[go: up one dir, main page]

CN104183475B - Grid structure and forming method thereof - Google Patents

Grid structure and forming method thereof Download PDF

Info

Publication number
CN104183475B
CN104183475B CN201310190298.2A CN201310190298A CN104183475B CN 104183475 B CN104183475 B CN 104183475B CN 201310190298 A CN201310190298 A CN 201310190298A CN 104183475 B CN104183475 B CN 104183475B
Authority
CN
China
Prior art keywords
gate
layer
forming
gate structure
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310190298.2A
Other languages
Chinese (zh)
Other versions
CN104183475A (en
Inventor
三重野文健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201310190298.2A priority Critical patent/CN104183475B/en
Publication of CN104183475A publication Critical patent/CN104183475A/en
Application granted granted Critical
Publication of CN104183475B publication Critical patent/CN104183475B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/671Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor having lateral variation in doping or structure

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种栅极结构及其形成方法,所述栅极结构的形成方法包括:提供衬底;在所述衬底表面形成依次形成栅介质层、位于栅介质层表面的缓冲层和位于缓冲层表面的栅极层,所述缓冲层的材料为无定形态。所述栅极结构及其形成方法可以降低晶体管的阈值电压的分布范围。

A gate structure and a forming method thereof, the forming method of the gate structure comprising: providing a substrate; forming a gate dielectric layer, a buffer layer on the surface of the gate dielectric layer, and a buffer layer on the surface of the buffer layer in sequence on the surface of the substrate For the gate layer, the material of the buffer layer is amorphous. The gate structure and its forming method can reduce the distribution range of the threshold voltage of the transistor.

Description

栅极结构及其形成方法Gate structure and method of forming the same

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种栅极结构及其形成方法。The invention relates to the technical field of semiconductors, in particular to a gate structure and a forming method thereof.

背景技术Background technique

当半导体器件尺寸逐渐缩小,由于传统的多晶硅栅极在小尺寸情况下存在很多问题,例如多晶硅耗尽效应、高电阻率和高K栅介质不兼容等,金属栅工艺开始应用于超深亚微米器件的制备。When the size of semiconductor devices is gradually shrinking, because the traditional polysilicon gate has many problems in the case of small size, such as polysilicon depletion effect, high resistivity and incompatibility of high K gate dielectric, etc., metal gate technology has begun to be applied to ultra-deep submicron Device preparation.

金属栅极替代多晶硅栅极,采用高K材料作为栅介质层,可以进一步降低所述栅介质层的厚度,提高晶体管的性能。然而晶体管尺寸的不断缩小,高K金属栅晶体管的制作工艺和物理性能同样面临越来越多的挑战。The metal gate replaces the polysilicon gate, and a high-K material is used as the gate dielectric layer, which can further reduce the thickness of the gate dielectric layer and improve the performance of the transistor. However, as the size of transistors continues to shrink, the manufacturing process and physical properties of high-k metal gate transistors are also facing more and more challenges.

其中,晶体管的阈值电压变异是其中的一个重要问题。统计测量发现,采用相同工艺形成的参数相同的晶体管,各个晶体管的阈值电压并不完全相同,而是在一定的范围内呈现分布性,造成不同晶体管阈值电压之间的差异,具有较大的阈值电压分布范围。晶体管的阈值电压分布范围较大会降低集成电路的性能,并增加芯片的功耗。晶体管的阈值电压分布范围越大,对集成电路的性能影响越大。Among them, the variation of the threshold voltage of the transistor is one of the important problems. Statistical measurements have found that for transistors with the same parameters formed by the same process, the threshold voltages of each transistor are not exactly the same, but are distributed within a certain range, resulting in the difference between the threshold voltages of different transistors, with a larger threshold Voltage distribution range. A wide spread of transistor threshold voltages degrades the performance of the integrated circuit and increases the power consumption of the chip. The larger the threshold voltage distribution range of the transistor, the greater the impact on the performance of the integrated circuit.

所以,需要一种可以降低相同工艺形成的多个晶体管的阈值电压分布范围的方法,降低晶体管阈值电压差异对集成电路造成的影响。Therefore, there is a need for a method that can reduce the distribution range of threshold voltages of multiple transistors formed by the same process, and reduce the impact of differences in the threshold voltages of transistors on integrated circuits.

发明内容Contents of the invention

本发明解决的问题是提供一种栅极结构及其形成方法,降低相同工艺形成的多个晶体管的阈值电压的分布范围。The problem to be solved by the present invention is to provide a gate structure and its forming method, which can reduce the distribution range of threshold voltages of multiple transistors formed by the same process.

为解决上述问题,本发明提供一种栅极结构及其形成方法,所述金属栅极的形成方法包括:提供衬底;在所述衬底表面形成依次形成栅介质层、位于栅介质层表面的缓冲层和位于缓冲层表面的栅极层,所述缓冲层的材料为无定形态。In order to solve the above problems, the present invention provides a gate structure and a method for forming the gate structure. The method for forming the metal gate includes: providing a substrate; forming a gate dielectric layer on the surface of the substrate; The buffer layer and the gate layer located on the surface of the buffer layer, the material of the buffer layer is amorphous.

可选的,所述缓冲层的材料为无定形硅。Optionally, the buffer layer is made of amorphous silicon.

可选的,采用化学气相沉积工艺形成所述缓冲层,其中采用的反应气体包括:Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,反应温度为200℃~400℃。Optionally, the buffer layer is formed by chemical vapor deposition process, wherein the reaction gas used includes: one or more of Si 2 H 6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 , the reaction The temperature is 200°C to 400°C.

可选的,所述缓冲层内掺杂有碳。Optionally, the buffer layer is doped with carbon.

可选的,所述碳的浓度为1E19atom/cm3~1E22atom/cm3Optionally, the carbon concentration is 1E19atom/cm 3 -1E22atom/cm 3 .

可选的,采用化学气相沉积工艺形成所述缓冲层,所述化学气相沉积工艺中,采用的硅源气体包括:Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,采用的碳源气体包括C2H2、C2H4、C3H6中的一种或几种,反应温度为300℃~400℃。Optionally, the buffer layer is formed by a chemical vapor deposition process. In the chemical vapor deposition process, the silicon source gas used includes: Si 2 H 6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 One or more of them, the carbon source gas used includes one or more of C 2 H 2 , C 2 H 4 , and C 3 H 6 , and the reaction temperature is 300°C to 400°C.

可选的,所述缓冲层内掺杂有氮。Optionally, the buffer layer is doped with nitrogen.

可选的,所述氮的浓度为1E19atom/cm3~1E22atom/cm3Optionally, the nitrogen concentration is 1E19atom/cm 3 -1E22atom/cm 3 .

可选的,采用化学气相沉积工艺形成所述缓冲层,所述化学气相沉积工艺中,采用的硅源气体包括:Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,采用的氮源气体包括N2O、NO中的一种或几种,反应温度为300℃~400℃。Optionally, the buffer layer is formed by a chemical vapor deposition process. In the chemical vapor deposition process, the silicon source gas used includes: Si 2 H 6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 One or more of them, the nitrogen source gas used includes one or more of N 2 O and NO, and the reaction temperature is 300°C-400°C.

可选的,所述缓冲层的厚度为1nm~5nm。Optionally, the buffer layer has a thickness of 1 nm˜5 nm.

可选的,采用化学气相沉积工艺、等离子体化学气相沉积工艺、液相外延工艺或溅射沉积工艺形成所述缓冲层。Optionally, the buffer layer is formed by chemical vapor deposition process, plasma chemical vapor deposition process, liquid phase epitaxy process or sputtering deposition process.

可选的,所述栅极层的材料为Ni、Ti、TiN、TaN或TaC。Optionally, the material of the gate layer is Ni, Ti, TiN, TaN or TaC.

可选的,所述栅极层的材料中的晶粒尺寸小于3nm。Optionally, the grain size of the material of the gate layer is less than 3 nm.

可选的,采用原子层沉积工艺形成材料为TiN的栅极层,采用的反应气体为TiCl4和NH3,反应温度为200℃~600℃,反应压强为0.2托~2托。Optionally, an atomic layer deposition process is used to form the gate layer made of TiN, the reaction gases used are TiCl 4 and NH 3 , the reaction temperature is 200°C-600°C, and the reaction pressure is 0.2-2 Torr.

可选的,还包括:在所述栅极层、缓冲层和栅介质层的侧壁表面形成侧墙,在所述侧墙两侧的未被覆盖的衬底内形成源极和漏极。Optionally, the method further includes: forming spacers on the sidewall surfaces of the gate layer, the buffer layer and the gate dielectric layer, and forming a source and a drain in the uncovered substrate on both sides of the spacers.

为解决上述问题,本发明还提供了一种栅极结构,包括:衬底;位于衬底表面的栅介质层;位于所述栅介质层表面的缓冲层,所述缓冲层的材料为无定形态;位于所述缓冲层表面的栅极层。In order to solve the above problems, the present invention also provides a gate structure, including: a substrate; a gate dielectric layer located on the surface of the substrate; a buffer layer located on the surface of the gate dielectric layer, and the material of the buffer layer is amorphous Morphology; a gate layer located on the surface of the buffer layer.

可选的,所述缓冲层的材料为硅。Optionally, the buffer layer is made of silicon.

可选的,所述缓冲层内掺杂有碳或氮,所述碳或氮的浓度为1E19atom/cm3~1E22atom/cm3Optionally, the buffer layer is doped with carbon or nitrogen, and the concentration of the carbon or nitrogen is 1E19atom/cm 3 -1E22atom/cm 3 .

可选的,所述缓冲层的厚度为1nm~5nmOptionally, the buffer layer has a thickness of 1 nm to 5 nm

可选的,所述栅极层的材料中的晶粒尺寸小于3nm。Optionally, the grain size of the material of the gate layer is less than 3 nm.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明的技术方案在形成栅极结构的过程中,在栅介质层表面形成缓冲层,所述缓冲层的材料为无定形态,所述缓冲层中的原子呈无序排列状态。后续在所述缓冲层表面形成栅极层,由于所述栅极层的结构受到其底部的缓冲层表面原子排列结构的影响,所述栅极层底部靠近缓冲层的原子也呈现无定形态,而在栅极层靠近表面的远离所述缓冲层部分,由于原子趋向低能量的有序排列会存在部分晶粒与无定形态的混合结构,但是由于受到下方无定形态结构的影响,所述部分晶粒的尺寸也很小。所以后续形成的栅极层中,晶粒尺寸和数量较低,由所述晶粒尺寸和数量造成的功函数差异性降低,从而采用上述方法形成的晶体管的阈值电压分布范围也减小。In the technical solution of the present invention, in the process of forming the gate structure, a buffer layer is formed on the surface of the gate dielectric layer, the material of the buffer layer is in an amorphous state, and the atoms in the buffer layer are in a state of disordered arrangement. Subsequently, a gate layer is formed on the surface of the buffer layer. Since the structure of the gate layer is affected by the arrangement of atoms on the surface of the buffer layer at the bottom, the atoms at the bottom of the gate layer near the buffer layer also present an amorphous state. On the part of the gate layer that is close to the surface and away from the buffer layer, due to the orderly arrangement of atoms tending to low energy, there will be a mixed structure of some crystal grains and amorphous forms, but due to the influence of the underlying amorphous structure, the The size of some grains is also small. Therefore, in the subsequently formed gate layer, the grain size and quantity are relatively low, and the difference in work function caused by the grain size and quantity is reduced, so that the threshold voltage distribution range of the transistor formed by the above method is also reduced.

进一步,所述缓冲层中掺杂有碳或氮等元素,由于所述碳、氮和硅原子的原子半径不同,在形成缓冲层的过程中,形成Si-Si、Si-C、C-C、Si-N、N-C、N-N等不同的化学键,所述化学键的长度均不相同,造成不同晶格之间会晶格失配,有效抑制所述缓冲层的结晶化,从而有利于形成所述无定形态的缓冲层。Further, the buffer layer is doped with elements such as carbon or nitrogen, because the atomic radii of the carbon, nitrogen and silicon atoms are different, in the process of forming the buffer layer, Si-Si, Si-C, C-C, Si -N, N-C, N-N and other different chemical bonds, the lengths of the chemical bonds are all different, resulting in lattice mismatch between different lattices, effectively inhibiting the crystallization of the buffer layer, thereby facilitating the formation of the amorphous Morphological buffer layer.

附图说明Description of drawings

图1至图5是本发明第一实施例中栅极结构的形成过程的示意图;1 to 5 are schematic diagrams of the formation process of the gate structure in the first embodiment of the present invention;

图6至图9是本发明第二实施例中栅极结构的形成过程的示意图。6 to 9 are schematic views of the formation process of the gate structure in the second embodiment of the present invention.

具体实施方式detailed description

如背景技术中所述,现有的晶体管的阈值电压分布较广,会影响集成电路的性能。As mentioned in the background art, the threshold voltage distribution of existing transistors is relatively wide, which will affect the performance of integrated circuits.

发明人研究发现,现有晶体管的阈值电压与晶体管的栅极功函数相关,由于晶体管的栅极在形成过程中的差异性,导致栅极的功函数发生变化,从而造成晶体管的阈值电压分布在一定范围内。The inventors found that the threshold voltage of existing transistors is related to the work function of the gate of the transistor. Due to the difference in the formation process of the gate of the transistor, the work function of the gate changes, resulting in the distribution of the threshold voltage of the transistor in the within a certain range.

发明人进一步研究发现,所述晶体管栅极的功函数与栅极材料中晶体颗粒大小有关。由于栅极材料中晶体颗粒具有不同的晶体取向,不同的晶体取向会导致栅极与栅介质层接触面上的极化电荷的分布不均匀,导致栅极材料功函数发生变化。尺寸或取向不同的晶粒,其功函数也不相同,从而使采用同一工艺形成的多个晶体管的阈值电压会不相同,呈现一定的分布性。The inventor found through further research that the work function of the transistor gate is related to the size of crystal grains in the gate material. Since the crystal grains in the gate material have different crystal orientations, different crystal orientations will lead to uneven distribution of polarization charges on the interface between the gate and the gate dielectric layer, resulting in changes in the work function of the gate material. Crystal grains with different sizes or orientations have different work functions, so that the threshold voltages of multiple transistors formed by the same process will be different, showing a certain distribution.

发明人进一步研究发现,晶体管的栅极材料的晶体颗粒越大,不同晶粒的功函数之间差别越大,从而对整个栅极的功函数的影响越大。而降低栅极材料中晶粒的尺寸或数量则可以降低这种差异性,从而使栅极的功函数较为稳定,可以降低晶体管阈值电压的分布性。而由于现有技术形成晶体管的过程中,通常会有较高温度的退火工艺,例如形成源极和漏极的退火过程,会使栅极材料发生结晶,形成较大的晶体颗粒。The inventor found through further research that the larger the crystal grains of the gate material of the transistor, the greater the difference between the work functions of different grains, and thus the greater the impact on the work function of the entire gate. Reducing the size or number of grains in the gate material can reduce this difference, so that the work function of the gate is more stable, and the distribution of the threshold voltage of the transistor can be reduced. However, in the process of forming a transistor in the prior art, there is usually an annealing process at a higher temperature, such as an annealing process for forming a source and a drain, which will crystallize the gate material and form larger crystal particles.

本发明提供了一种栅极结构及其形成方法,形成晶体颗粒尺寸较低的栅极,从而降低相同工艺形成的多个晶体管的阈值电压的分布范围。The invention provides a gate structure and a forming method thereof, and forms a gate with a relatively low crystal particle size, thereby reducing the distribution range of threshold voltages of multiple transistors formed by the same process.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

第一实施例first embodiment

请参考图1,提供衬底100,在所述衬底100表面形成栅介质材料层200。Referring to FIG. 1 , a substrate 100 is provided, and a gate dielectric material layer 200 is formed on the surface of the substrate 100 .

所述衬底100的材料为硅、锗、锗化硅、砷化镓等半导体材料,可以是体材料也可以是复合结构如绝缘体上硅。本实施例中,所述衬底100的材料为硅。The material of the substrate 100 is semiconductor materials such as silicon, germanium, silicon germanium, gallium arsenide, etc., which may be a bulk material or a composite structure such as silicon-on-insulator. In this embodiment, the material of the substrate 100 is silicon.

在本发明的其他实施例中,所述衬底100内还形成有浅沟槽隔离结构。In other embodiments of the present invention, a shallow trench isolation structure is further formed in the substrate 100 .

所述栅介质材料层200的材料为高K介质材料,例如HfO2、La2O3、HfSiON或HfAlO2等。本实施例中,所述栅介质材料层200的材料为HfO2。所述栅介质材料层200的厚度为10埃~50埃。The material of the gate dielectric material layer 200 is a high-K dielectric material, such as HfO 2 , La 2 O 3 , HfSiON or HfAlO 2 . In this embodiment, the material of the gate dielectric material layer 200 is HfO 2 . The gate dielectric material layer 200 has a thickness of 10 angstroms to 50 angstroms.

请参考图2,在所述栅介质材料层200表面形成缓冲材料层300。Referring to FIG. 2 , a buffer material layer 300 is formed on the surface of the gate dielectric material layer 200 .

所述缓冲材料层300的材料为无定形态材料。所述缓冲材料层300的形成工艺可以是化学气相沉积、等离子体化学气相沉积、液相外延或溅射沉积等工艺。所述缓冲材料层300的厚度为1nm~5nm,较佳的可以是2nm。The material of the buffer material layer 300 is an amorphous material. The formation process of the buffer material layer 300 may be a process such as chemical vapor deposition, plasma chemical vapor deposition, liquid phase epitaxy or sputtering deposition. The buffer material layer 300 has a thickness of 1 nm˜5 nm, preferably 2 nm.

本发明的一个实施例中,所述缓冲材料层300的材料为无定形硅。采用化学气相沉积工艺形成所述无定形硅,其中采用的硅源气体为Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,反应压强为0.1托~0.5托,反应温度为300℃~600℃,较佳的为500℃。在较高温度下沉积形成所述缓冲层,所述硅形成的晶粒尺寸较低不易形成晶体,从而可以形成质量较佳的无定形硅层作为缓冲材料层300。In one embodiment of the present invention, the material of the buffer material layer 300 is amorphous silicon. The amorphous silicon is formed by chemical vapor deposition process, wherein the silicon source gas used is one or more of Si 2 H 6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 , and the reaction pressure is 0.1 Torr to 0.5 Torr, the reaction temperature is 300°C to 600°C, preferably 500°C. The buffer layer is formed by depositing at a higher temperature, and the crystal grain size formed by the silicon is relatively small and is not easy to form crystals, so that an amorphous silicon layer with better quality can be formed as the buffer material layer 300 .

发明人发现,在沉积形成所述无定形硅的过程中,添加含有碳或氮的气体源,可以阻止硅在沉积过程发生结晶。由于碳、氮与硅原子的原子半径不同,碳的原子半径为77皮米,氮为70皮米,而硅的原子半径为111皮米。在沉积过程中,在所述缓冲材料层300中会形成Si-Si、Si-C、C-C、Si-N、N-C、N-N等不同的化学键,所述三种化学键的长度都不相同,从而在沉积形成所述缓冲材料层的过程中,造成不同晶格之间会晶格失配,从而降低所述缓冲材料层中晶粒的尺寸。所述晶粒的尺寸随碳原子或氮原子的浓度增加而减小,当碳原子或原子的达到一定浓度时,就会形成无定形态的缓冲材料层。The inventors found that adding a gas source containing carbon or nitrogen during the process of forming the amorphous silicon can prevent silicon from crystallizing during the deposition process. Due to the different atomic radii of carbon, nitrogen and silicon atoms, the atomic radius of carbon is 77 picometers, that of nitrogen is 70 picometers, and that of silicon is 111 picometers. During the deposition process, different chemical bonds such as Si-Si, Si-C, C-C, Si-N, N-C, and N-N will be formed in the buffer material layer 300, and the lengths of the three chemical bonds are different, so that During the deposition process of the buffer material layer, lattice mismatch between different crystal lattices is caused, thereby reducing the size of crystal grains in the buffer material layer. The size of the grains decreases as the concentration of carbon atoms or nitrogen atoms increases, and when the concentration of carbon atoms or atoms reaches a certain concentration, an amorphous buffer material layer will be formed.

本实施例中,所述缓冲材料层300的材料为掺碳的无定形硅。具体的,采用化学气相沉积工艺形成所述缓冲材料层,其中采用的硅源气体为Si3H8,采用的碳源气体为C2H2,载气为H2,反应压强为1托~500托,反应温度为300℃~600℃,例如350℃,其中Si3H8的流量为50sccm~1000sccm,C2H2的流量为10sccm~500sccm,H2流量为100sccm~5000sccm。形成的缓冲材料层300的厚度为1nm~5nm,较佳的,所述缓冲材料层300的厚度为2nm。所述缓冲材料层300中碳原子的浓度为1E19atom/cm3~1E22atom/cm3,较佳的,所述碳原子的浓度为1E20atom/cm3。在本发明的其他实施例中,所述硅源气体还可以是Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,所述碳源气体可以是C2H2、C2H4、C3H6中的一种或几种。In this embodiment, the buffer material layer 300 is made of carbon-doped amorphous silicon. Specifically, the buffer material layer is formed by chemical vapor deposition process, wherein the silicon source gas used is Si 3 H 8 , the carbon source gas used is C 2 H 2 , the carrier gas is H 2 , and the reaction pressure is 1 torr- 500 Torr, the reaction temperature is 300°C-600°C, such as 350°C, the flow rate of Si 3 H 8 is 50 sccm-1000 sccm, the flow rate of C 2 H 2 is 10 sccm-500 sccm, and the flow rate of H 2 is 100 sccm-5000 sccm. The buffer material layer 300 formed has a thickness of 1 nm˜5 nm, preferably, the buffer material layer 300 has a thickness of 2 nm. The concentration of carbon atoms in the buffer material layer 300 is 1E19atom/cm 3 -1E22atom/cm 3 , preferably, the concentration of carbon atoms is 1E20atom/cm 3 . In other embodiments of the present invention, the silicon source gas can also be one or more of Si 2 H 6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 , and the carbon source gas can be One or more of C 2 H 2 , C 2 H 4 , and C 3 H 6 .

在本发明的其他实施例中,所述缓冲材料层300的材料为掺氮的无定形硅。其中,氮的浓度为1E19atom/cm3~1E22atom/cm3,较佳的,所述碳原子的浓度为1E20atom/cm3。可以采用化学气相沉积工艺形成所述掺氮的无定形硅,其中采用的硅源气体可以是Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,氮源气体可以是N2O、NO中的一种或两种。In other embodiments of the present invention, the buffer material layer 300 is made of nitrogen-doped amorphous silicon. Wherein, the concentration of nitrogen is 1E19atom/cm 3 -1E22atom/cm 3 , preferably, the concentration of carbon atoms is 1E20atom/cm 3 . The nitrogen-doped amorphous silicon can be formed by chemical vapor deposition process, wherein the silicon source gas used can be one or more of Si 2 H 6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 , The nitrogen source gas can be one or both of N 2 O and NO.

在本发明的其他实施例中,所述缓冲材料层300的材料可以是同时掺杂了碳和氮的无定形硅,其中,碳和氮的总浓度为1E19atom/cm3~1E22atom/cm3In other embodiments of the present invention, the material of the buffer material layer 300 may be amorphous silicon doped with carbon and nitrogen at the same time, wherein the total concentration of carbon and nitrogen is 1E19 atom/cm 3 -1E22 atom/cm 3 .

在本发明的其他实施例中,还可以采用等离子体化学气相沉积工艺、液相外延工艺或溅射沉积工艺形成所述缓冲材料层300。In other embodiments of the present invention, the buffer material layer 300 may also be formed by a plasma chemical vapor deposition process, a liquid phase epitaxy process or a sputtering deposition process.

请参考图3,在所述缓冲材料层300表面形成栅极材料层400。Referring to FIG. 3 , a gate material layer 400 is formed on the surface of the buffer material layer 300 .

所述栅极材料层300的材料为Ni、Ti、TiN、TaN或TaC,采用原子层沉积工艺(ALD)形成所述栅极材料层400。The material of the gate material layer 300 is Ni, Ti, TiN, TaN or TaC, and the gate material layer 400 is formed by atomic layer deposition (ALD).

本实施例中,所述栅极材料层400的材料为TiN。In this embodiment, the material of the gate material layer 400 is TiN.

具体的,采用原子层沉积工艺(ALD)形成所述栅极材料层300过程中,将前驱气体为TiCl4和NH3,采用脉冲方式交替输送进入反应腔内,采用He作为辅助气体,反应温度为400℃~650℃,较佳的为550℃以上。在本发明的其他实施例中,含有Ti的金属前驱气体还可以是二乙氨基四钛(TDEAT)或二甲氨基四钛(TDMAT)。Specifically, in the process of forming the gate material layer 300 by atomic layer deposition (ALD), the precursor gases are TiCl 4 and NH 3 , which are alternately transported into the reaction chamber in a pulsed manner, He is used as the auxiliary gas, and the reaction temperature is 400°C to 650°C, preferably above 550°C. In other embodiments of the present invention, the metal precursor gas containing Ti may also be diethylaminotetratitanium (TDEAT) or dimethylaminotetratitanium (TDMAT).

在所述缓冲材料层300表面形成所述栅极材料层400时,由于所述缓冲材料层300为无定形态,原子排列为无序状态,导致所述缓冲材料层300表面的原子排列无序。ALD工艺在所述缓冲材料层300表面以单原子层的形式一层一层向上生长,并且将晶格结构逐层向上传递,所以,所述栅极材料层400的结构受到底层的缓冲材料层300的晶格排列的强烈影响。由于所述缓冲材料层300的表面原子排列无序,所以在所述缓冲材料层300表面形成的原子层的原子排列也呈无序状态,随着原子层的逐渐生长,这种无序结构逐渐向上传递。虽然,随着栅极材料层400厚度的增加,远离所述缓冲材料层表面的栅极材料层中400中,原子会通过扩散逐渐趋于低能量的有序排列方式形成一定尺寸的晶粒,但是所述栅极材料层400中还是存在大量的无定形态。与现有技术相比,所述栅极材料层400为无定形态和晶粒共同存在的一个混合体,并且所述晶粒的尺寸较小。所述栅极材料层400中,所述栅极材料中的晶粒尺寸小于3nm。When the gate material layer 400 is formed on the surface of the buffer material layer 300, since the buffer material layer 300 is in an amorphous state, the atomic arrangement is in a disordered state, resulting in disordered atomic arrangement on the surface of the buffer material layer 300 . The ALD process grows upward layer by layer in the form of monoatomic layers on the surface of the buffer material layer 300, and transfers the lattice structure upward layer by layer. Therefore, the structure of the gate material layer 400 is influenced by the underlying buffer material layer. 300 is strongly influenced by the lattice arrangement. Since the atomic arrangement on the surface of the buffer material layer 300 is disordered, the atomic arrangement of the atomic layer formed on the surface of the buffer material layer 300 is also in a disordered state. With the gradual growth of the atomic layer, this disordered structure gradually Pass up. Although, as the thickness of the gate material layer 400 increases, in the gate material layer 400 away from the surface of the buffer material layer, the atoms will gradually tend to form crystal grains of a certain size in an orderly arrangement with low energy through diffusion, However, there are still a lot of amorphous forms in the gate material layer 400 . Compared with the prior art, the gate material layer 400 is a mixture of amorphous and crystal grains, and the crystal grains are smaller in size. In the gate material layer 400 , the grain size of the gate material is less than 3 nm.

并且在现有技术中,直接在所述栅介质材料层表面形成栅极材料层,由于所述栅介质材料层表面的原子排列较为有序,后续在沉积过程中,原子更趋向于有序排列,会首先在所述栅介质材料层表面形成岛状的晶核,后续在所述晶核表面继续生长形成栅极材料层,所以形成的栅极材料层中晶粒的尺寸和数量会较大。而本发明的技术方案中,由于所述缓冲材料层的表面原子排列无序,从而在所述缓冲材料层表面不会或仅形成少量的岛状晶核,从而使得后续形成的栅极材料层中晶粒的尺寸和数量会较小。Moreover, in the prior art, the gate material layer is directly formed on the surface of the gate dielectric material layer. Since the atomic arrangement on the surface of the gate dielectric material layer is relatively orderly, the atoms tend to be more orderly arranged in the subsequent deposition process. , will first form an island-shaped crystal nucleus on the surface of the gate dielectric material layer, and then continue to grow on the surface of the crystal nucleus to form a gate material layer, so the size and number of crystal grains in the formed gate material layer will be relatively large . However, in the technical solution of the present invention, due to the disordered arrangement of the surface atoms of the buffer material layer, no or only a small amount of island-shaped nuclei are formed on the surface of the buffer material layer, so that the subsequently formed gate material layer The size and number of medium grains will be smaller.

请参考图4,刻蚀所述栅极材料层400、缓冲材料层300和栅介质材料层200(请参考图3),形成栅极堆叠结构,所述栅极堆叠结构包括栅介质层201、缓冲层301和栅极层401。Referring to FIG. 4, the gate material layer 400, the buffer material layer 300 and the gate dielectric material layer 200 (please refer to FIG. 3) are etched to form a gate stack structure, which includes a gate dielectric layer 201, buffer layer 301 and gate layer 401.

具体的,形成所述栅极堆叠结构的方法为:在所述栅极材料层表面形成图形化掩膜层,所述图形化掩膜层覆盖所述栅极堆叠结构的位置,以所述图形化掩膜层为掩膜,采用干法刻蚀工艺刻蚀所述栅极材料层400、缓冲材料层300和栅介质材料层200(请参考图3),形成栅介质层201、缓冲层301和栅极层401。Specifically, the method for forming the gate stack structure is: forming a patterned mask layer on the surface of the gate material layer, the patterned mask layer covers the position of the gate stack structure, and The mask layer is used as a mask, and the gate material layer 400, the buffer material layer 300 and the gate dielectric material layer 200 are etched by a dry etching process (please refer to FIG. 3 ) to form the gate dielectric layer 201 and the buffer layer 301. and gate layer 401 .

与现有技术相比,位于所述缓冲层301表面的栅极层401中,晶粒的数量和尺寸都相应减小,从而采用上述工艺形成多个栅极结构,所述栅极结构中的栅极层的功函数差异较小,从而后续形成的晶体管的阈值电压差异也较小,晶体管的阈值电压分布范围变小。Compared with the prior art, in the gate layer 401 located on the surface of the buffer layer 301, the number and size of crystal grains are correspondingly reduced, so that multiple gate structures are formed by using the above process, and the gate structures in the gate structure The difference in the work function of the gate layer is small, so the difference in the threshold voltage of the subsequently formed transistor is also small, and the distribution range of the threshold voltage of the transistor becomes smaller.

请参考图5,在所述栅极堆叠结构的侧壁表面形成侧墙500,以所述侧墙500和栅极堆叠结构为掩膜对所述半导体衬底100进行源漏离子注入,并进行退火处理激活注入离子,在所述栅极结构两侧的半导体衬底100内形成源极101和漏极102。Referring to FIG. 5 , a spacer 500 is formed on the sidewall surface of the gate stack structure, and the source-drain ion implantation is performed on the semiconductor substrate 100 using the spacer 500 and the gate stack structure as a mask, and The annealing treatment activates the implanted ions to form a source 101 and a drain 102 in the semiconductor substrate 100 on both sides of the gate structure.

所述侧墙500的材料为氮化硅。所述侧墙500还可以是多层堆叠结构,例如氧化硅和氮化硅的堆叠结构。The material of the sidewall 500 is silicon nitride. The sidewall 500 may also be a multi-layer stack structure, such as a stack structure of silicon oxide and silicon nitride.

在本发明的其他实施例中,也可以先在所述栅极堆叠结构侧壁表面形成第一侧墙,以所述第一侧墙和栅极结构作为掩膜,在所述栅极结构两侧的半导体衬底内进行轻掺杂离子注入;然后,在所述第一侧墙表面形成第二侧墙,再在所述第一侧墙、第二侧墙两侧暴露出的半导体衬底内进行重掺杂离子注入,形成源区和漏区,所述轻掺杂离子注入工艺可以降低MOS晶体管的热载流子注入效应和短沟道效应。In other embodiments of the present invention, it is also possible to first form a first sidewall on the sidewall surface of the gate stack structure, use the first sidewall and the gate structure as a mask, and Lightly doped ion implantation is performed in the semiconductor substrate on the side; then, a second side wall is formed on the surface of the first side wall, and the semiconductor substrate exposed on both sides of the first side wall and the second side wall The source region and the drain region are formed by heavily doped ion implantation, and the lightly doped ion implantation process can reduce the hot carrier injection effect and short channel effect of the MOS transistor.

在本发明的其他实施例中,还可以在所述栅极堆叠结构两侧形成所述侧墙之后,以所述侧墙和栅极堆叠结构为掩膜,对所述侧墙两侧暴露出的半导体衬底进行刻蚀,形成沟槽,并在沟槽内利用外延工艺填充满锗硅材料或碳化硅材料,形成源区和漏区。所述锗硅材料或碳化硅材料在外延工艺中原位掺杂有P型或N型杂质离子。在其他实施例中,也可以形成所述锗硅材料或碳化硅材料后,利用离子注入工艺在所述锗硅材料或碳化硅材料中掺杂有杂质离子。利用所述锗硅材料或碳化硅材料形成源区和漏区会对MOS晶体管沟道区的晶格产生应力作用,有利于提高沟道区载流子的迁移速率,提高MOS晶体管的电学性能。In other embodiments of the present invention, after the sidewalls are formed on both sides of the gate stack structure, the sidewalls and the gate stack structure are used as a mask to expose both sides of the sidewalls. The semiconductor substrate is etched to form a trench, and the trench is filled with silicon germanium material or silicon carbide material by epitaxial process to form a source region and a drain region. The silicon germanium material or silicon carbide material is in-situ doped with P-type or N-type impurity ions during the epitaxy process. In other embodiments, after the silicon germanium material or the silicon carbide material is formed, the silicon germanium material or the silicon carbide material may be doped with impurity ions by using an ion implantation process. Using the silicon germanium material or silicon carbide material to form the source region and the drain region will cause stress to the crystal lattice of the channel region of the MOS transistor, which is conducive to increasing the mobility of carriers in the channel region and improving the electrical performance of the MOS transistor.

现有技术中,在形成源极和漏极过程中进一步退火会使得栅极材料中的晶粒尺寸进一步提高;而本发明的技术方案中,由于在所述栅极层401位于所述缓冲层301表面,而所述缓冲层301为无定形态,虽然在后续形成晶体管的源极和漏极的过程中,会进行退火处理,但是由于所述缓冲层301的存在,所述缓冲层301中掺杂了碳或氮等元素,在高温退火过程中不易结晶化,并且所述缓冲层301表面的栅极层401中存在无定形态和部分晶粒结构,在退火过程中,晶粒的数量可能增加,但是晶粒尺寸不会明显增大,仍然能够保持在小于3nm的范围内。In the prior art, further annealing in the process of forming the source and drain will further increase the grain size in the gate material; and in the technical solution of the present invention, since the gate layer 401 is located in the buffer layer 301 surface, and the buffer layer 301 is amorphous, although annealing treatment will be performed in the subsequent process of forming the source and drain of the transistor, but due to the existence of the buffer layer 301, the buffer layer 301 Doped with elements such as carbon or nitrogen, it is not easy to crystallize during high-temperature annealing, and there is an amorphous and partial grain structure in the gate layer 401 on the surface of the buffer layer 301. During the annealing process, the number of grains It may increase, but the grain size will not increase significantly, and it can still be kept within the range of less than 3nm.

由于所述栅极层401的材料晶粒尺寸较小,所述晶粒尺寸小于3nm,所以,所述栅极层401的晶粒尺寸对栅极层401的功函数影响较小,进而可以使形成的晶体管的阈值电压分布范围较小。Since the grain size of the material of the gate layer 401 is small, the grain size is less than 3nm, so the grain size of the gate layer 401 has little influence on the work function of the gate layer 401, thereby enabling The threshold voltage distribution range of the formed transistor is small.

第二实施例second embodiment

本实施例中,也可以采用后栅工艺形成所述晶体管,具体形成方法请参考图6~图9。In this embodiment, the transistor may also be formed by a gate-last process, and please refer to FIG. 6 to FIG. 9 for specific forming methods.

请参考图6,在所述半导体衬底500表面形成伪栅结构503及所述伪栅结构503侧壁表面的侧墙504;以所述侧墙504和伪栅结构503为掩膜,在所述伪栅结构503两侧的半导体衬底内进行源漏离子注入并退火,形成源极501和漏极502;在所述半导体衬底表面形成介质层600,所述介质层的表面与伪栅结构503的表面齐平。Please refer to FIG. 6, a dummy gate structure 503 and a sidewall 504 on the sidewall surface of the dummy gate structure 503 are formed on the surface of the semiconductor substrate 500; using the sidewall 504 and the dummy gate structure 503 as a mask, Source-drain ion implantation and annealing are performed in the semiconductor substrate on both sides of the dummy gate structure 503 to form a source electrode 501 and a drain electrode 502; a dielectric layer 600 is formed on the surface of the semiconductor substrate, and the surface of the dielectric layer and the dummy gate The surface of structure 503 is flush.

所述伪栅结构503的材料为多晶硅层。The material of the dummy gate structure 503 is a polysilicon layer.

所述伪栅结构503可以包括位于所述半导体衬底表面的伪栅介质层和所述伪栅介质层表面的多晶硅层,所述伪栅介质层的材料可以是二氧化硅层,后续去除所述伪栅结构503的同时去除所述伪栅介质层和多晶硅层。The dummy gate structure 503 may include a dummy gate dielectric layer located on the surface of the semiconductor substrate and a polysilicon layer on the surface of the dummy gate dielectric layer, the material of the dummy gate dielectric layer may be a silicon dioxide layer, and the subsequent removal of all While removing the dummy gate structure 503, the dummy gate dielectric layer and the polysilicon layer are removed.

所述伪栅结构503可以包括位于半导体衬底500表面的栅介质层和所述栅介质层表面的多晶硅层,后续保留所述栅介质层。The dummy gate structure 503 may include a gate dielectric layer on the surface of the semiconductor substrate 500 and a polysilicon layer on the surface of the gate dielectric layer, and the gate dielectric layer will be retained later.

请参考图7,去除所述伪栅结构503(请参考图6)。Referring to FIG. 7 , the dummy gate structure 503 (please refer to FIG. 6 ) is removed.

采用湿法或干法刻蚀工艺去除所述伪栅结构503,形成开口601。后续在所述开口601内形成栅极堆叠结构。The dummy gate structure 503 is removed by a wet or dry etching process to form an opening 601 . Subsequently, a gate stack structure is formed in the opening 601 .

请参考图8,在所述介质层600表面和开口601(请参考图7)表面依次形成所述栅介质材料层602、缓冲材料层603和栅极材料层604。Referring to FIG. 8 , the gate dielectric material layer 602 , buffer material layer 603 and gate material layer 604 are sequentially formed on the surface of the dielectric layer 600 and the surface of the opening 601 (please refer to FIG. 7 ).

请参考图9,以所述介质层600为研磨停止层进形化学机械研磨,去除所述介质层上方的部分栅介质材料层602、缓冲材料层603和栅极材料层604,形成栅极堆叠结构,所述栅极堆叠结构包括:栅介质层602a、缓冲层603a和栅极层604a。Please refer to FIG. 9 , the dielectric layer 600 is used as a polishing stop layer for chemical mechanical polishing, and part of the gate dielectric material layer 602, buffer material layer 603 and gate material layer 604 above the dielectric layer are removed to form a gate stack. structure, the gate stack structure includes: a gate dielectric layer 602a, a buffer layer 603a and a gate layer 604a.

在本发明的其他实施例中,也可以采用刻蚀工艺,去除所述介质层上方的部分栅介质材料层602、缓冲材料层603和栅极材料层604,形成栅极堆叠结构。In other embodiments of the present invention, an etching process may also be used to remove part of the gate dielectric material layer 602 , the buffer material layer 603 and the gate material layer 604 above the dielectric layer to form a gate stack structure.

在该实施例中,采用后栅工艺,在形成所述栅极堆叠结构之前就形成了晶体管的源极和漏极,并对所述源极漏极进行了退火处理,所以后续形成栅堆叠结构时,不需要进行高温退火处理,避免退火造成栅极层中材料的结晶化,从而可以进一步降低栅极层中晶粒的数量和尺寸,进一步降低所述晶体管的阈值电压的分布范围。In this embodiment, the gate-last process is adopted, the source and drain of the transistor are formed before forming the gate stack structure, and the source and drain are annealed, so the gate stack structure is subsequently formed In this case, high-temperature annealing treatment is not required to avoid crystallization of materials in the gate layer caused by annealing, thereby further reducing the number and size of crystal grains in the gate layer, and further reducing the distribution range of the threshold voltage of the transistor.

在本发明的其他实施例中,还可以采用上述方法,形成鳍式晶体管的栅极结构。In other embodiments of the present invention, the above method can also be used to form the gate structure of the fin transistor.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (18)

1.一种栅极结构的形成方法,其特征在于,包括:1. A method for forming a gate structure, comprising: 提供衬底;provide the substrate; 在所述衬底表面依次形成栅介质层、位于栅介质层表面的缓冲层和位于缓冲层表面的栅极层;sequentially forming a gate dielectric layer, a buffer layer on the surface of the gate dielectric layer, and a gate layer on the surface of the buffer layer on the surface of the substrate; 采用高K材料作为所述栅介质层,所述栅极层为金属栅极;Using a high-K material as the gate dielectric layer, the gate layer is a metal gate; 所述缓冲层的材料为无定形硅;The material of the buffer layer is amorphous silicon; 所述栅极材料层为无定形态和晶粒共同存在的一个混合体。The gate material layer is a mixture of both amorphous and crystal grains. 2.根据权利要求1所述的栅极结构的形成方法,其特征在于,采用化学气相沉积工艺形成所述缓冲层,其中采用的反应气体包括:Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,反应温度为300℃~600℃。2. The method for forming the gate structure according to claim 1, characterized in that the buffer layer is formed by chemical vapor deposition process, wherein the reaction gases used include: Si 2 H 6 , Si 3 H 8 , Si 4 One or more of H 8 , Si 5 H 10 , the reaction temperature is 300℃~600℃. 3.根据权利要求1所述的栅极结构的形成方法,其特征在于,所述缓冲层内掺杂有碳。3. The method for forming the gate structure according to claim 1, wherein the buffer layer is doped with carbon. 4.根据权利要求3所述的栅极结构的形成方法,其特征在于,所述碳的浓度为1E19atom/cm3~1E22atom/cm34 . The method for forming the gate structure according to claim 3 , wherein the carbon concentration is 1E19 atom/cm 3 -1E22 atom/cm 3 . 5.根据权利要求3所述的栅极结构的形成方法,其特征在于,采用化学气相沉积工艺形成所述缓冲层,所述化学气相沉积工艺中,采用的硅源气体包括:Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,采用的碳源气体包括C2H2、C2H4、C3H6中的一种或几种,反应温度为300℃~600℃。5. The method for forming the gate structure according to claim 3 , wherein the buffer layer is formed by a chemical vapor deposition process, and in the chemical vapor deposition process, the silicon source gas used includes: Si2H6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 one or more, the carbon source gas used includes one or more of C 2 H 2 , C 2 H 4 , C 3 H 6 , the reaction temperature is 300°C to 600°C. 6.根据权利要求1所述的栅极结构的形成方法,其特征在于,所述缓冲层内掺杂有氮。6 . The method for forming the gate structure according to claim 1 , wherein the buffer layer is doped with nitrogen. 7.根据权利要求6所述的栅极结构的形成方法,其特征在于,所述氮的浓度为1E19atom/cm3~1E22atom/cm37 . The method for forming the gate structure according to claim 6 , wherein the nitrogen concentration is 1E19 atom/cm 3 -1E22 atom/cm 3 . 8.根据权利要求6所述的栅极结构的形成方法,其特征在于,采用化学气相沉积工艺形成所述缓冲层,所述化学气相沉积工艺中,采用的硅源气体包括:Si2H6、Si3H8、Si4H8、Si5H10中的一种或几种,采用的氮源气体包括N2O、NO中的一种或几种,反应温度为300℃~600℃。8. The method for forming the gate structure according to claim 6, wherein the buffer layer is formed by a chemical vapor deposition process, and in the chemical vapor deposition process, the silicon source gas used includes: Si 2 H 6 , Si 3 H 8 , Si 4 H 8 , Si 5 H 10 one or more, the nitrogen source gas used includes one or more of N 2 O and NO, and the reaction temperature is 300℃~600℃ . 9.根据权利要求1所述的栅极结构的形成方法,其特征在于,所述缓冲层的厚度为1nm~5nm。9 . The method for forming a gate structure according to claim 1 , wherein the buffer layer has a thickness of 1 nm˜5 nm. 10.根据权利要求1所述的栅极结构的形成方法,其特征在于,采用化学气相沉积工艺、等离子体化学气相沉积工艺、液相外延工艺或溅射沉积工艺形成所述缓冲层。10 . The method for forming the gate structure according to claim 1 , wherein the buffer layer is formed by a chemical vapor deposition process, a plasma chemical vapor deposition process, a liquid phase epitaxy process or a sputtering deposition process. 11 . 11.根据权利要求1所述的栅极结构的形成方法,其特征在于,所述栅极层的材料为Ni、Ti、TiN、TaN或TaC。11 . The method for forming the gate structure according to claim 1 , wherein the material of the gate layer is Ni, Ti, TiN, TaN or TaC. 12.根据权利要求1所述的栅极结构的形成方法,其特征在于,所述栅极层的材料中的晶粒尺寸小于3nm。12 . The method for forming the gate structure according to claim 1 , wherein the grain size of the material of the gate layer is less than 3 nm. 13 . 13.根据权利要求11所述的栅极结构的形成方法,其特征在于,采用原子层沉积工艺形成材料为TiN的栅极层,反应气体为TiCl4和NH3,反应温度为200℃~600℃,反应压强为0.2托~2托。13. The method for forming the gate structure according to claim 11, characterized in that the gate layer made of TiN is formed by atomic layer deposition process, the reaction gases are TiCl 4 and NH 3 , and the reaction temperature is 200° C. to 600° C. °C, the reaction pressure is 0.2 torr to 2 torr. 14.根据权利要求1所述的栅极结构的形成方法,其特征在于,还包括:在所述栅极层、缓冲层和栅介质层的侧壁表面形成侧墙,在所述侧墙两侧的未被覆盖的衬底内形成源极和漏极。14. The method for forming the gate structure according to claim 1, further comprising: forming sidewalls on the sidewall surfaces of the gate layer, the buffer layer and the gate dielectric layer, and forming sidewalls on both sides of the sidewalls. Source and drain electrodes are formed in the uncovered substrate on the side. 15.一种栅极结构,其特征在于,所述栅极结构包括:15. A gate structure, characterized in that the gate structure comprises: 衬底;Substrate; 位于衬底表面的栅介质层;a gate dielectric layer located on the surface of the substrate; 位于所述栅介质层表面的缓冲层;a buffer layer located on the surface of the gate dielectric layer; 位于所述缓冲层表面的栅极层;a gate layer located on the surface of the buffer layer; 采用高K材料作为所述栅介质层,所述栅极层为金属栅极;Using a high-K material as the gate dielectric layer, the gate layer is a metal gate; 所述缓冲层的材料为无定形硅;The material of the buffer layer is amorphous silicon; 所述栅极材料层为无定形态和晶粒共同存在的一个混合体。The gate material layer is a mixture of both amorphous and crystal grains. 16.根据权利要求15所述的栅极结构,其特征在于,所述缓冲层内掺杂有碳或氮,所述碳或氮的浓度为1E19atom/cm3~1E22atom/cm316 . The gate structure according to claim 15 , wherein the buffer layer is doped with carbon or nitrogen, and the concentration of the carbon or nitrogen is 1E19 atom/cm 3 -1E22 atom/cm 3 . 17.根据权利要求15所述的栅极结构,其特征在于,所述缓冲层的厚度为1nm~5nm。17. The gate structure according to claim 15, wherein the buffer layer has a thickness of 1 nm˜5 nm. 18.根据权利要求15所述的栅极结构,其特征在于,所述栅极层的材料中的晶粒尺寸小于3nm。18. The gate structure according to claim 15, wherein the grain size of the material of the gate layer is less than 3 nm.
CN201310190298.2A 2013-05-21 2013-05-21 Grid structure and forming method thereof Active CN104183475B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310190298.2A CN104183475B (en) 2013-05-21 2013-05-21 Grid structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310190298.2A CN104183475B (en) 2013-05-21 2013-05-21 Grid structure and forming method thereof

Publications (2)

Publication Number Publication Date
CN104183475A CN104183475A (en) 2014-12-03
CN104183475B true CN104183475B (en) 2016-12-28

Family

ID=51964435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310190298.2A Active CN104183475B (en) 2013-05-21 2013-05-21 Grid structure and forming method thereof

Country Status (1)

Country Link
CN (1) CN104183475B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214705B1 (en) * 1998-12-15 2001-04-10 United Microelectronics Corp. Method for fabricating a gate eletrode
CN101027779A (en) * 2004-09-17 2007-08-29 应用材料公司 Poly-silicon-germanium gate stack and method for forming the same
CN101325214A (en) * 2007-06-12 2008-12-17 联华电子股份有限公司 Grid and manufacturing method of grid material
TW200937632A (en) * 2007-12-07 2009-09-01 Univ Waseda Metal electrode and semiconductor element using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802522B2 (en) * 2010-09-10 2014-08-12 Applied Materials, Inc. Methods to adjust threshold voltage in semiconductor devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214705B1 (en) * 1998-12-15 2001-04-10 United Microelectronics Corp. Method for fabricating a gate eletrode
CN101027779A (en) * 2004-09-17 2007-08-29 应用材料公司 Poly-silicon-germanium gate stack and method for forming the same
CN101325214A (en) * 2007-06-12 2008-12-17 联华电子股份有限公司 Grid and manufacturing method of grid material
TW200937632A (en) * 2007-12-07 2009-09-01 Univ Waseda Metal electrode and semiconductor element using the same

Also Published As

Publication number Publication date
CN104183475A (en) 2014-12-03

Similar Documents

Publication Publication Date Title
CN104576383B (en) FinFET structure and manufacturing method thereof
CN103137488B (en) Semiconductor device and method for manufacturing the same
US9515188B2 (en) Fin field effect transistors having conformal oxide layers and methods of forming same
US9269786B2 (en) Silicon nitride layer deposited at low temperature to prevent gate dielectric regrowth high-K metal gate field effect transistors
CN102110651B (en) A kind of semiconductor device and its manufacturing method
CN106158747B (en) Semiconductor structure and forming method thereof
CN102074461A (en) Semiconductor device and manufacturing method thereof
WO2011044776A1 (en) Forming method for semiconductor device
US10269921B2 (en) Fin field effect transistors having conformal oxide layers and methods of forming same
CN104241130B (en) PMOS transistor and forming method thereof, semiconductor devices and forming method thereof
EP3084834A1 (en) Dual strained cladding layers for semiconductor devices
US9876083B2 (en) Semiconductor devices, FinFET devices and methods of forming the same
CN106409677A (en) Semiconductor device and formation method thereof
CN107845577A (en) Method for forming group III-V semiconductor layer on silicon substrate
CN105405764A (en) Semiconductor device manufacturing method
CN106298527B (en) PMOS transistor and forming method thereof
CN102315268B (en) Semiconductor device and method for manufacturing the same
CN118366929B (en) Manufacturing method of semiconductor device
CN203134802U (en) Semiconductor structure
CN107170683A (en) The forming method of fin formula field effect transistor
CN104183475B (en) Grid structure and forming method thereof
CN106328529A (en) MOS (Metal-Oxide-Semiconductor) transistor and formation method thereof
CN104465377B (en) Pmos transistor and forming method thereof
CN104576378B (en) MOSFET structure and manufacturing method thereof
CN104576381B (en) Asymmetric ultrathin SOIMOS transistor structure and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant