CN104209116A - Vanadium-series middle-temperature and high-temperature SCR catalyst and preparation method thereof - Google Patents
Vanadium-series middle-temperature and high-temperature SCR catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN104209116A CN104209116A CN201410441977.7A CN201410441977A CN104209116A CN 104209116 A CN104209116 A CN 104209116A CN 201410441977 A CN201410441977 A CN 201410441977A CN 104209116 A CN104209116 A CN 104209116A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- tio
- zro
- oxide
- vanadium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 133
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 25
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 20
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 18
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000010937 tungsten Substances 0.000 claims abstract description 9
- ZARVOZCHNMQIBL-UHFFFAOYSA-N oxygen(2-) titanium(4+) zirconium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4] ZARVOZCHNMQIBL-UHFFFAOYSA-N 0.000 claims abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000010936 titanium Substances 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 54
- 239000000243 solution Substances 0.000 claims description 24
- 235000006408 oxalic acid Nutrition 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 6
- 238000000975 co-precipitation Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 5
- 229910001868 water Inorganic materials 0.000 claims description 4
- 239000005457 ice water Substances 0.000 claims description 3
- 239000003426 co-catalyst Substances 0.000 claims description 2
- 239000000706 filtrate Substances 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims 3
- 238000013019 agitation Methods 0.000 claims 2
- 238000007598 dipping method Methods 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- NZSLBYVEIXCMBT-UHFFFAOYSA-N chloro hypochlorite;zirconium Chemical class [Zr].ClOCl NZSLBYVEIXCMBT-UHFFFAOYSA-N 0.000 claims 1
- 238000007689 inspection Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 239000002253 acid Substances 0.000 abstract description 11
- 239000011148 porous material Substances 0.000 abstract description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 229910052726 zirconium Inorganic materials 0.000 abstract description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 abstract 2
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 59
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 22
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 16
- 239000003546 flue gas Substances 0.000 description 16
- 238000001179 sorption measurement Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 238000003795 desorption Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- VZJJZMXEQNFTLL-UHFFFAOYSA-N chloro hypochlorite;zirconium;octahydrate Chemical compound O.O.O.O.O.O.O.O.[Zr].ClOCl VZJJZMXEQNFTLL-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 229910001930 tungsten oxide Inorganic materials 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000010531 catalytic reduction reaction Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- ALTWGIIQPLQAAM-UHFFFAOYSA-N metavanadate Chemical compound [O-][V](=O)=O ALTWGIIQPLQAAM-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
技术领域technical field
本发明属于火电厂烟气脱硝技术领域,特别涉及一种钒系中高温SCR催化剂的制备方法。The invention belongs to the technical field of flue gas denitrification in thermal power plants, and in particular relates to a preparation method of a vanadium-based medium-high temperature SCR catalyst.
背景技术Background technique
选择性催化还原法(SCR)是目前应用最广泛、处理效率最高的脱硝技术,目前用于SCR脱硝反应催化剂种类有很多,V2O5/WO3(MoO3)/TiO2(锐钛矿型)系列催化剂以其脱硝效率高、耐高温、活性高和抗中毒性能佳等优点,成为目前应用最广的SCR工业催化剂。但其所需温度较高,一般要求控制在573~673K,较高的烟气温度是催化剂存在烧结等问题,这些都导致了催化剂的失活。Selective Catalytic Reduction (SCR) is currently the most widely used denitration technology with the highest treatment efficiency. There are many types of catalysts used for SCR denitration reaction, V 2 O 5 /WO 3 (MoO 3 )/TiO 2 (Anatase type) series catalysts have become the most widely used SCR industrial catalysts due to their advantages of high denitrification efficiency, high temperature resistance, high activity and good anti-poisoning performance. However, the required temperature is relatively high, which is generally required to be controlled at 573-673K. The higher flue gas temperature is due to problems such as sintering of the catalyst, which all lead to the deactivation of the catalyst.
一般认为V2O5具有良好的催化还原NO的性能,WO3作为助剂在稳定催化剂结构和改变催化剂织构等方面有一定作用,而TiO2具有良好的耐硫性能。选择TiO2作为载体,是因为在SO2和氧气作用下TiO2只是微弱可逆的被硫化,此外TiO2还会与V2O5发生良好的电子作用,使得催化剂具有良好的活性。相关研究表明,在新的催化剂的表面,催化剂表面的V2O5以单层存在和聚合态为主,随着催化剂反应时间的增加,单层分散的V2O5逐渐减少,晶态V2O5的逐渐增多,老化24h之后,分散的V2O5基本消失,晶态V2O5的直接导致NH3的氧化,导致NO的转化率降低。同时值得注意的是,V2O5/TiO2(锐钛矿)是一个相当不稳定的体系,TiO2(锐钛矿)是钛氧化物中的一种亚稳态晶体,比表面积较小,受热时表面极易收缩,在一定温度及压力条件下易转化为热力学状态比较稳定的金红石,而WO3的加入有助于阻止锐钛矿形态的转换,稳定晶体结构,提高晶相转变温度,同时WO3也可抑制V2O5晶态物种的形成。因此常作为WO3助催化剂用来提高催化剂的热稳定性。It is generally believed that V 2 O 5 has a good performance in catalytic reduction of NO, WO 3 as an auxiliary agent plays a certain role in stabilizing the catalyst structure and changing the catalyst texture, and TiO 2 has good sulfur tolerance. TiO 2 is chosen as the carrier because TiO 2 is only weakly and reversibly sulfided under the action of SO 2 and oxygen. In addition, TiO 2 also has a good electronic interaction with V 2 O 5 , which makes the catalyst have good activity. Relevant studies have shown that on the surface of new catalysts, the V 2 O 5 on the surface of the catalyst is mainly in a monolayer and aggregated state. The 2 O 5 gradually increased, and after aging for 24 hours, the dispersed V 2 O 5 basically disappeared, and the crystalline V 2 O 5 directly led to the oxidation of NH 3 , resulting in a decrease in the conversion rate of NO. At the same time, it is worth noting that V 2 O 5 /TiO 2 (anatase) is a rather unstable system, and TiO 2 (anatase) is a metastable crystal in titanium oxide with a small specific surface area , the surface is easy to shrink when heated, and it is easy to transform into rutile with relatively stable thermodynamic state under certain temperature and pressure conditions, and the addition of WO 3 helps to prevent the transformation of anatase form, stabilize the crystal structure, and increase the crystal phase transition temperature , and WO 3 can also inhibit the formation of V 2 O 5 crystalline species. Therefore, it is often used as a WO 3 co-catalyst to improve the thermal stability of the catalyst.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种钒系中高温SCR催化剂,该钒系中高温SCR催化剂不仅具备较强的高温催化活性,而且温度窗口较宽,具有较强的抗烧结能力。The technical problem to be solved by the present invention is to provide a vanadium-based medium-high temperature SCR catalyst. The vanadium-based medium-high temperature SCR catalyst not only has strong high-temperature catalytic activity, but also has a wide temperature window and strong sintering resistance.
本发明还要解决的一个技术问题在于提供上述钒系中高温SCR催化剂的制备方法。Another technical problem to be solved by the present invention is to provide a method for preparing the above-mentioned vanadium-based medium-high temperature SCR catalyst.
为解决上述技术问题,本发明提供一种钒系中高温SCR催化剂,所述催化剂以钛锆氧化物为载体,以钒的氧化物为活性成分,以钨的氧化物为助催化剂,其中,所述催化剂中,钛元素和锆元素的摩尔比为1∶1,所述的钨的氧化物的质量占钨的氧化物和钛锆氧化物的总质量的6~12%;钒的氧化物的质量占总催化剂的质量的1%。In order to solve the above-mentioned technical problems, the present invention provides a vanadium-based medium-high temperature SCR catalyst, which uses titanium-zirconium oxide as a carrier, vanadium oxide as an active component, and tungsten oxide as a cocatalyst, wherein the In the catalyst, the molar ratio of titanium element and zirconium element is 1:1, and the quality of the oxide of tungsten accounts for 6% to 12% of the total mass of the oxide of tungsten and titanium zirconium oxide; The mass accounts for 1% of the mass of the total catalyst.
具体地,所述的钛锆氧化物为TiO2-ZrO2,所述的钒的氧化物为V2O5,所述的钨的氧化物为WO3。Specifically, the titanium-zirconium oxide is TiO 2 -ZrO 2 , the vanadium oxide is V 2 O 5 , and the tungsten oxide is WO 3 .
本发明还提出了上述钒系中高温SCR催化剂的制备方法,包括如下步骤:The present invention also proposes a preparation method for the above-mentioned vanadium-based medium-temperature SCR catalyst, comprising the following steps:
(1)TiO2-ZrO2载体的制备:利用共沉淀法制备TiO2-ZrO2载体,经先干燥后煅烧后备用,其中,TiO2-ZrO2载体中TiO2和ZrO2的摩尔比为1∶1;(1) Preparation of TiO 2 -ZrO 2 carrier: The TiO 2 -ZrO 2 carrier was prepared by co-precipitation method, dried and then calcined for later use, wherein the molar ratio of TiO 2 and ZrO 2 in the TiO 2 -ZrO 2 carrier was 1:1;
(2)WO3/TiO2-ZrO2催化剂的制备:取步骤(1)制备的TiO2-ZrO2载体加入到钨酸铵的草酸溶液中,在30~40℃油浴下搅拌2~3h,升温至80~90℃并继续搅拌浸渍4~5h,带水分蒸干后,然后依次经烘干、研磨、煅烧后得到WO3/TiO2-ZrO2催化剂,草酸只起到促进钨酸铵溶解的作用,5g草酸相对于每次不超过2g的负载量来说是足量的,后续的油浴环节会将多余的草酸分解为CO2和H2O。其中钨酸铵与TiO2-ZrO2载体的质量比为6.97%~13.54%,从而使钨的氧化物的质量占钨的氧化物与TiO2-ZrO2载体的总质量的6~12%;(2) Preparation of WO 3 /TiO 2 -ZrO 2 catalyst: Take the TiO 2 -ZrO 2 carrier prepared in step (1) and add it to the oxalic acid solution of ammonium tungstate, and stir in an oil bath at 30-40°C for 2-3 hours , heated up to 80-90°C and continued stirring and impregnating for 4-5 hours, evaporated to dryness with water, then dried, ground, and calcined to obtain WO 3 /TiO 2 -ZrO 2 catalyst, oxalic acid only played a role in promoting ammonium tungstate For the effect of dissolution, 5g of oxalic acid is sufficient for a load of no more than 2g each time, and the subsequent oil bath will decompose excess oxalic acid into CO 2 and H 2 O. The mass ratio of ammonium tungstate to TiO 2 -ZrO 2 support is 6.97%-13.54%, so that the mass of tungsten oxide accounts for 6-12% of the total mass of tungsten oxide and TiO 2 -ZrO 2 support;
(3)1%V2O5-WO3/TiO2-ZrO2催化剂的制备:将步骤(2)制备的WO3/TiO2-ZrO2加入到草酸溶液中,然后继续加入偏钒酸铵,在30~40℃油浴下搅拌2~3h,升温至80~90℃并继续搅拌浸渍4~5h,待水分蒸干后,依次经烘干、研磨、煅烧后得到V2O5-WO3/TiO2-ZrO2催化剂,草酸只起到促进偏钒酸铵溶解的作用,5g草酸相对于每次不超过2g的负载量来说是足量的,后续的油浴环节会将多余的草酸分解为CO2和H2O。其中,偏钒酸铵与WO3/TiO2-ZrO2催化剂的质量比为1.29%,从而使所述催化剂中V2O5的质量占V2O5-WO3/TiO2-ZrO2催化剂总质量的1%。(3) Preparation of 1% V 2 O 5 -WO 3 /TiO 2 -ZrO 2 catalyst: Add WO 3 /TiO 2 -ZrO 2 prepared in step (2) to the oxalic acid solution, and then continue to add ammonium metavanadate , stirred in an oil bath at 30-40°C for 2-3 hours, raised the temperature to 80-90°C and continued stirring and impregnating for 4-5 hours . 3 /TiO 2 -ZrO 2 catalyst, oxalic acid only plays a role in promoting the dissolution of ammonium metavanadate, 5g of oxalic acid is sufficient for the load of no more than 2g each time, and the subsequent oil bath will remove the excess Oxalic acid decomposes into CO2 and H2O . Wherein, the mass ratio of ammonium metavanadate to WO 3 /TiO 2 -ZrO 2 catalyst is 1.29%, so that the mass of V 2 O 5 in the catalyst accounts for V 2 O 5 -WO 3 /TiO 2 -ZrO 2 catalyst 1% of the total mass.
具体地,步骤(1)中共沉淀的步骤为:在冰水浴、磁力搅拌的条件下,向八水氧氯化锆的水溶液中边搅拌边以0.8~1ml/min的速率滴加TiCl4,同时以3~5ml/min的速率滴加氨水至反应器中,直至pH试纸测得溶液的pH为9~10,然后在黑暗条件下静置12~14h后倾去上层清液得到沉淀,用去离子水洗涤所述沉淀,并减压抽滤,重复洗涤直至滤液中检测不出的Cl-为止,得到TiO2-ZrO2沉淀。向TiCl4和八水氧氯化锆的溶液中逐滴滴加氨水(NH3含量为25%~28%)调节pH值至9~10,用胶头滴管滴加氨水时,TiCl4和八水氧氯化锆的溶液中会产生白色乳状沉淀,滴入下一滴氨水时,观察上一滴氨水在溶液中滴加的位置,下一滴氨水滴加的位置要和上一滴错开,这样可以保证在溶液中不同位置都可形成沉淀;在滴加氨水过程中,要连续用玻璃棒蘸取大烧杯中的溶液,用pH试纸测溶液的pH值直至9~10,此时停止滴加氨水,得到白色乳状沉淀,静置12~14h,洗涤、抽滤。具体地,用去离子水洗涤,收集洗涤沉淀的废液,将废液置于烧杯中,用0.1mol/L的硝酸银溶液检验废液之中有无氯离子,若还有氯离子则继续洗涤,直至硝酸银检验废液中无氯离子,此法的目的在于防止原材料TiCl4和八水氧氯化锆中的氯离子共生在沉淀中形成含氯离子的金属络合物,进而影响沉淀的品质。Specifically, the step of co-precipitation in step (1) is: under the conditions of ice-water bath and magnetic stirring, TiCl 4 is added dropwise at a rate of 0.8-1 ml/min while stirring, and at the same time Add ammonia water dropwise to the reactor at a rate of 3-5ml/min until the pH of the solution measured by the pH test paper is 9-10, then let it stand in the dark for 12-14 hours, and then pour off the supernatant to obtain a precipitate. The precipitate was washed with deionized water, and filtered under reduced pressure, and the washing was repeated until no Cl- was detected in the filtrate to obtain a TiO 2 -ZrO 2 precipitate. In the solution of TiCl 4 and zirconium oxychloride octahydrate, dropwise add ammoniacal liquor (NH 3 content is 25%~28%) to adjust the pH value to 9~10, when dripping ammoniacal liquor with rubber head dropper, TiCl 4 and A white milky precipitate will be produced in the solution of zirconium oxychloride octahydrate. When dropping the next drop of ammonia water, observe the dripping position of the previous drop of ammonia water in the solution. The position of the next drop of ammonia water dripping should be staggered from the previous drop. Precipitation can be formed at different positions in the solution; during the dripping of ammonia water, the solution in the large beaker should be dipped continuously with a glass rod, and the pH value of the solution should be measured with pH test paper until it is 9-10, at this time, stop adding ammonia water. A white milky precipitate was obtained, which was allowed to stand for 12 to 14 hours, washed and filtered with suction. Specifically, wash with deionized water, collect the waste liquid that has been washed and precipitated, put the waste liquid in a beaker, use 0.1mol/L silver nitrate solution to check whether there are chloride ions in the waste liquid, if there are chloride ions, continue Wash until there is no chloride ion in the silver nitrate test waste liquid. The purpose of this method is to prevent the symbiosis of chloride ions in the raw material TiCl 4 and zirconium oxychloride octahydrate to form metal complexes containing chloride ions in the precipitation, which will affect the precipitation. quality.
优选地,上述步骤中磁力搅拌或机械搅拌的搅拌速度为20~30r/s。Preferably, the stirring speed of magnetic stirring or mechanical stirring in the above steps is 20-30 r/s.
作为优选,步骤(1)、(2)和(3)中的干燥条件为100~120℃干燥11~13h。Preferably, the drying conditions in steps (1), (2) and (3) are drying at 100-120° C. for 11-13 hours.
步骤(1)、(2)和(3)中的煅烧条件为400~500℃下煅烧3~4h,整个制备过程的煅烧温度不能高于500℃,当煅烧温度高于500℃时,二氧化钛开始有锐钛矿晶型向金红石晶型转变,对反应不利。优选地,所述煅烧的条件为450℃下煅烧4h。The calcination conditions in steps (1), (2) and (3) are calcination at 400-500°C for 3-4 hours, and the calcination temperature in the whole preparation process cannot be higher than 500°C. When the calcination temperature is higher than 500°C, titanium dioxide begins to Anatase crystal form changes to rutile crystal form, which is unfavorable for the reaction. Preferably, the calcination condition is 450° C. for 4 hours.
为了进一步提高催化剂的性能,其特征在于,步骤(2)和步骤(3)中,所述的TiO2-ZrO2载体和WO3/TiO2-ZrO2催化剂研磨过60目筛后,然后再溶于去离子水中或钨酸铵的草酸溶液中。In order to further improve the performance of the catalyst, it is characterized in that, in step (2) and step (3), after the TiO 2 -ZrO 2 carrier and WO 3 /TiO 2 -ZrO 2 catalyst are ground through a 60-mesh sieve, and then Soluble in deionized water or ammonium tungstate in oxalic acid solution.
本发明进一步提出了上述钒系负载型中温SCR催化剂在中高温SCR脱硝中的应用。The present invention further proposes the application of the vanadium-based supported medium-temperature SCR catalyst in medium-high temperature SCR denitrification.
优选地,所述中温的温度范围为300~400℃。Preferably, the temperature range of the medium temperature is 300-400°C.
有益效果:与现有技术相比,本发明的钒系中高温SCR脱硝催化剂通过加入WO3,增强了V2O5的热稳定性和还原能力,提高了催化剂的孔径和孔容,增强了NH3在催化剂表面的停留时间和催化剂表面的酸量,进而提高了催化剂的脱硝效率。Beneficial effects: Compared with the prior art, the vanadium-based medium-high temperature SCR denitration catalyst of the present invention enhances the thermal stability and reduction ability of V 2 O 5 by adding WO 3 , increases the pore diameter and pore volume of the catalyst, and enhances the The residence time of NH 3 on the catalyst surface and the acid content, thereby improving the denitrification efficiency of the catalyst.
附图说明Description of drawings
图1本发明的系列催化剂的脱硝性能对比图;Fig. 1 is a comparison chart of the denitrification performance of the series catalysts of the present invention;
图2本发明的系列催化剂的抗硫性能图;The anti-sulfur performance figure of series catalyst of the present invention of Fig. 2;
图3本发明的系列催化剂的NH3-TPD谱图;The NH 3 -TPD spectrogram of series catalyst of the present invention of Fig. 3;
图4本发明的系列催化剂的FT-IR谱图;The FT-IR spectrogram of series catalyst of the present invention of Fig. 4;
图5本发明的系列催化剂的XRD谱图。Fig. 5 is an XRD pattern of a series of catalysts of the present invention.
具体实施方式Detailed ways
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料配比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。The present invention can be better understood from the following examples. However, those skilled in the art will readily understand that the specific material ratios, process conditions and results described in the examples are only used to illustrate the present invention, and should not and will not limit the present invention described in detail in the claims .
实施例1:Example 1:
(1)用共沉淀法合成TiO2-ZrO2固溶体(钛锆固溶体,Ti-Zr)。(1) TiO 2 -ZrO 2 solid solution (titanium zirconium solid solution, Ti-Zr) was synthesized by co-precipitation method.
以四氯化钛(TiCl4,密度1.726g/ml)和八水氧氯化锆(ZrOCl2·8H2O)为原料,首先在通风橱中2L大烧杯加入200ml去离子水,将2L大烧杯移入冰水中,大烧杯中插入磁力搅拌器,开启搅拌,搅拌速度为20~30r/s。在通风橱外面的实验台上将31.7346g八水氧氯化锆在25ml烧杯中溶解,并将溶解液转入2L的大烧杯中,随后边搅拌便逐滴滴入10.8ml四氯化钛溶液,每滴间隔10s,以确保四氯化钛溶液可以在八水氧氯化锆的溶液中彻底水解。然后滴加氨水(NH3含量为25%~28%)调节大烧杯中溶液的pH值至9~10,在滴加过程中,前后两滴氨水在大烧杯溶液中的滴加位置应错开,逐滴滴加直至溶液中产生白色乳状沉淀,在此过程中连续用玻璃棒蘸取大烧杯中的溶液,用pH试纸测溶液的pH值,当pH值为9~10时,停止滴加。将沉淀静置12小时,去离子水洗涤、抽滤、烘箱中110℃干燥12h,取干燥后的固体,碾碎过筛,取过筛后60目的固体,在马弗炉中450℃下煅烧3h即得钛锆固溶体(TiO2-ZrO2,n(Ti)/n(Zr)=1,n为摩尔数)。钛锆固溶体的表征结果如图4。Using titanium tetrachloride (TiCl 4 , density 1.726g/ml) and zirconium oxychloride octahydrate (ZrOCl 2 8H 2 O) as raw materials, first add 200ml of deionized water to a 2L beaker in a fume hood, and place a 2L large Move the beaker into ice water, insert a magnetic stirrer into the large beaker, start stirring, and the stirring speed is 20-30r/s. Dissolve 31.7346g of zirconium oxychloride octahydrate in a 25ml beaker on the test bench outside the fume hood, and transfer the solution into a 2L beaker, then add 10.8ml of titanium tetrachloride solution drop by drop while stirring , Each drop is separated by 10s to ensure that the titanium tetrachloride solution can be completely hydrolyzed in the solution of zirconium oxychloride octahydrate. Then dropwise add ammoniacal liquor (NH content is 25%~28%) to adjust the pH value of the solution in the beaker to 9~10, in the process of dropping, the dripping positions of the front and back two drops of ammoniacal liquor in the large beaker solution should be staggered, Add drop by drop until a white milky precipitate occurs in the solution. During this process, continuously dip a glass rod into the solution in the beaker and measure the pH value of the solution with pH test paper. When the pH value is 9-10, stop the dropwise addition. Let the precipitate stand for 12 hours, wash with deionized water, suction filter, and dry in an oven at 110°C for 12h, take the dried solid, crush and sieve, take the 60-mesh solid after sieving, and calcinate in a muffle furnace at 450°C After 3 hours, a titanium-zirconium solid solution (TiO 2 -ZrO 2 , n(Ti)/n(Zr)=1, n being the number of moles) was obtained. The characterization results of the titanium-zirconium solid solution are shown in Figure 4.
(2)负载钨酸铵,煅烧得到WO3/TiO2-ZrO2(W/Ti-Zr)催化剂。(2) Ammonium tungstate is loaded and calcined to obtain a WO 3 /TiO 2 -ZrO 2 (W/Ti-Zr) catalyst.
取三份步骤(1)制备的钛锆固溶体,每份5g,取三个25ml烧杯,在三个烧杯中分别加入10ml去离子水、5g草酸(草酸只起到促进钨酸铵溶解的作用,后续的油浴环节会将草酸分解为CO2和H2O),随后分别加入5g钛锆固溶体,然后分别取钨酸铵0.349g、0.541g、0.745g,分别加入到三个烧杯中,烧杯编号①②③,80℃油浴,搅拌蒸干,取出蒸干后的固体,烘箱中110℃干燥12h,碾碎过筛,取过筛后60目的固体;马弗炉中450℃下煅烧3h,即得到:6%W/Ti-Zr(6%WO3/TiO2-ZrO2)、9%W/Ti-Zr(9%WO3/TiO2-ZrO2)、12%W/Ti-Zr(12%WO3/TiO2-ZrO2)(其中,6%、9%和12%分别代表所制备的WO3/TiO2-ZrO2催化剂中WO3占WO3/TiO2-ZrO2催化剂的重量百分比为6%、9%和12%)。Get three parts of the titanium-zirconium solid solution prepared by step (1), each part of 5g, get three 25ml beakers, add 10ml deionized water, 5g oxalic acid respectively in the three beakers (oxalic acid only plays the role of promoting the dissolution of ammonium tungstate, The subsequent oil bath will decompose oxalic acid into CO 2 and H 2 O), then add 5g of titanium-zirconium solid solution, and then take 0.349g, 0.541g, and 0.745g of ammonium tungstate, respectively, and add them to three beakers. No. ①②③, 80°C oil bath, stir and evaporate to dryness, take out the evaporated solid, dry in an oven at 110°C for 12 hours, crush and sieve, take the 60-mesh solid after sieving; calcinate in a muffle furnace at 450°C for 3 hours, Obtained: 6% W/Ti-Zr (6% WO 3 /TiO 2 -ZrO 2 ), 9% W/Ti-Zr (9% WO 3 /TiO 2 -ZrO 2 ), 12% W/Ti-Zr ( 12% WO 3 /TiO 2 -ZrO 2 ) (6%, 9%, and 12% respectively represent the proportion of WO 3 in the prepared WO 3 /TiO 2 -ZrO 2 catalyst of the WO 3 /TiO 2 -ZrO 2 catalyst 6%, 9% and 12% by weight).
(3)负载偏钒酸铵,煅烧得到1%V2O5-(X%)WO3/TiO2-ZrO2(简记为V-X%W/Ti-Zr或V-(X%)W/Ti-Zr)催化剂。其中,X%代表WO3与氧化钨与WO3/TiO2-ZrO2载体的质量比为X%。(3) Ammonium metavanadate is loaded and calcined to obtain 1% V 2 O 5 -(X%)WO 3 /TiO 2 -ZrO 2 (abbreviated as VX%W/Ti-Zr or V-(X%)W/ Ti-Zr) catalyst. Wherein, X% means that the mass ratio of WO 3 to tungsten oxide to WO 3 /TiO 2 -ZrO 2 carrier is X%.
分别取步骤(2)制得的三种W/Ti-Zr催化剂各3克,取三个25ml烧杯,在每个烧杯中加入10ml去离子水,加入5g草酸(草酸只起到促进偏钒酸铵溶解的目的,即便加入的多,后续在油浴过程中,多余的草酸也会分解为CO2和H2O),随后加入3gW/Ti-Zr催化剂,分别取0.0389g偏钒酸铵,并分别加入三个烧杯中,80℃油浴,蒸发,取油浴后固体,烘箱中110℃干燥12h,碾碎过筛,取过筛后60目的固体;马弗炉中450℃下煅烧3h,即得:1%V2O5-6%WO3/TiO2-ZrO2(1%V-6%W/Ti-Zr)、1%V2O5-9%WO3/TiO2-ZrO2(1%V-9%W/Ti-Zr)和1%V2O5-12%WO3/TiO2-ZrO2(1%V-12%W/Ti-Zr),其中,1%代表V2O5占V2O5-WO3/TiO2-ZrO2催化剂的总重量的百分比为1%;6%、9%和12%分别代表WO3占WO3/TiO2-ZrO2催化剂的重量百分比为6%、9%和12%。Get respectively 3 grams of three kinds of W/Ti-Zr catalysts that step (2) makes, get three 25ml beakers, add 10ml deionized water in each beaker, add 5g oxalic acid (oxalic acid only plays a role in promoting metavanadate The purpose of ammonium dissolution, even if it is added more, the excess oxalic acid will be decomposed into CO2 and H2O ) in the oil bath process, then add 3gW/Ti-Zr catalyst, get 0.0389g ammonium metavanadate respectively, And add to three beakers respectively, 80 ℃ oil bath, evaporate, take the solid after the oil bath, dry in the oven at 110 ℃ for 12 hours, crush and sieve, take the 60 mesh solid after sieving; calcined at 450 ℃ for 3 hours in the muffle furnace , namely: 1%V 2 O 5 -6%WO 3 /TiO 2 -ZrO 2 (1%V-6%W/Ti-Zr), 1%V 2 O 5 -9%WO 3 /TiO 2 - ZrO 2 (1%V-9%W/Ti-Zr) and 1%V 2 O 5 -12%WO 3 /TiO 2 -ZrO 2 (1%V-12%W/Ti-Zr), wherein, 1 % represents the percentage of V 2 O 5 accounting for the total weight of V 2 O 5 -WO 3 /TiO 2 -ZrO 2 catalyst is 1%; 6%, 9% and 12% respectively represent WO 3 accounting for WO 3 /TiO 2 -ZrO 2 The weight percent of the catalyst is 6%, 9% and 12%.
实施例21%V2O5-(X%)WO3/TiO2-ZrO2催化剂的表征。Example 21 Characterization of V 2 O 5 -(X%) WO 3 /TiO 2 -ZrO 2 catalyst.
(1)BET表征结果(1) BET characterization results
催化剂比表面积BET由美国麦克默瑞公司全自动气体吸附系统ASAP 2020测定,样品在200℃下抽真空预处理2h,以N2吸附质,在-196℃下进行测量。The specific surface area BET of the catalyst was measured by ASAP 2020, a fully automatic gas adsorption system from McMurray, USA. The sample was pretreated under vacuum at 200 °C for 2 h, and measured at -196 °C with N2 adsorbate.
表1 1%V2O5-(X%)WO3/TiO2-ZrO2系列催化剂的比表面积Table 1 Specific surface area of 1%V 2 O 5 -(X%)WO 3 /TiO 2 -ZrO 2 series catalysts
从表1可看出,随着WO3负载量的增加,催化剂的比表面积逐渐减少,这是可能因为负载的堵塞了催化剂的孔道,使催化剂的比表面积随着WO3负载量的增加而减少。从表1中还可看出,当WO3负载量为9%时,催化剂的累积孔体积和平均孔直径达到最大。一方面因为催化剂的催化反应是在在催化剂表面的孔道中进行的,烟气中的氮氧化物首先吸附在催化剂的表面,然后才能反应;另一方面,催化剂的脱硝效率并不只与催化剂的比表面积有关,因为比表面积使用氮气测定的,它反应的是催化剂的总的比表面积,并不能反映催化剂表面的活性比表面积;尽管当WO3负载量为9%时,催化剂的比表面积并不是最大的,但由于催化剂孔径与孔体积的增大确有利于催化剂的催化反应,这说明对于对于V-X%W/Ti-Zr系列的催化剂来说,催化剂的孔的体积在脱硝反应中起到了重要作用,这与性能测试中催化剂的脱硝效率形成了很好的映照。It can be seen from Table 1 that with the increase of WO3 loading, the specific surface area of the catalyst gradually decreases, which may be because the loaded blocked the pores of the catalyst, so that the specific surface area of the catalyst decreases with the increase of WO3 loading . It can also be seen from Table 1 that the cumulative pore volume and average pore diameter of the catalyst reached the maximum when the WO3 loading was 9%. On the one hand, because the catalytic reaction of the catalyst is carried out in the pores on the surface of the catalyst, the nitrogen oxides in the flue gas are first adsorbed on the surface of the catalyst before they can react; on the other hand, the denitrification efficiency of the catalyst is not only compared with the catalyst. The surface area is related, because the specific surface area is measured with nitrogen, which reflects the total specific surface area of the catalyst, and does not reflect the active specific surface area of the catalyst surface; although when the WO 3 loading is 9%, the specific surface area of the catalyst is not the largest However, since the increase of catalyst pore size and pore volume is beneficial to the catalytic reaction of the catalyst, this shows that for VX%W/Ti-Zr series catalysts, the pore volume of the catalyst plays an important role in the denitrification reaction , which is in good agreement with the denitrification efficiency of the catalyst in the performance test.
(2)NH3-TPD分析(2) NH 3 -TPD analysis
NH3-TPD分析采用浙江泛泰仪器公司的全自动程序升温化学吸附仪(FINESORB-3010)预处理温度150℃,升温速率10℃/min,脱附温度25℃~800℃,氮气吹扫10min,数据采用TCD热导检测器检测。图3为V2O5(1%)-WO3(X%)/TiO2-ZrO2系列催化剂的NH3-TPD图,表2为V2O5(1%)-WO3(X%)/TiO2-ZrO2系列催化剂的NH3吸附量和脱附温度。结果显示:三种催化剂的对比结果显示:三种催化剂都在100℃~160℃存在着一个脱附峰,即证明三种催化剂都存在弱酸中心(100℃~160℃),表2显示:V2O5-9%WO3/TiO2-ZrO2的酸量最小,但其脱附所需的活化能较高(即脱附温度较高),与其它两种催化剂相比,吸附在催化剂表面的NH3不易脱附,增强了NH3在催化剂表面的停留时间,促进了NOX的脱除。对比V2O5-6%WO3/TiO2-ZrO2和V2O5-12%WO3/TiO2-ZrO2两种催化剂,在脱附的活化能相同的情况下,NH3在催化剂表面的停留时间相同,此时,表面吸附氨量越多的催化剂,其脱硝效率越高,这与催化剂活性测试的结果是对应的;而V2O5/TiO2-ZrO2催化剂尽管呈现了较高的酸量和脱附温度,其效率反而最低,这可能是因为由于缺乏WO3,V2O5/TiO2-ZrO2催化剂中V2O5热稳定性变差引起的,这也与催化剂的性能试验一致。For NH 3 -TPD analysis, the automatic temperature-programmed chemical adsorption instrument (FINESORB-3010) of Zhejiang Fantai Instrument Co., Ltd. was used. The pretreatment temperature was 150°C, the heating rate was 10°C/min, the desorption temperature was 25°C-800°C, and nitrogen was purged for 10 minutes. , the data were detected by TCD thermal conductivity detector. Fig. 3 is the NH 3 -TPD figure of V 2 O 5 (1%)-WO 3 (X%)/TiO 2 -ZrO 2 series catalysts, and table 2 is V 2 O 5 (1%)-WO 3 (X%) )/TiO 2 -ZrO 2 series catalysts NH 3 adsorption capacity and desorption temperature. The result shows: the comparative result of three kinds of catalysts shows: three kinds of catalysts all have a desorption peak at 100 ℃~160 ℃, promptly prove that three kinds of catalyzers all have weak acid center (100 ℃~160 ℃), table 2 shows: V 2 O 5 -9%WO 3 /TiO 2 -ZrO 2 has the smallest amount of acid, but the activation energy required for its desorption is higher (that is, the desorption temperature is higher). Compared with the other two catalysts, the adsorption on the catalyst The NH 3 on the surface is not easy to desorb, which enhances the residence time of NH 3 on the catalyst surface and promotes the removal of NO X . Comparing V 2 O 5 -6%WO 3 /TiO 2 -ZrO 2 and V 2 O 5 -12%WO 3 /TiO 2 -ZrO 2 catalysts, under the same desorption activation energy, NH 3 in The residence time on the surface of the catalyst is the same. At this time, the catalyst with more ammonia adsorbed on the surface has higher denitrification efficiency, which corresponds to the results of the catalyst activity test; while the V 2 O 5 /TiO 2 -ZrO 2 catalyst exhibits In addition to higher acid content and desorption temperature, its efficiency is the lowest, which may be caused by the lack of WO 3 and the poor thermal stability of V 2 O 5 in the V 2 O 5 /TiO 2 -ZrO 2 catalyst, which It is also consistent with the performance test of the catalyst.
表2 V2O5(1%)-WO3(X%)/TiO2-ZrO2系列催化剂的表面酸量和脱附温度Table 2 Surface acid content and desorption temperature of V 2 O 5 (1%)-WO 3 (X%)/TiO 2 -ZrO 2 series catalysts
(3)FT-IR分析(3) FT-IR analysis
FT-IR分析采用美国尼高力6700型傅里叶变换红外分析仪,预处理温度400℃,升温速率10℃/min,吸附温度25℃(常温吸附),吸附时间1h,氮气吹扫15min,DTGS检测器并检测记录反应数据。图4为(1%)V2O5-(X%)WO3/TiO2-ZrO2系列催化剂的的FT-IR谱图。结果显示:可以看出,NH3在酸性催化剂表面吸附后,既出现NH3在路易斯Lewis酸中心的吸附峰,又有NH3在酸中心的吸附峰,两种催化剂的吸附峰大致相同。25℃NH3在V2O5/TiO2-ZrO2上吸附后,在1454、1168cm-1处出现较弱的吸收峰,1168cm-1处的峰归属于Lewis酸中心吸附的NH3中N-H键的简并伸缩振动,1454cm-1处的吸收峰为催化剂表面酸中心的吸附的NH4 +中N-H键的变形振动,1680cm-1处吸收峰属于酸中心吸附的NH4 +中N-H键的对称伸缩振动。对于改性后的WO3改性后的V2O5/TiO2-ZrO2催化剂而言,FT-IR图谱上出现的吸收峰位置与未改性前大多相同,但随着含量的增加,1454cm-1处吸收峰的强度明显增强,NH3吸附的活性位明显增多,而1168cm-1处吸收峰强度并未有太大变化,故可初步推测经WO3改性后的催化剂对NH3的吸附活性位点增多,NH3吸附容量增大,其中酸位发挥主要作用,这与WO3有较强的酸性相吻合,结合脱硝率图还可看出,酸位的增多,有利于脱硝效率的提高(当WO3占WO3/TiO2-ZrO2催化剂的重量百分比为6%~12%时)。The FT-IR analysis adopts the American Nicholas 6700 Fourier Transform Infrared Analyzer, the pretreatment temperature is 400°C, the heating rate is 10°C/min, the adsorption temperature is 25°C (normal temperature adsorption), the adsorption time is 1h, and the nitrogen is purged for 15min. DTGS detector and record the reaction data. Fig. 4 is the FT-IR spectrum of (1%) V 2 O 5 -(X%) WO 3 /TiO 2 -ZrO 2 series catalysts. The results show that: it can be seen that after NH 3 is adsorbed on the acidic catalyst surface, both the adsorption peak of NH 3 at the Lewis acid center and the adsorption peak of NH 3 at the acidic center appear. The adsorption peaks of the acid centers, the adsorption peaks of the two catalysts are roughly the same. After NH 3 is adsorbed on V 2 O 5 /TiO 2 -ZrO 2 at 25°C, weaker absorption peaks appear at 1454 and 1168 cm-1, and the peak at 1168 cm -1 is attributed to the NH in NH 3 adsorbed by the Lewis acid center The degenerate stretching vibration of the bond, the absorption peak at 1454cm -1 is the catalyst surface The deformation vibration of the NH bond in the adsorbed NH4 + of the acid center, the absorption peak at 1680cm -1 belongs to Symmetrical stretching vibrations of NH bonds in NH4 + adsorbed on acid centers. For the modified WO 3 modified V 2 O 5 /TiO 2 -ZrO 2 catalyst, the position of the absorption peak on the FT-IR spectrum is mostly the same as that before the modification, but with the increase of the content, The intensity of the absorption peak at 1454cm -1 is significantly enhanced, and the active sites for NH 3 adsorption are significantly increased, while the intensity of the absorption peak at 1168cm -1 has not changed much, so it can be preliminarily speculated that the catalyst modified by WO 3 The adsorption active sites increase, and the NH 3 adsorption capacity increases, among which Acid sites play a major role, which has a strong The acidity is consistent, and it can be seen from the denitrification rate diagram that The increase of acid sites is beneficial to the improvement of denitrification efficiency (when the weight percentage of WO 3 in the WO 3 /TiO 2 -ZrO 2 catalyst is 6%-12%).
(4)X射线衍射分析(4) X-ray diffraction analysis
采用XRD-2型X-射线衍射分析仪,管电压35kV,管电流20mA,步长0.02°/s,X射线波长为1.5406A,Cu靶,2θ/θ偶合连续扫描,扫描角度为10°~70°,催化剂样品在测试前需充分研磨,取适量粉体填充于玻璃载体上并压平,样品粉体厚度约1mm。图5显示:ZrO2和ZrTiO4的衍射峰很明显,这是因为随着WO3负载量的增加ZrO2和ZrTiO4的热稳定性更好;随着WO3负载量的增加,V2O5的衍射峰都不明显,衍射峰高度和面积都无太大变化,这表明WO3的加入提高了V2O5的晶相转化温度,即V2O5呈无定形态,增加了催化剂表面酸性中心的数量,减少了V2O5的烧结温度,增强了V2O5的热稳定性,从而提高了催化剂的热稳定性,促进了催化剂效率的提高。Adopt XRD-2 type X-ray diffraction analyzer, tube voltage 35kV, tube current 20mA, step size 0.02°/s, X-ray wavelength 1.5406A, Cu target, 2θ/θ coupling continuous scanning, scanning angle is 10°~ 70°, the catalyst sample needs to be fully ground before testing, take an appropriate amount of powder and fill it on a glass carrier and flatten it. The thickness of the sample powder is about 1mm. Figure 5 shows: the diffraction peaks of ZrO 2 and ZrTiO 4 are obvious, this is because the thermal stability of ZrO 2 and ZrTiO 4 is better with the increase of WO 3 loading; with the increase of WO 3 loading, V 2 O The diffraction peaks of 5 are not obvious, and the height and area of the diffraction peaks do not change much, which indicates that the addition of WO 3 increases the crystal phase transformation temperature of V 2 O 5 , that is, V 2 O 5 is in an amorphous form, and increases the catalyst The number of acid centers on the surface reduces the sintering temperature of V 2 O 5 and enhances the thermal stability of V 2 O 5 , thereby improving the thermal stability of the catalyst and promoting the improvement of catalyst efficiency.
(5)催化剂脱硝反应(5) Catalyst denitrification reaction
测试条件:Test Conditions:
所述催化剂在固定床模拟烟气条件下进行脱硝测试:取所述改性后的脱硝催化剂,置于反应管等温区,烟气进入反应管,在反应管内(内径6mm,样品量:300mg)进行选择性催化还原脱硝反应。The catalyst is subjected to a denitrification test under fixed bed simulated flue gas conditions: take the modified denitrification catalyst and place it in the isothermal zone of the reaction tube. Carry out selective catalytic reduction denitrification reaction.
以钢气瓶来模拟烟气组成烟气中包括NO、O2、N2、NH3,烟气组成为体积分数Φ(NO)=Φ(NH3)=0.08%,Φ(02)=5%,以N2为平衡气。空速为=3.0×104h-1,总烟气流量为100ml/min。各管路气体经质量流量计(所有流量计均经过皂沫流量计校准)进入气体混合器混合均衡后再进入反应器。采用德国Testo 330-2LL烟气分析仪测量NO、NO2、O2的浓度。据此计算NO脱除效率。为了保证数据的稳定性和准确性,每个工况至少稳定30分钟。Use steel cylinders to simulate flue gas composition Flue gas includes NO, O 2 , N 2 , NH 3 , the flue gas composition is volume fraction Φ(NO)=Φ(NH3)=0.08%, Φ(0 2 )=5 %, with N2 as the balance gas. The space velocity is =3.0×10 4 h -1 , and the total flue gas flow rate is 100ml/min. The gas in each pipeline passes through the mass flowmeter (all flowmeters are calibrated by the soap foam flowmeter) and enters the gas mixer to mix and balance before entering the reactor. The concentrations of NO, NO 2 and O 2 were measured by German Testo 330-2LL flue gas analyzer. Based on this, the NO removal efficiency was calculated. In order to ensure the stability and accuracy of the data, each working condition should be stable for at least 30 minutes.
测试结果:Test Results:
本发明提供的钒系中高温催化剂,是采用共沉淀法制备载体、浸渍法负载活性物质。图1显示:三种催化剂的脱硝效率都呈现先升高后降低的趋势,都在300℃时催化剂的脱硝效率达到最大,尤其是V2O5(1%)-WO3(9%)/TiO2-ZrO2,在300℃-400℃的范围之内,NO脱除效率达到平均值为91%以上,而且温度窗口宽,稳定性高,这可能是因为WO3的含量为9%时,WO3的加入提高了V2O5的结晶温度,使呈无定形态,增强了V2O5的热稳定性,进而催化剂的脱硝效率相对于同系列催化剂效率最高。The vanadium-based medium-high temperature catalyst provided by the invention adopts a co-precipitation method to prepare a carrier and an impregnation method to load active substances. Figure 1 shows that the denitrification efficiencies of the three catalysts all showed a trend of increasing first and then decreasing, and the denitrification efficiency of the catalysts reached the maximum at 300°C, especially V 2 O 5 (1%)-WO 3 (9%)/ TiO 2 -ZrO 2 , within the range of 300°C-400°C, the NO removal efficiency reaches an average value of more than 91%, and the temperature window is wide, and the stability is high, which may be because the content of WO 3 is 9%. , the addition of WO 3 increases the crystallization temperature of V 2 O 5 , makes it amorphous, and enhances the thermal stability of V 2 O 5 , and the denitrification efficiency of the catalyst is the highest compared with the same series of catalysts.
(6)催化剂的抗硫性能测试。(6) The sulfur resistance performance test of the catalyst.
测试条件:Test Conditions:
所述催化剂在固定床模拟烟气条件下进行脱硝测试:取所述改性后的脱硝催化剂,置于反应管等温区,烟气进入反应管,在反应管内经催化剂作用进行选择性催化还原脱硝反应。The denitrification test of the catalyst is carried out under the fixed bed simulated flue gas conditions: the modified denitrification catalyst is taken and placed in the isothermal zone of the reaction tube, the flue gas enters the reaction tube, and the selective catalytic reduction denitrification is carried out by the catalyst in the reaction tube reaction.
以钢气瓶来模拟烟气组成烟气中包括NO、O2、N2、NH3,烟气组成为体积分数Φ(NO)=Φ(NH3)=0.08%,Φ(O2)=5%,Φ(SO2)=1%(约合150ppm),以N2为平衡气。空速为=3.0×104h-1,总烟气流量为100ml/min,测试温度为300℃。各管路气体经质量流量计(所有流量计均经过皂沫流量计校准)进入气体混合器混合均衡后再进入反应器。采用德国Testo 330-2LL烟气分析仪测量NO、NO2的浓度,为了保证数据的稳定性和准确性,每个工况至少稳定30分钟。反应步骤简介:在前160min内不通SO2,每隔40min采一个样,从0min开始采集5个样;中间160-360min内通入SO2,也采集5个样;360-560mm停止通入SO2也采集5个样;测定每个样中NOx的含量,并计算脱硝效率,然后绘制图形,如图2:Use steel cylinders to simulate flue gas composition. Flue gas includes NO, O 2 , N 2 , and NH 3 . The flue gas composition is volume fraction Φ(NO)=Φ(NH 3 )=0.08%, Φ(O 2 )= 5%, Φ(SO 2 )=1% (about 150ppm), with N 2 as the balance gas. The space velocity is =3.0×10 4 h -1 , the total flue gas flow rate is 100ml/min, and the test temperature is 300°C. The gas in each pipeline passes through the mass flowmeter (all flowmeters are calibrated by the soap foam flowmeter) and enters the gas mixer to mix and balance before entering the reactor. The German Testo 330-2LL flue gas analyzer is used to measure the concentration of NO and NO 2 . In order to ensure the stability and accuracy of the data, each working condition is stable for at least 30 minutes. Brief introduction of reaction steps: No SO 2 flow in the first 160 minutes, one sample is taken every 40 minutes, and 5 samples are collected from 0 minute; 5 samples are also collected when SO 2 is passed in the middle 160-360 minutes; 360-560 mm stop the flow of SO 2. Also collect 5 samples; measure the NOx content in each sample, calculate the denitrification efficiency, and then draw a graph, as shown in Figure 2:
实验结果显示:V2O5(1%)-WO3(9%)/TiO2-ZrO2和V2O5(1%)-WO3(12%)/TiO2-ZrO2这两种催化剂在300℃下均有良好的抗硫性能,同时对于V2O5(1%)-WO3(12%)/TiO2-ZrO2,当停止通入SO2时催化剂的性能会有少量提升从92%提升至94%,这可能是因为当SO2为150ppm时,催化剂表面生成的Zr(SO4)2物种增强了催化剂表面的酸性,同时测试结果也再次表明当WO3在WO3/TiO2-ZrO2中的含量为9%和12%时,催化剂的热稳定性明显增强,使ZrO2处于无定形态,因此ZrO2才可以和SO2反应生成Zr(SO4)2,进而增强催化剂的抗硫性能。The experimental results show that: V 2 O 5 (1%)-WO 3 (9%)/TiO 2 -ZrO 2 and V 2 O 5 (1%)-WO 3 (12%)/TiO 2 -ZrO 2 The catalyst has good sulfur resistance performance at 300°C. At the same time, for V 2 O 5 (1%)-WO 3 (12%)/TiO 2 -ZrO 2 , the performance of the catalyst will be slightly reduced when the SO 2 is stopped. The improvement was increased from 92% to 94%, which may be because when the SO 2 was 150ppm, the Zr(SO 4 ) 2 species generated on the catalyst surface enhanced the acidity of the catalyst surface, and the test results also showed that when WO 3 was in WO 3 When the content of /TiO 2 -ZrO 2 is 9% and 12%, the thermal stability of the catalyst is obviously enhanced, making ZrO 2 in an amorphous state, so ZrO 2 can react with SO 2 to form Zr(SO 4 ) 2 , In turn, the sulfur resistance performance of the catalyst is enhanced.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410441977.7A CN104209116A (en) | 2014-09-01 | 2014-09-01 | Vanadium-series middle-temperature and high-temperature SCR catalyst and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410441977.7A CN104209116A (en) | 2014-09-01 | 2014-09-01 | Vanadium-series middle-temperature and high-temperature SCR catalyst and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104209116A true CN104209116A (en) | 2014-12-17 |
Family
ID=52091259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410441977.7A Pending CN104209116A (en) | 2014-09-01 | 2014-09-01 | Vanadium-series middle-temperature and high-temperature SCR catalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104209116A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104383913A (en) * | 2014-10-29 | 2015-03-04 | 东南大学 | High-temperature selective catalytic reduction catalyst in vanadium and preparation method thereof |
CN105251477A (en) * | 2015-11-17 | 2016-01-20 | 广东电网有限责任公司电力科学研究院 | High-temperature SCR denitration catalyst in vanadium wide window and preparing method and application of high-temperature SCR denitration catalyst |
CN107159189A (en) * | 2017-06-09 | 2017-09-15 | 中国石油天然气股份有限公司 | Denitration catalyst with improved strength and preparation method thereof |
CN107199031A (en) * | 2017-06-09 | 2017-09-26 | 中国石油天然气股份有限公司 | Denitration catalyst with improved strength and preparation method thereof |
CN108905602A (en) * | 2018-05-29 | 2018-11-30 | 清华大学盐城环境工程技术研发中心 | A kind of tin dope composite vanadium-titanium oxides catalyst and preparation method and application |
CN112403486A (en) * | 2020-11-19 | 2021-02-26 | 高化学(江苏)化工新材料有限责任公司 | V/Cu/B/W-TiO2-ZrO2Composite low-temperature denitration catalyst and preparation method thereof |
CN112827499A (en) * | 2020-12-31 | 2021-05-25 | 江苏中研创星材料科技有限公司 | Nano titanium dioxide composite powder and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1593752A (en) * | 2004-07-01 | 2005-03-16 | 国电热工研究院 | Catalyst for generating station fume SCR denitration and preparation method thereof |
EP1525913A2 (en) * | 2003-10-22 | 2005-04-27 | Nippon Shokubai Co., Ltd. | Method for treating exhaust gas |
CN100998939A (en) * | 2007-01-10 | 2007-07-18 | 浙江大学 | MnOx/ZrO2-TiO2 low temperature selective catalytic reduction NOx catalyst possessing anti SO2 performance and its preparation technology |
CN101332424A (en) * | 2007-06-28 | 2008-12-31 | 长春融成环保科技有限公司 | Denitrification catalyst and its preparing method |
CN102266761A (en) * | 2011-06-13 | 2011-12-07 | 华北电力大学 | SCR (selective catalyctic reduction) flue gas denitration catalyst based on TiO2-ZrO2 composite carrier and preparation method thereof |
-
2014
- 2014-09-01 CN CN201410441977.7A patent/CN104209116A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1525913A2 (en) * | 2003-10-22 | 2005-04-27 | Nippon Shokubai Co., Ltd. | Method for treating exhaust gas |
CN1593752A (en) * | 2004-07-01 | 2005-03-16 | 国电热工研究院 | Catalyst for generating station fume SCR denitration and preparation method thereof |
CN100998939A (en) * | 2007-01-10 | 2007-07-18 | 浙江大学 | MnOx/ZrO2-TiO2 low temperature selective catalytic reduction NOx catalyst possessing anti SO2 performance and its preparation technology |
CN101332424A (en) * | 2007-06-28 | 2008-12-31 | 长春融成环保科技有限公司 | Denitrification catalyst and its preparing method |
CN102266761A (en) * | 2011-06-13 | 2011-12-07 | 华北电力大学 | SCR (selective catalyctic reduction) flue gas denitration catalyst based on TiO2-ZrO2 composite carrier and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
李鹏等: "整体式V2O5-WO3/TiO2-ZrO2催化剂用于NH3选择性催化还原NOx", 《中南大学学报(自然科学版)》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104383913A (en) * | 2014-10-29 | 2015-03-04 | 东南大学 | High-temperature selective catalytic reduction catalyst in vanadium and preparation method thereof |
CN105251477A (en) * | 2015-11-17 | 2016-01-20 | 广东电网有限责任公司电力科学研究院 | High-temperature SCR denitration catalyst in vanadium wide window and preparing method and application of high-temperature SCR denitration catalyst |
CN107159189A (en) * | 2017-06-09 | 2017-09-15 | 中国石油天然气股份有限公司 | Denitration catalyst with improved strength and preparation method thereof |
CN107199031A (en) * | 2017-06-09 | 2017-09-26 | 中国石油天然气股份有限公司 | Denitration catalyst with improved strength and preparation method thereof |
CN108905602A (en) * | 2018-05-29 | 2018-11-30 | 清华大学盐城环境工程技术研发中心 | A kind of tin dope composite vanadium-titanium oxides catalyst and preparation method and application |
CN112403486A (en) * | 2020-11-19 | 2021-02-26 | 高化学(江苏)化工新材料有限责任公司 | V/Cu/B/W-TiO2-ZrO2Composite low-temperature denitration catalyst and preparation method thereof |
CN112827499A (en) * | 2020-12-31 | 2021-05-25 | 江苏中研创星材料科技有限公司 | Nano titanium dioxide composite powder and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104209116A (en) | Vanadium-series middle-temperature and high-temperature SCR catalyst and preparation method thereof | |
CN101845306B (en) | Preparation and Application of La1-xSrxCoO3 Perovskite Catalyst | |
CN105879858B (en) | Denitration catalyst and preparation method thereof | |
CN113413904B (en) | A g-C3N4 loaded manganese-cerium composite oxide low-temperature NH3-SCR catalyst and its preparation method and application | |
CN105396579B (en) | A kind of coal-fired flue gas denitration demercuration catalyst and its preparation method and application | |
Li et al. | Acid treatment of ZrO2-supported CeO2 catalysts for NH3-SCR of NO: influence on surface acidity and reaction mechanism | |
CN101966451A (en) | Preparation method and application of nanometer ceria-zirconia solid solution-based catalyst for selectively catalytically oxidizing ammonia | |
CN103736479B (en) | A kind of cerium titanium stannum composite oxide catalysts for denitrating flue gas and preparation method thereof | |
CN104258840A (en) | Cerium supported medium temperature SCR (selective catalytic reduction) catalyst and preparation method thereof | |
Lian et al. | Effect of treatment atmosphere on the vanadium species of V/TiO 2 catalysts for the selective catalytic reduction of NO x with NH 3 | |
CN105251477A (en) | High-temperature SCR denitration catalyst in vanadium wide window and preparing method and application of high-temperature SCR denitration catalyst | |
CN110681410B (en) | A kind of preparation method of SBA-15 molecular sieve-based supported catalyst for desorption of CO2-rich amine solution | |
CN108993516A (en) | It is a kind of using NiTi hydrotalcite as composite oxide catalysts of presoma and its preparation method and application | |
Andonova et al. | Fine-Tuning the Dispersion and the Mobility of BaO Domains on NO x Storage Materials via TiO2 Anchoring Sites | |
CN107321344B (en) | Honeycomb denitration catalyst with improved specific surface area and preparation method thereof | |
CN102319560A (en) | Preparation method of manganese titanium catalysts | |
CN107970918B (en) | Spherical denitration catalyst and preparation method thereof | |
CN104383913A (en) | High-temperature selective catalytic reduction catalyst in vanadium and preparation method thereof | |
CN108404906B (en) | Nano-rod-shaped manganese-chromium composite oxide low-temperature denitration catalyst and preparation method thereof | |
CN104226296A (en) | Vanadium-loaded middle-temperature SCR catalyst and preparation method thereof | |
CN114505066A (en) | Denitration catalyst, preparation method thereof and denitration method | |
CN111036231B (en) | Sulfur-resistant alkali-resistant metal low-temperature denitration catalyst and preparation method and application thereof | |
CN100562361C (en) | A kind of TiO 2/ γ-Al 2O 3The preparation method of complex carrier | |
Wang et al. | Investigation of long-term anti-sulfur and deactivation mechanism of monolithic Mn-Fe-Ce/Al2O3 catalysts for NH3-SCR: Changes in physicochemical and adsorption properties | |
CN114797893A (en) | Ammonia oxidation catalyst and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141217 |
|
RJ01 | Rejection of invention patent application after publication |