following steps:

a,首先,利用紫外成像仪对绝缘子外部放电进行非接触式检测,并形成紫外放电图像;a, First, use the ultraviolet imager to detect the external discharge of the insulator in a non-contact manner, and form an ultraviolet discharge image;

b,其次,将获得的紫外放电图像进行灰度处理,将彩色图片转化为二值灰度图像;b, secondly, grayscale processing is performed on the obtained ultraviolet discharge image, and the color picture is converted into a binary grayscale image;

c,然后,对二值灰度图像进行数学形态学滤波,获得清晰的紫外光斑二值灰度图谱;c, then, perform mathematical morphological filtering on the binary grayscale image to obtain a clear binary grayscale spectrum of ultraviolet light spots;

d,根据滤波过后的紫外光斑二值灰度图谱进行不变炬特征参数提取,提取7个不变炬特征参数;d, extracting invariant torch characteristic parameters according to the filtered ultraviolet spot binary grayscale map, and extracting seven invariant torch characteristic parameters;

e,将7个不变炬特征参数输入神经网络进行放电类型模式识别,输出识别结果。e, Input the 7 invariant torch characteristic parameters into the neural network for discharge type pattern recognition, and output the recognition result.

步骤b中在将彩色图片转化为二值灰度图片时,首先将原始图片数字化,形成图像数字矩阵,然后将矩阵中的白色区域赋值为“1”,其余部分赋值为“0”,形成二值灰度图像。In step b, when converting a color image into a binary grayscale image, the original image is first digitized to form an image digital matrix, and then the white area in the matrix is assigned a value of "1", and the rest of the image is assigned a value of "0" to form a binary image. Value grayscale image.

步骤d中在特征参数提取阶段,利用图像的不变炬特征,提取7个对图像平移、缩放、镜像和旋转都不敏感的二维不变矩参数作为特征参数量。In the feature parameter extraction stage in step d, 7 two-dimensional invariant moment parameters that are not sensitive to image translation, scaling, mirroring and rotation are extracted as feature parameters by using the invariant feature of the image.

进一步的,步骤d具体包括如下步骤:Further, step d specifically includes the following steps:

根据滤波过后的紫外光斑图谱进行不变炬特征参数提取,提取7个不变炬特征参数;According to the filtered ultraviolet speckle spectrum, the invariant torch characteristic parameters are extracted, and seven invariant torch characteristic parameters are extracted;

具体的,数字图像f(x,y)的二维(p+q)阶矩定义为:Specifically, the two-dimensional (p+q) moment of the digital image f(x,y) is defined as:

m pq = Σ x Σ y x p y q f ( x , y ) ; (式1) m pq = Σ x Σ the y x p the y q f ( x , the y ) ; (Formula 1)

其中f(x,y)为图像数字化之后形成的数字矩阵,x表征了图像数字化之后的每一个点的横坐标,y表征了每一个点的纵坐标;(p,q)=0,1,2,···,求和在图像的所有空间坐标x,y上进行,相应的中心矩定义为:Where f(x, y) is a digital matrix formed after image digitization, x represents the abscissa of each point after image digitization, and y represents the ordinate of each point; (p, q)=0,1, 2. The summation is performed on all spatial coordinates x, y of the image, and the corresponding central moment is defined as:

μ pq = Σ x Σ y ( x - x ‾ ) p ( y - y ‾ ) q f ( x , y ) ; (式2) μ pq = Σ x Σ the y ( x - x ‾ ) p ( the y - the y ‾ ) q f ( x , the y ) ; (Formula 2)

其中:in:

xx ‾‾ == mm 1010 mm 0000 ,, ythe y ‾‾ == mm 0101 mm 0000 ;;

式中m10可由式(1)中p=1,q=0求得;m00可由式(1)中p=0,q=0求得;m01可由式(1)中p=0,q=1求得;In the formula, m 10 can be obtained by p=1, q=0 in formula (1); m 00 can be obtained by p=0, q=0 in formula (1); m 01 can be obtained by p=0 in formula (1), q = 1 to obtain;

归一化(p+q)阶中心矩定义为:The normalized (p+q) order central moment is defined as:

ηη pqpq == μμ pqpq μμ γγ 0000 ;;

其中p,q=0,1,2,……,where p,q=0,1,2,...,

γγ == pp ++ qq 22 ++ 11 ;;

其中p+q=2,3,……,;where p+q=2,3,...,;

选择对7个对图像平移、缩放、镜像和旋转都不敏感的二维不变矩参数,其计算公式为:Select 7 two-dimensional invariant moment parameters that are not sensitive to image translation, scaling, mirroring and rotation, and the calculation formula is:

(1)φ1=η2002(1) φ 1 = η 20 + η 02 ;

(2)φ2=(η2002)2+4η11 2(2) φ 2 = (η 2002 ) 2 +4η 11 2 ;

(3)φ3=(η30-3η12)2+(3η2103)2(3) φ 3 = (η 30 -3η 12 ) 2 + (3η 2103 ) 2 ;

(4)φ4=(η3012)2+(η2103)2(4) φ 4 = (η 3012 ) 2 + (η 2103 ) 2 ;

φ5=(η30-3η12)(η3012)[(η3012)2-3(η2103)2]φ 5 =(η 30 -3η 12 )(η 3012 )[(η 3012 ) 2 -3(η 2103 ) 2 ]

(5) +(3η2103)(η2103)[3(n3012)2-(η2103)2];(5) +(3η 2103 )(η 2103 )[3(n 3012 ) 2 -(η 2103 ) 2 ];

φ6=(η2002)[(η3012)2-(η2103)2]φ 6 =(η 2002 )[(η 3012 ) 2 -(η 2103 ) 2 ]

(6) +4η113012)(η2103);(6) +4η 113012 )(η 2103 );

φ7=(3η2103)(η3012)[(η3012)2-3(η2103)2]+φ 7 =(3η 2103 )(η 3012 )[(η 3012 ) 2 -3(η 2103 ) 2 ]+

(7) (3η1230)(η2103)[3(η3012)2-(η2103)2]。(7) (3η 1230 )(η 2103 )[3(η 3012 ) 2 -(η 2103 ) 2 ].

进一步的,步骤d具体包括如下步骤:将7个不变炬特征参数输入神经网络进行放电类型模式识别,判断放电是否属于表面污秽放电、表面凝露放电、表面毛刺放电。Further, step d specifically includes the following steps: inputting seven invariant torch characteristic parameters into the neural network for discharge type pattern recognition, and judging whether the discharge belongs to surface pollution discharge, surface condensation discharge, or surface burr discharge.

更进一步的,具体的利用神经网络进行模式识别的过程为:首先在实验室中获得绝缘子典型缺陷外部放电的紫外图谱,提取典型缺陷外部放电紫外图像的不变炬特征算子,利用神经网络对典型缺陷特征算子进行训练,形成特征数据库,其次对于未知类型的放电紫外图像,获得其不变炬特征算子后,输入神经网络,进行模式识别,输出识别结果,输出识别结果为污秽放电、凝露放电或者毛刺放电。Furthermore, the specific process of using neural network for pattern recognition is as follows: firstly, obtain the ultraviolet spectrum of the external discharge of typical defects in insulators in the laboratory, extract the invariant characteristic operator of the ultraviolet image of external discharge of typical defects, and use the neural network to The typical defect characteristic operator is trained to form a characteristic database. Secondly, for the unknown type of discharge ultraviolet image, after obtaining its invariant characteristic operator, it is input into the neural network for pattern recognition, and the recognition result is output. The output recognition result is dirty discharge, Condensation discharge or glitch discharge.

经过试用证明,本发明方法利用紫外检测图谱进行绝缘子外部放电的模式识别,具有识别程度高、方法简单的特点。It is proved by trial that the method of the invention uses the ultraviolet detection spectrum to recognize the pattern of the external discharge of the insulator, and has the characteristics of high recognition degree and simple method.

附图说明Description of drawings

附图1为本发明基于紫外图谱的绝缘子外部放电模式识别方法的流程示意图。Accompanying drawing 1 is the schematic flowchart of the method for identifying the external discharge pattern of an insulator based on ultraviolet spectrum according to the present invention.

具体实施方式Detailed ways

如图1所示,本发明提供了一种基于紫外图谱的绝缘子外部放电模式识别方法,该方法首先将现场检测得到的紫外图像进行灰度转换,将彩色图片转化为二值灰度图像;然后对二值灰度图像进行数学形态学滤波,获得清晰的紫外光斑二值灰度图谱;对紫外光斑图谱进行不变炬特征参数提取,提取7个对图像平移、缩放、镜像和旋转都不敏感的二维不变矩参数作为特征参数;将特征参数输入神经网络进行放电类型模式识别。该方法利用紫外检测图谱进行绝缘子外部放电的模式识别,具有识别程度高、方法简单的特点。这种基于图像参数的模式识别方法解决了目前紫外检测结果无法进行放电类型模式识别的难点。As shown in Fig. 1, the present invention provides a kind of insulator external discharge pattern recognition method based on ultraviolet atlas, this method first carries out gray-scale conversion to the ultraviolet image that the spot detection obtains, and color picture is converted into binary gray-scale image; Then Perform mathematical morphological filtering on the binary grayscale image to obtain a clear binary grayscale spectrum of ultraviolet spots; extract invariant feature parameters from the ultraviolet spot spectrum, and extract 7 parameters that are not sensitive to image translation, scaling, mirroring and rotation The two-dimensional invariant moment parameters are used as characteristic parameters; the characteristic parameters are input into the neural network for discharge type pattern recognition. The method uses ultraviolet detection spectrum to recognize the pattern of insulator external discharge, which has the characteristics of high recognition degree and simple method. This pattern recognition method based on image parameters solves the difficulty that the current ultraviolet detection results cannot be used for discharge type pattern recognition.

实施例1:Example 1:

下面将结合附图,对本发明中的技术方案进行清楚、完整地描述。The technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings.

图1所示为本发明基于超声波检测的GIS局部放电模式识别方法的流程示意图,所述方法包括如下步骤:Fig. 1 shows the schematic flow sheet of the GIS partial discharge pattern recognition method based on ultrasonic detection in the present invention, and described method comprises the following steps:

步骤1:利用紫外成像仪对绝缘子进行紫外检测,检测获得其紫外放电原始图像,所述原始图像为包含放电信号和其他信号的彩色图像。Step 1: Use an ultraviolet imager to conduct ultraviolet detection on the insulator, and obtain the original image of its ultraviolet discharge. The original image is a color image including discharge signals and other signals.

步骤2:将彩色原始图像进行灰度处理,将彩色图像转化为二值灰度图像。Step 2: Perform grayscale processing on the color original image, and convert the color image into a binary grayscale image.

具体的,首先将原始图片数字化,形成图像数字矩阵f(x,y),然后将矩阵中的白色区域赋值为“1”,其余部分赋值为“0”,形成二值灰度图像。Specifically, the original picture is first digitized to form an image digital matrix f(x, y), and then the white area in the matrix is assigned "1" and the rest is assigned "0" to form a binary grayscale image.

步骤3:对二值灰度图像进行数学形态学滤波,获得清晰的紫外光斑二值灰度图谱。图像数学形态学滤波为常用的图像去噪算法,为现有成熟算法,此处不再赘述。Step 3: Perform mathematical morphological filtering on the binary grayscale image to obtain a clear binary grayscale spectrum of ultraviolet light spots. Image mathematical morphological filtering is a commonly used image denoising algorithm, and it is an existing mature algorithm, so it will not be repeated here.

步骤4:根据滤波过后的紫外光斑图谱进行不变炬特征参数提取,提取7个不变炬特征参数。Step 4: Extract the characteristic parameters of the invariant torch according to the filtered ultraviolet spot spectrum, and extract 7 invariant torch characteristic parameters.

具体的,数字图像f(x,y)的二维(p+q)阶矩定义为:Specifically, the two-dimensional (p+q) moment of the digital image f(x,y) is defined as:

mm pqpq == ΣΣ xx ΣΣ ythe y xx pp ythe y qq ff (( xx ,, ythe y )) ;;

其中(p,q)=0,1,2,···,求和在图像的所有空间坐标x,y上进行。相应的中心矩定义为:Where (p, q) = 0, 1, 2, ..., the summation is performed on all spatial coordinates x, y of the image. The corresponding central moment is defined as:

μμ pqpq == ΣΣ xx ΣΣ ythe y (( xx -- xx ‾‾ )) pp (( ythe y -- ythe y ‾‾ )) qq ff (( xx ,, ythe y )) ;;

其中:in:

xx ‾‾ == mm 1010 mm 0000 ,, ythe y ‾‾ == mm 0101 mm 0000 ;;

归一化(p+q)阶中心矩定义为:The normalized (p+q) order central moment is defined as:

ηη pqpq == μμ pqpq μμ γγ 0000 ;;

其中p,q=0,1,2,……,where p,q=0,1,2,...,

γγ == pp ++ qq 22 ++ 11 ;;

其中p+q=2,3,……,where p+q=2,3,...,

选择对7个对图像平移、缩放、镜像和旋转都不敏感的二维不变矩参数,其计算公式为:Select 7 two-dimensional invariant moment parameters that are not sensitive to image translation, scaling, mirroring and rotation, and the calculation formula is:

1.φ1=η20021. φ 1 = η 20 + η 02 ;

2.φ2=(η2002)2+4η11 22.φ 2 =(η 2002 ) 2 +4η 11 2 ;

3.φ3=(η30-3η12)2+(3η2103)23.φ 3 =(η 30 -3η 12 ) 2 +(3η 2103 ) 2 ;

4.φ4=(η3012)2+(η2103)24.φ 4 =(η 3012 ) 2 +(η 2103 ) 2 ;

φ5=(η30-3η12)(η3012)[(η3012)2-3(η2103)2]φ 5 =(η 30 -3η 12 )(η 3012 )[(η 3012 ) 2 -3(η 2103 ) 2 ]

5.+(3η2103)(η2103)[3(n3012)2-(η2103)2];5. +(3η 2103 )(η 2103 )[3(n 3012 ) 2 -(η 2103 ) 2 ];

φ6=(η2002)[(η3012)2-(η2103)2]φ 6 =(η 2002 )[(η 3012 ) 2 -(η 2103 ) 2 ]

6.+4η113012)(η2103);6.+4η 113012 )(η 2103 );

φ7=(3η2103)(η3012)[(η3012)2-3(η2103)2]+φ 7 =(3η 2103 )(η 3012 )[(η 3012 ) 2 -3(η 2103 ) 2 ]+

7.(3η1230)(η2103)[3(η3012)2-(η2103)2];7. (3η 1230 )(η 2103 )[3(η 3012 ) 2 -(η 2103 ) 2 ];

这7个不变炬算子表征了紫外图谱的形状特征,且其值不随图像的平移、缩放、镜像和旋转而改变,不同的放电类型具有不同的形状特征。The seven invariant torch operators represent the shape features of the ultraviolet spectrum, and their values do not change with the translation, scaling, mirroring and rotation of the image. Different discharge types have different shape features.

更进一步的,具体包括如下步骤:Further, it specifically includes the following steps:

根据滤波过后的紫外光斑图谱进行不变炬特征参数提取,提取7个不变炬特征参数;According to the filtered ultraviolet speckle spectrum, the invariant torch characteristic parameters are extracted, and seven invariant torch characteristic parameters are extracted;

具体的,数字图像f(x,y)的二维(p+q)阶矩定义为:Specifically, the two-dimensional (p+q) moment of the digital image f(x,y) is defined as:

m pq = Σ x Σ y x p y q f ( x , y ) ; (式1) m pq = Σ x Σ the y x p the y q f ( x , the y ) ; (Formula 1)

其中f(x,y)为图像数字化之后形成的数字矩阵,x表征了图像数字化之后的每一个点的横坐标,y表征了每一个点的纵坐标。(p,q)=0,1,2,···,求和在图像的所有空间坐标x,y上进行,相应的中心矩定义为:Where f(x, y) is a digital matrix formed after image digitization, x represents the abscissa of each point after image digitization, and y represents the ordinate of each point. (p, q) = 0, 1, 2, ..., the summation is performed on all spatial coordinates x, y of the image, and the corresponding central moment is defined as:

μ pq = Σ x Σ y ( x - x ‾ ) p ( y - y ‾ ) q f ( x , y ) ; (式2) μ pq = Σ x Σ the y ( x - x ‾ ) p ( the y - the y ‾ ) q f ( x , the y ) ; (Formula 2)

其中:in:

xx ‾‾ == mm 1010 mm 0000 ,, ythe y ‾‾ == mm 0101 mm 0000 ;;

式中m10可由式(1)中p=1,q=0求得;m00可由式(1)中p=0,q=0求得;m01可由式(1)中p=0,q=1求得。In the formula, m 10 can be obtained by p=1, q=0 in formula (1); m 00 can be obtained by p=0, q=0 in formula (1); m 01 can be obtained by p=0 in formula (1), q=1 is obtained.

归一化(p+q)阶中心矩定义为:The normalized (p+q) order central moment is defined as:

ηη pqpq == μμ pqpq μμ γγ 0000 ;;

其中p,q=0,1,2,……,where p,q=0,1,2,...,

γγ == pp ++ qq 22 ++ 11 ;;

其中p+q=2,3,……,;where p+q=2,3,...,;

选择对7个对图像平移、缩放、镜像和旋转都不敏感的二维不变矩参数,其计算公式为:Select 7 two-dimensional invariant moment parameters that are not sensitive to image translation, scaling, mirroring and rotation, and the calculation formula is:

(1)φ1=η2002(1) φ 1 = η 20 + η 02 ;

(2)φ2=(η2002)2+4η11 2(2) φ 2 = (η 2002 ) 2 +4η 11 2 ;

(3)φ3=(η30-3η12)2+(3η2103)2(3) φ 3 = (η 30 -3η 12 ) 2 + (3η 2103 ) 2 ;

(4)φ4=(η3012)2+(η2103)2(4) φ 4 = (η 3012 ) 2 + (η 2103 ) 2 ;

φ5=(η30-3η12)(η3012)[(η3012)2-3(η2103)2]φ 5 =(η 30 -3η 12 )(η 3012 )[(η 3012 ) 2 -3(η 2103 ) 2 ]

(5) +(3η2103)(η2103)[3(n3012)2-(η2103)2];(5) +(3η 2103 )(η 2103 )[3(n 3012 ) 2 -(η 2103 ) 2 ];

φ6=(η2002)[(η3012)2-(η2103)2]φ 6 =(η 2002 )[(η 3012 ) 2 -(η 2103 ) 2 ]

(6) +4η113012)(η2103);(6) +4η 113012 )(η 2103 );

φ7=(3η2103)(η3012)[(η3012)2-3(η2103)2]+φ 7 =(3η 2103 )(η 3012 )[(η 3012 ) 2 -3(η 2103 ) 2 ]+

(7) (3η1230)(η2103)[3(η3012)2-(η2103)2]。(7) (3η 1230 )(η 2103 )[3(η 3012 ) 2 -(η 2103 ) 2 ].

以上每个字母均可由式1和式2导出,字母的含义均为0,1,2,3等。Each of the above letters can be derived from Formula 1 and Formula 2, and the meanings of the letters are 0, 1, 2, 3, etc.

步骤5:将7个不变炬特征参数输入神经网络进行放电类型模式识别,判断放电是否属于表面污秽放电、表面凝露放电和表面毛刺放电。Step 5: Input the 7 constant torch characteristic parameters into the neural network for discharge type pattern recognition, and judge whether the discharge belongs to surface pollution discharge, surface condensation discharge and surface burr discharge.

具体的,利用神经网络进行模式识别的过程为:首先在实验室中获得绝缘子典型缺陷外部放电的紫外图谱,提取典型缺陷外部放电紫外图像的不变炬特征算子,利用神经网络对典型缺陷特征算子进行训练,形成特征数据库。其次对于未知类型的放电紫外图像,获得其不变炬特征算子后,输入神经网络,进行模式识别,输出识别结果。Specifically, the process of using the neural network for pattern recognition is as follows: firstly, obtain the ultraviolet spectrum of the external discharge of typical insulator defects in the laboratory, extract the invariant characteristic operator of the ultraviolet image of the typical defect external discharge, and use the neural network to analyze the characteristics of typical defects Operators are trained to form a feature database. Secondly, for the unknown type of discharge ultraviolet image, after obtaining its invariant torch characteristic operator, it is input into the neural network for pattern recognition, and the recognition result is output.

步骤6:输出识别结果为污秽放电、凝露放电或者毛刺放电。Step 6: Output the identification result as pollution discharge, condensation discharge or glitch discharge.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, any changes or substitutions that can be easily imagined by those skilled in the art within the technical scope disclosed in the present invention, All should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (6)

1., based on an exterior insulator discharge mode recognition methods for uv-spectrogram, it is characterized in that, comprise the steps:
A, first, utilizes ultraviolet imager to carry out non-contact detection to exterior insulator electric discharge, and forms EUV discharge image;
B, secondly, carries out gray proces by the EUV discharge image of acquisition, colour picture is converted into two-value gray level image;
C, then, carries out mathematical morphology filter to two-value gray level image, obtains ultraviolet hot spot two-value gray images clearly;
D, carries out constant torch characteristic parameter extraction according to the ultraviolet hot spot two-value gray images after filtering, extracts 7 constant torch characteristic parameters;
7 constant torch characteristic parameter input neural networks are carried out electric discharge type pattern-recognition by e, export recognition result.
2. as claimed in claim 1 based on the exterior insulator discharge mode recognition methods of uv-spectrogram, it is characterized in that: in step b when colour picture being converted into two-value gray scale picture, first by original image digitizing, form image digitization matrix, then be " 1 " by the white portion assignment in matrix, remainder assignment is " 0 ", forms two-value gray level image.
3. as claimed in claim 1 based on the exterior insulator discharge mode recognition methods of uv-spectrogram, it is characterized in that: in characteristic parameter extraction stage in steps d, utilize the constant torch feature of image, extract 7 to all insensitive two dimension invariant moment parameter of image translation, convergent-divergent, mirror image and rotation as characteristic parameter amount.
4., as claimed in claim 1 based on the exterior insulator discharge mode recognition methods of uv-spectrogram, it is characterized in that, steps d specifically comprises the steps:
Carry out constant torch characteristic parameter extraction according to the ultraviolet hot spot collection of illustrative plates after filtering, extract 7 constant torch characteristic parameters;
Concrete, two dimension (p+q) the rank square of digital picture f (x, y) is defined as:
m pq = Σ x Σ y x p y q f ( x , y ) ; (formula 1)
The wherein character matrix of f (x, y) for being formed after image digitazation, x characterize image digitazation after each point horizontal ordinate, y characterize each point ordinate; (p, q)=0,1,2, sue for peace and to carry out on all volume coordinate x, the y of image, corresponding center square is defined as:
μ pq = Σ x Σ y ( x - x ‾ ) p ( y - y ‾ ) q f ( x , y ) ; (formula 2)
Wherein:
x ‾ = m 10 m 00 , y ‾ = m 01 m 00 ;
M in formula 10can be tried to achieve by p=1, q=0 in formula (1); m 00can be tried to achieve by p=0, q=0 in formula (1); m 01can be tried to achieve by p=0, q=1 in formula (1);
Normalization (p+q) center, rank square is defined as:
η pq = μ pq μ γ 00 ;
Wherein p, q=0,1,2 ...,
γ = p + q 2 + 1 ;
Wherein p+q=2,3 ...;
Select to 7 to all insensitive two dimension invariant moment parameter of image translation, convergent-divergent, mirror image and rotation, its computing formula is:
(1)φ 1=η 2002
(2)φ 2=(η 2002) 2+4η 11 2
(3)φ 3=(η 30-3η 12) 2+(3η 2103) 2
(4)φ 4=(η 3012) 2+(η 2103) 2
( 5 ) φ 5 = ( η 30 - 3 η 12 ) ( η 30 + η 12 ) [ ( η 30 + η 12 ) 2 - 3 ( η 21 + η 03 ) 2 ] + ( 3 η 21 - η 03 ) ( η 21 + η 03 ) [ 3 ( n 30 + η 12 ) 2 - ( η 21 + η 03 ) 2 ] ;
( 6 ) φ 6 = ( η 20 - η 02 ) [ ( η 30 + η 12 ) 2 - 3 ( η 21 + η 03 ) 2 ] + 4 η 11 ( η 30 + η 12 ) ( η 21 + η 03 ) ;
( 7 ) φ 7 = ( 3 η 21 - η 03 ) ( η 30 + η 12 ) [ ( η 30 + η 12 ) 2 - 3 ( η 21 + η 03 ) 2 ] + ( 3 η 12 - η 30 ) ( η 21 + η 03 ) [ 3 ( n 30 + η 12 ) 2 - ( η 21 + η 03 ) 2 ] .
5. as claimed in claim 1 based on the exterior insulator discharge mode recognition methods of uv-spectrogram, it is characterized in that, steps d specifically comprises the steps: 7 constant torch characteristic parameter input neural networks to carry out electric discharge type pattern-recognition, judges whether electric discharge belongs to surface filth electric discharge, the electric discharge of surperficial condensation, surface spikes electric discharge.
6. as claimed in claim 5 based on the exterior insulator discharge mode recognition methods of uv-spectrogram, it is characterized in that, the concrete process utilizing neural network to carry out pattern-recognition is: the uv-spectrogram obtaining insulator typical defect external discharge first in the lab, extract the constant torch feature operator of typical defect external discharge ultraviolet image, neural network is utilized to train typical defect feature operator, morphogenesis characters database, secondly for the electric discharge ultraviolet image of UNKNOWN TYPE, after obtaining its constant torch feature operator, input neural network, carry out pattern-recognition, export recognition result, output recognition result is contaminant flashover, condensation electric discharge or burr electric discharge.
CN201410569174.XA 2014-10-22 2014-10-22 Insulator external discharge mode identification method based on ultraviolet map Pending CN104331701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410569174.XA CN104331701A (en) 2014-10-22 2014-10-22 Insulator external discharge mode identification method based on ultraviolet map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410569174.XA CN104331701A (en) 2014-10-22 2014-10-22 Insulator external discharge mode identification method based on ultraviolet map

Publications (1)

Publication Number Publication Date
CN104331701A true CN104331701A (en) 2015-02-04

Family

ID=52406423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410569174.XA Pending CN104331701A (en) 2014-10-22 2014-10-22 Insulator external discharge mode identification method based on ultraviolet map

Country Status (1)

Country Link
CN (1) CN104331701A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503742A (en) * 2016-11-01 2017-03-15 广东电网有限责任公司电力科学研究院 A kind of visible images insulator recognition methods
CN107677944A (en) * 2017-10-31 2018-02-09 成都意町工业产品设计有限公司 It is a kind of to be used to detect the abnormal system of insulator in high-voltage transmission line
CN108226727A (en) * 2018-01-17 2018-06-29 南通尚力机电工程设备有限公司 A kind of power equipment partial discharge monitoring method
CN108470141A (en) * 2018-01-27 2018-08-31 天津大学 Insulator recognition methods in a kind of distribution line based on statistical nature and machine learning
CN113538351A (en) * 2021-06-30 2021-10-22 国网山东省电力公司电力科学研究院 External insulation equipment defect degree evaluation method fusing multi-parameter electric signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375829B2 (en) * 2003-07-21 2008-05-20 Dongbu Electronics Co., Ltd. Method for inspecting an insulator with a library of optic images
CN103136531A (en) * 2013-03-26 2013-06-05 华北电力大学(保定) Automatic identification method of insulator chain infrared image
CN103413150A (en) * 2013-06-28 2013-11-27 广东电网公司电力科学研究院 Power line defect diagnosis method based on visible light image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375829B2 (en) * 2003-07-21 2008-05-20 Dongbu Electronics Co., Ltd. Method for inspecting an insulator with a library of optic images
CN103136531A (en) * 2013-03-26 2013-06-05 华北电力大学(保定) Automatic identification method of insulator chain infrared image
CN103413150A (en) * 2013-06-28 2013-11-27 广东电网公司电力科学研究院 Power line defect diagnosis method based on visible light image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐劼: "基于神经网络和不变矩的绝缘子裂纹类型识别", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503742A (en) * 2016-11-01 2017-03-15 广东电网有限责任公司电力科学研究院 A kind of visible images insulator recognition methods
CN106503742B (en) * 2016-11-01 2019-04-26 广东电网有限责任公司电力科学研究院 A kind of visible images insulator recognition methods
CN107677944A (en) * 2017-10-31 2018-02-09 成都意町工业产品设计有限公司 It is a kind of to be used to detect the abnormal system of insulator in high-voltage transmission line
CN108226727A (en) * 2018-01-17 2018-06-29 南通尚力机电工程设备有限公司 A kind of power equipment partial discharge monitoring method
CN108470141A (en) * 2018-01-27 2018-08-31 天津大学 Insulator recognition methods in a kind of distribution line based on statistical nature and machine learning
CN113538351A (en) * 2021-06-30 2021-10-22 国网山东省电力公司电力科学研究院 External insulation equipment defect degree evaluation method fusing multi-parameter electric signals
CN113538351B (en) * 2021-06-30 2024-01-19 国网山东省电力公司电力科学研究院 Method for evaluating defect degree of external insulation equipment by fusing multiparameter electric signals

Similar Documents

Publication Publication Date Title
CN103940824B (en) A detection method for aerial transmission line insulators
CN103488988B (en) Method for extracting insulators in electrical equipment based on unmanned aerial vehicle line patrol visible light image
CN104331701A (en) Insulator external discharge mode identification method based on ultraviolet map
CN103839268B (en) Method for detecting fissure on surface of subway tunnel
CN110146791A (en) A corona detection method based on image processing
CN105447471A (en) Infrared detection based device gas leakage identification method and apparatus
CN103955922B (en) Method for detecting flaws of printed fabric based on Gabor filter
CN113065484A (en) Insulator contamination state assessment method based on ultraviolet spectrum
CN106940886A (en) A kind of electrical equipment electric discharge ultraviolet imagery quantization parameter extracting method based on gray scale
CN107831409B (en) Ultrahigh frequency partial discharge detection map characteristic parameter extraction method and anomaly detection method
CN105300844B (en) A kind of silicon rubber insulator hydrophobicity rank determination method
CN110346699B (en) Method and device for insulator discharge information extraction based on ultraviolet image processing technology
CN104297645A (en) Electrical equipment external discharging ultraviolet detection and analysis method and device
CN107240079A (en) A kind of road surface crack detection method based on image procossing
CN106951863B (en) Method for detecting change of infrared image of substation equipment based on random forest
CN111220882A (en) A Feature Extraction Method of GIS Optical Partial Discharge Atlas
CN106934829A (en) The detection method and system of a kind of surface crack
CN106251333A (en) Element reverse detection method and system
CN106093069A (en) A kind of monitoring method of the filthy fault of High-Voltage Insulation substring insulation
CN106355205A (en) Recognition method and device for figures in ultraviolet image
CN115659252A (en) A GIS Partial Discharge Pattern Recognition Method Based on PRPD Multi-Feature Information Fusion
CN111709944A (en) A method for monitoring cracks in bridge-tunnel structures based on abnormal identification of digital images
CN117928487A (en) Structural crack detection method based on machine vision and human-computer interaction
CN110261740A (en) A kind of ultraviolet imagery discharge detection method and device
CN110197475A (en) Insulator automatic recognition system, method and application in a kind of transmission line of electricity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150204