[go: up one dir, main page]

CN104231798A - Modified silicon dioxide aerogel microsphere thermal-insulation coating - Google Patents

Modified silicon dioxide aerogel microsphere thermal-insulation coating Download PDF

Info

Publication number
CN104231798A
CN104231798A CN201310242852.7A CN201310242852A CN104231798A CN 104231798 A CN104231798 A CN 104231798A CN 201310242852 A CN201310242852 A CN 201310242852A CN 104231798 A CN104231798 A CN 104231798A
Authority
CN
China
Prior art keywords
microspheres
silica
microballoon
hydrophobic silica
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310242852.7A
Other languages
Chinese (zh)
Other versions
CN104231798B (en
Inventor
何方
郑伟
李荣春
张德印
吴菊英
黄渝鸿
王宏雁
马秋花
朱贺
马武刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201310242852.7A priority Critical patent/CN104231798B/en
Publication of CN104231798A publication Critical patent/CN104231798A/en
Application granted granted Critical
Publication of CN104231798B publication Critical patent/CN104231798B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本文公开了一种以疏水性二氧化硅气凝胶微球为隔热填料的隔热涂料,主要步骤包括,先制备疏水性的二氧化硅气凝胶微球,然后将得到的二氧化硅气凝胶微球与聚合物乳液混合制备隔热涂料。二氧化硅气凝胶微球的疏水改性包括两种方式,一种是采用卤代烷烃对二氧化硅湿凝胶微球进行改性处理,另一种方法是在溶胶制备阶段,向混合溶液中添加烷氧基硅烷、硅氮烷或硅氧烷。涂料制备时加入表面活性剂,这样有利于增加疏水二氧化硅气凝胶微球与聚合物乳液之间的相容性,提高微球在涂料中的分散性,从而改善涂料的质量,提高涂料的隔热性能。This paper discloses a heat-insulating coating using hydrophobic silica airgel microspheres as heat-insulating fillers. The main steps include first preparing hydrophobic silica airgel microspheres, and then preparing Mixing airgel microspheres with polymer emulsions to prepare thermal insulation coatings. Hydrophobic modification of silica airgel microspheres includes two methods, one is to modify silica wet gel microspheres with halogenated alkanes, and the other is to add water to the mixed solution during the sol preparation stage. Add alkoxysilanes, silazanes or siloxanes. Surfactants are added during coating preparation, which is beneficial to increase the compatibility between hydrophobic silica airgel microspheres and polymer emulsions, improve the dispersibility of microspheres in coatings, thereby improving the quality of coatings and improving the coating quality. thermal insulation performance.

Description

改性二氧化硅气凝胶微球隔热涂料Modified silica airgel microsphere thermal insulation coating

技术领域 technical field

本发明涉及一种以疏水性二氧化硅气凝胶微球为功能填料的新型隔热涂料。二氧化硅气凝胶微球是一种具有无规则三维网络状骨架结构的多孔非晶态材料,以它为主要填料制备的隔热涂料轻质环保,密度低,隔热性好。本发明可广泛应用于居民楼、学校、医院,厂房等公共建筑的内外墙与楼顶面隔热,桥梁、大坝等大体积建筑或设施的防热胀损伤保护,轮船、火车、大巴车顶部日照面的防护等诸多领域。 The invention relates to a novel heat-insulating paint which uses hydrophobic silicon dioxide airgel microspheres as functional fillers. Silica airgel microsphere is a porous amorphous material with an irregular three-dimensional network skeleton structure. The thermal insulation coating prepared with it as the main filler is light and environmentally friendly, has low density and good thermal insulation. The present invention can be widely used in thermal insulation of inner and outer walls and roof surfaces of public buildings such as residential buildings, schools, hospitals, factories, etc., thermal expansion damage protection of large-volume buildings or facilities such as bridges and dams, and protection of ships, trains, buses, etc. The protection of the top sunshine surface and many other fields.

背景技术 Background technique

隔热涂料通过阻止热传导,降低涂层和内部环境的温度,从而达到改善工作环境,降低能耗的目的。传统隔热涂料通常选用功能填料为骨料,依靠粘接剂使其结合在一起,直接在设备或墙体表面形成一层保护层来实现保温隔热的功效。常用作功能填料的隔热保温材料包括火山灰玻璃、白玉石、玄武石、海泡石、膨润土、珍珠岩,膨胀蛭石,硅酸钙等,这些材料耐高温,阻燃,抗压强度大,但是它们的吸湿性较强,膨胀率较大,耐候性差,以它们作主要填料的涂料收缩率大、抗裂性差,为了形成一个稳定的保温体系,有时需要另设防水层及外防护层。 Thermal insulation coatings can improve the working environment and reduce energy consumption by preventing heat conduction and reducing the temperature of the coating and the internal environment. Traditional thermal insulation coatings usually use functional fillers as aggregates, rely on adhesives to bond them together, and directly form a protective layer on the surface of equipment or walls to achieve the effect of thermal insulation. Thermal insulation materials commonly used as functional fillers include volcanic ash glass, white jade, basalt, sepiolite, bentonite, perlite, expanded vermiculite, calcium silicate, etc. These materials are high temperature resistant, flame retardant, and have high compressive strength. However, they have strong hygroscopicity, large expansion rate, and poor weather resistance. The coating with them as the main filler has a large shrinkage rate and poor crack resistance. In order to form a stable heat preservation system, sometimes it is necessary to set up a waterproof layer and an outer protective layer.

二氧化硅气凝胶微球是一种结构可控的新型纳米多孔材料,其孔隙率在80%~99%,比表面积高达800-1000m2·g-1,平均孔径为1~50nm。它具有热膨胀系数低,抗氧化,耐腐蚀,稳定性好等优点,其中导热系数极低是二氧化硅气凝胶微球最显著的特点。常用保温材料的导热系数最低可达0.045W/m·k,然而二氧化硅气凝胶微球的导热系数可达到0.01W/m·k,因此利用二氧化硅气凝胶微球为填料的隔热涂料将极大地提高隔热涂料的隔热性能。 Silica airgel microsphere is a new type of nanoporous material with controllable structure, its porosity is 80%-99%, the specific surface area is as high as 800-1000m 2 ·g -1 , and the average pore diameter is 1-50nm. It has the advantages of low thermal expansion coefficient, anti-oxidation, corrosion resistance, good stability, etc. Among them, the extremely low thermal conductivity is the most remarkable feature of silica airgel microspheres. The thermal conductivity of commonly used thermal insulation materials can reach as low as 0.045W/m·k, but the thermal conductivity of silica airgel microspheres can reach 0.01W/m·k, so the use of silica airgel microspheres as fillers Thermal insulation coatings will greatly improve the thermal insulation performance of thermal insulation coatings.

通常制备的二氧化硅气凝胶微球具有亲水性,表面含有大量的羟基,这使得他们在空气中易吸潮,遇水破碎,同时也会使得导热系数上升。由这种气凝胶微球制备的隔热涂料吸湿性强,耐候性差,随着时间的延长,涂料的热导率上升,隔热性能急剧下降。 Usually prepared silica airgel microspheres are hydrophilic, and the surface contains a large number of hydroxyl groups, which makes them easy to absorb moisture in the air, breaks up when encountering water, and also increases the thermal conductivity. The thermal insulation coating prepared from this airgel microsphere has strong hygroscopicity and poor weather resistance. As time goes by, the thermal conductivity of the coating increases and the thermal insulation performance drops sharply.

为了改善涂料的隔热性能,提高涂料的使用寿命,必须对二氧化硅气凝胶微球进行疏水改性。目前常用的改性方法是在二氧化硅气凝胶微球的制备过程中添加改性剂。常用的改性剂包括三甲基氯硅烷,甲基三甲氧基硅烷,六甲基二硅胺烷,六甲基二硅氮烷等,这些改性剂大多带有烷基,芳烃基或烷氧基等疏水基团,通过引入疏水基团以替代微球表面的羟基来对二氧化硅气凝胶微球进行改性。 In order to improve the thermal insulation performance of the coating and increase the service life of the coating, the silica airgel microspheres must be hydrophobically modified. The commonly used modification method at present is to add modifiers during the preparation of silica airgel microspheres. Commonly used modifiers include trimethylchlorosilane, methyltrimethoxysilane, hexamethyldisilazane, hexamethyldisilazane, etc. Most of these modifiers have alkyl, aromatic hydrocarbon or alkyl Hydrophobic groups such as oxygen groups are used to modify the silica airgel microspheres by introducing hydrophobic groups to replace the hydroxyl groups on the surface of the microspheres.

传统涂料包括油性涂料和水性涂料。油性涂料通常含有许多有机溶剂作分散介质,如丙酮,甲醛等,这些小分子物质进入二氧化硅气凝胶微球的内部或是吸附在气凝胶微球的表面,将导致微球导热系数的上升。而水性涂料是以水作溶剂或分散介质,同时掺杂高分子聚合物制成聚合物乳液,作为成膜物质,非常适于作二氧化硅气凝胶微球的粘结剂,同时水性涂料绿色环保,是未来隔热涂料发展的方向。 Traditional paints include oil-based paints and water-based paints. Oil-based paints usually contain many organic solvents as dispersion media, such as acetone, formaldehyde, etc. These small molecular substances enter the interior of the silica airgel microspheres or adsorb on the surface of the airgel microspheres, which will lead to a decrease in the thermal conductivity of the microspheres. rise. Water-based paints use water as a solvent or dispersion medium, and at the same time doped polymers to make polymer emulsions. As film-forming substances, they are very suitable as binders for silica airgel microspheres. At the same time, water-based paints Green and environmental protection is the direction of the future development of thermal insulation coatings.

经过改性的二氧化硅气凝胶微球具有极强的疏水性,表面张力很大,加入聚合物乳液之后,必然会产生界面的相互排斥,同时微球也难以在涂料中形成均匀的分散,从而影响涂料的隔热性能。为了解决这个问题,一个有效的办法是向涂料中加入表面活性剂。表面活性剂是由截然不同的两种粒子组成的分子。分子结构具有两亲性,一端含有亲油基团,一端含有亲水基团。它在溶液中能定向排列,使得溶液中物质的表面张力显著下降。向涂料中加入极少量的表面活性剂,就明显改善二氧化硅气凝胶微球与聚合物粘结剂之间的界面相容性,防止微球之间的凝聚,大幅提高涂料的质量。 The modified silica airgel microspheres have strong hydrophobicity and high surface tension. After adding the polymer emulsion, mutual repulsion of the interface will inevitably occur, and at the same time, it is difficult for the microspheres to form a uniform dispersion in the coating. , thereby affecting the thermal insulation performance of the coating. In order to solve this problem, an effective way is to add surfactants to the coating. Surfactants are molecules made up of two distinct types of particles. The molecular structure is amphiphilic, one end contains a lipophilic group, and the other end contains a hydrophilic group. It can be oriented in the solution, so that the surface tension of the substance in the solution is significantly reduced. Adding a very small amount of surfactant to the coating can significantly improve the interfacial compatibility between the silica airgel microspheres and the polymer binder, prevent aggregation between the microspheres, and greatly improve the quality of the coating.

本发明中二氧化硅气凝胶微球采用改性剂对湿凝胶进行疏水改性,得到完全疏水的二氧化硅气凝胶微米级小球。以这种疏水改性的二氧化硅气凝胶微球为填料制备的隔热涂料,吸湿性弱,耐候性好,使用寿命长,同时通过在隔热涂料中添加表面活性剂,有效改善了微球在涂料中的界面状态与分散状况,使得隔热涂料的热导率降低到0.05W/m·k,与市场同类产品相比,隔热性更好。 In the present invention, the silicon dioxide airgel microsphere uses a modifying agent to carry out hydrophobic modification on the wet gel to obtain completely hydrophobic silicon dioxide airgel micron-sized balls. The thermal insulation coating prepared with this hydrophobically modified silica airgel microsphere as filler has weak hygroscopicity, good weather resistance and long service life. The interface state and dispersion of the microspheres in the coating reduce the thermal conductivity of the thermal insulation coating to 0.05W/m·k, which is better than similar products in the market.

发明内容 Contents of the invention

本发明提供了一种以疏水改性二氧化硅气凝胶微球作为隔热填料的新型隔热涂料,这种涂料主要由聚合物粘结剂,二氧化硅气凝胶微球,助剂同时添加表面活性剂混合制备,分散稳定性好,热导率低,具有环保节能的特点。 The invention provides a new type of heat-insulating coating using hydrophobically modified silica airgel microspheres as heat-insulating fillers. This coating is mainly composed of polymer binder, silica airgel microspheres, additives At the same time, surfactants are added to mix and prepare, the dispersion stability is good, the thermal conductivity is low, and it has the characteristics of environmental protection and energy saving.

 本发明采用的技术方案是: The technical scheme adopted in the present invention is:

将所选硅源与无水乙醇,去离子水混合后搅拌均匀,然后加入酸作催化剂,搅拌,得到混合溶液,将混合溶液置于水浴锅中,保温一段时间,得到二氧化硅溶胶;二氧化硅溶胶经由雾化器喷入油相中,雾化过程中保证持续搅拌。通过雾化器,二氧化硅溶胶以小液滴的形式被注入油中。为了保证得到的湿凝胶微球均匀分撒,溶胶体积不得超过油相体积的1/5。雾化完成后,向混合溶液中加入氨水,在室温下老化两天,得到二氧化硅湿凝胶微球。将二氧化硅湿凝胶微球过滤,滤去油相,采用正己烷置换残余的油相及有机杂质,然后用无水乙醇置换正己烷,得到纯净的二氧化硅湿凝胶微球;用改性剂对湿凝胶进行疏水处理;向经过疏水处理后的湿凝胶微球中加入去离子水与无水乙醇的混合溶液,清洗改性处理后的杂质离子;向湿凝胶微球中加入无水乙醇,置换其中去离子水;对湿凝胶微球进行干燥。 Mix the selected silicon source with absolute ethanol and deionized water and stir evenly, then add acid as a catalyst, stir to obtain a mixed solution, place the mixed solution in a water bath, and keep it warm for a period of time to obtain a silica sol; The silica sol is sprayed into the oil phase through an atomizer, and continuous stirring is ensured during the atomization process. Via an atomizer, silica sol is injected into the oil in the form of small droplets. In order to ensure that the obtained wet gel microspheres are evenly distributed, the volume of the sol must not exceed 1/5 of the volume of the oil phase. After atomization was completed, ammonia water was added to the mixed solution, and aged at room temperature for two days to obtain silica wet gel microspheres. Filter the silica wet gel microspheres, filter out the oil phase, replace the residual oil phase and organic impurities with n-hexane, and then replace the n-hexane with absolute ethanol to obtain pure silica wet gel microspheres; The modifier performs hydrophobic treatment on the wet gel; adds a mixed solution of deionized water and absolute ethanol to the wet gel microspheres after hydrophobic treatment to clean the modified impurity ions; Add absolute ethanol to replace the deionized water; dry the wet gel microspheres.

将表面活性剂与聚合物乳液混合,加入助剂,搅拌均匀,向混合液中加入干燥的二氧化硅气凝胶微球,搅拌,调节粘度,固化干燥,得到二氧化硅气凝胶隔热涂料。 Mix surfactant and polymer emulsion, add additives, stir evenly, add dry silica airgel microspheres to the mixture, stir, adjust viscosity, solidify and dry, and obtain silica airgel heat insulation coating.

上述制备二氧化硅气凝胶所用改性剂为卤代硅烷,列举部分类型如下: The modifying agent used in the above-mentioned preparation of silica airgel is halosilane, and some types are listed as follows:

a.    X3Si(CnH2n+1)型和X3Si(CnH2n-1)型卤代有机硅烷,X=Cl、Br,n=1-20. a. X 3 Si(C n H 2n+1 ) and X 3 Si(C n H 2n-1 ) type halogenated organosilanes, X=Cl, Br, n=1-20.

b.    X2(R')Si(CnH2n+1)型和X2(R')Si(CnH2n-1)型卤代有机硅烷, X=Cl、Br,R'=诸如例如甲基、乙基、正丙基、丁基的烷基或环烷基,n=1—20. b. X 2 (R')Si(C n H 2n+1 ) type and X 2 (R')Si (C n H 2n-1 ) type haloorganosilane, X=Cl, Br, R'=such as Such as methyl, ethyl, n-propyl, butyl alkyl or cycloalkyl, n=1-20.

c.    X (R')2Si(CnH2n+1)型和X(R')2Si(CnH2n-1)型卤代有机硅烷, X=Cl、Br,R'=诸如例如甲基、乙基、正丙基、丁基的烷基或环烷基,n=1—20. c. X (R') 2 Si (C n H 2n+1 ) type and X (R') 2 Si (C n H 2n-1 ) type haloorganosilane, X=Cl, Br, R'=such as Such as methyl, ethyl, n-propyl, butyl alkyl or cycloalkyl, n=1-20.

d.    X3Si(CH2)m-R'型卤代有机硅烷, X=Cl、Br,m=0.1-20, R'=甲基、芳基(如-C6H5,取代的苯基),-C4F9、-OCF2-CHF-CF3、-C6F13、-O-CF2-CHF2,-NH2、-N3、-SCN、-CH=CH2、-NH-CH2-CH2-NH2、-N-(CH2-CH2-NH2)2、-OOC(CH3)C=CH2、-OCH2-CH(O)CH2、-NH-CO-N-CO-(CH2)、-NH-COO-CH3、-NH-COO-CH2-CH3、NH-(NH2)3Si(OR)3、-SX-(CH2)3Si(OR)3、-SH d. X 3 Si(CH 2 )m-R' type haloorganosilane, X=Cl, Br, m=0.1-20, R'=methyl, aryl (such as -C 6 H 5 , substituted benzene base), -C 4 F 9 , -OCF 2 -CHF-CF 3 , -C 6 F 13 , -O-CF 2 -CHF 2 , -NH 2 , -N 3 , -SCN, -CH=CH 2 , -NH-CH 2 -CH 2 -NH 2 , -N-(CH 2 -CH 2 -NH 2 ) 2 , -OOC(CH 3 )C=CH 2 , -OCH 2 -CH(O)CH 2 , - NH-CO-N-CO-(CH 2 ), -NH-COO-CH 3 , -NH-COO-CH 2 -CH 3 , NH-(NH 2 ) 3 Si(OR) 3 , -S X -( CH 2 ) 3 Si(OR) 3 , -SH

e.    (R)X2Si(CH2)m- R'型卤代有机硅烷, X=Cl、Br,R=诸如甲基、乙基、丙基的烷基,m=0.1-20,R=甲基、芳基(例如-C6H5,取代的苯基),-C4F9、-OCF2-CHF-CF3、-C6F13、-O-CF2-CHF2,-NH2、-N3、-SCN、-CH=CH2、-NH-CH2-CH2-NH2、-N-(CH2-CH2-NH2)2、-OOC(CH3)C=CH2、-OCH2-CH(O)CH2、-NH-CO-N-CO-(CH2)、-NH-COO-CH3、-NH-COO-CH2-CH3、NH-(NH2)3Si(OR)3(其中的R基可以是甲基、乙基、丙基、丁基)、-SX-(CH2)3Si(OR)3(其中的R基可以是甲基、乙基、丙基、丁基)、-SH e. (R)X 2 Si(CH 2 ) m - R' type haloorganosilane, X=Cl, Br, R=alkyl such as methyl, ethyl, propyl, m=0.1-20, R = methyl, aryl (eg -C 6 H 5 , substituted phenyl), -C 4 F 9 , -OCF 2 -CHF-CF 3 , -C 6 F 13 , -O-CF 2 -CHF 2 , -NH 2 , -N 3 , -SCN, -CH=CH 2 , -NH-CH 2 -CH 2 -NH 2 , -N-(CH 2 -CH 2 -NH 2 ) 2 , -OOC(CH 3 ) C=CH 2 , -OCH 2 -CH(O)CH 2 , -NH-CO-N-CO-(CH 2 ), -NH-COO-CH 3 , -NH-COO-CH 2 -CH 3 , NH -(NH 2 ) 3 Si(OR) 3 (the R group can be methyl, ethyl, propyl, butyl), -S X -(CH 2 ) 3 Si(OR) 3 (the R group Can be methyl, ethyl, propyl, butyl), -SH

f.    (R)2XSi(CH2)m-R'型卤代有机硅烷, X=Cl、Br,m=0.1-20, R'=甲基、芳基(如-C6H5,取代的苯基),-C4F9、-OCF2-CHF-CF3、-C6F13、-O-CF2-CHF2,-NH2、-N3、-SCN、-CH=CH2、-NH-CH2-CH2-NH2、-N-(CH2-CH2-NH2)2、-OOC(CH3)C=CH2、-OCH2-CH(O)CH2、-NH-CO-N-CO-(CH2)、-NH-COO-CH3、-NH-COO-CH2-CH3、NH-(NH2)3Si(OR)3、-SX-(CH2)3Si(OR)3、-SH。 f. (R) 2 XSi(CH 2 ) m -R' type haloorganosilane, X=Cl, Br, m=0.1-20, R'=methyl, aryl (such as -C 6 H 5 , substituted phenyl), -C 4 F 9 , -OCF 2 -CHF-CF 3 , -C 6 F 13 , -O-CF 2 -CHF 2 , -NH 2 , -N 3 , -SCN, -CH=CH 2 , -NH-CH 2 -CH 2 -NH 2 , -N-(CH 2 -CH 2 -NH 2 ) 2 , -OOC(CH 3 )C=CH 2 , -OCH 2 -CH(O)CH 2 , -NH-CO-N-CO-(CH 2 ), -NH-COO-CH 3 , -NH-COO-CH 2 -CH 3 , NH-(NH 2 ) 3 Si(OR) 3 , -S X -(CH 2 ) 3 Si(OR) 3 , -SH.

此外还可用烷氧基硅烷、硅氮烷或硅氧烷为改性剂进行疏水改性,采用这种改性剂制备气凝胶隔热涂料的技术方案为: In addition, alkoxysilane, silazane or siloxane can also be used as a modifier for hydrophobic modification. The technical scheme of using this modifier to prepare airgel thermal insulation coatings is:

将硅源,无水乙醇,去离子水按一定比例混合,搅拌均匀,然后加入酸作催化剂,搅拌均匀,得到混合液,将混合溶液置于恒温水浴锅中,保温一段时间后,加入改性剂,搅拌均匀,然后将溶液水浴锅中保温一段时间;采用雾化的方式将二氧化硅溶胶喷入油相中,雾化过程中保持搅拌状态。通过雾化器,二氧化硅溶胶以小液滴的形式存在于油中。雾化完成后,向溶胶与油的混合溶液中加入氨水,老化数天,得到二氧化硅湿凝胶微球;滤去混合液中多余的油相,采用正己烷置换残余的油及有机杂质,然后用无水乙醇置换正己烷,得到纯净的二氧化硅湿凝胶微球,对湿凝胶微球进行干燥。 Mix silicon source, absolute ethanol, and deionized water in a certain proportion, stir evenly, then add acid as a catalyst, stir evenly to obtain a mixed solution, put the mixed solution in a constant temperature water bath, and after a period of time, add modified agent, stir evenly, and then keep the solution in a water bath for a period of time; spray the silica sol into the oil phase by atomization, and keep stirring during the atomization process. Through the atomizer, the silica sol is present in the oil in the form of small droplets. After the atomization is completed, add ammonia water to the mixed solution of sol and oil, and age for several days to obtain silica wet gel microspheres; filter off the excess oil phase in the mixed solution, and replace the residual oil and organic impurities with n-hexane , and then replace n-hexane with absolute ethanol to obtain pure silica wet gel microspheres, and dry the wet gel microspheres.

将助剂和表面活性剂加入聚合物乳液中,搅拌均匀,向混合液中加入干燥的二氧化硅气凝胶微球,搅拌,调节粘度,固化干燥,得到二氧化硅气凝胶隔热涂料。 Add additives and surfactants to the polymer emulsion, stir evenly, add dry silica airgel microspheres to the mixed solution, stir, adjust viscosity, cure and dry, and obtain silica airgel thermal insulation coating .

此类改性剂可单独使用或混合使用,其部分类型如下: These modifiers can be used alone or in combination, and some of their types are as follows:

a.    (RO)3Si(CnH2n+1)型和(RO)3Si(CnH2n-1)型有机硅烷,R=诸如例如甲基、乙基、正丙基、异丙基、丁基的硅烷,n=1-20 a. Organosilanes of the (RO) 3 Si(C n H 2n+1 ) and (RO) 3 Si(C n H 2n-1 ) type, R = such as e.g. methyl, ethyl, n-propyl, isopropyl Base, butyl silane, n=1-20

b.    R'x(RO)ySi(CnH2n+1)型和(RO)3Si(CnH2n+1)型有机硅烷,R=诸如例如甲基、乙基、正丙基、异丙基、丁基的硅烷,R'=诸如例如甲基、乙基、正丙基、异丙基、丁基的硅烷或环烷基,n=1-20,x+y=3,或x=1.2或y=1.2 b. Organosilanes of type R' x (RO ) y Si(C n H 2n+1 ) and (RO) 3 Si(C n H 2n+1 ), R = such as for example methyl, ethyl, n-propyl , isopropyl, butyl silane, R'=such as methyl, ethyl, n-propyl, isopropyl, butyl silane or cycloalkyl, n=1-20, x+y=3, or x=1.2 or y=1.2

c.    (RO)3Si(CH2)m-R'型有机硅烷,R=诸如甲基、乙基、丙基的烷基,m=0.1-20,R'=甲基、芳基(如-C6H5,取代的苯基),-C4F9、-OCF2-CHF-CF3、-C6F13、-O-CF2-CHF2,-NH2、-N3、-SCN、-CH=CH2、-NH-CH2-CH2-NH2、-N-(CH2-CH2-NH2)2、-OOC(CH3)C=CH2、-OCH2-CH(O)CH2、-NH-CO-N-CO-(CH2)、-NH-COO-CH3、-NH-COO-CH2-CH3、NH-(NH2)3Si(OR)3、-SX-(CH2)3Si(OR)3、-SH,-NR'R''R'''(R'=烷基、芳基;R''=H、烷基、芳基;R'''= H、烷基、芳基、苄基) c. (RO) 3 Si(CH 2 ) m -R' type organosilane, R=alkyl such as methyl, ethyl, propyl, m=0.1-20, R'=methyl, aryl (such as -C 6 H 5 , substituted phenyl), -C 4 F 9 , -OCF 2 -CHF-CF 3 , -C 6 F 13 , -O-CF 2 -CHF 2 , -NH 2 , -N 3 , -SCN, -CH=CH 2 , -NH-CH 2 -CH 2 -NH 2 , -N-(CH 2 -CH 2 -NH 2 ) 2 , -OOC(CH 3 )C=CH 2 , -OCH 2 -CH(O)CH 2 , -NH-CO-N-CO-(CH 2 ), -NH-COO-CH 3 , -NH-COO-CH 2 -CH 3 , NH-(NH 2 ) 3 Si( OR) 3 , -S X -(CH 2 ) 3 Si(OR) 3 , -SH, -NR'R''R'''(R'=alkyl,aryl;R''=H, alkyl , aryl; R'''= H, alkyl, aryl, benzyl)

d.    R'R2Si-N-SiR2(H)R’型的硅氮烷,R=烷基、乙烯基、芳基,R'=烷基、乙烯基、芳基 d. R'R 2 Si-N-SiR 2 (H)R' type silazane, R=alkyl, vinyl, aryl, R'=alkyl, vinyl, aryl

e.    D3、D4、D5型的环状聚硅氮烷,其中D3、D4、D5为带有3、4、5个-O-Si(CH3)2-型的环状聚硅氧烷。 e. Cyclic polysilazanes of D3, D4, and D5 types, wherein D3, D4, and D5 are cyclic polysiloxanes with 3, 4, and 5 -O-Si(CH 3 ) 2 -types.

本发明制备二氧化硅溶胶所用的硅源为硅酸酯类(包括正硅酸乙酯,正硅酸甲酯等)、硅溶胶和水玻璃。所用的酸包括硝酸,盐酸,氢氟酸,草酸等其中的一种或几种的混合。 The silicon sources used in the preparation of the silica sol in the present invention are silicate esters (including ethyl orthosilicate, methyl orthosilicate, etc.), silica sol and water glass. The used acid includes nitric acid, hydrochloric acid, hydrofluoric acid, oxalic acid and the like or a mixture of several of them.

本发明中所用硅源,去离子水,无水乙醇的质量分数分别为10%~60%,8%~72%,25%~82%,酸为正硅酸乙酯水解的催化剂,用量为混合溶液体积的1‰~4‰,氨水为凝胶催化剂,氨水含量为混合溶液体积3‰~10‰。水浴锅中保持30℃~90℃,水浴时间0~6天。 Silicon source used in the present invention, deionized water, the mass fraction of dehydrated alcohol are respectively 10%~60%, 8%~72%, 25%~82%, acid is the catalyzer of tetraethyl orthosilicate hydrolysis, consumption is 1‰-4‰ of the mixed solution volume, the ammonia water is the gel catalyst, and the ammonia water content is 3‰-10‰ of the mixed solution volume. The water bath is kept at 30°C to 90°C, and the water bath time is 0 to 6 days.

本发明采用的油相可选用一般的植物调和油,硅油等,具有一定黏度。 The oil phase used in the present invention can be selected from general vegetable blending oil, silicone oil, etc., and has a certain viscosity.

本发明雾化时所用转速为300r/min~2000r/min。 The rotation speed used in the atomization of the present invention is 300r/min-2000r/min.

本发明清洗残余的油相及有机杂质,正己烷用量不小于清洗溶液体积的1/10,每天清洗2~12次,清洗1~8天。用无水乙醇清洗正己烷,乙醇用量不小于所清洗正己烷的1/10,每天清洗2~12次,清洗1~8天。 The present invention cleans the residual oil phase and organic impurities, the amount of n-hexane is not less than 1/10 of the volume of the cleaning solution, and the cleaning is performed 2 to 12 times a day for 1 to 8 days. Wash n-hexane with absolute ethanol, the amount of ethanol is not less than 1/10 of the n-hexane to be cleaned, 2-12 times a day for 1-8 days.

本发明所用改性剂含量为所选硅源体积的40%~180%。 The content of modifier used in the present invention is 40%-180% of the volume of the selected silicon source.

本发明采用卤代硅烷为改性剂时,用去离子水与的混合液清洗改性剂处理后的卤族离子,无水乙醇与去离子水体积比为1:1~1:10,1~5天清洗一次,总共清洗2~7次,清洗完成后,采用硝酸银溶液进行检测,如果有沉淀,继续清洗。 When the present invention adopts halosilane as modifier, the halogen ion after modifier treatment is cleaned with the mixed solution of deionized water and deionized water, the volume ratio of absolute ethanol and deionized water is 1:1~1:10, 1 Clean once every 5 days, and clean 2 to 7 times in total. After cleaning, use silver nitrate solution for detection. If there is precipitation, continue cleaning.

本发明采用的表面活性剂主要起到如下作用: The tensio-active agent that the present invention adopts mainly plays following effect:

1.    促进聚合物乳液对疏水二氧化硅气凝胶微球的润湿,改善界面状况; 1. Promote the wetting of the polymer emulsion to the hydrophobic silica airgel microspheres and improve the interface condition;

2.    改进疏水二氧化硅气凝胶微球在涂料中的分散性; 2. Improve the dispersion of hydrophobic silica airgel microspheres in the coating;

3.    提高涂料的贮存稳定性,减少浪费。 3. Improve the storage stability of paint and reduce waste.

本发明所用表面活性剂按照分子结构分为聚合物电解质类,如阴离子聚羧基酸,六偏磷酸钠等,无机聚合碱盐类,如聚羧酸铵盐,二聚异丁烯顺丁烯二酸钠盐等,高分子聚合物类,如BYK-154(丙烯酸聚合体),BYK-181(高分子嵌段共聚物)等。 Surfactants used in the present invention are divided into polymer electrolytes according to molecular structure, such as anionic polycarboxylic acid, sodium hexametaphosphate, etc., inorganic polymeric alkali salts, such as polycarboxylate ammonium salt, dipolyisobutylene sodium maleate Salt, etc., polymers, such as BYK-154 (acrylic acid polymer), BYK-181 (polymer block copolymer), etc.

本发明所用粘结剂为聚合物乳液,如环氧树脂,纯丙乳液,聚氨酯等,所用涂料助剂均为市售。聚合物乳液占涂料总体积的10%~95%,气凝胶微球的体积分数占5%~90%,表面活性剂含量为涂料总质量的0.1‰~5‰,其他助剂之和不超过涂料质量的2‰。 The binder used in the present invention is a polymer emulsion, such as epoxy resin, pure acrylic emulsion, polyurethane, etc., and the coating additives used are all commercially available. The polymer emulsion accounts for 10% to 95% of the total volume of the coating, the volume fraction of airgel microspheres accounts for 5% to 90%, the content of surfactant is 0.1‰ to 5‰ of the total mass of the coating, and the sum of other additives is not More than 2‰ of paint quality.

 本发明所制备的隔热涂料的有益效果: The beneficial effects of the heat-insulating coating prepared by the present invention:

二氧化硅气凝胶微球为轻质隔热材料,导热系数可达0.01W/m·k,以它为隔热填料的涂料隔热性好;疏水二氧化硅气凝胶微球的抗腐蚀,抗氧化,耐水性强制备的隔热涂料吸湿性差,耐洗刷、耐候性好,使用寿命长;表面活性的添加,改善了涂料的界面状态,及疏水二氧化硅气凝胶微球在涂料中的分散状况,提高了涂料的物理性能和隔热性能。 Silica airgel microspheres are lightweight thermal insulation materials, and their thermal conductivity can reach 0.01W/m·k. The coatings using it as thermal insulation fillers have good thermal insulation properties; the hydrophobic silica airgel microspheres are resistant to heat Corrosion, anti-oxidation, and strong water resistance, the thermal insulation coating prepared has poor hygroscopicity, good washing resistance, weather resistance, and long service life; the addition of surface activity improves the interface state of the coating, and hydrophobic silica airgel microspheres The dispersion state in the coating improves the physical properties and thermal insulation performance of the coating.

具体实施方式 Detailed ways

实例1 Example 1

(1)        二氧化硅溶胶制备:以208.33g的正硅酸乙酯作为硅源,将正硅酸乙酯与92.14g无水乙醇进行混合,搅拌均匀,得到混合液①;另取92.14g无水乙醇与72g去离子水进行混合,然后加入2w%的硝酸1ml,搅拌均匀,得到混合液②,将混合液①、②混合并搅拌5分钟左右,得到最终的混合溶液,将混合溶液置于60℃水浴锅中,保温两个小时; (1) Preparation of silica sol: use 208.33g of tetraethyl orthosilicate as the silicon source, mix ethyl orthosilicate with 92.14g of absolute ethanol, and stir evenly to obtain a mixed solution ①; another 92.14g of Mix water ethanol with 72g deionized water, then add 1ml of 2w% nitric acid, stir evenly to obtain a mixed solution ②, mix the mixed solutions ① and ② and stir for about 5 minutes to obtain the final mixed solution, place the mixed solution in In a 60°C water bath, keep warm for two hours;

(2)        二氧化硅湿凝胶微球的制备:二氧化硅溶胶通过引流管导入雾化器,将0.1mm的雾化器喷嘴浸入500ml花生油中,花生油保持搅拌状态,打开雾化器开关。雾化过程中保持800r/min的搅拌速度。通过雾化器,二氧化硅溶胶胶以小液滴的形式被注入花生油中。注入花生油的溶胶体积为100ml。雾化完成后,向溶胶与花生油的混合溶液中加入20w%的氨水3ml,在室温下老化两天,得到二氧化硅湿凝胶微球; (2) Preparation of silica wet gel microspheres: Silica sol was introduced into the nebulizer through the drainage tube, and the 0.1mm atomizer nozzle was immersed in 500ml peanut oil. The peanut oil was kept stirring, and the atomizer switch was turned on. During the atomization process, a stirring speed of 800 r/min was maintained. Through an atomizer, the silica sol gel is injected into the peanut oil in the form of small droplets. The volume of the sol infused with peanut oil was 100 ml. After the atomization is completed, add 3ml of 20w% ammonia water to the mixed solution of sol and peanut oil, and age at room temperature for two days to obtain silica wet gel microspheres;

(3)        湿凝胶微球的疏水改性:将二氧化硅湿凝胶微球通过过滤漏斗,滤去花生油,采用150ml正己烷置换残余的花生油及有机杂质,每天3次,总共置换3天,然后用100ml无水乙醇置换正己烷,每天3次,总共置换3天,得到纯净的二氧化硅湿凝胶微球;用三甲基氯硅烷(分析纯)对湿凝胶进行疏水处理,三甲基氯硅烷与湿凝胶的体积比为1:5,两天处理一次,改性处理4天; (3) Hydrophobic modification of wet gel microspheres: pass silica wet gel microspheres through a filter funnel, filter out peanut oil, and replace residual peanut oil and organic impurities with 150ml of n-hexane, 3 times a day for a total of 3 days , and then replace n-hexane with 100ml of absolute ethanol, 3 times a day, for a total of 3 days to obtain pure silica wet gel microspheres; use trimethylchlorosilane (analytical pure) to hydrophobically treat the wet gel, The volume ratio of trimethylchlorosilane to wet gel is 1:5, treated once every two days, and modified for 4 days;

(4)        湿凝胶微球的干燥:向经过疏水处理后的湿凝胶微球中加入去离子水与无水乙醇的混合溶液,清洗三甲基氯硅烷处理后的氯离子,去离子水与无水乙醇的体积比为1:1。一天清洗3次,清洗3天。然后用6w%的硝酸银溶液检测是否还有氯离子,如果有沉淀,则继续清洗。确保氯离子清洗干净,向湿凝胶微球中加入无水乙醇,置换其中去离子水,每天3次,总共置换3天。二氧化硅湿凝胶微球在常温下进行干燥; (4) Drying of wet gel microspheres: Add a mixed solution of deionized water and absolute ethanol to the wet gel microspheres after hydrophobic treatment, clean the chloride ions after trimethylchlorosilane treatment, deionized water The volume ratio with absolute ethanol is 1:1. Wash 3 times a day for 3 days. Then use 6w% silver nitrate solution to detect whether there are chloride ions, if there is precipitation, continue to wash. Make sure that the chloride ions are cleaned, add absolute ethanol to the wet gel microspheres, and replace them with deionized water, 3 times a day, for a total of 3 days. Silica wet gel microspheres are dried at normal temperature;

(5)        二氧化硅气凝胶微球隔热涂料的制备:将分散剂、润湿剂,消泡剂、流平剂等助剂加入20g纯丙乳液中,再加入阴离子表面活性剂烷基苯磺酸钠,搅拌均匀,向混合液中加入改性的二氧化硅气凝胶微球6g,搅拌,加入增稠剂调节粘度,得到二氧化硅气凝胶隔热涂料。助剂含量均为0.01g,表面活性剂含量0.01g; (5) Preparation of silica airgel microsphere thermal insulation coating: add dispersant, wetting agent, defoamer, leveling agent and other additives to 20g of pure acrylic emulsion, and then add anionic surfactant alkyl Sodium benzenesulfonate, stirred evenly, added 6 g of modified silica airgel microspheres to the mixed solution, stirred, added a thickener to adjust viscosity, and obtained silica airgel heat-insulating coating. The additive content is 0.01g, and the surfactant content is 0.01g;

(6)        采用Hot disk TPS 2500S导热系数测量仪对热导率检测,二氧化硅气凝胶微球隔热涂料的热导率为0.04866 W/(m·K)。 (6) Use the Hot disk TPS 2500S thermal conductivity measuring instrument to test the thermal conductivity. The thermal conductivity of the silica airgel microsphere thermal insulation coating is 0.04866 W/(m K).

 实例2 Example 2

(1)        二氧化硅溶胶制备:将无水乙醇与去离子水按一定比例进行混合,然后向混合液我中加入正硅酸乙酯,其中正硅酸乙酯,去离子水,无水乙醇的质量分别为208.33g,72g,322.49g,然后加入2w%的硝酸1ml,搅拌均匀,得到最终的混合溶液,将混合溶液置于60℃水浴锅中,保温两个小时; (1) Preparation of silica sol: Mix absolute ethanol and deionized water in a certain proportion, and then add tetraethyl orthosilicate to the mixture, in which ethyl orthosilicate, deionized water, and absolute ethanol The masses were 208.33g, 72g, and 322.49g, and then 1ml of 2w% nitric acid was added and stirred evenly to obtain the final mixed solution. The mixed solution was placed in a 60°C water bath and kept warm for two hours;

(2)        二氧化硅湿凝胶微球的制备:二氧化硅溶胶通过引流管导入雾化器,将0.1mm的雾化器喷嘴浸入500ml硅油中,硅油保持搅拌状态,打开雾化器开关。雾化过程中保持900r/min的搅拌速度。通过雾化器,二氧化硅溶胶胶以小液滴的形式存在于硅油中。注入硅油的溶胶体积为100ml。雾化完成后,向溶胶与硅油的混合溶液中加入20w%的氨水3ml,在室温下老化两天,得到二氧化硅湿凝胶微球; (2) Preparation of silica wet gel microspheres: Silica sol is introduced into the atomizer through the drainage tube, immerse the 0.1mm atomizer nozzle in 500ml of silicone oil, keep the silicone oil in a stirring state, and turn on the switch of the atomizer. During the atomization process, a stirring speed of 900 r/min was maintained. Through the atomizer, the silica sol exists in the silicone oil in the form of small droplets. The volume of the sol injected with silicone oil was 100ml. After the atomization is completed, add 3ml of 20w% ammonia water to the mixed solution of sol and silicone oil, and age at room temperature for two days to obtain silica wet gel microspheres;

(3)        湿凝胶微球的疏水改性:过滤,滤去混合液中的硅油,采用正己烷置换残余的硅油及有机杂质,每天3次,总共置换3天,然后用无水乙醇置换正己烷,每天3次,总共置换3天,得到纯净的二氧化硅湿凝胶微球;用三甲基氯硅烷(分析纯)对湿凝胶进行疏水处理,三甲基氯硅烷与湿凝胶的体积比为1:5,两天处理一次,改性处理4天; (3) Hydrophobic modification of wet gel microspheres: filter, filter out the silicone oil in the mixture, replace the residual silicone oil and organic impurities with n-hexane, 3 times a day, for a total of 3 days, and then replace the n-hexane with absolute ethanol alkane, 3 times a day, for a total of 3 days, to obtain pure silica wet gel microspheres; use trimethylchlorosilane (analytical pure) to hydrophobically treat the wet gel, trimethylchlorosilane and wet gel The volume ratio is 1:5, treated once every two days, and modified for 4 days;

(4)        湿凝胶微球的干燥:向经过疏水处理后的湿凝胶微球中加入去离子水与无水乙醇的混合溶液,清洗三甲基氯硅烷处理后的氯离子,去离子水与无水乙醇的体积均为400ml一天清洗3次,清洗3天。然后用6w%的硝酸银溶液检测是否还有氯离子,如果有沉淀,则继续清洗。确保氯离子清洗干净后,向湿凝胶微球中加入无水乙醇,置换其中去离子水,无水乙醇用量为150ml,每天3次,总共置换3天。采用超临界二氧化碳装置对湿凝胶微球进行干燥; (4) Drying of wet gel microspheres: Add a mixed solution of deionized water and absolute ethanol to the wet gel microspheres after hydrophobic treatment, clean the chloride ions after trimethylchlorosilane treatment, deionized water Both the volume of the solution and the volume of absolute ethanol are 400ml to wash 3 times a day for 3 days. Then use 6w% silver nitrate solution to detect whether there are chloride ions, if there is precipitation, continue to wash. After ensuring that the chloride ions are cleaned, add absolute ethanol to the wet gel microspheres to replace the deionized water. The amount of absolute ethanol is 150ml, 3 times a day, for a total of 3 days. The wet gel microspheres are dried by a supercritical carbon dioxide device;

(5)           气凝胶隔热涂料的制备:将十六烷基三甲基氯(溴)化铵(阳离子表面活性剂1631)同分散剂、润湿剂,消泡剂、流平剂等助剂加入20g环氧树脂乳液中,表面活性剂及助剂含量为0.01g,搅拌均匀,向混合液中加入改性的二氧化硅气凝胶微球6g,搅拌,加入0.01g增稠剂调节粘度,搅拌3分钟,加入2g固化剂,搅拌,在室温下干燥固化三天,得到二氧化硅气凝胶隔热涂料; (5) Preparation of airgel thermal insulation coating: Mix cetyltrimethylammonium chloride (bromide) (cationic surfactant 1631) with dispersant, wetting agent, defoamer, leveling agent and other auxiliary agents Add the surfactant to 20g of epoxy resin emulsion, the content of surfactant and auxiliary agent is 0.01g, stir evenly, add 6g of modified silica airgel microspheres to the mixed solution, stir, add 0.01g thickener to adjust Viscosity, stirring for 3 minutes, adding 2g of curing agent, stirring, drying and curing at room temperature for three days to obtain silica airgel thermal insulation coating;

(6)        采用Hot disk TPS 2500S导热系数测量仪对热导率检测,二氧化硅气凝胶微球隔热涂料的热导率为0.06098 W/(m·K)。 (6) Use the Hot disk TPS 2500S thermal conductivity measuring instrument to detect the thermal conductivity. The thermal conductivity of the silica airgel microsphere thermal insulation coating is 0.06098 W/(m·K).

实例3 Example 3

(1)        二氧化硅溶胶制备:将460.7g无水乙醇与72g的去离子水按进行混合,然后向混合液中加入288.33g正硅酸乙酯,然后加入2w%的硝酸1ml,搅拌均匀,将混合溶液置于60℃水浴锅中,8分钟后向混合液中加入118.62g二甲基二乙氧基硅烷,将混合液在保温两个小时; (1) Preparation of silica sol: Mix 460.7g of absolute ethanol with 72g of deionized water, then add 288.33g of ethyl orthosilicate to the mixture, then add 1ml of 2w% nitric acid, stir well, Put the mixed solution in a 60°C water bath, add 118.62g of dimethyldiethoxysilane to the mixed solution after 8 minutes, and keep the mixed solution for two hours;

(2)        二氧化硅湿凝胶微球的制备:二氧化硅溶胶通过引流管引入雾化器,采用0.3mm的雾化器喷嘴。以花生油为油相,保持花生油800r/min的转速,将二氧化硅溶胶喷入花生油中。雾化过程中保持800r/min的搅拌速度。向500ml花生油中喷入的溶胶体积为100ml。雾化完成后,向溶胶与花生油的混合液中加入20w%的氨水3ml,在室温下老化两天,得到二氧化硅湿凝胶微球; (2) Preparation of silica wet gel microspheres: Silica sol was introduced into the nebulizer through a drainage tube, and a 0.3mm nebulizer nozzle was used. Use peanut oil as the oil phase, keep the rotation speed of the peanut oil at 800r/min, and spray the silica sol into the peanut oil. During the atomization process, a stirring speed of 800 r/min was maintained. The volume of sol sprayed into 500ml peanut oil is 100ml. After the atomization is completed, add 3ml of 20w% ammonia water to the mixture of sol and peanut oil, and age at room temperature for two days to obtain silica wet gel microspheres;

(3)        湿凝胶微球的干燥:过滤,滤去混合液中的花生油,采用正己烷置换残余的油及有机杂质,每天3次,总共置换3天,然后用无水乙醇置换正己烷,每天3次,总共置换3天,得到纯净的二氧化硅湿凝胶微球。采用超临界乙醇装置对湿凝胶微球进行干燥; (3) Drying of wet gel microspheres: filter, filter out the peanut oil in the mixture, replace the residual oil and organic impurities with n-hexane, 3 times a day, for a total of 3 days, and then replace n-hexane with absolute ethanol, 3 times a day, a total of 3 days of replacement, to obtain pure silica wet gel microspheres. The wet gel microspheres are dried by a supercritical ethanol device;

(4)        气凝胶隔热涂料的制备:采用0.015g的脂肪酸甲酯聚氧乙烯醚FMEE作为表面活性剂,将它与0.01g的分散剂、润湿剂,消泡剂、流平剂等助剂加入20g环氧树脂乳液中,搅拌均匀,然后加入改性的二氧化硅气凝胶微球5g,搅拌,加入0.01g增稠剂调节粘度,搅拌3分钟,在室温下干燥固化三天,得到二氧化硅气凝胶隔热涂料; (4) Preparation of airgel thermal insulation coating: use 0.015g fatty acid methyl ester polyoxyethylene ether FMEE as surfactant, mix it with 0.01g dispersant, wetting agent, defoamer, leveling agent, etc. Add additives to 20g of epoxy resin emulsion, stir evenly, then add 5g of modified silica airgel microspheres, stir, add 0.01g thickener to adjust viscosity, stir for 3 minutes, dry and solidify at room temperature for three days , to obtain silica airgel thermal insulation coating;

(5)        采用Hot disk TPS 2500S导热系数测量仪对热导率检测,二氧化硅气凝胶微球隔热涂料的热导率为0.06980 W/(m·K)。  (5) The thermal conductivity was tested with the Hot disk TPS 2500S thermal conductivity measuring instrument, and the thermal conductivity of the silica airgel microsphere thermal insulation coating was 0.06980 W/(m·K). the

Claims (8)

1. hydrophobic silica aerogel thermal insulating coating, primarily of polymer emulsion, hydrophobic silica aerogel microballoon and auxiliary agent composition, with the addition of tensio-active agent simultaneously.
2. hydrophobic silica aerogel thermal insulating coating according to claim 1, it is characterized in that a large amount of hydrophobic grouping is all contained in the surface of the silica aerosil microballoon adopted and inside, whole microballoon has complete hydrophobicity.
3. hydrophobic silica aerogel thermal insulating coating according to claim 1, key is the hydrophobically modified to silica aerosil microballoon, the present invention proposes two kinds of methods, first the first prepare silica wet gel microballoon, then be that properties-correcting agent carries out hydrophobically modified to silica wet gel microballoon with halogenated silanes, the second prepares the initial stage at colloidal sol, with the preparation for properties-correcting agent participation colloidal sol of organoalkoxysilane, silazane or siloxanes, finally obtain hydrophobic silica aerosil microballoon.
4. hydrophobic silica aerogel according to claim 3, when it is characterized in that silica aerosil microballoon modification, properties-correcting agent used is one or more in halogenated silanes, organoalkoxysilane, silazane or siloxanes.
5. hydrophobic silica aerogel according to claim 3, it is characterized in that halogenated silanes uses after silica wet gel microballoon completes, organoalkoxysilane, silazane or siloxanes use in silicon dioxide gel preparation process.
6. hydrophobic silica aerogel thermal insulating coating according to claim 1, is characterized in that have employed tensio-active agent.
7. tensio-active agent according to claim 6, is characterized in that tensio-active agent is polymer dielectric class, one or more in inorganic polymeric alkali salt class and high molecular polymer class.
8. hydrophobic silica aerogel thermal insulating coating according to claim 1, it is characterized in that polymer emulsion accounts for 10% ~ 95% of coating cumulative volume, the volume fraction of silica aerosil microballoon accounts for 5% ~ 90%, surfactant content is 0.1 ‰ ~ 5 ‰ of coating total mass, and other auxiliary agent sums are no more than 2 ‰ of coating quality.
CN201310242852.7A 2013-06-19 2013-06-19 Improved silica aerogel microball insulating moulding coating Active CN104231798B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310242852.7A CN104231798B (en) 2013-06-19 2013-06-19 Improved silica aerogel microball insulating moulding coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310242852.7A CN104231798B (en) 2013-06-19 2013-06-19 Improved silica aerogel microball insulating moulding coating

Publications (2)

Publication Number Publication Date
CN104231798A true CN104231798A (en) 2014-12-24
CN104231798B CN104231798B (en) 2017-07-28

Family

ID=52220736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310242852.7A Active CN104231798B (en) 2013-06-19 2013-06-19 Improved silica aerogel microball insulating moulding coating

Country Status (1)

Country Link
CN (1) CN104231798B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038490A (en) * 2015-07-07 2015-11-11 当涂县科辉商贸有限公司 Fibrillar silicate-reinforced super thermal-insulation heat-preserving paint and preparation method thereof
CN105330335A (en) * 2015-11-19 2016-02-17 浙江大学自贡创新中心 Preparation method of coating structure with functions of flame retardance and thermal insulation
CN105461279A (en) * 2015-11-19 2016-04-06 浙江大学自贡创新中心 Preparation method of flame-retardant thermal-insulation slurry
CN106866013A (en) * 2017-01-20 2017-06-20 伊科纳诺(北京)科技发展有限公司 It is a kind of to be atomized the method that absorption improves aerosil aqueous phase dispersibility
CN106867402A (en) * 2015-12-11 2017-06-20 现代自动车株式会社 Ultraviolet radiation absorption coating composition with enhancing wearability
CN107128932A (en) * 2017-05-04 2017-09-05 德清美联新材料科技有限公司 A kind of preparation method for the VOC hydrophobic silicas adsorbed
CN107254237A (en) * 2017-07-27 2017-10-17 弘大科技(北京)股份公司 A kind of coating being made up of superelevation roughness particle
CN107266942A (en) * 2016-04-08 2017-10-20 南京唯才新能源科技有限公司 A kind of enhanced aerogel powder and preparation method thereof
CN107266938A (en) * 2016-04-08 2017-10-20 南京唯才新能源科技有限公司 A kind of enhanced aerogel powder and preparation method thereof
CN107353776A (en) * 2017-08-08 2017-11-17 中国石油化工股份有限公司 A kind of aeroge silica electrostatic conductive anticorrosion paint and preparation method
CN107523103A (en) * 2017-07-26 2017-12-29 贵州省漆彩金州涂料有限公司 A kind of aerosil coating and its application
CN107523102A (en) * 2017-07-26 2017-12-29 贵州省漆彩金州涂料有限公司 A kind of preparation method of aerosil Water-based thermal insulation coating
CN108084746A (en) * 2017-12-12 2018-05-29 新华盛节能科技股份有限公司 A kind of aerosil coating and preparation method thereof
CN109021749A (en) * 2018-08-01 2018-12-18 淮北庆丰涂料有限公司 A kind of exterior wall latex paint
CN110386607A (en) * 2018-04-19 2019-10-29 卢序 The preparation method of aeroge
CN110982415A (en) * 2019-12-20 2020-04-10 唐丽琪 Silane modified anti-settling polyurethane waterproof coating and preparation method thereof
CN111732871A (en) * 2020-07-07 2020-10-02 威海合纵新材料科技有限公司 Light high-heat-resistance coating and preparation method thereof
CN111909593A (en) * 2020-07-24 2020-11-10 福建师范大学 PP plastic surface self-cleaning composite coating material and preparation method thereof
CN112029375A (en) * 2020-08-17 2020-12-04 山东国铭球墨铸管科技有限公司 Inorganic-organic hybrid polymer anticorrosive paint and preparation method thereof
CN113248950A (en) * 2021-06-09 2021-08-13 中国人民解放军海军工程大学 Light super-strong aerogel thermal insulation coating and preparation method thereof
CN113512325A (en) * 2021-04-30 2021-10-19 东莞大宝化工制品有限公司 Water-based fluorocarbon matte coating and preparation method thereof
CN113773715A (en) * 2021-09-24 2021-12-10 四川汇园宝新材料科技有限公司 Aerogel thermal insulation coating and preparation method thereof
CN114181613A (en) * 2021-10-27 2022-03-15 中国航发北京航空材料研究院 High-temperature-resistant heat-insulating anticorrosive coating and preparation method thereof
CN114213156A (en) * 2021-12-28 2022-03-22 山东工业陶瓷研究设计院有限公司 Preparation method of ceramic heat insulation tile surface coating
CN114250629A (en) * 2021-12-02 2022-03-29 西安工程大学 A kind of preparation method of intelligent stab-proof fabric, product and application thereof
CN114478983A (en) * 2022-01-26 2022-05-13 王永涛 Preparation method of pre-polymerized resin and coating composition
CN114539838A (en) * 2022-01-25 2022-05-27 福建佰易科技有限公司 Chlorinated polyether anticorrosive paint and preparation method thereof
CN114561129A (en) * 2021-12-16 2022-05-31 福建佰易科技有限公司 Preparation method of waterproof heat-insulating coating and waterproof heat-insulating coating
CN115029043A (en) * 2022-06-15 2022-09-09 武汉多戈科技发展有限公司 Energy-saving emission-reducing water-based heat-insulating reflective coating and production process thereof
CN115449255A (en) * 2022-10-20 2022-12-09 浦诺菲新材料有限公司 Modified silicon dioxide nano-particles and preparation method thereof, super-hydrophobic polyurethane coating liquid and super-hydrophobic automobile paint surface protective film
CN115849392A (en) * 2022-12-31 2023-03-28 福建师范大学泉港石化研究院 Silicon dioxide aerogel and preparation method thereof
CN116002693A (en) * 2022-12-31 2023-04-25 福建师范大学泉港石化研究院 Flame-retardant silica aerogel and preparation method and application thereof
CN116102920A (en) * 2022-09-07 2023-05-12 广西欧神诺陶瓷有限公司 Heat-insulating ink and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459079A (en) * 2009-04-27 2012-05-16 卡博特公司 Aerogel compositions and methods of making and using the same
US20120142240A1 (en) * 2010-12-07 2012-06-07 Basf Se Polyurethane composite material
CN102604468A (en) * 2012-02-03 2012-07-25 广州泰祥混凝土外加剂有限公司 SiO2 aerogel thermal insulation latex paint and preparation method thereof
CN102719129A (en) * 2012-07-05 2012-10-10 河南工业大学 Preparation method of silica aerogel aqueous heat-insulating coating
CN102838933A (en) * 2012-09-27 2012-12-26 富思特新材料科技有限公司 Self-cleaning and heat-insulating coating and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459079A (en) * 2009-04-27 2012-05-16 卡博特公司 Aerogel compositions and methods of making and using the same
US20120142240A1 (en) * 2010-12-07 2012-06-07 Basf Se Polyurethane composite material
CN102604468A (en) * 2012-02-03 2012-07-25 广州泰祥混凝土外加剂有限公司 SiO2 aerogel thermal insulation latex paint and preparation method thereof
CN102719129A (en) * 2012-07-05 2012-10-10 河南工业大学 Preparation method of silica aerogel aqueous heat-insulating coating
CN102838933A (en) * 2012-09-27 2012-12-26 富思特新材料科技有限公司 Self-cleaning and heat-insulating coating and preparation method thereof

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038490A (en) * 2015-07-07 2015-11-11 当涂县科辉商贸有限公司 Fibrillar silicate-reinforced super thermal-insulation heat-preserving paint and preparation method thereof
CN105330335A (en) * 2015-11-19 2016-02-17 浙江大学自贡创新中心 Preparation method of coating structure with functions of flame retardance and thermal insulation
CN105461279A (en) * 2015-11-19 2016-04-06 浙江大学自贡创新中心 Preparation method of flame-retardant thermal-insulation slurry
CN106867402A (en) * 2015-12-11 2017-06-20 现代自动车株式会社 Ultraviolet radiation absorption coating composition with enhancing wearability
CN107266938B (en) * 2016-04-08 2019-12-03 南京唯才新能源科技有限公司 A kind of enhanced aerogel powder and preparation method thereof
CN107266942A (en) * 2016-04-08 2017-10-20 南京唯才新能源科技有限公司 A kind of enhanced aerogel powder and preparation method thereof
CN107266938A (en) * 2016-04-08 2017-10-20 南京唯才新能源科技有限公司 A kind of enhanced aerogel powder and preparation method thereof
CN107266942B (en) * 2016-04-08 2019-12-03 南京唯才新能源科技有限公司 A kind of enhanced aerogel powder and preparation method thereof
CN106866013A (en) * 2017-01-20 2017-06-20 伊科纳诺(北京)科技发展有限公司 It is a kind of to be atomized the method that absorption improves aerosil aqueous phase dispersibility
CN107128932A (en) * 2017-05-04 2017-09-05 德清美联新材料科技有限公司 A kind of preparation method for the VOC hydrophobic silicas adsorbed
CN107523103A (en) * 2017-07-26 2017-12-29 贵州省漆彩金州涂料有限公司 A kind of aerosil coating and its application
CN107523102A (en) * 2017-07-26 2017-12-29 贵州省漆彩金州涂料有限公司 A kind of preparation method of aerosil Water-based thermal insulation coating
CN107523102B (en) * 2017-07-26 2019-07-19 贵州省漆彩金州涂料有限公司 A kind of preparation method of aerosil Water-based thermal insulation coating
CN107254237A (en) * 2017-07-27 2017-10-17 弘大科技(北京)股份公司 A kind of coating being made up of superelevation roughness particle
CN107353776A (en) * 2017-08-08 2017-11-17 中国石油化工股份有限公司 A kind of aeroge silica electrostatic conductive anticorrosion paint and preparation method
CN108084746A (en) * 2017-12-12 2018-05-29 新华盛节能科技股份有限公司 A kind of aerosil coating and preparation method thereof
CN110386607A (en) * 2018-04-19 2019-10-29 卢序 The preparation method of aeroge
CN109021749A (en) * 2018-08-01 2018-12-18 淮北庆丰涂料有限公司 A kind of exterior wall latex paint
CN110982415A (en) * 2019-12-20 2020-04-10 唐丽琪 Silane modified anti-settling polyurethane waterproof coating and preparation method thereof
CN111732871B (en) * 2020-07-07 2021-10-12 威海合纵新材料科技有限公司 Light high-heat-resistance coating and preparation method thereof
CN111732871A (en) * 2020-07-07 2020-10-02 威海合纵新材料科技有限公司 Light high-heat-resistance coating and preparation method thereof
CN111909593A (en) * 2020-07-24 2020-11-10 福建师范大学 PP plastic surface self-cleaning composite coating material and preparation method thereof
CN112029375A (en) * 2020-08-17 2020-12-04 山东国铭球墨铸管科技有限公司 Inorganic-organic hybrid polymer anticorrosive paint and preparation method thereof
CN113512325A (en) * 2021-04-30 2021-10-19 东莞大宝化工制品有限公司 Water-based fluorocarbon matte coating and preparation method thereof
CN113248950A (en) * 2021-06-09 2021-08-13 中国人民解放军海军工程大学 Light super-strong aerogel thermal insulation coating and preparation method thereof
CN113773715A (en) * 2021-09-24 2021-12-10 四川汇园宝新材料科技有限公司 Aerogel thermal insulation coating and preparation method thereof
CN114181613B (en) * 2021-10-27 2022-05-27 中国航发北京航空材料研究院 A kind of high temperature resistant heat insulation and anti-corrosion coating and preparation method thereof
CN114181613A (en) * 2021-10-27 2022-03-15 中国航发北京航空材料研究院 High-temperature-resistant heat-insulating anticorrosive coating and preparation method thereof
CN114250629A (en) * 2021-12-02 2022-03-29 西安工程大学 A kind of preparation method of intelligent stab-proof fabric, product and application thereof
CN114561129A (en) * 2021-12-16 2022-05-31 福建佰易科技有限公司 Preparation method of waterproof heat-insulating coating and waterproof heat-insulating coating
CN114213156A (en) * 2021-12-28 2022-03-22 山东工业陶瓷研究设计院有限公司 Preparation method of ceramic heat insulation tile surface coating
CN114539838A (en) * 2022-01-25 2022-05-27 福建佰易科技有限公司 Chlorinated polyether anticorrosive paint and preparation method thereof
CN114478983A (en) * 2022-01-26 2022-05-13 王永涛 Preparation method of pre-polymerized resin and coating composition
CN114478983B (en) * 2022-01-26 2024-02-06 上海特锦供应链管理有限公司 Preparation method of pre-polymerized resin and coating composition
CN115029043A (en) * 2022-06-15 2022-09-09 武汉多戈科技发展有限公司 Energy-saving emission-reducing water-based heat-insulating reflective coating and production process thereof
CN116102920A (en) * 2022-09-07 2023-05-12 广西欧神诺陶瓷有限公司 Heat-insulating ink and preparation method and application thereof
CN116102920B (en) * 2022-09-07 2023-12-22 广西欧神诺陶瓷有限公司 A heat-insulating ink and its preparation method and application
CN115449255A (en) * 2022-10-20 2022-12-09 浦诺菲新材料有限公司 Modified silicon dioxide nano-particles and preparation method thereof, super-hydrophobic polyurethane coating liquid and super-hydrophobic automobile paint surface protective film
CN115849392A (en) * 2022-12-31 2023-03-28 福建师范大学泉港石化研究院 Silicon dioxide aerogel and preparation method thereof
CN116002693A (en) * 2022-12-31 2023-04-25 福建师范大学泉港石化研究院 Flame-retardant silica aerogel and preparation method and application thereof
CN115849392B (en) * 2022-12-31 2024-08-02 福建师范大学泉港石化研究院 Silica aerogel and preparation method thereof
CN116002693B (en) * 2022-12-31 2024-08-06 福建师范大学泉港石化研究院 Flame-retardant silica aerogel and preparation method and application thereof

Also Published As

Publication number Publication date
CN104231798B (en) 2017-07-28

Similar Documents

Publication Publication Date Title
CN104231798B (en) Improved silica aerogel microball insulating moulding coating
CN102719129B (en) Preparation method of silica aerogel aqueous heat-insulating coating
CN101555018B (en) A method for preparing nanoporous materials with high mechanical properties by organic modification
CN103333358B (en) A kind of reusable cheap silica aerogel oil suction sponge and preparation method thereof
JP7196854B2 (en) Coating liquid, method for producing coating film, and coating film
CN105236912B (en) A kind of composite fibre strengthens hydrophobic SiO2Aeroge and preparation method thereof
CN101544838B (en) Super-hydrophobic nano SiO2High polymer composite membrane and preparation method thereof
CN108383487B (en) A kind of PAN pre-oxygen fiber felt/silica aerogel composite material and preparation method thereof
CN103709868A (en) Microspherical SiO2 aerogel compound heat-insulating/warm-keeping external wall paint and preparation method thereof
CN104475059B (en) A kind of preparation method of sponge-silicon airgel composite material
JP7196852B2 (en) Coating liquid, method for producing coating film, and coating film
CN103483884B (en) A kind of High-performance waterborne inorganic paint and preparation method thereof
CN104129790B (en) A kind of Nano-meter SiO_22microsphere, hydrophober, its preparation method and hydrophobic glass
KR20130101902A (en) Composite composition comprising aerogel and method for preparing the same
CN101422774B (en) A kind of preparation method of enamel surface coating with hydrophobic effect
JPWO2019069494A1 (en) Coating liquid, coating film manufacturing method and coating film
CN104193289A (en) Hydrophobic protective paint and preparation method thereof
CN109575656A (en) A kind of normal temperature cured type inorganic coating and preparation method thereof
JP2021075431A (en) Method for continuously producing hydrophilic and hydrophobic bipolar composite core shell aerogel powder
CN113429537A (en) Aerogel composite polyurethane and preparation method thereof
CN114854243B (en) Preparation method and application of modified silica for environmental protection water and oil repellent coating
CN103570251A (en) Preparation method of insulating super-hydrophobic coating
CN112390571A (en) Phase-change composite aerogel and preparation method thereof
WO2019202635A1 (en) Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
CN104151765A (en) Preparation method of silica-based nano hybrid material for protecting silicate cultural relics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant