[go: up one dir, main page]

CN104209120A - Metal clusters stabilized by mesoporous zirconium-silicon nanospheres and their preparation methods and applications - Google Patents

Metal clusters stabilized by mesoporous zirconium-silicon nanospheres and their preparation methods and applications Download PDF

Info

Publication number
CN104209120A
CN104209120A CN201310210499.4A CN201310210499A CN104209120A CN 104209120 A CN104209120 A CN 104209120A CN 201310210499 A CN201310210499 A CN 201310210499A CN 104209120 A CN104209120 A CN 104209120A
Authority
CN
China
Prior art keywords
metal
hours
silicon
furan
nanospheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310210499.4A
Other languages
Chinese (zh)
Other versions
CN104209120B (en
Inventor
徐杰
陈佳志
路芳
张俊杰
于维强
高进
苗虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201310210499.4A priority Critical patent/CN104209120B/en
Publication of CN104209120A publication Critical patent/CN104209120A/en
Application granted granted Critical
Publication of CN104209120B publication Critical patent/CN104209120B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种介孔锆硅纳米球稳定的金属簇及制备方法与应用。由Zr嵌入的介孔硅纳米球及其表面稳定的过渡金属簇粒子组成,其具有均一的六方孔道、金属粒子小且分布均匀(0.6-2.0nm)、稳定性高、催化活性高等特点。其中,过渡金属粒子为Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中的一种或多种。该材料采用溶胶-凝胶法合成纳米球,浸渍-氢还原法负载金属簇粒子。以该材料作为催化剂水相加氢转化呋喃衍生物,可实现常温常压加氢的高活性,及高选择性获取加氢产物或开环产物。

The invention discloses a metal cluster stabilized by mesoporous zirconium silicon nanospheres, a preparation method and application thereof. Composed of Zr-embedded mesoporous silicon nanospheres and transition metal cluster particles with stable surface, it has the characteristics of uniform hexagonal channels, small and uniform distribution of metal particles (0.6-2.0nm), high stability and high catalytic activity. Wherein, the transition metal particles are one or more of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au. The material adopts a sol-gel method to synthesize nanospheres, and an impregnation-hydrogen reduction method to load metal cluster particles. Using this material as a catalyst for aqueous phase hydrogenation conversion of furan derivatives can achieve high activity of hydrogenation at normal temperature and pressure, and high selectivity to obtain hydrogenation products or ring-opened products.

Description

介孔锆硅纳米球稳定的金属簇及制备方法与应用Metal clusters stabilized by mesoporous zirconium-silicon nanospheres and their preparation methods and applications

技术领域technical field

本发明涉及材料与能源领域,具体涉及一种介孔锆硅纳米球稳定的金属簇及其制备方法,还涉及上述材料在生物质基呋喃衍生物加氢反应中的应用。The invention relates to the field of materials and energy, in particular to a metal cluster stabilized by mesoporous zirconium-silicon nanospheres and a preparation method thereof, and also relates to the application of the above-mentioned material in the hydrogenation reaction of biomass-based furan derivatives.

背景技术Background technique

金属簇由于其独特的金属键合结构而表现出较高的催化活性和选择性,其在反应过程中的稳定性一直是研究学者关注的共性问题。已经报道了诸多方法用于抑制金属簇在催化过程中的团聚现象,包括将金属簇装载于微孔分子筛超笼中[J.Am.Chem.Soc.2012,134,17688]、碳纳米管中[ACS Appl.Mater.Interfaces2012,4,6302]、中空壳材料中[Small2008,4,1694]以及用聚合物分散保护[Adv.Synth.Catal.2006,348,857]等。但聚合物材料及微孔材料锚定的金属簇分别存在热稳定性较低,底物分子扩散受限的问题。Metal clusters exhibit high catalytic activity and selectivity due to their unique metal-bonding structures, and their stability during the reaction has always been a common concern of researchers. Many methods have been reported to suppress the agglomeration of metal clusters in the catalytic process, including loading metal clusters in microporous molecular sieve supercages [J.Am.Chem.Soc.2012,134,17688], carbon nanotubes [ACS Appl.Mater.Interfaces2012,4,6302], hollow shell materials [Small2008,4,1694] and polymer dispersion protection [Adv.Synth.Catal.2006,348,857], etc. However, polymer materials and metal clusters anchored by microporous materials have the problems of low thermal stability and limited diffusion of substrate molecules.

介孔分子筛具备较大的孔径,对大分子有机物适用性较广。为了获得介孔分子筛稳定的金属簇材料,Mihalcik等通过有机配体锚定的方法将金属簇嫁接到介孔分子筛孔道表面[Angew.Chem.Int.Ed.2008,47,6229],但高温条件下有机配体分解易使金属簇烧结失活;Liu等利用钛等金属掺杂的介孔硅基分子筛增加了镍纳米颗粒的分散度,但颗粒大小最优为16nm[J.Catal.2009,266,380]。因此,通过设计高比表面金属掺杂的介孔硅基材料,可以获得高分散且稳定的金属纳米粒子。Mesoporous molecular sieves have a large pore size and are widely applicable to macromolecular organic substances. In order to obtain stable metal cluster materials for mesoporous molecular sieves, Mihalcik et al. grafted metal clusters onto the channel surface of mesoporous molecular sieves by means of organic ligand anchoring [Angew.Chem.Int.Ed.2008,47,6229], but high temperature conditions The decomposition of organic ligands can easily deactivate metal clusters by sintering; Liu et al. used mesoporous silicon-based molecular sieves doped with titanium and other metals to increase the dispersion of nickel nanoparticles, but the optimal particle size is 16nm [J.Catal.2009,266,380] . Therefore, highly dispersed and stable metal nanoparticles can be obtained by designing mesoporous silicon-based materials doped with high surface area metals.

随着石油等化石能源的不断消耗,生物质的转化利用将是有效的能源补充途径之一。呋喃衍生物作为生物质基平台化合物,通过催化加氢转化可制取液体燃料分子(2,5-二甲基呋喃等)和高附加值化学品(2,5-二羟甲基四氢呋喃,1,6-己二醇等聚合物单体)[Chem.Rev.2013,113,1499]。目前采用的多相加氢催化剂,大多需要高温或高压反应条件[Green Chem.2012,14,1413;Catal.Commun.2010,12,154],不仅增加反应能耗,而且容易促使反应物结焦等其他副反应,降低选择性及原料利用率。因此,迫切需要开发高活性、高选择性的多相加氢催化剂。With the continuous consumption of fossil energy such as petroleum, the conversion and utilization of biomass will be one of the effective ways to supplement energy. As a biomass-based platform compound, furan derivatives can be used to produce liquid fuel molecules (2,5-dimethylfuran, etc.) and high value-added chemicals (2,5-dimethyloltetrahydrofuran, 1 , 6-hexanediol and other polymer monomers) [Chem.Rev.2013,113,1499]. Most of the currently used heterogeneous hydrogenation catalysts require high temperature or high pressure reaction conditions [Green Chem.2012, 14, 1413; Catal.Commun. Reaction, reduce selectivity and raw material utilization. Therefore, there is an urgent need to develop highly active and highly selective heterogeneous hydrogenation catalysts.

在申请人检索范围内,利用介孔锆硅纳米球直接稳定金属簇,并用作多相催化剂,应用于呋喃衍生物催化加氢反应,目前还未见有人研究报道。Within the scope of the applicant's search, the use of mesoporous zirconium-silicon nanospheres to directly stabilize metal clusters and use them as heterogeneous catalysts for catalytic hydrogenation reactions of furan derivatives has not yet been reported.

发明内容Contents of the invention

本发明目的在于提供一种介孔锆硅纳米球稳定的金属簇材料及其制备方法。该材料包含具有均一六方孔道的介孔锆硅纳米球及其表面高分散且稳定的金属簇粒子(小于2nm)。The purpose of the present invention is to provide a metal cluster material stable with mesoporous zirconium silicon nanospheres and a preparation method thereof. The material contains mesoporous zirconium-silicon nanospheres with uniform hexagonal channels and highly dispersed and stable metal cluster particles (less than 2nm) on the surface.

为了实现上述目的,本发明采用等体积浸渍-氢还原法将金属簇固载于介孔锆硅纳米球中。In order to achieve the above-mentioned purpose, the present invention adopts an equal-volume impregnation-hydrogen reduction method to immobilize metal clusters in mesoporous zirconium-silicon nanospheres.

该材料具有均一的六方孔道结构、平均孔径为2.0-3.0nm;金属簇固载于介孔锆硅纳米球中,其中金属簇于材料上的质量担载量为0.01-50%,金属簇粒子为过渡金属元素中的一种或二种以上、粒子尺寸0.6-2.0nm。The material has a uniform hexagonal pore structure with an average pore diameter of 2.0-3.0nm; metal clusters are immobilized in mesoporous zirconium-silicon nanospheres, and the mass loading of metal clusters on the material is 0.01-50%. Metal cluster particles It is one or more than two kinds of transition metal elements, and the particle size is 0.6-2.0nm.

金属簇元素优选Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中一种或二种以上;Metal cluster elements are preferably one or more of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au;

其中材料上负载的金属簇质量比为0.01%-50%,较佳为0.05%-30%,最佳为0.1%-10%。The mass ratio of metal clusters loaded on the material is 0.01%-50%, preferably 0.05%-30%, and most preferably 0.1%-10%.

具体制备方法如下:The specific preparation method is as follows:

1)介孔锆硅纳米球的制备:将0.58g的十六烷基三甲基溴化铵(CTAB)模板剂溶于300mL氨水(pH值为10-12)溶液中,水浴加热至40-60°C,搅拌下加入浓度0.1-0.5mol·L-1的稀正硅酸乙酯(TEOS)的乙醇溶液,反应5小时后,滴加硅的浓度0.6-2.5mol·L-1的浓正硅酸乙酯(TEOS)和正丙醇锆(Zr(OnPr)4)混合的乙醇溶液,(混合物种锆与硅的摩尔数之比为0.01-0.5);搅拌后陈化20小时,固液分离,固体物质水洗涤、110°C干燥过夜、550°C焙烧10小时后即得到MSN-Zr;1) Preparation of mesoporous zirconium-silicon nanospheres: Dissolve 0.58g of cetyltrimethylammonium bromide (CTAB) template in 300mL of ammonia (pH 10-12) solution, and heat in a water bath to 40- 60°C, under stirring, add dilute ethyl orthosilicate (TEOS ) ethanol solution with a concentration of 0.1-0.5mol L Ethanol solution mixed with tetraethyl orthosilicate (TEOS) and zirconium n-propoxide (Zr( On Pr) 4 ), (the molar ratio of zirconium to silicon of the mixed species is 0.01-0.5); aged for 20 hours after stirring, Solid-liquid separation, solid matter washed with water, dried overnight at 110°C, and roasted at 550°C for 10 hours to obtain MSN-Zr;

2)采用浸渍-氢还原法制备介孔锆硅纳米球稳定的金属簇(M/MSN-Zr):称取1g MSN-Zr载体,将0.1-10%金属担载量的金属盐溶解于3.5g水溶性溶剂中,超声分散,室温静置12-48小时,100-120°C烘干后置于管式炉中,100-800°C下氢气还原处理0.5-10小时,即得到M/MSN-Zr。上述方法步骤1中,所述的混合物中各原料摩尔比为Zr/Si=0.01-0.50,CTAB/Si=0.05-1.0,H2O/Si=500-5000;较佳为Zr/Si=0.01-0.20,CTAB/Si=0.05-0.50,H2O/Si=1000-3500;最佳为Zr/Si=0.01-0.10,CTAB/Si=0.20-0.30,H2O/Si=2000-3000。2) Prepare mesoporous zirconium-silicon nanosphere-stabilized metal clusters (M/MSN-Zr) by impregnation-hydrogen reduction method: weigh 1 g of MSN-Zr carrier, and dissolve metal salt with 0.1-10% metal loading in 3.5 g in a water-soluble solvent, ultrasonically dispersed, left standing at room temperature for 12-48 hours, dried at 100-120°C, placed in a tube furnace, and treated with hydrogen reduction at 100-800°C for 0.5-10 hours to obtain M/ MSN-Zr. In step 1 of the above method, the molar ratio of each raw material in the mixture is Zr/Si=0.01-0.50, CTAB/Si=0.05-1.0, H 2 O/Si=500-5000; preferably Zr/Si=0.01 -0.20, CTAB/Si=0.05-0.50, H 2 O/Si=1000-3500; the best is Zr/Si=0.01-0.10, CTAB/Si=0.20-0.30, H 2 O/Si=2000-3000.

所述的稀TEOS乙醇溶液的浓度较佳为0.1-0.5mol·L-1,最佳为0.2-0.4mol·L-1;浓TEOS和Zr(OnPr)4混合的乙醇溶液的浓度较佳为0.6-2.5mol·L-1,最佳为1-2mol·L-1The concentration of the dilute TEOS ethanol solution is preferably 0.1-0.5mol·L -1 , most preferably 0.2-0.4mol·L -1 ; the concentration of the mixed ethanol solution of concentrated TEOS and Zr( On Pr) 4 is relatively Preferably it is 0.6-2.5 mol·L -1 , most preferably 1-2 mol·L -1 .

所述的稀氨水溶液中,pH值为8-14,较佳为9-13,最佳为10-12。In the dilute ammonia solution, the pH value is 8-14, preferably 9-13, most preferably 10-12.

上述方法步骤2中,所述的金属簇,选自周期表中过渡金属元素中至少一种,优选Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中至少一种;金属离子选自其有机金属化合物(乙酰丙酮钌、二羰基乙酰丙酮铱、醋酸钴等)、金属无机盐(硝酸铁、硝酸镍、氯化钌、氯金酸等);其中,负载的金属簇质量比为0.01%-50%,较佳为0.05%-30%,最佳为0.1%-10%。In step 2 of the above method, the metal cluster is selected from at least one transition metal element in the periodic table, preferably Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au At least one; the metal ion is selected from its organometallic compounds (ruthenium acetylacetonate, iridium dicarbonyl acetylacetonate, cobalt acetate, etc.), metal inorganic salts (ferric nitrate, nickel nitrate, ruthenium chloride, chloroauric acid, etc.); wherein, The mass ratio of metal clusters to be loaded is 0.01%-50%, preferably 0.05%-30%, and most preferably 0.1%-10%.

所述的水溶性溶剂选自水、甲醇、乙醇、丙醇、异丙醇、丙酮中至少一种。The water-soluble solvent is at least one selected from water, methanol, ethanol, propanol, isopropanol and acetone.

所述的氢气还原处理条件中,氢气以流动形式提供,其流量为1-70mL·min-1较佳为5-50mL·min-1,最佳为10-40mL·min-1;还原温度为100-800°C,较佳为100-700°C,最佳为100-600°C;还原时间为0.5-10小时,较佳为1-8小时,最佳为1-6小时。In the hydrogen reduction treatment conditions described above, hydrogen is provided in a flowing form, the flow rate of which is 1-70mL·min -1 , preferably 5-50mL·min -1 , most preferably 10-40mL·min -1 ; the reduction temperature is 100-800°C, preferably 100-700°C, most preferably 100-600°C; reduction time is 0.5-10 hours, preferably 1-8 hours, most preferably 1-6 hours.

本发明的另一目的在于提供此类介孔锆硅纳米球稳定的金属簇材料用作催化剂,在呋喃衍生物加氢转化中的应用。Another object of the present invention is to provide such metal cluster materials stabilized by mesoporous zirconium-silicon nanospheres as catalysts in the hydrogenation conversion of furan derivatives.

为实现上述目的,本发明所述的呋喃衍生物加氢反应是在分子氢和金属簇催化剂共同作用下进行的。具体步骤如下:In order to achieve the above purpose, the hydrogenation reaction of furan derivatives in the present invention is carried out under the combined action of molecular hydrogen and metal cluster catalysts. Specific steps are as follows:

高压反应釜中加入一定量呋喃衍生物的水溶液和氢气新还原制备的M/MSN-Zr催化剂,封釜后置换釜内空气数次,充入氢气至指定压力,在特定温度下搅拌反应数小时。Add a certain amount of furan derivative aqueous solution and hydrogen newly reduced M/MSN-Zr catalyst to the autoclave, seal the autoclave and replace the air in the autoclave several times, fill the autoclave with hydrogen to the specified pressure, and stir the reaction at a specific temperature for several hours .

本发明所述的呋喃衍生物为呋喃和呋喃环上有机基团取代的化合物。选自下述化合物中的一种或二种以上:呋喃、5-甲基呋喃、2,5-二甲基呋喃、糠醛、5-甲基糠醛、5-羟甲基糠醛、5-乙氧基甲基糠醛、呋喃二甲醛、呋喃二甲酸;其相应的加氢产物为呋喃环加氢产物(2,5-二甲基四氢呋喃、2,5-二羟甲基四氢呋喃等四氢呋喃基化合物)、呋喃环上取代基加氢产物(5-甲基糠醇、呋喃二甲醇等呋喃基化合物)、加氢开环产物(2,5-己二醇、1,4-丁二醇等多元醇化合物)中的一种或二种以上。The furan derivatives described in the present invention are furan and compounds substituted by organic groups on the furan ring. One or more of the following compounds: furan, 5-methylfuran, 2,5-dimethylfuran, furfural, 5-methylfurfural, 5-hydroxymethylfurfural, 5-ethoxy methylfurfural, furandicarbaldehyde, and furandicarboxylic acid; the corresponding hydrogenation products are furan ring hydrogenation products (2,5-dimethyltetrahydrofuran, 2,5-dimethyloltetrahydrofuran and other tetrahydrofuran-based compounds), Hydrogenation products of substituents on the furan ring (5-methylfurfuryl alcohol, furan dimethanol and other furyl compounds), hydrogenation ring-opening products (2,5-hexanediol, 1,4-butanediol and other polyol compounds) one or more of them.

本发明所述的催化剂与底物加入量比,以金属质量计,为0.01%-100%,较佳为0.1%-50%,最佳为0.1%-10%。The ratio of the amount of catalyst to substrate added in the present invention is 0.01%-100% based on metal mass, preferably 0.1%-50%, and most optimally 0.1%-10%.

按照本发明所述的催化反应条件,加氢反应温度为20-240°C,较佳为25-150°C,最佳为25-100°C;氢气压力为0.1-10MPa,较佳为0.1-5MPa,最佳为0.5-3MPa;反应时间为0.1-10小时,较佳为0.5-5小时,最佳为1-4小时。According to the catalytic reaction conditions of the present invention, the hydrogenation reaction temperature is 20-240°C, preferably 25-150°C, the best 25-100°C; the hydrogen pressure is 0.1-10MPa, preferably 0.1 -5MPa, preferably 0.5-3MPa; reaction time is 0.1-10 hours, preferably 0.5-5 hours, most preferably 1-4 hours.

综上所述,本发明提供了一种溶胶-凝胶法及浸渍-氢还原法,合成了具有均一六方孔道的介孔锆硅纳米球及其表面高分散且稳定的金属簇粒子。该金属簇粒子为过渡金属元素,粒子尺寸小且分布均匀(0.6-2.0nm),具有高温抗烧结稳定性、高催化活性等特征,其制备方法简单便捷、原料广泛易得,是一种易于实现工业化生产和应用的材料。本发明还提供了该材料作为一种新型催化剂用于呋喃衍生物加氢反应,具有高活性和高选择性的特点,且通过简单地调变时间、温度等反应条件,可高选择性的获得加氢产物或开环产物。In summary, the present invention provides a sol-gel method and impregnation-hydrogen reduction method to synthesize mesoporous zirconium-silicon nanospheres with uniform hexagonal channels and highly dispersed and stable metal cluster particles on the surface. The metal cluster particles are transition metal elements, the particle size is small and evenly distributed (0.6-2.0nm), and it has the characteristics of high-temperature anti-sintering stability and high catalytic activity. The preparation method is simple and convenient, and the raw materials are widely available. It is an easy-to-use Materials for industrialized production and application. The invention also provides that the material is used as a novel catalyst for the hydrogenation reaction of furan derivatives, which has the characteristics of high activity and high selectivity, and can be obtained with high selectivity by simply adjusting reaction conditions such as time and temperature. Hydrogenation products or ring-opened products.

附图说明Description of drawings

图1为实施例1和实施例2的介孔锆硅纳米球(MSN-Zr)及其稳定的Ru金属簇(Ru/MSN-Zr)的小角XRD图;Figure 1 is the small-angle XRD pattern of the mesoporous zirconium-silicon nanospheres (MSN-Zr) and their stable Ru metal clusters (Ru/MSN-Zr) in Examples 1 and 2;

图2为实施例2的介孔锆硅纳米球稳定的Ru金属簇的a)高分辨透射电镜图(HRTEM)和b)高角环形暗场像(HAADF);Figure 2 is a) high-resolution transmission electron microscope image (HRTEM) and b) high-angle annular dark field image (HAADF) of the Ru metal clusters stabilized by mesoporous zirconium-silicon nanospheres in Example 2;

图3为实施例5的空气中煅烧后的Ru/MSN-Zr-20的透射电镜图(TEM)。FIG. 3 is a transmission electron microscope image (TEM) of Ru/MSN-Zr-20 calcined in air in Example 5. FIG.

具体实施方式Detailed ways

下列实施例有助于理解本发明,但发明内容并不局限于此。The following examples are helpful for understanding the present invention, but the content of the invention is not limited thereto.

实施例1介孔锆硅纳米球的合成Synthesis of Example 1 Mesoporous Zirconium Silicon Nanospheres

将12g浓氨水(25wt%)用去离子水稀释至300g(pH=11.4),加入0.58g CTAB,50°C水浴中搅拌溶解。配制稀正硅酸乙酯(TEOS)的乙醇溶液A:中(Si)浓度0.2mol·L-1,及浓TEOS与正丙醇锆(Zr(OnPr)4)的混合溶液B:中(Si)浓度1.0mol·L-1(分别配制使B中:Zr/Si=0.025,0.05,0.1)。搅拌下向上述混合液中快速加入5mL A溶液,密封反应器,搅拌5小时,打开反应器,逐滴加入5mL B溶液,继续搅拌1小时后停止搅拌,50°C水浴中静置20小时。反应混合物离心分离,用去离子水洗涤至中性,再用乙醇洗涤1至2次,80°C干燥过夜,550°C焙烧10小时,即可得到不同锆硅原子比的介孔锆硅纳米球MSN-Zr-x(x=Si/Zr=10,20,40)。其结构性质如表1和图1所示。Dilute 12g of concentrated ammonia water (25wt%) with deionized water to 300g (pH=11.4), add 0.58g of CTAB, stir and dissolve in a 50°C water bath. Prepare dilute tetraethyl orthosilicate (TEOS) ethanol solution A: medium (Si) concentration 0.2mol L -1 , and mixed solution of concentrated TEOS and n-propoxide zirconium (Zr( On Pr) 4 ) B: medium (Si) concentration 1.0mol·L -1 (respectively prepared so that in B: Zr/Si=0.025, 0.05, 0.1). Quickly add 5mL of A solution to the above mixed solution under stirring, seal the reactor, stir for 5 hours, open the reactor, add 5mL of B solution dropwise, continue stirring for 1 hour, stop stirring, and stand in a 50°C water bath for 20 hours. The reaction mixture was centrifuged, washed with deionized water to neutrality, washed with ethanol for 1 to 2 times, dried overnight at 80°C, and roasted at 550°C for 10 hours to obtain mesoporous zirconium-silicon nanoparticles with different atomic ratios of zirconium to silicon. Ball MSN-Zr-x (x=Si/Zr=10,20,40). Its structural properties are shown in Table 1 and Figure 1.

表1介孔锆硅纳米球的结构性质Table 1 Structural properties of mesoporous zirconium silicon nanospheres

实施例2介孔锆硅纳米球稳定的钌金属簇的合成Example 2 Synthesis of Ru metal clusters stabilized by mesoporous zirconium silicon nanospheres

将0.1442g RuCl3(36.5wt%Ru)溶解于3.5g水中,加入1gMSN-Zr-20,超声分散,室温静置24小时,110°C烘干。将干燥后的粉末样品置于管式炉中,30mL·min-1流动氢气中,350°C还原6小时后即得到Ru/MSN-Zr-20(Ru负载量为5wt%)。基于透射电镜(TEM)图,统计Ru颗粒的平均粒径为1.1nm,结果如图2所示。Dissolve 0.1442g RuCl 3 (36.5wt%Ru) in 3.5g water, add 1g MSN-Zr-20, ultrasonically disperse, let stand at room temperature for 24 hours, and dry at 110°C. The dried powder sample was placed in a tube furnace in 30mL·min -1 flowing hydrogen, and reduced at 350°C for 6 hours to obtain Ru/MSN-Zr-20 (Ru loading 5wt%). Based on the transmission electron microscope (TEM) image, the average particle size of the statistical Ru particles is 1.1 nm, and the results are shown in Figure 2.

实施例3乙酰丙酮钌合成钌金属簇Embodiment 3 ruthenium acetylacetonate synthesizes ruthenium metal clusters

将0.2072g Ru(acac)3溶解于3.5g丙酮中,加入1g MSN-Zr-20,超声分散,室温静置24小时,110°C烘干。将干燥后的粉末样品置于管式炉中,30mL·min-1流动氢气中,350°C还原6小时后即得到Ru/MSN-Zr-20。其Ru颗粒平均粒径为0.8nm。Dissolve 0.2072g Ru(acac) 3 in 3.5g acetone, add 1g MSN-Zr-20, ultrasonically disperse, let stand at room temperature for 24 hours, and dry at 110°C. The dried powder sample was placed in a tube furnace under 30mL·min -1 flowing hydrogen, and reduced at 350°C for 6 hours to obtain Ru/MSN-Zr-20. The average diameter of the Ru particles is 0.8nm.

实施例4镍金属簇的合成The synthesis of embodiment 4 nickel metal clusters

将0.5505g Ni(NO3)2·6H2O溶解于3.5g水中,加入1g MSN-Zr-20,超声分散,室温静置24小时,110°C烘干。将干燥后的粉末样品置于管式炉中,25mL·min-1流动氢气中,450°C还原3小时后即得到Ni/MSN-Zr-20(Ni负载量为10wt%)。其Ni颗粒平均粒径为1.8nm。Dissolve 0.5505g Ni(NO 3 ) 2 ·6H 2 O in 3.5g water, add 1g MSN-Zr-20, ultrasonically disperse, let stand at room temperature for 24 hours, and dry at 110°C. The dried powder sample was placed in a tube furnace in 25mL·min -1 flowing hydrogen, and reduced at 450°C for 3 hours to obtain Ni/MSN-Zr-20 (10wt% Ni loading). The average particle diameter of Ni particles is 1.8nm.

实施例5Ru/MSN-Zr-20中Ru金属簇的稳定性The stability of Ru metal cluster in embodiment 5Ru/MSN-Zr-20

将实施例2中的催化剂Ru/MSN-Zr-20置于空气中煅烧3小时后,以TEM表征其粒径,平均值依然为1.1nm,结果如图3所示。After the catalyst Ru/MSN-Zr-20 in Example 2 was calcined in air for 3 hours, its particle size was characterized by TEM, and the average value was still 1.1 nm. The result is shown in FIG. 3 .

实施例65-羟甲基糠醛(HMF)催化加氢反应活性Embodiment 65-Hydroxymethylfurfural (HMF) catalytic hydrogenation reaction activity

向50mL高压反应釜中加入0.1g HMF、9.9g水和0.1g新还原的实施例2中的催化剂Ru/MSN-Zr-20,密封后置换空气,充入氢气至0.5MPa,调节温度稳定于25℃,搅拌一定时间后,停止反应。HMF转化率及产物选择性如表2所示(其中,加氢产物为2,5-二羟甲基呋喃(DHMF)、2,5-二羟甲基四氢呋喃(DHMTHF);开环产物为1,2,6-己三醇(1,2,6-HT)、1,2,5-己三醇(1,2,5-HT))。Add 0.1g HMF, 9.9g water and 0.1g newly reduced catalyst Ru/MSN-Zr-20 in the embodiment 2 in the 50mL autoclave, replace the air after sealing, charge into hydrogen to 0.5MPa, adjust the temperature to be stable at 25°C, after stirring for a certain period of time, stop the reaction. The HMF conversion rate and product selectivity are shown in Table 2 (the hydrogenation products are 2,5-dimethylolfuran (DHMF) and 2,5-dimethyloltetrahydrofuran (DHMTHF); the ring-opening product is 1 ,2,6-hexanetriol (1,2,6-HT), 1,2,5-hexanetriol (1,2,5-HT)).

表2Ru金属簇催化HMF加氢反应结果Table 2 The results of the hydrogenation reaction of HMF catalyzed by Ru metal clusters

实施例7反应温度对金属簇催化性能的影响The influence of embodiment 7 reaction temperature on metal cluster catalytic performance

按照实施例2制备催化剂Ru/MSN-Zr-10,并进行氢气还原处理,其Ru颗粒平均粒径为1.4nm。Catalyst Ru/MSN-Zr-10 was prepared according to Example 2, and subjected to hydrogen reduction treatment, the average particle diameter of Ru particles was 1.4nm.

向50mL高压反应釜中加入0.1g HMF、9.9g水和50mg新还原的催化剂Ru/MSN-Zr-10,密封后置换空气,充入氢气至0.5MPa,调节不同反应温度,搅拌4小时后,停止反应。HMF转化率及产物选择性如表3所示(其中,加氢产物为2,5-二羟甲基呋喃(DHMF)、2,5-二羟甲基四氢呋喃(DHMTHF);开环产物为1-羟基-2,5-己二酮(HHD)、1,2,5-己三醇(1,2,5-HT))。Add 0.1g HMF, 9.9g water and 50mg newly reduced catalyst Ru/MSN-Zr-10 into a 50mL autoclave, replace the air after sealing, fill with hydrogen to 0.5MPa, adjust different reaction temperatures, stir for 4 hours, Stop responding. HMF conversion rate and product selectivity are shown in Table 3 (the hydrogenation products are 2,5-dimethylolfuran (DHMF) and 2,5-dimethyloltetrahydrofuran (DHMTHF); the ring-opening product is 1 -Hydroxy-2,5-hexanedione (HHD), 1,2,5-hexanetriol (1,2,5-HT)).

表3反应温度对催化剂反应性能的影响The influence of table 3 reaction temperature on catalyst reaction performance

DHMFDHMF DHMTHFDHMTHF HHDHHD 1,2,5-HT1,2,5-HT 2525 98.198.1 92.192.1 5.25.2 2.22.2 00 5050 95.295.2 91.891.8 3.33.3 4.84.8 00 7575 90.890.8 57.357.3 4.64.6 31.731.7 00 100100 100100 00 14.214.2 2.52.5 56.556.5

实施例8反应压力对金属簇催化性能的影响The influence of embodiment 8 reaction pressure on metal cluster catalytic performance

向50mL高压反应釜中加入0.1g HMF、9.9g水和50mg新还原的实施例6中的催化剂Ru/MSN-Zr-10,密封后置换空气,充入氢气至一定压力,调节温度稳定于25℃,搅拌4小时后,停止反应。HMF转化率及产物选择性如表4所示(其中,加氢产物为2,5-二羟甲基呋喃(DHMF)、2,5-二羟甲基四氢呋喃(DHMTHF);开环产物为1,2,6-己三醇(1,2,6-HT)、1,2,5-己三醇(1,2,5-HT))。Add 0.1g HMF, 9.9g water and 50mg newly reduced catalyst Ru/MSN-Zr-10 in Example 6 to a 50mL autoclave, replace the air after sealing, fill with hydrogen to a certain pressure, and adjust the temperature to be stable at 25 °C, after stirring for 4 hours, the reaction was stopped. HMF conversion rate and product selectivity are shown in Table 4 (the hydrogenation products are 2,5-dimethylolfuran (DHMF) and 2,5-dimethyloltetrahydrofuran (DHMTHF); the ring-opening product is 1 ,2,6-hexanetriol (1,2,6-HT), 1,2,5-hexanetriol (1,2,5-HT)).

表4反应压力对催化剂反应性能的影响The influence of table 4 reaction pressure on catalyst reaction performance

实施例9金属簇催化呋喃衍生物加氢反应活性Example 9 Metal Cluster Catalyzed Hydrogenation Reaction Activity of Furan Derivatives

实施例中选取糠醛、5-甲基糠醛、5-羟甲基糠醛、5-乙氧基甲基糠醛、呋喃、5-甲基呋喃、2,5-二甲基呋喃作为反应底物,其中,糠基加氢产物和呋喃环加氢产物分别指糠醇和四氢糠醇、5-甲基糠醇和5-甲基四氢糠醇、2,5-二羟甲基呋喃和2,5-二羟甲基四氢呋喃、5-乙氧基甲基糠醇和5-乙氧基甲基四氢糠醇;呋喃环加氢产物和开环产物分别指四氢呋喃和1,4-丁二醇、5-甲基四氢呋喃和1,4-戊二醇、2,5-二甲基四氢呋喃和2,5-已二醇。Furfural, 5-methylfurfural, 5-hydroxymethylfurfural, 5-ethoxymethylfurfural, furan, 5-methylfuran, and 2,5-dimethylfuran are selected as reaction substrates in the embodiments, wherein , Furfuryl hydrogenation products and furan ring hydrogenation products refer to furfuryl alcohol and tetrahydrofurfuryl alcohol, 5-methylfurfuryl alcohol and 5-methyltetrahydrofurfuryl alcohol, 2,5-dimethylfuran and 2,5-dihydroxyfurfuryl alcohol, respectively Methyltetrahydrofuran, 5-ethoxymethylfurfuryl alcohol, and 5-ethoxymethyltetrahydrofurfuryl alcohol; furan ring hydrogenation products and ring-opening products refer to tetrahydrofuran, 1,4-butanediol, and 5-methyltetrahydrofuran, respectively and 1,4-pentanediol, 2,5-dimethyltetrahydrofuran and 2,5-hexanediol.

向50mL高压反应釜中加入0.1g底物、9.9g水和50mg新还原的实施例6中的催化剂Ru/MSN-Zr-10,密封后置换空气,充入氢气至0.5MPa,调节温度稳定于25°C,搅拌4小时后,停止反应。呋喃衍生物转化率及产物选择性如表5所示。Add 0.1g substrate, 9.9g water and 50mg newly reduced catalyst Ru/MSN-Zr-10 in Example 6 to the 50mL autoclave, replace the air after sealing, fill with hydrogen to 0.5MPa, and adjust the temperature to be stable at 25°C, after stirring for 4 hours, stop the reaction. The conversion rate and product selectivity of furan derivatives are shown in Table 5.

表5-1Ru金属簇催化糠基衍生物加氢反应性能Table 5-1 Hydrogenation performance of furfuryl derivatives catalyzed by Ru metal clusters

糠醛Furfural 88.588.5 87.587.5 11.811.8 5-甲基糠醛5-Methylfurfural 87.487.4 68.968.9 9.19.1 5-羟甲基糠醛5-Hydroxymethylfurfural 98.198.1 92.192.1 5.35.3 5-乙氧基甲基糠醛5-Ethoxymethylfurfural 100100 84.184.1 12.512.5

表5-2Ru金属簇催化呋喃衍生物加氢反应性能Table 5-2Ru metal clusters catalyzed hydrogenation reaction performance of furan derivatives

综上所述,本发明提供的介孔锆硅纳米球稳定的金属簇粒子,相比于已公开的材料,该材料具有高分散、高稳定金属簇粒子(0.6-2.0nm),同时具有均一的六方介孔结构(孔径2.0-3.0nm),利于大分子底物的扩散。在催化呋喃衍生物加氢反应中,表现出常温常压加氢的高催化活性,及高选择性获取加氢产物或开环产物。加之制备方法简单便捷、元素覆盖多数过渡金属、原料广泛易得等特点,将是一类易于实现工业化生产和应用的材料。In summary, the metal cluster particles stabilized by mesoporous zirconium-silicon nanospheres provided by the present invention have highly dispersed and highly stable metal cluster particles (0.6-2.0nm) and uniform The hexagonal mesoporous structure (pore size 2.0-3.0nm) facilitates the diffusion of macromolecular substrates. In the catalytic hydrogenation reaction of furan derivatives, it shows high catalytic activity for hydrogenation at normal temperature and pressure, and high selectivity to obtain hydrogenated products or ring-opened products. In addition, the preparation method is simple and convenient, the elements cover most transition metals, and the raw materials are widely available, etc., it will be a class of materials that are easy to realize industrial production and application.

Claims (11)

1.介孔锆硅纳米球稳定的金属簇,其特征在于:该材料具有均一的六方孔道结构、平均孔径为2.0-3.0nm;金属簇固载于介孔锆硅纳米球中,其中金属簇于材料上的质量担载量为0.01-50%,金属簇粒子为过渡金属元素中的一种或二种以上、粒子尺寸0.6-2.0nm。1. Metal clusters stabilized by mesoporous zirconium-silicon nanospheres, characterized in that: the material has a uniform hexagonal pore structure with an average pore diameter of 2.0-3.0nm; metal clusters are immobilized in mesoporous zirconium-silicon nanospheres, and the metal clusters The mass loading on the material is 0.01-50%, the metal cluster particles are one or more than two kinds of transition metal elements, and the particle size is 0.6-2.0nm. 2.按照权利要求1所述的金属簇,其特征在于:2. Metal cluster according to claim 1, characterized in that: 金属簇元素优选Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中一种或二种以上;Metal cluster elements are preferably one or more of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au; 其中材料上负载的金属簇质量比为0.01%-50%,较佳为0.05%-30%,最佳为0.1%-10%。The mass ratio of metal clusters loaded on the material is 0.01%-50%, preferably 0.05%-30%, and most preferably 0.1%-10%. 3.一种权利要求1或2所述的介孔锆硅纳米球稳定的金属簇的制备方法,其特征在于:3. a method for preparing the stable metal cluster of mesoporous zirconium silicon nanospheres according to claim 1 or 2, characterized in that: 1)介孔锆硅纳米球(MSN-Zr)的制备:将0.58g的十六烷基三甲基溴化铵(CTAB)模板剂溶于300mL氨水(pH值为10-12)溶液中,水浴加热至40-60°C,搅拌下加入浓度0.1-0.5mol·L-1的稀正硅酸乙酯(TEOS)的乙醇溶液5mL,反应5小时后,滴加硅的浓度0.6-2.5mol·L-1的浓正硅酸乙酯(TEOS)和正丙醇锆(Zr(OnPr)4)混合的乙醇溶液5mL,(混合物中锆与硅的摩尔数之比为0.01-0.5);搅拌后陈化20小时,固液分离,固体物质水洗涤、110°C干燥过夜、550°C焙烧10小时后即得到MSN-Zr;1) Preparation of mesoporous zirconium-silicon nanospheres (MSN-Zr): Dissolve 0.58 g of cetyltrimethylammonium bromide (CTAB) template in 300 mL of ammonia (pH 10-12) solution, Heat it in a water bath to 40-60°C, add 5mL of dilute ethyl orthosilicate (TEOS) ethanol solution with a concentration of 0.1-0.5mol L -1 under stirring, and add silicon concentration of 0.6-2.5mol dropwise after 5 hours of reaction 5mL ethanol solution mixed with concentrated tetraethyl orthosilicate (TEOS) and zirconium n-propoxide (Zr( On Pr) 4 ) in L -1 (the molar ratio of zirconium to silicon in the mixture is 0.01-0.5); Aging for 20 hours after stirring, solid-liquid separation, solid matter washed with water, dried overnight at 110°C, and roasted at 550°C for 10 hours to obtain MSN-Zr; 2)采用浸渍-氢还原法制备介孔锆硅纳米球稳定的金属簇(M/MSN-Zr):称取1g MSN-Zr载体,将所需担载量的金属盐溶解于3.5g水溶性溶剂中,超声分散,室温静置12-48小时,100-120°C烘干后置于管式炉中,100-800°C下氢气还原处理0.5-10小时,即得到M/MSN-Zr。2) Prepare mesoporous zirconium-silicon nanosphere-stabilized metal clusters (M/MSN-Zr) by impregnation-hydrogen reduction method: Weigh 1 g of MSN-Zr carrier, and dissolve the required loading amount of metal salt in 3.5 g of water-soluble In a solvent, ultrasonically disperse, stand at room temperature for 12-48 hours, dry at 100-120°C, place in a tube furnace, and perform hydrogen reduction treatment at 100-800°C for 0.5-10 hours to obtain M/MSN-Zr . 4.按照权利要求3所述的方法,其特征在于:步骤1)中混合物中各原料摩尔数之比为Zr/Si=0.01-0.50,CTAB/Si=0.05-1.0,H2O/Si=500-5000;较佳为Zr/Si=0.01-0.20,CTAB/Si=0.05-0.50,H2O/Si=1000-3500;最佳为Zr/Si=0.01-0.10,CTAB/Si=0.20-0.30,H2O/Si=2000-3000。4. The method according to claim 3, characterized in that: in step 1), the molar ratio of each raw material in the mixture is Zr/Si=0.01-0.50, CTAB/Si=0.05-1.0, H 2 O/Si= 500-5000; better Zr/Si=0.01-0.20, CTAB/Si=0.05-0.50, H 2 O/Si=1000-3500; best Zr/Si=0.01-0.10, CTAB/Si=0.20- 0.30, H 2 O/Si=2000-3000. 5.按照权利要求3所述的方法,其特征在于:稀TEOS乙醇溶液中硅的浓度较佳为0.1-0.5mol·L-1,最佳为0.2-0.4mol·L-1;浓TEOS和Zr(OnPr)4混合的乙醇溶液中硅的浓度较佳为0.6-2.5mol·L-1,最佳为1-2mol·L-15. The method according to claim 3, characterized in that: the concentration of silicon in the dilute TEOS ethanol solution is preferably 0.1-0.5mol·L -1 , most preferably 0.2-0.4mol·L -1 ; concentrated TEOS and The concentration of silicon in the ethanol solution mixed with Zr( On Pr) 4 is preferably 0.6-2.5 mol·L -1 , most preferably 1-2 mol·L -1 . 6.按照权利要求3所述的方法,其特征在于:金属簇元素选自周期表中过渡金属元素中一种或二种以上,优选Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au中一种或二种以上;6. according to the described method of claim 3, it is characterized in that: metal cluster element is selected from one or more than two kinds of transition metal elements in the periodic table, preferably Fe, Co, Ni, Ru, Rh, Pd, Os, Ir , Pt, Cu, Ag, Au in one or two or more; 金属盐选自下述化合物中的一种或二种以上:有机金属化合物中的乙酰丙酮钌、二羰基乙酰丙酮铱、或醋酸钴等,金属无机盐中的硝酸铁、硝酸镍、氯化钌、氯化钯、氯铂酸或氯金酸。The metal salt is selected from one or more of the following compounds: ruthenium acetylacetonate, iridium dicarbonyl acetylacetonate, or cobalt acetate in organometallic compounds, iron nitrate, nickel nitrate, ruthenium chloride in metal inorganic salts , palladium chloride, chloroplatinic acid or chloroauric acid. 7.按照权利要求3所述的方法,其特征在于:水溶性溶剂选自水、甲醇、乙醇、丙醇、异丙醇、丙酮中一种或二种以上。7. The method according to claim 3, characterized in that: the water-soluble solvent is selected from one or more than two of water, methanol, ethanol, propanol, isopropanol, and acetone. 8.按照权利要求3所述的方法,其特征在于:氢气还原处理条件中,氢气以流动形式提供,其流量为1-70mL·min-1,较佳为5-50mL·min-1,最佳为10-40mL·min-1;还原温度为100-800°C,较佳为100-700°C,最佳为100-600°C;还原时间为0.5-10小时,较佳为1-8小时,最佳为1-6小时。8. The method according to claim 3, characterized in that: in the hydrogen reduction treatment condition, the hydrogen is provided in a flow form, and the flow rate is 1-70mL·min -1 , preferably 5-50mL·min -1 , most preferably Preferably 10-40mL·min -1 ; reduction temperature is 100-800°C, preferably 100-700°C, most preferably 100-600°C; reduction time is 0.5-10 hours, preferably 1- 8 hours, the best is 1-6 hours. 9.一种权利要求1或2所述的介孔锆硅纳米球稳定的金属簇在呋喃衍生物加氢反应中的应用,其以介孔锆硅纳米球稳定的金属簇作为催化剂,以分子氢为氢源,水相加氢转化。9. The application of the stable metal clusters of mesoporous zirconium silicon nanospheres described in claim 1 or 2 in the hydrogenation reaction of furan derivatives, which uses the stable metal clusters of mesoporous zirconium silicon nanospheres as a catalyst, with molecular Hydrogen is used as the hydrogen source, and the aqueous phase is hydroconverted. 10.按照权利要求9所述的应用,其特征在于:以催化剂中金属质量计,催化剂的加入质量为原料底物质量的0.01%-100%,较佳为0.1%-50%,最佳为0.1%-10%;10. according to the described application of claim 9, it is characterized in that: based on the metal mass in the catalyst, the added quality of the catalyst is 0.01%-100% of the raw material substrate quality, preferably 0.1%-50%, the best is 0.1%-10%; 催化反应条件中,加氢反应温度为20-240°C,较佳为25-150°C,最佳为25-100°C;氢气压力为0.1-10MPa,较佳为0.1-5MPa,最佳为0.5-3MPa;反应时间为0.1-10小时,较佳为0.5-5小时,最佳为1-4小时。In the catalytic reaction conditions, the hydrogenation reaction temperature is 20-240°C, preferably 25-150°C, the best is 25-100°C; the hydrogen pressure is 0.1-10MPa, preferably 0.1-5MPa, the best 0.5-3MPa; the reaction time is 0.1-10 hours, preferably 0.5-5 hours, most preferably 1-4 hours. 11.按照权利要求9所述的应用,其特征在于:呋喃衍生物为呋喃和呋喃环上有机基团取代的化合物;选自下述化合物中的一种或二种以上:呋喃、5-甲基呋喃、2,5-二甲基呋喃、糠醛、5-甲基糠醛、5-羟甲基糠醛、5-乙氧基甲基糠醛、5-甲氧基甲基糠醛、呋喃二甲醛、呋喃二甲酸。11. according to the described application of claim 9, it is characterized in that: furan derivative is furan and the compound that the organic group on the furan ring replaces; One or more than two kinds are selected from the following compounds: furan, 5-methano Furan, 2,5-Dimethylfuran, Furfural, 5-Methylfurfural, 5-Hydroxymethylfurfural, 5-Ethoxymethylfurfural, 5-Methoxymethylfurfural, Furandicarbaldehyde, Furan Diformic acid.
CN201310210499.4A 2013-05-30 2013-05-30 Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application Expired - Fee Related CN104209120B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310210499.4A CN104209120B (en) 2013-05-30 2013-05-30 Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310210499.4A CN104209120B (en) 2013-05-30 2013-05-30 Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application

Publications (2)

Publication Number Publication Date
CN104209120A true CN104209120A (en) 2014-12-17
CN104209120B CN104209120B (en) 2016-09-14

Family

ID=52091263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310210499.4A Expired - Fee Related CN104209120B (en) 2013-05-30 2013-05-30 Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application

Country Status (1)

Country Link
CN (1) CN104209120B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160194298A1 (en) * 2014-12-02 2016-07-07 Rennovia Inc. Process for production of hexanetriol from 5-hydroxymethylfurfural
CN111777578A (en) * 2020-07-15 2020-10-16 烟台大学 Method for preparing 2,5-dimethyloltetrahydrofuran by hydrogenation of 5-hydroxymethylfurfural

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372687B1 (en) * 1997-10-17 2002-04-16 Hoechst Research & Technology Supported catalysts having a high sintering stability and a process for producing them
US20090325790A1 (en) * 2004-06-17 2009-12-31 Yale University Size-controllable transition metal clusters in mcm-41 for improving chemical catalysis
CN101670286A (en) * 2008-09-12 2010-03-17 北京大学 Supported transition metal or transition metal alloy nanocluster catalyst and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372687B1 (en) * 1997-10-17 2002-04-16 Hoechst Research & Technology Supported catalysts having a high sintering stability and a process for producing them
US20090325790A1 (en) * 2004-06-17 2009-12-31 Yale University Size-controllable transition metal clusters in mcm-41 for improving chemical catalysis
CN101670286A (en) * 2008-09-12 2010-03-17 北京大学 Supported transition metal or transition metal alloy nanocluster catalyst and preparation method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVID J. MIHALCIK等: "Mesoporous Silica Nanosphere Supported Ruthenium Catalysts for Asymmetric Hydrogenation", 《ANGEW. CHEM. INT. ED.》 *
储彬等: "立方规则孔道结构含锆介孔氧化硅的合成与表征", 《高等学校化学学报》 *
李福祥等: "含锆介孔材料的研究进展", 《现代化工》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160194298A1 (en) * 2014-12-02 2016-07-07 Rennovia Inc. Process for production of hexanetriol from 5-hydroxymethylfurfural
US9586920B2 (en) * 2014-12-02 2017-03-07 Rennovia Inc. Process for production of hexanetriol from 5-hydroxymethylfurfural
US10081612B2 (en) 2014-12-02 2018-09-25 Archer-Daniels-Midland Company Process for production of hexanetriol from 5-hydroxymethylfurfural
CN111777578A (en) * 2020-07-15 2020-10-16 烟台大学 Method for preparing 2,5-dimethyloltetrahydrofuran by hydrogenation of 5-hydroxymethylfurfural

Also Published As

Publication number Publication date
CN104209120B (en) 2016-09-14

Similar Documents

Publication Publication Date Title
CN107626294B (en) Preparation method of metal single-atom site catalyst
CN106622327A (en) N-doped porous carbon supported metal catalyst, and preparation method and application thereof
KR101625987B1 (en) Fischer-tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
CN108393092B (en) Preparation method of catalyst for preparing secondary amine by nitrile compound hydrogenation, product and application thereof
CN106179440A (en) N doping multi-stage porous charcoal and its preparation method and application
CN113101933A (en) A supported nickel-cobalt bimetallic nanocatalyst and its application in catalyzing the selective hydrogenation of vanillin
JP5657805B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
CN108636455A (en) It is a kind of using nucleocapsid MOF as the preparation and application of the carried noble metal base catalyst of reaction vessel
Fu et al. Recent advances in metal–organic framework based heterogeneous catalysts for furfural hydrogenation reactions
CN112691690B (en) A kind of supported double metal nitride catalyst and its preparation method and application
CN108067306A (en) A kind of Pt/ZIF-8@Al2O3The preparation method of catalyst and its application in catalytic hydrogenation reaction
CN101940952A (en) Bimetal nano particle catalyst and preparation method thereof
CN116272966A (en) Application of a supported catalyst in the preparation of furfurylamine by catalytic reductive amination of furfural
CN106881085A (en) The catalyst and preparation method and process for selective hydrogenation of hydroquinones hydrogenation
CN113083325A (en) Catalyst Ru for ammonia borane hydrolysis hydrogen production1-xCox/P25 and preparation method thereof
CN104209120B (en) Metal cluster that mesoporous zirconium silicon nanosphere is stable and preparation method and application
CN108623436A (en) A kind of one kettle way conversion cellulose is the method for bio-ethanol
CN114029081B (en) A kind of bimetallic copper cobalt azacarbon material catalyst and its preparation method and application
CN102974342B (en) Catalyst for preparing cyclohexene from benzene by selective hydrogenation and preparation method thereof
CN110665546A (en) Noble metal/amino MOFs selective hydrogenation catalyst, preparation method and application thereof
RU2675839C1 (en) Nano-catalyst from monodisperse transition metal for fischer-tropsch synthesis, method for its preparation and its application
CN108940368B (en) Zeolite-like framework-encapsulated metal nanoparticle catalyst, preparation method and application thereof
CN114870853B (en) Core-shell catalyst for preparing cyclohexanol by catalyzing guaiacol to be subjected to selective hydrodeoxygenation
CN113019435B (en) Monoatomic palladium/molecular sieve catalyst, preparation thereof and application thereof in preparation of ketone by selective hydrogenation of biomass molecules
CN116688980A (en) Preparation and application of a highly stable catalyst for CO2 hydrogenation to ethanol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914