CN104209120A - Metal clusters stabilized by mesoporous zirconium-silicon nanospheres and their preparation methods and applications - Google Patents
Metal clusters stabilized by mesoporous zirconium-silicon nanospheres and their preparation methods and applications Download PDFInfo
- Publication number
- CN104209120A CN104209120A CN201310210499.4A CN201310210499A CN104209120A CN 104209120 A CN104209120 A CN 104209120A CN 201310210499 A CN201310210499 A CN 201310210499A CN 104209120 A CN104209120 A CN 104209120A
- Authority
- CN
- China
- Prior art keywords
- metal
- hours
- silicon
- furan
- nanospheres
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 62
- 239000002184 metal Substances 0.000 title claims abstract description 62
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000002077 nanosphere Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 24
- 239000001257 hydrogen Substances 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 21
- 239000003054 catalyst Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 150000002240 furans Chemical class 0.000 claims abstract description 15
- 230000009467 reduction Effects 0.000 claims abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 8
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 7
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052762 osmium Inorganic materials 0.000 claims abstract description 5
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 5
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 5
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 5
- 229910052709 silver Inorganic materials 0.000 claims abstract description 5
- 239000008346 aqueous phase Substances 0.000 claims abstract 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 14
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 11
- GSNUFIFRDBKVIE-UHFFFAOYSA-N 2,5-dimethylfuran Chemical compound CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 claims description 10
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 claims description 8
- -1 5-methano Furan Chemical compound 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 238000011068 loading method Methods 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 5
- IYWJIYWFPADQAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;ruthenium Chemical compound [Ru].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O IYWJIYWFPADQAN-LNTINUHCSA-N 0.000 claims description 4
- CCDRPZFMDMKZSZ-UHFFFAOYSA-N 5-(ethoxymethyl)furan-2-carbaldehyde Chemical compound CCOCC1=CC=C(C=O)O1 CCDRPZFMDMKZSZ-UHFFFAOYSA-N 0.000 claims description 4
- OUDFNZMQXZILJD-UHFFFAOYSA-N 5-methyl-2-furaldehyde Chemical compound CC1=CC=C(C=O)O1 OUDFNZMQXZILJD-UHFFFAOYSA-N 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000003021 water soluble solvent Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 238000006555 catalytic reaction Methods 0.000 claims description 2
- 229940011182 cobalt acetate Drugs 0.000 claims description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 2
- 125000004989 dicarbonyl group Chemical group 0.000 claims description 2
- AHIXHWRUDZFHEZ-UHFFFAOYSA-N furan-2,3-dicarbaldehyde Chemical compound O=CC=1C=COC=1C=O AHIXHWRUDZFHEZ-UHFFFAOYSA-N 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- 125000000962 organic group Chemical group 0.000 claims description 2
- 150000002902 organometallic compounds Chemical class 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- ASHVULSQMDWKFO-UHFFFAOYSA-N 5-(methoxymethyl)furan-2-carbaldehyde Chemical compound COCC1=CC=C(C=O)O1 ASHVULSQMDWKFO-UHFFFAOYSA-N 0.000 claims 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 2
- SXRACWYQVZMVMK-UHFFFAOYSA-N C(=O)O.C(=O)O.O1C=CC=C1 Chemical compound C(=O)O.C(=O)O.O1C=CC=C1 SXRACWYQVZMVMK-UHFFFAOYSA-N 0.000 claims 1
- 230000032683 aging Effects 0.000 claims 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 claims 1
- 239000002904 solvent Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 150000003624 transition metals Chemical class 0.000 abstract description 3
- 238000003980 solgel method Methods 0.000 abstract description 2
- 239000002923 metal particle Substances 0.000 abstract 2
- 238000009827 uniform distribution Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 8
- DSLRVRBSNLHVBH-UHFFFAOYSA-N 2,5-furandimethanol Chemical compound OCC1=CC=C(CO)O1 DSLRVRBSNLHVBH-UHFFFAOYSA-N 0.000 description 7
- YCZZQSFWHFBKMU-UHFFFAOYSA-N [5-(hydroxymethyl)oxolan-2-yl]methanol Chemical compound OCC1CCC(CO)O1 YCZZQSFWHFBKMU-UHFFFAOYSA-N 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- 238000007142 ring opening reaction Methods 0.000 description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 5
- OXMIDRBAFOEOQT-UHFFFAOYSA-N 2,5-dimethyloxolane Chemical compound CC1CCC(C)O1 OXMIDRBAFOEOQT-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- UFAPLAOEQMMKJA-UHFFFAOYSA-N hexane-1,2,5-triol Chemical compound CC(O)CCC(O)CO UFAPLAOEQMMKJA-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- VOZFDEJGHQWZHU-UHFFFAOYSA-N (5-methylfuran-2-yl)methanol Chemical compound CC1=CC=C(CO)O1 VOZFDEJGHQWZHU-UHFFFAOYSA-N 0.000 description 2
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical group OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 2
- VQKFNUFAXTZWDK-UHFFFAOYSA-N 2-Methylfuran Chemical compound CC1=CC=CO1 VQKFNUFAXTZWDK-UHFFFAOYSA-N 0.000 description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009904 heterogeneous catalytic hydrogenation reaction Methods 0.000 description 2
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YXADPHVQSSNJLB-UHFFFAOYSA-N 1-hydroxyhexane-2,5-dione Chemical group CC(=O)CCC(=O)CO YXADPHVQSSNJLB-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical class [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- SOGYZZRPOIMNHO-UHFFFAOYSA-N [2-(hydroxymethyl)furan-3-yl]methanol Chemical compound OCC=1C=COC=1CO SOGYZZRPOIMNHO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- DNXDYHALMANNEJ-UHFFFAOYSA-N furan-2,3-dicarboxylic acid Chemical compound OC(=O)C=1C=COC=1C(O)=O DNXDYHALMANNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- GLOBUAZSRIOKLN-UHFFFAOYSA-N pentane-1,4-diol Chemical compound CC(O)CCCO GLOBUAZSRIOKLN-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000002383 small-angle X-ray diffraction data Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种介孔锆硅纳米球稳定的金属簇及制备方法与应用。由Zr嵌入的介孔硅纳米球及其表面稳定的过渡金属簇粒子组成,其具有均一的六方孔道、金属粒子小且分布均匀(0.6-2.0nm)、稳定性高、催化活性高等特点。其中,过渡金属粒子为Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中的一种或多种。该材料采用溶胶-凝胶法合成纳米球,浸渍-氢还原法负载金属簇粒子。以该材料作为催化剂水相加氢转化呋喃衍生物,可实现常温常压加氢的高活性,及高选择性获取加氢产物或开环产物。
The invention discloses a metal cluster stabilized by mesoporous zirconium silicon nanospheres, a preparation method and application thereof. Composed of Zr-embedded mesoporous silicon nanospheres and transition metal cluster particles with stable surface, it has the characteristics of uniform hexagonal channels, small and uniform distribution of metal particles (0.6-2.0nm), high stability and high catalytic activity. Wherein, the transition metal particles are one or more of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au. The material adopts a sol-gel method to synthesize nanospheres, and an impregnation-hydrogen reduction method to load metal cluster particles. Using this material as a catalyst for aqueous phase hydrogenation conversion of furan derivatives can achieve high activity of hydrogenation at normal temperature and pressure, and high selectivity to obtain hydrogenation products or ring-opened products.
Description
技术领域technical field
本发明涉及材料与能源领域,具体涉及一种介孔锆硅纳米球稳定的金属簇及其制备方法,还涉及上述材料在生物质基呋喃衍生物加氢反应中的应用。The invention relates to the field of materials and energy, in particular to a metal cluster stabilized by mesoporous zirconium-silicon nanospheres and a preparation method thereof, and also relates to the application of the above-mentioned material in the hydrogenation reaction of biomass-based furan derivatives.
背景技术Background technique
金属簇由于其独特的金属键合结构而表现出较高的催化活性和选择性,其在反应过程中的稳定性一直是研究学者关注的共性问题。已经报道了诸多方法用于抑制金属簇在催化过程中的团聚现象,包括将金属簇装载于微孔分子筛超笼中[J.Am.Chem.Soc.2012,134,17688]、碳纳米管中[ACS Appl.Mater.Interfaces2012,4,6302]、中空壳材料中[Small2008,4,1694]以及用聚合物分散保护[Adv.Synth.Catal.2006,348,857]等。但聚合物材料及微孔材料锚定的金属簇分别存在热稳定性较低,底物分子扩散受限的问题。Metal clusters exhibit high catalytic activity and selectivity due to their unique metal-bonding structures, and their stability during the reaction has always been a common concern of researchers. Many methods have been reported to suppress the agglomeration of metal clusters in the catalytic process, including loading metal clusters in microporous molecular sieve supercages [J.Am.Chem.Soc.2012,134,17688], carbon nanotubes [ACS Appl.Mater.Interfaces2012,4,6302], hollow shell materials [Small2008,4,1694] and polymer dispersion protection [Adv.Synth.Catal.2006,348,857], etc. However, polymer materials and metal clusters anchored by microporous materials have the problems of low thermal stability and limited diffusion of substrate molecules.
介孔分子筛具备较大的孔径,对大分子有机物适用性较广。为了获得介孔分子筛稳定的金属簇材料,Mihalcik等通过有机配体锚定的方法将金属簇嫁接到介孔分子筛孔道表面[Angew.Chem.Int.Ed.2008,47,6229],但高温条件下有机配体分解易使金属簇烧结失活;Liu等利用钛等金属掺杂的介孔硅基分子筛增加了镍纳米颗粒的分散度,但颗粒大小最优为16nm[J.Catal.2009,266,380]。因此,通过设计高比表面金属掺杂的介孔硅基材料,可以获得高分散且稳定的金属纳米粒子。Mesoporous molecular sieves have a large pore size and are widely applicable to macromolecular organic substances. In order to obtain stable metal cluster materials for mesoporous molecular sieves, Mihalcik et al. grafted metal clusters onto the channel surface of mesoporous molecular sieves by means of organic ligand anchoring [Angew.Chem.Int.Ed.2008,47,6229], but high temperature conditions The decomposition of organic ligands can easily deactivate metal clusters by sintering; Liu et al. used mesoporous silicon-based molecular sieves doped with titanium and other metals to increase the dispersion of nickel nanoparticles, but the optimal particle size is 16nm [J.Catal.2009,266,380] . Therefore, highly dispersed and stable metal nanoparticles can be obtained by designing mesoporous silicon-based materials doped with high surface area metals.
随着石油等化石能源的不断消耗,生物质的转化利用将是有效的能源补充途径之一。呋喃衍生物作为生物质基平台化合物,通过催化加氢转化可制取液体燃料分子(2,5-二甲基呋喃等)和高附加值化学品(2,5-二羟甲基四氢呋喃,1,6-己二醇等聚合物单体)[Chem.Rev.2013,113,1499]。目前采用的多相加氢催化剂,大多需要高温或高压反应条件[Green Chem.2012,14,1413;Catal.Commun.2010,12,154],不仅增加反应能耗,而且容易促使反应物结焦等其他副反应,降低选择性及原料利用率。因此,迫切需要开发高活性、高选择性的多相加氢催化剂。With the continuous consumption of fossil energy such as petroleum, the conversion and utilization of biomass will be one of the effective ways to supplement energy. As a biomass-based platform compound, furan derivatives can be used to produce liquid fuel molecules (2,5-dimethylfuran, etc.) and high value-added chemicals (2,5-dimethyloltetrahydrofuran, 1 , 6-hexanediol and other polymer monomers) [Chem.Rev.2013,113,1499]. Most of the currently used heterogeneous hydrogenation catalysts require high temperature or high pressure reaction conditions [Green Chem.2012, 14, 1413; Catal.Commun. Reaction, reduce selectivity and raw material utilization. Therefore, there is an urgent need to develop highly active and highly selective heterogeneous hydrogenation catalysts.
在申请人检索范围内,利用介孔锆硅纳米球直接稳定金属簇,并用作多相催化剂,应用于呋喃衍生物催化加氢反应,目前还未见有人研究报道。Within the scope of the applicant's search, the use of mesoporous zirconium-silicon nanospheres to directly stabilize metal clusters and use them as heterogeneous catalysts for catalytic hydrogenation reactions of furan derivatives has not yet been reported.
发明内容Contents of the invention
本发明目的在于提供一种介孔锆硅纳米球稳定的金属簇材料及其制备方法。该材料包含具有均一六方孔道的介孔锆硅纳米球及其表面高分散且稳定的金属簇粒子(小于2nm)。The purpose of the present invention is to provide a metal cluster material stable with mesoporous zirconium silicon nanospheres and a preparation method thereof. The material contains mesoporous zirconium-silicon nanospheres with uniform hexagonal channels and highly dispersed and stable metal cluster particles (less than 2nm) on the surface.
为了实现上述目的,本发明采用等体积浸渍-氢还原法将金属簇固载于介孔锆硅纳米球中。In order to achieve the above-mentioned purpose, the present invention adopts an equal-volume impregnation-hydrogen reduction method to immobilize metal clusters in mesoporous zirconium-silicon nanospheres.
该材料具有均一的六方孔道结构、平均孔径为2.0-3.0nm;金属簇固载于介孔锆硅纳米球中,其中金属簇于材料上的质量担载量为0.01-50%,金属簇粒子为过渡金属元素中的一种或二种以上、粒子尺寸0.6-2.0nm。The material has a uniform hexagonal pore structure with an average pore diameter of 2.0-3.0nm; metal clusters are immobilized in mesoporous zirconium-silicon nanospheres, and the mass loading of metal clusters on the material is 0.01-50%. Metal cluster particles It is one or more than two kinds of transition metal elements, and the particle size is 0.6-2.0nm.
金属簇元素优选Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中一种或二种以上;Metal cluster elements are preferably one or more of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au;
其中材料上负载的金属簇质量比为0.01%-50%,较佳为0.05%-30%,最佳为0.1%-10%。The mass ratio of metal clusters loaded on the material is 0.01%-50%, preferably 0.05%-30%, and most preferably 0.1%-10%.
具体制备方法如下:The specific preparation method is as follows:
1)介孔锆硅纳米球的制备:将0.58g的十六烷基三甲基溴化铵(CTAB)模板剂溶于300mL氨水(pH值为10-12)溶液中,水浴加热至40-60°C,搅拌下加入浓度0.1-0.5mol·L-1的稀正硅酸乙酯(TEOS)的乙醇溶液,反应5小时后,滴加硅的浓度0.6-2.5mol·L-1的浓正硅酸乙酯(TEOS)和正丙醇锆(Zr(OnPr)4)混合的乙醇溶液,(混合物种锆与硅的摩尔数之比为0.01-0.5);搅拌后陈化20小时,固液分离,固体物质水洗涤、110°C干燥过夜、550°C焙烧10小时后即得到MSN-Zr;1) Preparation of mesoporous zirconium-silicon nanospheres: Dissolve 0.58g of cetyltrimethylammonium bromide (CTAB) template in 300mL of ammonia (pH 10-12) solution, and heat in a water bath to 40- 60°C, under stirring, add dilute ethyl orthosilicate (TEOS ) ethanol solution with a concentration of 0.1-0.5mol L Ethanol solution mixed with tetraethyl orthosilicate (TEOS) and zirconium n-propoxide (Zr( On Pr) 4 ), (the molar ratio of zirconium to silicon of the mixed species is 0.01-0.5); aged for 20 hours after stirring, Solid-liquid separation, solid matter washed with water, dried overnight at 110°C, and roasted at 550°C for 10 hours to obtain MSN-Zr;
2)采用浸渍-氢还原法制备介孔锆硅纳米球稳定的金属簇(M/MSN-Zr):称取1g MSN-Zr载体,将0.1-10%金属担载量的金属盐溶解于3.5g水溶性溶剂中,超声分散,室温静置12-48小时,100-120°C烘干后置于管式炉中,100-800°C下氢气还原处理0.5-10小时,即得到M/MSN-Zr。上述方法步骤1中,所述的混合物中各原料摩尔比为Zr/Si=0.01-0.50,CTAB/Si=0.05-1.0,H2O/Si=500-5000;较佳为Zr/Si=0.01-0.20,CTAB/Si=0.05-0.50,H2O/Si=1000-3500;最佳为Zr/Si=0.01-0.10,CTAB/Si=0.20-0.30,H2O/Si=2000-3000。2) Prepare mesoporous zirconium-silicon nanosphere-stabilized metal clusters (M/MSN-Zr) by impregnation-hydrogen reduction method: weigh 1 g of MSN-Zr carrier, and dissolve metal salt with 0.1-10% metal loading in 3.5 g in a water-soluble solvent, ultrasonically dispersed, left standing at room temperature for 12-48 hours, dried at 100-120°C, placed in a tube furnace, and treated with hydrogen reduction at 100-800°C for 0.5-10 hours to obtain M/ MSN-Zr. In step 1 of the above method, the molar ratio of each raw material in the mixture is Zr/Si=0.01-0.50, CTAB/Si=0.05-1.0, H 2 O/Si=500-5000; preferably Zr/Si=0.01 -0.20, CTAB/Si=0.05-0.50, H 2 O/Si=1000-3500; the best is Zr/Si=0.01-0.10, CTAB/Si=0.20-0.30, H 2 O/Si=2000-3000.
所述的稀TEOS乙醇溶液的浓度较佳为0.1-0.5mol·L-1,最佳为0.2-0.4mol·L-1;浓TEOS和Zr(OnPr)4混合的乙醇溶液的浓度较佳为0.6-2.5mol·L-1,最佳为1-2mol·L-1。The concentration of the dilute TEOS ethanol solution is preferably 0.1-0.5mol·L -1 , most preferably 0.2-0.4mol·L -1 ; the concentration of the mixed ethanol solution of concentrated TEOS and Zr( On Pr) 4 is relatively Preferably it is 0.6-2.5 mol·L -1 , most preferably 1-2 mol·L -1 .
所述的稀氨水溶液中,pH值为8-14,较佳为9-13,最佳为10-12。In the dilute ammonia solution, the pH value is 8-14, preferably 9-13, most preferably 10-12.
上述方法步骤2中,所述的金属簇,选自周期表中过渡金属元素中至少一种,优选Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中至少一种;金属离子选自其有机金属化合物(乙酰丙酮钌、二羰基乙酰丙酮铱、醋酸钴等)、金属无机盐(硝酸铁、硝酸镍、氯化钌、氯金酸等);其中,负载的金属簇质量比为0.01%-50%,较佳为0.05%-30%,最佳为0.1%-10%。In step 2 of the above method, the metal cluster is selected from at least one transition metal element in the periodic table, preferably Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au At least one; the metal ion is selected from its organometallic compounds (ruthenium acetylacetonate, iridium dicarbonyl acetylacetonate, cobalt acetate, etc.), metal inorganic salts (ferric nitrate, nickel nitrate, ruthenium chloride, chloroauric acid, etc.); wherein, The mass ratio of metal clusters to be loaded is 0.01%-50%, preferably 0.05%-30%, and most preferably 0.1%-10%.
所述的水溶性溶剂选自水、甲醇、乙醇、丙醇、异丙醇、丙酮中至少一种。The water-soluble solvent is at least one selected from water, methanol, ethanol, propanol, isopropanol and acetone.
所述的氢气还原处理条件中,氢气以流动形式提供,其流量为1-70mL·min-1较佳为5-50mL·min-1,最佳为10-40mL·min-1;还原温度为100-800°C,较佳为100-700°C,最佳为100-600°C;还原时间为0.5-10小时,较佳为1-8小时,最佳为1-6小时。In the hydrogen reduction treatment conditions described above, hydrogen is provided in a flowing form, the flow rate of which is 1-70mL·min -1 , preferably 5-50mL·min -1 , most preferably 10-40mL·min -1 ; the reduction temperature is 100-800°C, preferably 100-700°C, most preferably 100-600°C; reduction time is 0.5-10 hours, preferably 1-8 hours, most preferably 1-6 hours.
本发明的另一目的在于提供此类介孔锆硅纳米球稳定的金属簇材料用作催化剂,在呋喃衍生物加氢转化中的应用。Another object of the present invention is to provide such metal cluster materials stabilized by mesoporous zirconium-silicon nanospheres as catalysts in the hydrogenation conversion of furan derivatives.
为实现上述目的,本发明所述的呋喃衍生物加氢反应是在分子氢和金属簇催化剂共同作用下进行的。具体步骤如下:In order to achieve the above purpose, the hydrogenation reaction of furan derivatives in the present invention is carried out under the combined action of molecular hydrogen and metal cluster catalysts. Specific steps are as follows:
高压反应釜中加入一定量呋喃衍生物的水溶液和氢气新还原制备的M/MSN-Zr催化剂,封釜后置换釜内空气数次,充入氢气至指定压力,在特定温度下搅拌反应数小时。Add a certain amount of furan derivative aqueous solution and hydrogen newly reduced M/MSN-Zr catalyst to the autoclave, seal the autoclave and replace the air in the autoclave several times, fill the autoclave with hydrogen to the specified pressure, and stir the reaction at a specific temperature for several hours .
本发明所述的呋喃衍生物为呋喃和呋喃环上有机基团取代的化合物。选自下述化合物中的一种或二种以上:呋喃、5-甲基呋喃、2,5-二甲基呋喃、糠醛、5-甲基糠醛、5-羟甲基糠醛、5-乙氧基甲基糠醛、呋喃二甲醛、呋喃二甲酸;其相应的加氢产物为呋喃环加氢产物(2,5-二甲基四氢呋喃、2,5-二羟甲基四氢呋喃等四氢呋喃基化合物)、呋喃环上取代基加氢产物(5-甲基糠醇、呋喃二甲醇等呋喃基化合物)、加氢开环产物(2,5-己二醇、1,4-丁二醇等多元醇化合物)中的一种或二种以上。The furan derivatives described in the present invention are furan and compounds substituted by organic groups on the furan ring. One or more of the following compounds: furan, 5-methylfuran, 2,5-dimethylfuran, furfural, 5-methylfurfural, 5-hydroxymethylfurfural, 5-ethoxy methylfurfural, furandicarbaldehyde, and furandicarboxylic acid; the corresponding hydrogenation products are furan ring hydrogenation products (2,5-dimethyltetrahydrofuran, 2,5-dimethyloltetrahydrofuran and other tetrahydrofuran-based compounds), Hydrogenation products of substituents on the furan ring (5-methylfurfuryl alcohol, furan dimethanol and other furyl compounds), hydrogenation ring-opening products (2,5-hexanediol, 1,4-butanediol and other polyol compounds) one or more of them.
本发明所述的催化剂与底物加入量比,以金属质量计,为0.01%-100%,较佳为0.1%-50%,最佳为0.1%-10%。The ratio of the amount of catalyst to substrate added in the present invention is 0.01%-100% based on metal mass, preferably 0.1%-50%, and most optimally 0.1%-10%.
按照本发明所述的催化反应条件,加氢反应温度为20-240°C,较佳为25-150°C,最佳为25-100°C;氢气压力为0.1-10MPa,较佳为0.1-5MPa,最佳为0.5-3MPa;反应时间为0.1-10小时,较佳为0.5-5小时,最佳为1-4小时。According to the catalytic reaction conditions of the present invention, the hydrogenation reaction temperature is 20-240°C, preferably 25-150°C, the best 25-100°C; the hydrogen pressure is 0.1-10MPa, preferably 0.1 -5MPa, preferably 0.5-3MPa; reaction time is 0.1-10 hours, preferably 0.5-5 hours, most preferably 1-4 hours.
综上所述,本发明提供了一种溶胶-凝胶法及浸渍-氢还原法,合成了具有均一六方孔道的介孔锆硅纳米球及其表面高分散且稳定的金属簇粒子。该金属簇粒子为过渡金属元素,粒子尺寸小且分布均匀(0.6-2.0nm),具有高温抗烧结稳定性、高催化活性等特征,其制备方法简单便捷、原料广泛易得,是一种易于实现工业化生产和应用的材料。本发明还提供了该材料作为一种新型催化剂用于呋喃衍生物加氢反应,具有高活性和高选择性的特点,且通过简单地调变时间、温度等反应条件,可高选择性的获得加氢产物或开环产物。In summary, the present invention provides a sol-gel method and impregnation-hydrogen reduction method to synthesize mesoporous zirconium-silicon nanospheres with uniform hexagonal channels and highly dispersed and stable metal cluster particles on the surface. The metal cluster particles are transition metal elements, the particle size is small and evenly distributed (0.6-2.0nm), and it has the characteristics of high-temperature anti-sintering stability and high catalytic activity. The preparation method is simple and convenient, and the raw materials are widely available. It is an easy-to-use Materials for industrialized production and application. The invention also provides that the material is used as a novel catalyst for the hydrogenation reaction of furan derivatives, which has the characteristics of high activity and high selectivity, and can be obtained with high selectivity by simply adjusting reaction conditions such as time and temperature. Hydrogenation products or ring-opened products.
附图说明Description of drawings
图1为实施例1和实施例2的介孔锆硅纳米球(MSN-Zr)及其稳定的Ru金属簇(Ru/MSN-Zr)的小角XRD图;Figure 1 is the small-angle XRD pattern of the mesoporous zirconium-silicon nanospheres (MSN-Zr) and their stable Ru metal clusters (Ru/MSN-Zr) in Examples 1 and 2;
图2为实施例2的介孔锆硅纳米球稳定的Ru金属簇的a)高分辨透射电镜图(HRTEM)和b)高角环形暗场像(HAADF);Figure 2 is a) high-resolution transmission electron microscope image (HRTEM) and b) high-angle annular dark field image (HAADF) of the Ru metal clusters stabilized by mesoporous zirconium-silicon nanospheres in Example 2;
图3为实施例5的空气中煅烧后的Ru/MSN-Zr-20的透射电镜图(TEM)。FIG. 3 is a transmission electron microscope image (TEM) of Ru/MSN-Zr-20 calcined in air in Example 5. FIG.
具体实施方式Detailed ways
下列实施例有助于理解本发明,但发明内容并不局限于此。The following examples are helpful for understanding the present invention, but the content of the invention is not limited thereto.
实施例1介孔锆硅纳米球的合成Synthesis of Example 1 Mesoporous Zirconium Silicon Nanospheres
将12g浓氨水(25wt%)用去离子水稀释至300g(pH=11.4),加入0.58g CTAB,50°C水浴中搅拌溶解。配制稀正硅酸乙酯(TEOS)的乙醇溶液A:中(Si)浓度0.2mol·L-1,及浓TEOS与正丙醇锆(Zr(OnPr)4)的混合溶液B:中(Si)浓度1.0mol·L-1(分别配制使B中:Zr/Si=0.025,0.05,0.1)。搅拌下向上述混合液中快速加入5mL A溶液,密封反应器,搅拌5小时,打开反应器,逐滴加入5mL B溶液,继续搅拌1小时后停止搅拌,50°C水浴中静置20小时。反应混合物离心分离,用去离子水洗涤至中性,再用乙醇洗涤1至2次,80°C干燥过夜,550°C焙烧10小时,即可得到不同锆硅原子比的介孔锆硅纳米球MSN-Zr-x(x=Si/Zr=10,20,40)。其结构性质如表1和图1所示。Dilute 12g of concentrated ammonia water (25wt%) with deionized water to 300g (pH=11.4), add 0.58g of CTAB, stir and dissolve in a 50°C water bath. Prepare dilute tetraethyl orthosilicate (TEOS) ethanol solution A: medium (Si) concentration 0.2mol L -1 , and mixed solution of concentrated TEOS and n-propoxide zirconium (Zr( On Pr) 4 ) B: medium (Si) concentration 1.0mol·L -1 (respectively prepared so that in B: Zr/Si=0.025, 0.05, 0.1). Quickly add 5mL of A solution to the above mixed solution under stirring, seal the reactor, stir for 5 hours, open the reactor, add 5mL of B solution dropwise, continue stirring for 1 hour, stop stirring, and stand in a 50°C water bath for 20 hours. The reaction mixture was centrifuged, washed with deionized water to neutrality, washed with ethanol for 1 to 2 times, dried overnight at 80°C, and roasted at 550°C for 10 hours to obtain mesoporous zirconium-silicon nanoparticles with different atomic ratios of zirconium to silicon. Ball MSN-Zr-x (x=Si/Zr=10,20,40). Its structural properties are shown in Table 1 and Figure 1.
表1介孔锆硅纳米球的结构性质Table 1 Structural properties of mesoporous zirconium silicon nanospheres
实施例2介孔锆硅纳米球稳定的钌金属簇的合成Example 2 Synthesis of Ru metal clusters stabilized by mesoporous zirconium silicon nanospheres
将0.1442g RuCl3(36.5wt%Ru)溶解于3.5g水中,加入1gMSN-Zr-20,超声分散,室温静置24小时,110°C烘干。将干燥后的粉末样品置于管式炉中,30mL·min-1流动氢气中,350°C还原6小时后即得到Ru/MSN-Zr-20(Ru负载量为5wt%)。基于透射电镜(TEM)图,统计Ru颗粒的平均粒径为1.1nm,结果如图2所示。Dissolve 0.1442g RuCl 3 (36.5wt%Ru) in 3.5g water, add 1g MSN-Zr-20, ultrasonically disperse, let stand at room temperature for 24 hours, and dry at 110°C. The dried powder sample was placed in a tube furnace in 30mL·min -1 flowing hydrogen, and reduced at 350°C for 6 hours to obtain Ru/MSN-Zr-20 (Ru loading 5wt%). Based on the transmission electron microscope (TEM) image, the average particle size of the statistical Ru particles is 1.1 nm, and the results are shown in Figure 2.
实施例3乙酰丙酮钌合成钌金属簇Embodiment 3 ruthenium acetylacetonate synthesizes ruthenium metal clusters
将0.2072g Ru(acac)3溶解于3.5g丙酮中,加入1g MSN-Zr-20,超声分散,室温静置24小时,110°C烘干。将干燥后的粉末样品置于管式炉中,30mL·min-1流动氢气中,350°C还原6小时后即得到Ru/MSN-Zr-20。其Ru颗粒平均粒径为0.8nm。Dissolve 0.2072g Ru(acac) 3 in 3.5g acetone, add 1g MSN-Zr-20, ultrasonically disperse, let stand at room temperature for 24 hours, and dry at 110°C. The dried powder sample was placed in a tube furnace under 30mL·min -1 flowing hydrogen, and reduced at 350°C for 6 hours to obtain Ru/MSN-Zr-20. The average diameter of the Ru particles is 0.8nm.
实施例4镍金属簇的合成The synthesis of embodiment 4 nickel metal clusters
将0.5505g Ni(NO3)2·6H2O溶解于3.5g水中,加入1g MSN-Zr-20,超声分散,室温静置24小时,110°C烘干。将干燥后的粉末样品置于管式炉中,25mL·min-1流动氢气中,450°C还原3小时后即得到Ni/MSN-Zr-20(Ni负载量为10wt%)。其Ni颗粒平均粒径为1.8nm。Dissolve 0.5505g Ni(NO 3 ) 2 ·6H 2 O in 3.5g water, add 1g MSN-Zr-20, ultrasonically disperse, let stand at room temperature for 24 hours, and dry at 110°C. The dried powder sample was placed in a tube furnace in 25mL·min -1 flowing hydrogen, and reduced at 450°C for 3 hours to obtain Ni/MSN-Zr-20 (10wt% Ni loading). The average particle diameter of Ni particles is 1.8nm.
实施例5Ru/MSN-Zr-20中Ru金属簇的稳定性The stability of Ru metal cluster in embodiment 5Ru/MSN-Zr-20
将实施例2中的催化剂Ru/MSN-Zr-20置于空气中煅烧3小时后,以TEM表征其粒径,平均值依然为1.1nm,结果如图3所示。After the catalyst Ru/MSN-Zr-20 in Example 2 was calcined in air for 3 hours, its particle size was characterized by TEM, and the average value was still 1.1 nm. The result is shown in FIG. 3 .
实施例65-羟甲基糠醛(HMF)催化加氢反应活性Embodiment 65-Hydroxymethylfurfural (HMF) catalytic hydrogenation reaction activity
向50mL高压反应釜中加入0.1g HMF、9.9g水和0.1g新还原的实施例2中的催化剂Ru/MSN-Zr-20,密封后置换空气,充入氢气至0.5MPa,调节温度稳定于25℃,搅拌一定时间后,停止反应。HMF转化率及产物选择性如表2所示(其中,加氢产物为2,5-二羟甲基呋喃(DHMF)、2,5-二羟甲基四氢呋喃(DHMTHF);开环产物为1,2,6-己三醇(1,2,6-HT)、1,2,5-己三醇(1,2,5-HT))。Add 0.1g HMF, 9.9g water and 0.1g newly reduced catalyst Ru/MSN-Zr-20 in the embodiment 2 in the 50mL autoclave, replace the air after sealing, charge into hydrogen to 0.5MPa, adjust the temperature to be stable at 25°C, after stirring for a certain period of time, stop the reaction. The HMF conversion rate and product selectivity are shown in Table 2 (the hydrogenation products are 2,5-dimethylolfuran (DHMF) and 2,5-dimethyloltetrahydrofuran (DHMTHF); the ring-opening product is 1 ,2,6-hexanetriol (1,2,6-HT), 1,2,5-hexanetriol (1,2,5-HT)).
表2Ru金属簇催化HMF加氢反应结果Table 2 The results of the hydrogenation reaction of HMF catalyzed by Ru metal clusters
实施例7反应温度对金属簇催化性能的影响The influence of embodiment 7 reaction temperature on metal cluster catalytic performance
按照实施例2制备催化剂Ru/MSN-Zr-10,并进行氢气还原处理,其Ru颗粒平均粒径为1.4nm。Catalyst Ru/MSN-Zr-10 was prepared according to Example 2, and subjected to hydrogen reduction treatment, the average particle diameter of Ru particles was 1.4nm.
向50mL高压反应釜中加入0.1g HMF、9.9g水和50mg新还原的催化剂Ru/MSN-Zr-10,密封后置换空气,充入氢气至0.5MPa,调节不同反应温度,搅拌4小时后,停止反应。HMF转化率及产物选择性如表3所示(其中,加氢产物为2,5-二羟甲基呋喃(DHMF)、2,5-二羟甲基四氢呋喃(DHMTHF);开环产物为1-羟基-2,5-己二酮(HHD)、1,2,5-己三醇(1,2,5-HT))。Add 0.1g HMF, 9.9g water and 50mg newly reduced catalyst Ru/MSN-Zr-10 into a 50mL autoclave, replace the air after sealing, fill with hydrogen to 0.5MPa, adjust different reaction temperatures, stir for 4 hours, Stop responding. HMF conversion rate and product selectivity are shown in Table 3 (the hydrogenation products are 2,5-dimethylolfuran (DHMF) and 2,5-dimethyloltetrahydrofuran (DHMTHF); the ring-opening product is 1 -Hydroxy-2,5-hexanedione (HHD), 1,2,5-hexanetriol (1,2,5-HT)).
表3反应温度对催化剂反应性能的影响The influence of table 3 reaction temperature on catalyst reaction performance
实施例8反应压力对金属簇催化性能的影响The influence of embodiment 8 reaction pressure on metal cluster catalytic performance
向50mL高压反应釜中加入0.1g HMF、9.9g水和50mg新还原的实施例6中的催化剂Ru/MSN-Zr-10,密封后置换空气,充入氢气至一定压力,调节温度稳定于25℃,搅拌4小时后,停止反应。HMF转化率及产物选择性如表4所示(其中,加氢产物为2,5-二羟甲基呋喃(DHMF)、2,5-二羟甲基四氢呋喃(DHMTHF);开环产物为1,2,6-己三醇(1,2,6-HT)、1,2,5-己三醇(1,2,5-HT))。Add 0.1g HMF, 9.9g water and 50mg newly reduced catalyst Ru/MSN-Zr-10 in Example 6 to a 50mL autoclave, replace the air after sealing, fill with hydrogen to a certain pressure, and adjust the temperature to be stable at 25 °C, after stirring for 4 hours, the reaction was stopped. HMF conversion rate and product selectivity are shown in Table 4 (the hydrogenation products are 2,5-dimethylolfuran (DHMF) and 2,5-dimethyloltetrahydrofuran (DHMTHF); the ring-opening product is 1 ,2,6-hexanetriol (1,2,6-HT), 1,2,5-hexanetriol (1,2,5-HT)).
表4反应压力对催化剂反应性能的影响The influence of table 4 reaction pressure on catalyst reaction performance
实施例9金属簇催化呋喃衍生物加氢反应活性Example 9 Metal Cluster Catalyzed Hydrogenation Reaction Activity of Furan Derivatives
实施例中选取糠醛、5-甲基糠醛、5-羟甲基糠醛、5-乙氧基甲基糠醛、呋喃、5-甲基呋喃、2,5-二甲基呋喃作为反应底物,其中,糠基加氢产物和呋喃环加氢产物分别指糠醇和四氢糠醇、5-甲基糠醇和5-甲基四氢糠醇、2,5-二羟甲基呋喃和2,5-二羟甲基四氢呋喃、5-乙氧基甲基糠醇和5-乙氧基甲基四氢糠醇;呋喃环加氢产物和开环产物分别指四氢呋喃和1,4-丁二醇、5-甲基四氢呋喃和1,4-戊二醇、2,5-二甲基四氢呋喃和2,5-已二醇。Furfural, 5-methylfurfural, 5-hydroxymethylfurfural, 5-ethoxymethylfurfural, furan, 5-methylfuran, and 2,5-dimethylfuran are selected as reaction substrates in the embodiments, wherein , Furfuryl hydrogenation products and furan ring hydrogenation products refer to furfuryl alcohol and tetrahydrofurfuryl alcohol, 5-methylfurfuryl alcohol and 5-methyltetrahydrofurfuryl alcohol, 2,5-dimethylfuran and 2,5-dihydroxyfurfuryl alcohol, respectively Methyltetrahydrofuran, 5-ethoxymethylfurfuryl alcohol, and 5-ethoxymethyltetrahydrofurfuryl alcohol; furan ring hydrogenation products and ring-opening products refer to tetrahydrofuran, 1,4-butanediol, and 5-methyltetrahydrofuran, respectively and 1,4-pentanediol, 2,5-dimethyltetrahydrofuran and 2,5-hexanediol.
向50mL高压反应釜中加入0.1g底物、9.9g水和50mg新还原的实施例6中的催化剂Ru/MSN-Zr-10,密封后置换空气,充入氢气至0.5MPa,调节温度稳定于25°C,搅拌4小时后,停止反应。呋喃衍生物转化率及产物选择性如表5所示。Add 0.1g substrate, 9.9g water and 50mg newly reduced catalyst Ru/MSN-Zr-10 in Example 6 to the 50mL autoclave, replace the air after sealing, fill with hydrogen to 0.5MPa, and adjust the temperature to be stable at 25°C, after stirring for 4 hours, stop the reaction. The conversion rate and product selectivity of furan derivatives are shown in Table 5.
表5-1Ru金属簇催化糠基衍生物加氢反应性能Table 5-1 Hydrogenation performance of furfuryl derivatives catalyzed by Ru metal clusters
表5-2Ru金属簇催化呋喃衍生物加氢反应性能Table 5-2Ru metal clusters catalyzed hydrogenation reaction performance of furan derivatives
综上所述,本发明提供的介孔锆硅纳米球稳定的金属簇粒子,相比于已公开的材料,该材料具有高分散、高稳定金属簇粒子(0.6-2.0nm),同时具有均一的六方介孔结构(孔径2.0-3.0nm),利于大分子底物的扩散。在催化呋喃衍生物加氢反应中,表现出常温常压加氢的高催化活性,及高选择性获取加氢产物或开环产物。加之制备方法简单便捷、元素覆盖多数过渡金属、原料广泛易得等特点,将是一类易于实现工业化生产和应用的材料。In summary, the metal cluster particles stabilized by mesoporous zirconium-silicon nanospheres provided by the present invention have highly dispersed and highly stable metal cluster particles (0.6-2.0nm) and uniform The hexagonal mesoporous structure (pore size 2.0-3.0nm) facilitates the diffusion of macromolecular substrates. In the catalytic hydrogenation reaction of furan derivatives, it shows high catalytic activity for hydrogenation at normal temperature and pressure, and high selectivity to obtain hydrogenated products or ring-opened products. In addition, the preparation method is simple and convenient, the elements cover most transition metals, and the raw materials are widely available, etc., it will be a class of materials that are easy to realize industrial production and application.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310210499.4A CN104209120B (en) | 2013-05-30 | 2013-05-30 | Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310210499.4A CN104209120B (en) | 2013-05-30 | 2013-05-30 | Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104209120A true CN104209120A (en) | 2014-12-17 |
CN104209120B CN104209120B (en) | 2016-09-14 |
Family
ID=52091263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310210499.4A Expired - Fee Related CN104209120B (en) | 2013-05-30 | 2013-05-30 | Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104209120B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160194298A1 (en) * | 2014-12-02 | 2016-07-07 | Rennovia Inc. | Process for production of hexanetriol from 5-hydroxymethylfurfural |
CN111777578A (en) * | 2020-07-15 | 2020-10-16 | 烟台大学 | Method for preparing 2,5-dimethyloltetrahydrofuran by hydrogenation of 5-hydroxymethylfurfural |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372687B1 (en) * | 1997-10-17 | 2002-04-16 | Hoechst Research & Technology | Supported catalysts having a high sintering stability and a process for producing them |
US20090325790A1 (en) * | 2004-06-17 | 2009-12-31 | Yale University | Size-controllable transition metal clusters in mcm-41 for improving chemical catalysis |
CN101670286A (en) * | 2008-09-12 | 2010-03-17 | 北京大学 | Supported transition metal or transition metal alloy nanocluster catalyst and preparation method and application thereof |
-
2013
- 2013-05-30 CN CN201310210499.4A patent/CN104209120B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372687B1 (en) * | 1997-10-17 | 2002-04-16 | Hoechst Research & Technology | Supported catalysts having a high sintering stability and a process for producing them |
US20090325790A1 (en) * | 2004-06-17 | 2009-12-31 | Yale University | Size-controllable transition metal clusters in mcm-41 for improving chemical catalysis |
CN101670286A (en) * | 2008-09-12 | 2010-03-17 | 北京大学 | Supported transition metal or transition metal alloy nanocluster catalyst and preparation method and application thereof |
Non-Patent Citations (3)
Title |
---|
DAVID J. MIHALCIK等: "Mesoporous Silica Nanosphere Supported Ruthenium Catalysts for Asymmetric Hydrogenation", 《ANGEW. CHEM. INT. ED.》 * |
储彬等: "立方规则孔道结构含锆介孔氧化硅的合成与表征", 《高等学校化学学报》 * |
李福祥等: "含锆介孔材料的研究进展", 《现代化工》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160194298A1 (en) * | 2014-12-02 | 2016-07-07 | Rennovia Inc. | Process for production of hexanetriol from 5-hydroxymethylfurfural |
US9586920B2 (en) * | 2014-12-02 | 2017-03-07 | Rennovia Inc. | Process for production of hexanetriol from 5-hydroxymethylfurfural |
US10081612B2 (en) | 2014-12-02 | 2018-09-25 | Archer-Daniels-Midland Company | Process for production of hexanetriol from 5-hydroxymethylfurfural |
CN111777578A (en) * | 2020-07-15 | 2020-10-16 | 烟台大学 | Method for preparing 2,5-dimethyloltetrahydrofuran by hydrogenation of 5-hydroxymethylfurfural |
Also Published As
Publication number | Publication date |
---|---|
CN104209120B (en) | 2016-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107626294B (en) | Preparation method of metal single-atom site catalyst | |
CN106622327A (en) | N-doped porous carbon supported metal catalyst, and preparation method and application thereof | |
KR101625987B1 (en) | Fischer-tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor | |
CN108393092B (en) | Preparation method of catalyst for preparing secondary amine by nitrile compound hydrogenation, product and application thereof | |
CN106179440A (en) | N doping multi-stage porous charcoal and its preparation method and application | |
CN113101933A (en) | A supported nickel-cobalt bimetallic nanocatalyst and its application in catalyzing the selective hydrogenation of vanillin | |
JP5657805B2 (en) | Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same | |
CN108636455A (en) | It is a kind of using nucleocapsid MOF as the preparation and application of the carried noble metal base catalyst of reaction vessel | |
Fu et al. | Recent advances in metal–organic framework based heterogeneous catalysts for furfural hydrogenation reactions | |
CN112691690B (en) | A kind of supported double metal nitride catalyst and its preparation method and application | |
CN108067306A (en) | A kind of Pt/ZIF-8@Al2O3The preparation method of catalyst and its application in catalytic hydrogenation reaction | |
CN101940952A (en) | Bimetal nano particle catalyst and preparation method thereof | |
CN116272966A (en) | Application of a supported catalyst in the preparation of furfurylamine by catalytic reductive amination of furfural | |
CN106881085A (en) | The catalyst and preparation method and process for selective hydrogenation of hydroquinones hydrogenation | |
CN113083325A (en) | Catalyst Ru for ammonia borane hydrolysis hydrogen production1-xCox/P25 and preparation method thereof | |
CN104209120B (en) | Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application | |
CN108623436A (en) | A kind of one kettle way conversion cellulose is the method for bio-ethanol | |
CN114029081B (en) | A kind of bimetallic copper cobalt azacarbon material catalyst and its preparation method and application | |
CN102974342B (en) | Catalyst for preparing cyclohexene from benzene by selective hydrogenation and preparation method thereof | |
CN110665546A (en) | Noble metal/amino MOFs selective hydrogenation catalyst, preparation method and application thereof | |
RU2675839C1 (en) | Nano-catalyst from monodisperse transition metal for fischer-tropsch synthesis, method for its preparation and its application | |
CN108940368B (en) | Zeolite-like framework-encapsulated metal nanoparticle catalyst, preparation method and application thereof | |
CN114870853B (en) | Core-shell catalyst for preparing cyclohexanol by catalyzing guaiacol to be subjected to selective hydrodeoxygenation | |
CN113019435B (en) | Monoatomic palladium/molecular sieve catalyst, preparation thereof and application thereof in preparation of ketone by selective hydrogenation of biomass molecules | |
CN116688980A (en) | Preparation and application of a highly stable catalyst for CO2 hydrogenation to ethanol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160914 |