[go: up one dir, main page]

CN104241130B - PMOS transistor and forming method thereof, semiconductor devices and forming method thereof - Google Patents

PMOS transistor and forming method thereof, semiconductor devices and forming method thereof Download PDF

Info

Publication number
CN104241130B
CN104241130B CN201310231963.8A CN201310231963A CN104241130B CN 104241130 B CN104241130 B CN 104241130B CN 201310231963 A CN201310231963 A CN 201310231963A CN 104241130 B CN104241130 B CN 104241130B
Authority
CN
China
Prior art keywords
layer
pmos transistor
buffering
stress
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310231963.8A
Other languages
Chinese (zh)
Other versions
CN104241130A (en
Inventor
韦庆松
于书坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201310231963.8A priority Critical patent/CN104241130B/en
Publication of CN104241130A publication Critical patent/CN104241130A/en
Application granted granted Critical
Publication of CN104241130B publication Critical patent/CN104241130B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/01Manufacture or treatment
    • H10D62/021Forming source or drain recesses by etching e.g. recessing by etching and then refilling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种PMOS晶体管及其形成方法、半导体器件及其形成方法。所述PMOS晶体管的形成方法包括:提供半导体衬底;在所述半导体衬底上形成第一栅极结构;在所述第一栅极结构两侧的半导体衬底内形成第一凹槽;在所述第一凹槽的底部和侧壁上形成缓冲应力材料层,并对所述缓冲应力材料层进行刻蚀,以形成缓冲应力层,位于所述第一凹槽底部上缓冲应力层的厚度与位于所述第一凹槽侧壁上缓冲应力层的厚度的比值为1:1~0.8;在包括缓冲应力层的第一凹槽内形成主应力层。本发明所形成PMOS晶体管和半导体器件的性能较佳。

A PMOS transistor and its forming method, a semiconductor device and its forming method. The forming method of the PMOS transistor includes: providing a semiconductor substrate; forming a first gate structure on the semiconductor substrate; forming first grooves in the semiconductor substrate on both sides of the first gate structure; A stress buffering material layer is formed on the bottom and side walls of the first groove, and the stress buffering material layer is etched to form a stress buffering layer, which is located at the bottom of the first groove by a thickness of The ratio to the thickness of the buffer stress layer on the side wall of the first groove is 1:1-0.8; a main stress layer is formed in the first groove including the buffer stress layer. The performance of the PMOS transistor and semiconductor device formed by the invention is better.

Description

PMOS晶体管及其形成方法、半导体器件及其形成方法PMOS transistor and its forming method, semiconductor device and its forming method

技术领域technical field

本发明涉及半导体制造技术领域,尤其涉及一种PMOS晶体管及其形成方法、半导体器件及其形成方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a PMOS transistor and its forming method, a semiconductor device and its forming method.

背景技术Background technique

金属氧化物半导体(Metal-Oxide-Semiconductor,简称为MOS)晶体管已成为集成电路中常用的半导体器件。所述MOS晶体管包括:P型金属氧化物半导体(PMOS)晶体管和N型金属氧化物半导体(NMOS)晶体管。Metal-oxide-semiconductor (MOS) transistors have become common semiconductor devices in integrated circuits. The MOS transistors include: P-type metal oxide semiconductor (PMOS) transistors and N-type metal oxide semiconductor (NMOS) transistors.

随着半导体器件的元件密度和集成度的提高,PMOS晶体管或NMOS晶体管的栅极尺寸变得比以往更短。然而,PMOS晶体管或NMOS晶体管的栅极尺寸变短会产生短沟道效应,进而产生漏电流,影响CMOS晶体管的电学性能。现有技术主要通过提高晶体管沟道区的应力来提高载流子迁移率,进而提高晶体管的驱动电流,减少晶体管中的漏电流。As element density and integration of semiconductor devices increase, the gate size of PMOS transistors or NMOS transistors becomes shorter than before. However, the shortening of the gate size of the PMOS transistor or the NMOS transistor will produce a short channel effect, thereby generating a leakage current and affecting the electrical performance of the CMOS transistor. In the prior art, the carrier mobility is mainly increased by increasing the stress of the channel region of the transistor, thereby increasing the driving current of the transistor and reducing the leakage current in the transistor.

现有技术中,为了提高PMOS晶体管沟道区的应力,在PMOS晶体管源区和漏区形成材料为锗硅(SiGe)的主应力层,通过硅和锗硅之间晶格失配形成的压应力来提高PMOS晶体管沟道区中空穴的迁移率,从而提高PMOS晶体管的性能。In the prior art, in order to increase the stress of the channel region of the PMOS transistor, a main stress layer made of silicon germanium (SiGe) is formed in the source region and drain region of the PMOS transistor, and the stress formed by the lattice mismatch between silicon and silicon germanium Stress is used to increase the mobility of holes in the channel region of the PMOS transistor, thereby improving the performance of the PMOS transistor.

现有工艺在形成上述PMOS晶体管时,包括:提供半导体衬底,并在所述半导体衬底上形成栅极结构;在所述栅极结构两侧的半导体衬底内形成第一凹槽;在所述第一凹槽内形成锗硅层。When forming the above-mentioned PMOS transistor in the existing process, it includes: providing a semiconductor substrate, and forming a gate structure on the semiconductor substrate; forming first grooves in the semiconductor substrate on both sides of the gate structure; A silicon germanium layer is formed in the first groove.

由于锗硅层中压应力与锗硅层中锗的含量有关,为了增大锗硅层的应力,使锗硅层中锗所占的原子数百分比大于30%。然而,由于锗硅层与半导体衬底(材料为硅)的晶格排列不同,导致锗硅层和半导体衬底在锗硅层与半导体衬底之间的接触面发生位错(Stackfalse),导致锗硅层中压应力在传递至PMOS晶体管的沟道区之前释放,锗硅层在提高PMOS晶体管沟道区中压应力的效果有限。Since the compressive stress in the silicon germanium layer is related to the content of germanium in the silicon germanium layer, in order to increase the stress of the silicon germanium layer, the atomic percentage of germanium in the silicon germanium layer is greater than 30%. However, due to the difference in lattice arrangement between the silicon germanium layer and the semiconductor substrate (the material is silicon), dislocations (Stackfalse) occur between the silicon germanium layer and the semiconductor substrate at the contact surface between the silicon germanium layer and the semiconductor substrate, resulting in The compressive stress in the silicon germanium layer is released before being transmitted to the channel region of the PMOS transistor, and the effect of the silicon germanium layer on increasing the compressive stress in the channel region of the PMOS transistor is limited.

针对上述问题,现有工艺在第一凹槽内形成锗硅层之前,先在第一凹槽的底部和侧壁上形成锗硅的缓冲应力层,并使缓冲应力层中锗所占的原子数百分比保持在5%~25%之间,以避免或者减少锗硅层与半导体衬底在两者之间的接触面发生位错,使锗硅层中压应力能够传递至PMOS晶体管的沟道区,提高PMOS晶体管沟道区中压应力。In view of the above problems, prior to forming the silicon germanium layer in the first groove, the prior art forms a buffer stress layer of silicon germanium on the bottom and side walls of the first groove, and makes the atoms occupied by germanium in the buffer stress layer The percentage is kept between 5% and 25% to avoid or reduce dislocations at the contact surface between the silicon-germanium layer and the semiconductor substrate, so that the compressive stress in the silicon-germanium layer can be transmitted to the channel of the PMOS transistor region, increasing the compressive stress in the channel region of the PMOS transistor.

然而,在对包括缓冲应力层的PMOS晶体管进行测试时发现,PMOS晶体管沟道区中压应力并没有显著增加,通过在半导体衬底和锗硅层之间增加缓冲应力层来提高PMOS晶体管性能的效果有限。However, when testing the PMOS transistor including the buffer stress layer, it is found that the compressive stress in the channel region of the PMOS transistor does not increase significantly, and the performance of the PMOS transistor can be improved by adding a buffer stress layer between the semiconductor substrate and the silicon germanium layer. The effect is limited.

发明内容Contents of the invention

本发明解决的问题是提供一种PMOS晶体管及其形成方法、半导体器件及其形成方法,提高PMOS晶体管沟道区中空穴的迁移率,提高PMOS晶体管和包括PMOS晶体管的半导体器件的性能。The problem solved by the present invention is to provide a PMOS transistor and its forming method, a semiconductor device and its forming method, improve the mobility of holes in the channel region of the PMOS transistor, and improve the performance of the PMOS transistor and the semiconductor device including the PMOS transistor.

为解决上述问题,本发明提供一种PMOS晶体管的形成方法,包括:In order to solve the above problems, the present invention provides a method for forming a PMOS transistor, comprising:

提供半导体衬底;Provide semiconductor substrates;

在所述半导体衬底上形成第一栅极结构;forming a first gate structure on the semiconductor substrate;

在所述第一栅极结构两侧的所述半导体衬底内形成第一凹槽;forming first grooves in the semiconductor substrate on both sides of the first gate structure;

在所述第一凹槽的底部和侧壁上形成缓冲应力材料层,并对所述缓冲应力材料层进行刻蚀,以形成缓冲应力层,位于所述第一凹槽底部上缓冲应力层的厚度与位于所述第一凹槽侧壁上缓冲应力层的厚度的比值为1:1~0.8;A buffer stress material layer is formed on the bottom and side walls of the first groove, and the buffer stress material layer is etched to form a buffer stress layer, which is located on the bottom of the first groove. The ratio of the thickness to the thickness of the buffer stress layer on the side wall of the first groove is 1:1-0.8;

在包括所述缓冲应力层的第一凹槽内形成主应力层。A main stress layer is formed in the first groove including the buffer stress layer.

可选的,所述缓冲应力层的材料为锗硅,所述缓冲应力层中锗所占的原子数百分比范围为5%~25%。Optionally, the material of the stress buffer layer is silicon germanium, and the atomic percentage of germanium in the stress buffer layer ranges from 5% to 25%.

可选的,对所述缓冲应力材料层进行刻蚀的方法为干法刻蚀。Optionally, the method of etching the buffer stress material layer is dry etching.

可选的,所述干法刻蚀的温度范围为0℃~1000℃,压强范围为0torr~2000torr,射频电源的功率范围为0W~1000W,射频偏压的范围为30V~2000V,刻蚀气体为HCl、HBr和HF中的一种或任意组合,所述刻蚀气体的流量范围为0sccm~500sccm。Optionally, the temperature range of the dry etching is 0°C-1000°C, the pressure range is 0torr-2000torr, the power range of the RF power supply is 0W-1000W, the range of the RF bias voltage is 30V-2000V, the etching gas It is one or any combination of HCl, HBr and HF, and the flow rate range of the etching gas is 0 sccm-500 sccm.

可选的,形成所述缓冲应力材料层、对所述缓冲应力材料层进行刻蚀和形成所述主应力层于同一设备中进行。Optionally, forming the buffer stress material layer, etching the buffer stress material layer and forming the main stress layer are performed in the same device.

可选的,对所述缓冲应力材料层进行刻蚀与形成所述缓冲应力材料层同时进行。Optionally, etching the stress buffering material layer is performed simultaneously with forming the stress buffering material layer.

可选的,对所述缓冲应力材料层进行刻蚀的方法为湿法刻蚀。Optionally, the method of etching the buffer stress material layer is wet etching.

可选的,所述湿法刻蚀的溶液为无机碱性溶液,所述无机碱性溶液PH值的范围为8~14。Optionally, the wet etching solution is an inorganic alkaline solution, and the pH value of the inorganic alkaline solution is in the range of 8-14.

可选的,所述无机碱性溶液包括KOH、NaOH和NH4OH中的一种或者任意组合。Optionally, the inorganic alkaline solution includes one or any combination of KOH, NaOH and NH 4 OH.

可选的,所述无机碱性溶液为氢氧化钾溶液,所述氢氧化钾溶液对(110)、(100)和(111)晶面上缓冲应力材料层的刻蚀速率比为1.5~2.5:1:1/500~1/250。Optionally, the inorganic alkaline solution is a potassium hydroxide solution, and the etching rate ratio of the potassium hydroxide solution to the buffer stress material layer on (110), (100) and (111) crystal planes is 1.5-2.5 :1:1/500~1/250.

可选的,所述湿法刻蚀的溶液为有机碱性溶液。Optionally, the wet etching solution is an organic alkaline solution.

可选的,所述有机碱性溶液为四甲基氢氧化铵溶液,所述四甲基氢氧化铵溶液对(110)、(100)和(111)晶面上缓冲应力材料层的刻蚀速率比为1.5~2:1:1/50~1/30。Optionally, the organic alkaline solution is a tetramethylammonium hydroxide solution, and the tetramethylammonium hydroxide solution can buffer stress material layers on (110), (100) and (111) crystal planes The speed ratio is 1.5~2:1:1/50~1/30.

可选的,所述缓冲应力层的厚度范围为3nm~20nm。Optionally, the buffer stress layer has a thickness ranging from 3 nm to 20 nm.

可选的,所述主应力层的材料为含硼的锗硅,所述主应力层中锗所占的原子数百分比大于所述缓冲应力层中锗所占的原子数百分比,所述主应力层中锗所占的原子数百分比大于或者等于30%。Optionally, the material of the main stress layer is boron-containing silicon germanium, the atomic percentage of germanium in the main stress layer is greater than the atomic percentage of germanium in the buffer stress layer, and the main stress The atomic percentage of germanium in the layer is greater than or equal to 30%.

可选的,在包括所述缓冲应力层的第一凹槽内形成主应力层之后,还包括:在所述缓冲应力层和所述主应力层的上表面形成覆盖层。Optionally, after forming the main stress layer in the first groove including the buffer stress layer, the method further includes: forming a covering layer on the upper surfaces of the buffer stress layer and the main stress layer.

可选的,所述覆盖层的材料为锗硅,所述覆盖层中锗所占的原子数百分比小于所述缓冲应力层中锗所占的原子数百分比,所述覆盖层中锗所占的原子数百分比为大于0%且小于或者等于10%。Optionally, the material of the covering layer is silicon germanium, the atomic percentage of germanium in the covering layer is smaller than the atomic percentage of germanium in the buffer stress layer, and the atomic percentage of germanium in the covering layer is The atomic percentage is greater than 0% and less than or equal to 10%.

可选的,所述第一栅极结构包括第一栅介质层和第一栅电极,在所述半导体衬底上形成第一栅极结构之后,且在所述第一栅极结构两侧的半导体衬底内形成第一凹槽之前,还包括:在所述半导体衬底上形成覆盖所述第一栅介质层的侧壁和第一栅电极的侧壁的偏移间隙壁;在所述第一栅电极顶部形成阻挡层;以所述阻挡层和所述偏移间隙壁为掩模,进行离子注入,在所述半导体衬底中形成轻掺杂区;在包括缓冲应力层的第一凹槽内形成主应力层之后,还包括:形成覆盖所述偏移间隙壁的侧壁的侧墙;以所述阻挡层和所述侧墙为掩模,进行离子注入,在所述主应力层中形成重掺杂区;在所述重掺杂区上形成金属硅化物层;在所述金属硅化物层、所述侧墙和所述阻挡层上形成第一层间介质层,并进行化学机械研磨,直至剩余的所述第一层间介质层的上表面与所述第一栅电极的上表面齐平。Optionally, the first gate structure includes a first gate dielectric layer and a first gate electrode, after the first gate structure is formed on the semiconductor substrate, and on both sides of the first gate structure Before forming the first groove in the semiconductor substrate, it also includes: forming an offset spacer covering the sidewall of the first gate dielectric layer and the sidewall of the first gate electrode on the semiconductor substrate; A barrier layer is formed on the top of the first gate electrode; ion implantation is performed using the barrier layer and the offset spacer as a mask to form a lightly doped region in the semiconductor substrate; After forming the main stress layer in the groove, it also includes: forming a side wall covering the side wall of the offset spacer; performing ion implantation using the barrier layer and the side wall as a mask, and performing ion implantation under the main stress forming a heavily doped region in the layer; forming a metal silicide layer on the heavily doped region; forming a first interlayer dielectric layer on the metal silicide layer, the sidewall and the barrier layer, and performing chemical mechanical polishing until the remaining upper surface of the first interlayer dielectric layer is flush with the upper surface of the first gate electrode.

相应的,本发明还提供了一种半导体器件的形成方法,所述半导体器件包括PMOS晶体管,所述PMOS晶体管采用上述任一项所述的PMOS晶体管的形成方法形成。Correspondingly, the present invention also provides a method for forming a semiconductor device, where the semiconductor device includes a PMOS transistor, and the PMOS transistor is formed by using any one of the methods for forming a PMOS transistor described above.

本发明提供了一种PMOS晶体管,包括:The invention provides a PMOS transistor, comprising:

半导体衬底;semiconductor substrate;

位于所述半导体衬底上的栅极结构;a gate structure located on the semiconductor substrate;

位于所述栅极结构两侧的半导体衬底内的主应力层;a main stress layer in the semiconductor substrate located on both sides of the gate structure;

位于所述主应力层和半导体衬底之间的缓冲应力层;a buffer stress layer located between the main stress layer and the semiconductor substrate;

位于所述主应力层下方缓冲应力层的厚度与位于所述主应力层侧壁上缓冲应力层的厚度的比值为1:1~0.8。The ratio of the thickness of the buffer stress layer below the main stress layer to the thickness of the buffer stress layer on the side wall of the main stress layer is 1:1-0.8.

相应的,本发明还提供了一种半导体器件,包括上述PMOS晶体管。Correspondingly, the present invention also provides a semiconductor device, including the above-mentioned PMOS transistor.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

在半导体衬底上形成第一栅极结构,并在第一栅极结构两侧的半导体衬底内形成第一凹槽之后,在第一凹槽底部和侧壁上形成缓冲应力材料层,并对所述缓冲应力材料层进行刻蚀,以形成缓冲应力层,使位于第一凹槽底部上缓冲应力层的厚度与位于所述第一凹槽侧壁上缓冲应力层的厚度的比值为1:1~0.8。在第一凹槽容积相同,第一凹槽侧壁上缓冲应力层厚度相差不大的情况下,使除缓冲应力层外的第一凹槽内的容积较大,进而使所形成主应力层的体积较大,增大了施加于PMOS晶体管沟道区中的压应力,提高所形成的PMOS晶体管的性能,进而提高了包括PMOS晶体管的半导体器件的性能。After forming a first gate structure on a semiconductor substrate, and forming first grooves in the semiconductor substrate on both sides of the first gate structure, forming a buffer stress material layer on the bottom and side walls of the first groove, and Etching the buffer stress material layer to form a buffer stress layer, so that the ratio of the thickness of the buffer stress layer on the bottom of the first groove to the thickness of the buffer stress layer on the side wall of the first groove is 1 :1~0.8. When the volume of the first groove is the same and the thickness of the buffer stress layer on the side wall of the first groove is not much different, the volume in the first groove except the buffer stress layer is larger, so that the formed main stress layer The larger volume increases the compressive stress applied to the channel region of the PMOS transistor, improves the performance of the formed PMOS transistor, and further improves the performance of the semiconductor device including the PMOS transistor.

此外,所述缓冲应力层又作为后续形成主应力层时的籽晶层,能够提高所形成主应力层的结晶质量。In addition, the buffer stress layer serves as a seed layer for the subsequent formation of the main stress layer, which can improve the crystallization quality of the formed main stress layer.

进一步的,形成所述缓冲应力材料层、对所述缓冲应力材料层进行刻蚀和形成所述主应力层于同一设备中进行,避免所形成的缓冲应力层表面在转移半导体衬底过程中与空气接触,进而避免缓冲应力层的表面发生氧化,防止氧化对主应力层的结晶质量造成影响,使缓冲应力层与主应力层的结合度较好,利于主应力层中应力转移至PMOS晶体管的沟道区域中,提高了所形成PMOS晶体管的性能。Further, forming the buffer stress material layer, etching the buffer stress material layer and forming the main stress layer are carried out in the same equipment, so as to prevent the surface of the formed buffer stress layer from being separated from the semiconductor substrate during the transfer process. Air contact, thereby avoiding oxidation on the surface of the buffer stress layer, preventing oxidation from affecting the crystallization quality of the main stress layer, so that the buffer stress layer and the main stress layer are better combined, which is conducive to the transfer of stress in the main stress layer to the PMOS transistor. In the channel region, the performance of the formed PMOS transistor is improved.

而且,当采用干法刻蚀对所述缓冲应力材料层进行刻蚀时,还可使对所述缓冲应力材料层进行刻蚀与形成所述缓冲应力材料层同时进行。即在形成缓冲应力材料层的同时,对所形成的缓冲应力材料层进行干法非等向原位刻蚀。由于第一凹槽底部上缓冲应力材料层的沉积速率大于第一凹槽侧壁上缓冲应力材料层的沉积速率,而干法刻蚀对沉积于第一凹槽底部上缓冲应力材料层的刻蚀速率大于对沉积于第一凹槽侧壁上缓冲应力材料层的刻蚀速率,故能够在第一凹槽底部和侧壁上的缓冲应力材料层的厚度基本均匀增加,直至形成缓冲应力层。在避免缓冲应力层表面与空气接触而发生氧化的同时,还减少了转移半导体衬底的步骤,简化了形成PMOS晶体管的步骤,节约了形成PMOS晶体管的制作时间和工艺成本。Moreover, when dry etching is used to etch the buffer stress material layer, the etching of the buffer stress material layer and the formation of the buffer stress material layer may also be performed simultaneously. That is, while forming the stress buffering material layer, dry anisotropic in-situ etching is performed on the formed stress buffering material layer. Since the deposition rate of the buffer stress material layer on the bottom of the first groove is greater than the deposition rate of the buffer stress material layer on the sidewall of the first groove, the dry etching has an effect on the etching of the buffer stress material layer deposited on the bottom of the first groove. The etch rate is greater than the etch rate of the buffer stress material layer deposited on the sidewall of the first groove, so the thickness of the buffer stress material layer on the bottom of the first groove and the side wall can increase substantially uniformly until the buffer stress layer is formed . While avoiding the oxidation of the surface of the buffer stress layer in contact with air, it also reduces the steps of transferring the semiconductor substrate, simplifies the steps of forming PMOS transistors, and saves the manufacturing time and process cost of forming PMOS transistors.

进一步的,采用湿法刻蚀对所述缓冲应力材料层进行刻蚀,直至形成所述缓冲应力层。所述湿法刻蚀的溶液为有机碱性溶液或PH值在8~14范围内的无机碱性溶液。由于硅不同晶面的悬挂键不同,有机碱性溶液和PH值在8~14范围内的无机碱性溶液对(100)和(110)晶面上应力缓冲材料层的刻蚀速率远大于对(111)晶面上应力缓冲材料层的刻蚀速率,湿法刻蚀对位于第一凹槽底部上缓冲应力材料层的刻蚀速率大于对位于第一凹槽侧壁上缓冲应力材料层的刻蚀速率,使位于第一凹槽底部上缓冲应力层的厚度与位于所述第一凹槽侧壁上缓冲应力层的厚度的比值逐步接近1:1~0.8,最终在第一凹槽底部和侧壁上形成缓冲应力层。且由于通过湿法刻蚀形成缓冲应力层时,不存在离子轰击作用,所形成缓冲应力层的表面均匀平整,利于后续主应力层的形成,所形成PMOS晶体管的性能好。Further, wet etching is used to etch the buffer stress material layer until the buffer stress layer is formed. The wet etching solution is an organic alkaline solution or an inorganic alkaline solution with a pH value in the range of 8-14. Due to the different dangling bonds on different crystal planes of silicon, organic alkaline solutions and inorganic alkaline solutions with a pH value in the range of 8 to 14 can etch the stress buffer material layer on the (100) and (110) crystal planes much faster than that on the (100) and (110) crystal planes. (111) The etch rate of the stress buffer material layer on the crystal surface, the etch rate of the stress buffer material layer on the bottom of the first groove by wet etching is greater than that of the stress buffer material layer on the side wall of the first groove The etching rate is such that the ratio of the thickness of the buffer stress layer on the bottom of the first groove to the thickness of the buffer stress layer on the sidewall of the first groove is gradually approaching 1:1 to 0.8, and finally at the bottom of the first groove And the buffer stress layer is formed on the side wall. And because there is no ion bombardment when forming the buffer stress layer by wet etching, the surface of the formed buffer stress layer is uniform and smooth, which is beneficial to the formation of the subsequent main stress layer, and the performance of the formed PMOS transistor is good.

进一步的,所述主应力层的材料为含硼的锗硅,可在形成主应力层中锗硅的同时或者在主应力层中锗硅形成之后,对主应力层进行硼离子掺杂,形成主应力层。主应力层中硼离子能够降低主应力层的电阻,所述缓冲应力层能够阻挡主应力层中硼掺杂离子向后续形成的PMOS晶体管的沟道区域扩散,防止沟道击穿以及重掺杂区短路,提高了所形成的PMOS晶体管的性能。Further, the material of the main stress layer is boron-containing silicon germanium, and the main stress layer can be doped with boron ions while forming the silicon germanium in the main stress layer or after the formation of silicon germanium in the main stress layer to form main stress layer. Boron ions in the main stress layer can reduce the resistance of the main stress layer, and the buffer stress layer can prevent the diffusion of boron dopant ions in the main stress layer to the channel region of the subsequently formed PMOS transistor, preventing channel breakdown and heavy doping The region is shorted, improving the performance of the formed PMOS transistor.

进一步的,在缓冲应力层和主应力层形成之后,在缓冲应力层和主应力层的上表面形成覆盖层。由于所形成覆盖层的表面平坦,利于后续重掺杂区离子注入工艺,使所形成重掺杂区的形貌更佳,进而使所形成PMOS晶体管的性能更好。Further, after the buffer stress layer and the main stress layer are formed, a covering layer is formed on the upper surfaces of the buffer stress layer and the main stress layer. Since the surface of the formed cover layer is flat, it is beneficial to the subsequent ion implantation process of the heavily doped region, so that the shape of the formed heavily doped region is better, and thus the performance of the formed PMOS transistor is improved.

附图说明Description of drawings

图1~图11是本发明PMOS晶体管的形成方法第一实施例的示意图;1 to 11 are schematic diagrams of a first embodiment of a method for forming a PMOS transistor of the present invention;

图12是本发明PMOS晶体管的形成方法第二实施例的示意图。FIG. 12 is a schematic diagram of a second embodiment of the method for forming a PMOS transistor of the present invention.

具体实施方式Detailed ways

发明人经过研究发现,尽管缓冲应力层能够避免主应力层与半导体衬底在两者之间的接触面发生位错,提高主应力层结晶质量,使后续形成锗硅层中压应力能够完全转移至PMOS晶体管的沟道区域中,并且可以阻挡主应力层中硼掺杂离子向沟道方向的扩散。但是,由于第一凹槽的深宽比较大,以及锗硅在(100)晶面的生长速度远大于在(111)晶面的生长速度,锗硅生长时阶梯覆盖能力(step coverage)有限,使得第一凹槽侧壁上缓冲应力层的厚度比底部上缓冲应力层的厚度薄得多(厚度比范围为1:3~5)。The inventor found through research that although the buffer stress layer can prevent dislocations at the contact surface between the main stress layer and the semiconductor substrate, improve the crystallization quality of the main stress layer, and enable the subsequent formation of the silicon germanium layer, the compressive stress can be completely transferred to the channel region of the PMOS transistor, and can block the diffusion of boron doped ions in the main stress layer to the channel direction. However, due to the large aspect ratio of the first groove and the growth rate of silicon germanium on the (100) crystal plane is much higher than that on the (111) crystal plane, the step coverage is limited during the growth of silicon germanium. The thickness of the buffer stress layer on the side wall of the first groove is much thinner than the thickness of the buffer stress layer on the bottom (thickness ratio ranges from 1:3 to 5).

而且,为了保证第一凹槽侧壁上应力缓冲层可以起到籽晶层和阻挡主应力层中硼掺杂离子向沟道区中扩散的作用,位于第一凹槽侧壁上缓冲应力层需大于一定的厚度。这样,导致第一凹槽底部上缓冲应力层太厚,第一凹槽内用于生长主应力层的容积减小。而锗硅层(包括主应力层和缓冲应力层)中压应力与锗硅层中锗的含量有关,大部分压应力由锗硅主应力层提供,主应力层体积变小导致整个锗硅层中压应力变小,进而导致施加于所形成PMOS晶体管沟道区中的压应力变小,造成PMOS器件性能提高有限。Moreover, in order to ensure that the stress buffer layer on the side wall of the first groove can play the role of the seed layer and block the diffusion of boron doped ions in the main stress layer to the channel region, the buffer stress layer on the side wall of the first groove Need to be greater than a certain thickness. In this way, the buffer stress layer on the bottom of the first groove is too thick, and the volume for growing the main stress layer in the first groove is reduced. The compressive stress in the silicon germanium layer (including the main stress layer and the buffer stress layer) is related to the content of germanium in the silicon germanium layer. Most of the compressive stress is provided by the silicon germanium main stress layer. The medium pressure stress becomes smaller, which in turn leads to a smaller compressive stress applied to the channel region of the formed PMOS transistor, resulting in a limited improvement in the performance of the PMOS device.

发明人经过进一步研究发现,可在缓冲应力材料层形成过程中或者在缓冲应力材料层形成之后对所形成的缓冲应力材料层进行刻蚀,以形成缓冲应力层,使位于第一凹槽底部的缓冲应力材料层的厚度与位于第一凹槽侧壁上缓冲应力材料层的厚度的比值在1:1~0.8范围内。在保证第一凹槽侧壁上缓冲应力层厚度大于一定厚度的前提下,使第一凹槽底部上缓冲应力层厚度较小,从而使后续用于生长主应力层的第一凹槽容积较大,第一凹槽内主应力层的体积较大,增大了主应力层施加于PMOS晶体管沟道区中的压应力,提高所形成的PMOS晶体管的性能。After further research, the inventor found that the formed stress buffering material layer can be etched during or after the stress buffering material layer is formed to form a stress buffering layer so that the stress buffering layer at the bottom of the first groove The ratio of the thickness of the stress buffering material layer to the thickness of the stress buffering material layer on the side wall of the first groove is in the range of 1:1˜0.8. Under the premise of ensuring that the thickness of the buffer stress layer on the side wall of the first groove is greater than a certain thickness, the thickness of the buffer stress layer on the bottom of the first groove is smaller, so that the volume of the first groove for subsequent growth of the main stress layer is smaller. Larger, the volume of the main stress layer in the first groove is larger, which increases the compressive stress applied by the main stress layer to the channel region of the PMOS transistor, and improves the performance of the formed PMOS transistor.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

第一实施例first embodiment

参考图1,提供半导体衬底201a,所述半导体衬底201a中形成有浅沟槽隔离结构203,相邻浅沟槽隔离结构203之间的半导体衬底201a为所形成PMOS晶体管的有源区。Referring to FIG. 1 , a semiconductor substrate 201a is provided, in which a shallow trench isolation structure 203 is formed, and the semiconductor substrate 201a between adjacent shallow trench isolation structures 203 is the active region of the formed PMOS transistor .

本实施例中,所述半导体衬底201a的材料为单晶硅或者绝缘体上硅。所述浅沟槽隔离结构203的材料为氧化硅,所述浅沟槽隔离结构203的形成工艺为本领域技术人员所熟知,在此不作赘述。In this embodiment, the material of the semiconductor substrate 201a is single crystal silicon or silicon on insulator. The material of the shallow trench isolation structure 203 is silicon oxide, and the formation process of the shallow trench isolation structure 203 is well known to those skilled in the art, and will not be repeated here.

继续参考图1,在所述半导体衬底201a上形成第一栅极结构205。Continuing to refer to FIG. 1 , a first gate structure 205 is formed on the semiconductor substrate 201 a.

具体的,所述第一栅极结构205包括位于所述半导体衬底201a上的第一栅介质层205a和位于所述第一栅介质层205a上的第一栅电极205b。Specifically, the first gate structure 205 includes a first gate dielectric layer 205a on the semiconductor substrate 201a and a first gate electrode 205b on the first gate dielectric layer 205a.

所述第一栅介质层205a的材料可为氧化硅、氮氧化硅、氮化硅之一或组合;所述第一栅介质层205a的材料还可为二氧化铪、氧化铪硅、氧化镧、氧化镧铝、氧化锆、氧化锆硅、氧化钽、氧化钛、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、氧化铅钪钽或铌酸铅锌等高k金属氧化物的一种或多种。The material of the first gate dielectric layer 205a can be one or a combination of silicon oxide, silicon oxynitride, and silicon nitride; the material of the first gate dielectric layer 205a can also be hafnium dioxide, hafnium silicon oxide, lanthanum oxide , lanthanum aluminum oxide, zirconia, zirconia silicon, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide or lead zinc niobate and other high-k metals One or more oxides.

所述第一栅电极205b的材料可为多晶硅;所述第一栅电极205b的材料还可为Al、Cu、Ag、Au、Pt、Ni、Ti、TiN、TaN、Ta、TaC、TaSiN、W、WN、WSi等金属材料的一种或多种。The material of the first gate electrode 205b can be polysilicon; the material of the first gate electrode 205b can also be Al, Cu, Ag, Au, Pt, Ni, Ti, TiN, TaN, Ta, TaC, TaSiN, W , WN, WSi and other metal materials or one or more.

本实施例中,所述第一栅介质层205a的材料为氧化硅,所述第一栅电极205b的材料为多晶硅。形成所述第一栅介质层205a和第一栅电极205b的方法为本领域技术人员所熟知,在此不再赘述。In this embodiment, the material of the first gate dielectric layer 205a is silicon oxide, and the material of the first gate electrode 205b is polysilicon. The methods for forming the first gate dielectric layer 205a and the first gate electrode 205b are well known to those skilled in the art, and will not be repeated here.

继续参考图1,在所述半导体衬底201a上形成覆盖所述第一栅极结构205侧壁的偏移间隙壁207a。Continuing to refer to FIG. 1 , an offset spacer 207 a covering sidewalls of the first gate structure 205 is formed on the semiconductor substrate 201 a.

本实施例中,所述偏移间隙壁207a的材料为氮化硅。形成所述偏移间隙壁207a的方法可为化学气相沉积工艺。In this embodiment, the material of the offset spacer 207a is silicon nitride. The method of forming the offset spacers 207a may be a chemical vapor deposition process.

继续参考图1,在所述第一栅电极205b顶部形成阻挡层209。Continuing to refer to FIG. 1 , a blocking layer 209 is formed on top of the first gate electrode 205 b.

本实施例中,所述阻挡层209的材料为氮化硅,形成所述阻挡层209的方法可为化学气相沉积工艺。所述阻挡层209用以在后续工艺(如第一凹槽的形成工艺、金属硅化物层的形成工艺等)中保护所述第一栅电极205b。In this embodiment, the material of the barrier layer 209 is silicon nitride, and the method of forming the barrier layer 209 may be a chemical vapor deposition process. The barrier layer 209 is used to protect the first gate electrode 205b in subsequent processes (such as the formation process of the first groove, the formation process of the metal silicide layer, etc.).

继续参考图1,以所述阻挡层209和所述偏移间隙壁207a为掩模,进行离子注入,在所述半导体衬底201a中形成轻掺杂区(未图示)。Continuing to refer to FIG. 1 , using the barrier layer 209 and the offset spacer 207 a as a mask, ion implantation is performed to form a lightly doped region (not shown) in the semiconductor substrate 201 a.

对于PMOS晶体管,所述离子注入的掺杂离子的导电类型为P型,如硼离子或者二氟化硼离子等。在形成轻掺杂区之后,还可包括:对所述半导体衬底201a进行热处理,使轻掺杂区中的P型掺杂离子发生纵向与横向的均匀扩散。For a PMOS transistor, the conductivity type of the ion-implanted dopant ions is P-type, such as boron ions or boron difluoride ions. After forming the lightly doped region, it may further include: performing heat treatment on the semiconductor substrate 201a, so that the P-type dopant ions in the lightly doped region are uniformly diffused vertically and laterally.

继续参考图1,在所述半导体衬底201a上形成覆盖所述偏移间隙壁207a的侧壁和阻挡层209的侧壁的伪侧墙211。Continuing to refer to FIG. 1 , dummy sidewalls 211 covering the sidewalls of the offset spacers 207 a and the sidewalls of the barrier layer 209 are formed on the semiconductor substrate 201 a.

具体的,所述伪侧墙211可为单层结构,其材料可为氮化硅。所述伪侧墙211还可为叠层结构,其包括位于所述半导体衬底201a上覆盖所述偏移间隙壁207a和阻挡层209侧壁的氧化硅层(未图示)和位于所述氧化硅层上的氮化硅层(未图示)。所述伪侧墙211用以在形成第一凹槽过程中保护所述偏移间隙壁207a免受损伤,以及作为后续形成第一凹槽的掩模。Specifically, the dummy spacer 211 may be a single-layer structure, and its material may be silicon nitride. The dummy spacer 211 can also be a stacked structure, which includes a silicon oxide layer (not shown) on the semiconductor substrate 201a covering the offset spacer 207a and the sidewall of the barrier layer 209 and a silicon oxide layer (not shown) on the semiconductor substrate 201a. A silicon nitride layer (not shown) on the silicon oxide layer. The dummy sidewall 211 is used to protect the offset spacer 207 a from damage during the formation of the first groove, and serves as a mask for the subsequent formation of the first groove.

本实施例中,所述伪侧墙211可为单层结构,其材料可为氮化硅。In this embodiment, the dummy sidewall 211 may be a single-layer structure, and its material may be silicon nitride.

参考图2,以所述阻挡层209和伪侧墙211为掩模,对图1中所述半导体衬底201a进行刻蚀,在伪侧墙211两侧的半导体衬底201b中形成第一凹槽213a。Referring to FIG. 2, using the barrier layer 209 and the dummy spacer 211 as a mask, the semiconductor substrate 201a in FIG. Groove 213a.

本实施例中,所述第一凹槽213a呈西格玛状。形成所述第一凹槽213a可包括:以图1中所述阻挡层209和伪侧墙211为掩模,对伪侧墙211两侧的所述半导体衬底201a进行干法刻蚀,在所述半导体衬底201a中形成侧壁与底部垂直的开口(未图示);对所述开口进行湿法刻蚀,直至在所述半导体衬底201b中形成呈西格玛状的第一凹槽213a。In this embodiment, the first groove 213a is sigma-shaped. Forming the first groove 213a may include: using the barrier layer 209 and the dummy spacer 211 in FIG. An opening (not shown) with a sidewall perpendicular to the bottom is formed in the semiconductor substrate 201a; wet etching is performed on the opening until a sigma-shaped first groove 213a is formed in the semiconductor substrate 201b .

在其他实施例中,所述第一凹槽213a还可为碗型凹槽,即所述第一凹槽213a的侧壁与底部接近垂直。In other embodiments, the first groove 213a may also be a bowl-shaped groove, that is, the sidewall of the first groove 213a is nearly perpendicular to the bottom.

参考图3,在图2中所述第一凹槽213a的底部和侧壁上形成缓冲应力材料层215a,以形成包括缓冲应力材料层215a的第一凹槽213b。Referring to FIG. 3 , a stress buffering material layer 215 a is formed on the bottom and sidewalls of the first groove 213 a in FIG. 2 to form the first groove 213 b including the stress buffering material layer 215 a.

本实施例中,所述缓冲应力材料层215a的材料为锗硅,所述缓冲应力材料层215a中锗所占的原子数百分比范围为5%~25%。如所述缓冲应力材料层215a中锗所占的原子数百分比为5%、15%、20%或25%等。形成所述缓冲应力材料层215a的方法可为化学气相沉积工艺或者原子层沉积工艺。In this embodiment, the stress buffering material layer 215a is made of silicon germanium, and the atomic percentage of germanium in the stress buffering material layer 215a ranges from 5% to 25%. For example, the atomic percentage of germanium in the buffer stress material layer 215a is 5%, 15%, 20% or 25%. The method of forming the buffer stress material layer 215a may be a chemical vapor deposition process or an atomic layer deposition process.

本实施例中,在形成缓冲应力材料层215a过程中,向沉积设备内通入的反应气体包括HCl、HBr和HF中的一种或任意组合,以避免所形成的锗硅附着于材料为氧化硅(浅沟槽隔离结构203)和氮化硅(阻挡层209和伪侧墙211)的结构上。此时,沉积室内反应气体的流量范围为0sccm~500sccm,温度范围为100℃~1000℃,压强范围为0torr~2000torr,射频电源的功率范围为0W~1000W,射频偏压为0V。In this embodiment, during the process of forming the buffer stress material layer 215a, the reaction gas introduced into the deposition equipment includes one or any combination of HCl, HBr and HF, so as to prevent the formed silicon germanium from adhering to the material and causing oxidation. silicon (shallow trench isolation structure 203 ) and silicon nitride (barrier layer 209 and dummy spacer 211 ) on the structure. At this time, the flow rate of the reaction gas in the deposition chamber ranges from 0sccm to 500sccm, the temperature ranges from 100°C to 1000°C, the pressure ranges from 0torr to 2000torr, the power range of the RF power supply ranges from 0W to 1000W, and the RF bias voltage is 0V.

本实施例中,在形成缓冲应力材料层215a过程中,受到锗原子和硅原子重力作用,形成于第一凹槽213b底部上缓冲应力材料层215a的厚度d31与形成于第一凹槽213b侧壁上缓冲应力材料层215a的厚度d11和d21的比值范围为3~5:1。In this embodiment, during the process of forming the stress buffering material layer 215a, the thickness d31 of the stress buffering material layer 215a formed on the bottom of the first groove 213b is equal to that formed in the first groove 213b due to the gravitational force of germanium atoms and silicon atoms. The ratio of the thicknesses d 11 and d 21 of the stress buffering material layer 215a on the sidewall is in the range of 3˜5:1.

参考图5,对图3中所述缓冲应力材料层215a进行刻蚀,以在第一凹槽213c中形成缓冲应力层215b,使位于所述第一凹槽213c底部上缓冲应力层215b的厚度d32与位于所述第一凹槽213c侧壁上缓冲应力层215b的厚度d12和d22的比值为1:1~0.8。例如,厚度d32与厚度d12的比值为1:1、1:0.9或1:0.8等;厚度d32与厚度d22的比值为1:1、1:0.95或1:0.8等。Referring to FIG. 5, the buffer stress material layer 215a in FIG. 3 is etched to form a buffer stress layer 215b in the first groove 213c, so that the thickness of the buffer stress layer 215b on the bottom of the first groove 213c is The ratio of d 32 to the thicknesses d 12 and d 22 of the buffer stress layer 215b on the sidewall of the first groove 213c is 1:1˜0.8. For example, the ratio of the thickness d 32 to the thickness d 12 is 1:1, 1:0.9 or 1:0.8, etc.; the ratio of the thickness d 32 to the thickness d 22 is 1:1, 1:0.95 or 1:0.8, etc.

本实施例中,对图3中所述缓冲应力材料层215a进行刻蚀的方法可为湿法刻蚀。所述湿法刻蚀的溶液可为有机碱性溶液,还可为无机碱性溶液。In this embodiment, the method of etching the buffer stress material layer 215a in FIG. 3 may be wet etching. The wet etching solution may be an organic alkaline solution or an inorganic alkaline solution.

参考图3~图5,其中,图4为图3中缓冲应力材料层215a的放大图,图4中虚线示出了湿法刻蚀之后所形成的缓冲应力层215b的上表面;被虚线所包围的实线示出了湿法刻蚀之前缓冲应力层215a的上表面。Referring to FIGS. 3 to 5, FIG. 4 is an enlarged view of the buffer stress material layer 215a in FIG. 3, and the dotted line in FIG. The enclosed solid line shows the upper surface of the buffer stress layer 215a before wet etching.

所述湿法刻蚀的溶液为有机碱性溶液时,所述有机碱性溶液可为四甲基氢氧化铵(Tetramethy lammonium Hydroxide,简称为TMAH)。所述四甲基氢氧化铵对(110)、(100)和(111)晶面上缓冲应力材料层215a的刻蚀速率比为1.5~2:1:1/50~1/30。例如,四甲基氢氧化铵对(110)、(100)和(111)晶面上缓冲应力材料层215a的刻蚀速率比为1.5:1:1/50、1.5:1:1/30、2:1:1/50、2:1:1/30或1.7:1:1/40等。When the wet etching solution is an organic alkaline solution, the organic alkaline solution may be tetramethylammonium hydroxide (Tetramethylammonium Hydroxide, TMAH for short). The etching rate ratio of the tetramethylammonium hydroxide to the buffer stress material layer 215a on (110), (100) and (111) crystal planes is 1.5˜2:1:1/50˜1/30. For example, the etching rate ratios of tetramethylammonium hydroxide on the (110), (100) and (111) crystal planes of the buffer stress material layer 215a are 1.5:1:1/50, 1.5:1:1/30, 2:1:1/50, 2:1:1/30 or 1.7:1:1/40 etc.

所述湿法刻蚀的溶液为无机碱性溶液时,所述无机碱性溶液PH值的范围为8~14。所述无机碱性溶液为KOH、NaOH和NH4OH中的一种或者任意组合。例如,所述述湿法刻蚀的溶液为氢氧化钾溶液,所述氢氧化钾溶液对(110)、(100)和(111)晶面上缓冲应力材料层的刻蚀速率比为1.5~2.5:1:1/500~1/250。例如,氢氧化钾溶液对(110)、(100)和(111)晶面上缓冲应力材料层的刻蚀速率比为1.5:1:1/500、1.5:1:1/250、2.5:1:1/500、2.5:1:1/250或2:1:1/300等。When the wet etching solution is an inorganic alkaline solution, the pH value of the inorganic alkaline solution is in the range of 8-14. The inorganic alkaline solution is one or any combination of KOH, NaOH and NH 4 OH. For example, the wet etching solution is a potassium hydroxide solution, and the etching rate ratio of the potassium hydroxide solution to the buffer stress material layer on the (110), (100) and (111) crystal planes is 1.5- 2.5:1:1/500~1/250. For example, the etch rate ratio of potassium hydroxide solution to buffer stress material layer on (110), (100) and (111) crystal planes is 1.5:1:1/500, 1.5:1:1/250, 2.5:1 :1/500, 2.5:1:1/250 or 2:1:1/300 etc.

由于硅不同晶面的悬挂键不同,有机碱性溶液或PH值在8~14范围内的无机碱性溶液对(110)晶面上应力缓冲材料层215a的刻蚀速率大于对(100)晶面上应力缓冲材料层215a的刻蚀速率,且上述碱性溶液对晶面(100)和(110)晶面上应力缓冲材料层215a的刻蚀速率远大于对(111)晶面上应力缓冲材料层215a的刻蚀速率。故能够通过有机碱性溶液或PH值在8~14范围内的无机碱性溶液对应力缓冲材料层215a进行湿法刻蚀,使图3中位于第一凹槽213b底部上缓冲应力材料层215a(晶面为(100))的厚度逐步与位于第一凹槽213b侧壁上缓冲应力材料层215a(晶面为(110)和(111))的厚度接近,最终在图5中第一凹槽213c的底部和侧壁上形成缓冲应力层215b,使位于第一凹槽213c底部上缓冲应力层215b的厚度d32与位于第一凹槽213c侧壁上缓冲应力层215b的厚度d12和d22的比值均在1:1~0.8范围内(即d32:d12和d32:d22均在1:1~0.8范围内)。Due to the different dangling bonds on different crystal planes of silicon, the etching rate of the stress buffer material layer 215a on the (110) crystal plane is higher than that on the (100) crystal plane by an organic alkaline solution or an inorganic alkaline solution with a pH value in the range of 8 to 14. The etching rate of the stress buffer material layer 215a on the crystal plane, and the etching rate of the stress buffer material layer 215a on the (100) and (110) crystal planes by the above alkaline solution is much higher than that on the (111) crystal plane. The etch rate of the material layer 215a. Therefore, the stress buffer material layer 215a can be wet-etched by an organic alkaline solution or an inorganic alkaline solution with a pH value in the range of 8 to 14, so that the buffer stress material layer 215a located on the bottom of the first groove 213b in FIG. (the crystal plane is (100)) is gradually approaching the thickness of the buffer stress material layer 215a (the crystal planes are (110) and (111)) on the side wall of the first groove 213b, and finally the first concave A buffer stress layer 215b is formed on the bottom and side walls of the groove 213c, so that the thickness d 32 of the buffer stress layer 215b on the bottom of the first groove 213c is the same as the thickness d 12 of the buffer stress layer 215b on the side walls of the first groove 213c. The ratios of d 22 are all in the range of 1:1-0.8 (that is, both d 32 :d 12 and d 32 :d 22 are in the range of 1:1-0.8).

而且,在通过湿法刻蚀形成缓冲应力层215b时,不存在离子轰击作用,所形成缓冲应力层215b的表面均匀平整,缓冲应力层215b的形貌较佳,利于后续主应力层的形成,所形成PMOS晶体管的性能好。Moreover, when the buffer stress layer 215b is formed by wet etching, there is no ion bombardment, the surface of the formed buffer stress layer 215b is uniform and smooth, and the morphology of the buffer stress layer 215b is better, which is beneficial to the formation of the subsequent main stress layer. The performance of the formed PMOS transistor is good.

本实施例中,由于位于第一凹槽213c底部上缓冲应力层215b的厚度d32与位于第一凹槽213c侧壁上缓冲应力层215b的厚度d12和d22的比值在1:1~0.8范围内,在第一凹槽213a容积相同,第一凹槽213a侧壁上缓冲应力层厚度相差不大的情况下,使除缓冲应力层215b外的第一凹槽213c内的容积较大,进而使后续形成的主应力层体积较大。所述缓冲应力层215b能够减少后续形成的主应力层和半导体衬底210b之间接触面的严重位错(Stackfalse),防止主应力层中压应力在传递至PMOS晶体管的沟道区之前释放的同时,增大了所形成主应力层的体积,提高所形成PMOS晶体管的电学性能。In this embodiment, because the ratio of the thickness d32 of the buffer stress layer 215b on the bottom of the first groove 213c to the thicknesses d12 and d22 of the buffer stress layer 215b on the sidewall of the first groove 213c is between 1:1 and Within the range of 0.8, the volume of the first groove 213a is the same, and the thickness of the buffer stress layer on the side wall of the first groove 213a is not much different, so that the volume in the first groove 213c except the buffer stress layer 215b is larger , so that the volume of the subsequently formed principal stress layer is larger. The buffer stress layer 215b can reduce serious dislocations (Stackfalse) at the interface between the subsequently formed main stress layer and the semiconductor substrate 210b, and prevent the compressive stress in the main stress layer from being released before being transmitted to the channel region of the PMOS transistor. At the same time, the volume of the formed main stress layer is increased, and the electrical performance of the formed PMOS transistor is improved.

另外,所述缓冲应力层215b又可作为形成的主应力层的籽晶层,后续在缓冲应力层215b上形成主应力层时,能够提高所形成主应力层的结晶质量。In addition, the buffer stress layer 215b can be used as a seed layer of the formed main stress layer, and when the main stress layer is subsequently formed on the buffer stress layer 215b, the crystallization quality of the formed main stress layer can be improved.

而且,在后续形成主应力层过程,会对所述主应力层进行硼离子掺杂,以减小主应力层的电阻。而所述缓冲应力层215b无需进行硼离子掺杂,所述缓冲应力层215b能够阻挡主应力层中硼掺杂离子向后续形成的PMOS晶体管的沟道区域扩散,防止沟道击穿以及重掺杂区短路。Moreover, in the subsequent process of forming the main stress layer, the main stress layer will be doped with boron ions to reduce the resistance of the main stress layer. The buffer stress layer 215b does not need to be doped with boron ions, and the buffer stress layer 215b can prevent the diffusion of boron dopant ions in the main stress layer to the channel region of the subsequently formed PMOS transistor, preventing channel breakdown and redoping. Miscellaneous area short circuit.

参考图6,在图5中除所述缓冲应力层215b外的第一凹槽213c内形成主应力层217。Referring to FIG. 6 , a main stress layer 217 is formed in the first groove 213c except the buffer stress layer 215b in FIG. 5 .

本实施例中,所述主应力层217的材料为锗硅,所述主应力层217中锗所占的原子数百分比大于或者等于30%。如所述主应力层217中锗所占的原子数百分比为30%、35%、55%或70%等。形成所述主应力层217的方法可为化学气相沉积工艺或者外延生长工艺。In this embodiment, the material of the main stress layer 217 is silicon germanium, and the atomic percentage of germanium in the main stress layer 217 is greater than or equal to 30%. For example, the atomic percentage of germanium in the main stress layer 217 is 30%, 35%, 55% or 70%. The method of forming the main stress layer 217 may be a chemical vapor deposition process or an epitaxial growth process.

由于位于第一凹槽213c底部上缓冲应力层215b的厚度与位于所述第一凹槽213c侧壁上缓冲应力层215b的厚度的比值为1:1~0.8,在第一凹槽213a容积相同,第一凹槽侧壁213c底部和侧壁上缓冲应力层215b厚度相差不大的情况下,使除缓冲应力层215b外的第一凹槽213c容积较大,进而使所形成主应力层217的体积较大,增大了施加于PMOS晶体管沟道区中的压应力,提高了后续形成PMOS晶体管沟道区中空穴的迁移率,提高所形成的PMOS晶体管的性能。Since the ratio of the thickness of the buffer stress layer 215b on the bottom of the first groove 213c to the thickness of the buffer stress layer 215b on the side wall of the first groove 213c is 1:1-0.8, the volume of the first groove 213a is the same When the thickness difference between the bottom of the first groove side wall 213c and the buffer stress layer 215b on the side wall is not much different, the volume of the first groove 213c other than the buffer stress layer 215b is larger, so that the formed main stress layer 217 The larger volume increases the compressive stress applied to the channel region of the PMOS transistor, improves the mobility of holes in the channel region of the subsequently formed PMOS transistor, and improves the performance of the formed PMOS transistor.

需要说明的是,在通过化学气相沉积工艺形成所述主应力层217时,还可在沉积室内通入HCl气体,以避免所形成的锗硅附着于半导体衬底201b中的浅沟槽隔离结构203、阻挡层209和伪侧墙211上。另外,在通过化学气相沉积工艺形成所述主应力层217的同时,或者,在主应力层217形成之后,还可对所形成的主应力层217进行硼离子原位掺杂,以降低主应力层217的电阻。It should be noted that when the main stress layer 217 is formed by chemical vapor deposition process, HCl gas can also be introduced into the deposition chamber to prevent the formed silicon germanium from adhering to the shallow trench isolation structure in the semiconductor substrate 201b 203 , barrier layer 209 and dummy sidewall 211 . In addition, when the main stress layer 217 is formed by the chemical vapor deposition process, or after the main stress layer 217 is formed, the formed main stress layer 217 can also be doped with boron ions in situ to reduce the main stress. The resistance of layer 217.

还需要说明的是,当采用湿法刻蚀对图3中所述缓冲应力材料层215a进行刻蚀,以形成缓冲应力层215b时,在图2中所述第一凹槽213a的底部和侧壁上形成缓冲应力材料层215a、对图3中所述缓冲应力材料层215a进行湿法刻蚀以及在包括缓冲应力层215b的第一凹槽213c内形成主应力层217于同一设备中进行,避免所形成的缓冲应力层215b表面与空气接触,避免缓冲应力层215b的表面发生氧化,避免氧化对主应力层217的结晶质量造成影响,使缓冲应力层215b与主应力层217的结合度较好,利于主应力层217中应力转移至PMOS晶体管的沟道区域中,提高了所形成PMOS晶体管的性能。It should also be noted that when wet etching is used to etch the buffer stress material layer 215a in FIG. 3 to form the buffer stress layer 215b, the bottom and sides of the first groove 213a in FIG. Forming the buffer stress material layer 215a on the wall, performing wet etching on the buffer stress material layer 215a in FIG. Avoid the surface of the formed buffer stress layer 215b from being in contact with air, avoid oxidation on the surface of the buffer stress layer 215b, avoid oxidation from affecting the crystallization quality of the main stress layer 217, and make the bonding degree of the buffer stress layer 215b and the main stress layer 217 relatively high. Well, it is beneficial to transfer the stress in the main stress layer 217 to the channel region of the PMOS transistor, improving the performance of the formed PMOS transistor.

具体的,所述缓冲应力层215b的厚度范围为3nm~20nm。如缓冲应力层215b的厚度为3nm、5nm、10nm、15nm、17nm或20nm。在对主应力层217进行离子注入,形成导电类型为P型的重掺杂区之后,所述缓冲应力层215b能够阻挡主应力层217中硼离子向半导体衬底201b扩散,避免所形成PMOS晶体管的沟道区域击穿(punch through),提高所形成的PMOS晶体管的电学性能。Specifically, the buffer stress layer 215b has a thickness ranging from 3 nm to 20 nm. For example, the buffer stress layer 215b has a thickness of 3nm, 5nm, 10nm, 15nm, 17nm or 20nm. After ion implantation is performed on the main stress layer 217 to form a P-type heavily doped region, the buffer stress layer 215b can block the diffusion of boron ions in the main stress layer 217 to the semiconductor substrate 201b, preventing the formation of PMOS transistors. The punch through of the channel region improves the electrical performance of the formed PMOS transistor.

但是,若缓冲应力层215b的厚度小于3nm,其不足以阻挡主应力层217中硼离子向半导体衬底201b扩散,所形成PMOS晶体管的电学性能较差;若缓冲应力层215b的厚度大于20nm,又会导致图5中包括缓冲应力层215b的第一凹槽213c的容积减小,进而导致图7中主应力层217体积小,主应力层217施加于PMOS晶体管沟道区的压应力减小,主应力层217在提高PMOS晶体管沟道区中空穴迁移率的效果有限。However, if the thickness of the buffer stress layer 215b is less than 3nm, it is not enough to block the diffusion of boron ions in the main stress layer 217 to the semiconductor substrate 201b, and the electrical performance of the formed PMOS transistor is relatively poor; if the thickness of the buffer stress layer 215b is greater than 20nm, In turn, the volume of the first groove 213c including the buffer stress layer 215b in FIG. 5 is reduced, which in turn leads to a small volume of the main stress layer 217 in FIG. 7, and the compressive stress applied to the channel region of the PMOS transistor by the main stress layer 217 is reduced , the effect of the main stress layer 217 on improving the hole mobility in the channel region of the PMOS transistor is limited.

需要说明的是,在图5中除缓冲应力层215b外的第一凹槽213c中形成主应力层217时,化学气相沉积工艺中反应离子会对已形成的缓冲应力层215b表面存在一定的轰击作用,使缓冲应力层215b减薄。但由于化学气相沉积工艺中反应离子的速率较小,缓冲应力层215b的减薄量较小,对PMOS晶体管的性能影响不大。It should be noted that when the main stress layer 217 is formed in the first groove 213c except the buffer stress layer 215b in FIG. function to make the buffer stress layer 215b thinner. However, due to the low velocity of reactive ions in the chemical vapor deposition process, the thinning of the buffer stress layer 215b is small, which has little effect on the performance of the PMOS transistor.

还需要说明的是,为了保证所形成的主应力层217能够将图5中除缓冲应力层215b外的第一凹槽213c完全填满,本实施例中所形成的主应力层217的上表面略高于所述缓冲应力层215b的上表面。在其他实施例中,还可使主应力层217的上表面与所述缓冲应力层215b的上表面齐平。It should also be noted that, in order to ensure that the formed main stress layer 217 can completely fill the first groove 213c except the buffer stress layer 215b in FIG. 5 , the upper surface of the main stress layer 217 formed in this embodiment slightly higher than the upper surface of the buffer stress layer 215b. In other embodiments, the upper surface of the main stress layer 217 may also be flush with the upper surface of the buffer stress layer 215b.

继续参考图6,形成覆盖所述缓冲应力层215b和主应力层217的覆盖层219。Continuing to refer to FIG. 6 , a cover layer 219 covering the buffer stress layer 215 b and the main stress layer 217 is formed.

具体的,所述覆盖层219的材料为硅或者锗硅。形成所述覆盖层219的方法为化学气相沉积工艺或者原子层沉积工艺。所述覆盖层219的厚度范围为50埃~250埃。Specifically, the material of the covering layer 219 is silicon or silicon germanium. The method of forming the covering layer 219 is a chemical vapor deposition process or an atomic layer deposition process. The thickness of the covering layer 219 ranges from 50 angstroms to 250 angstroms.

当所述覆盖层219的材料为锗硅时,所述覆盖层219中锗所占的原子数百分比小于所述缓冲应力层215b中锗所占的原子数百分比,所述覆盖层219中锗所占的原子数百分比大于0%且小于等于10%。如所述覆盖层219中锗所占的原子数百分比为1%、3%、5%、8%、9%或10%。When the material of the covering layer 219 is silicon germanium, the atomic percentage of germanium in the covering layer 219 is smaller than the atomic percentage of germanium in the buffer stress layer 215b, and the atomic percentage of germanium in the covering layer 219 is The atomic percentage is greater than 0% and less than or equal to 10%. For example, the atomic percentage of germanium in the covering layer 219 is 1%, 3%, 5%, 8%, 9% or 10%.

本实施例中,所述覆盖层219的材料为硅。In this embodiment, the material of the covering layer 219 is silicon.

所述覆盖层219用于防止后续形成的金属硅化物层直接形成在主应力层217上,避免主应力层217与金属硅化物层的接触面之间发生位错,进而避免造成大的漏电流。The covering layer 219 is used to prevent the subsequent formation of the metal silicide layer directly on the main stress layer 217, avoiding dislocations between the contact surface of the main stress layer 217 and the metal silicide layer, thereby avoiding large leakage currents .

而且,由于不同晶面位置锗硅的生长速度不同,主应力层217和缓冲应力层215b的表面不完全齐平,不利于后续重掺杂区离子注入工艺、金属硅化物的形成工艺以及金属插塞的形成工艺。通过在应力缓冲层215b和主应力层217的上表面形成表面平坦的覆盖层219,能够使后续重掺杂区离子注入工艺、金属硅化物和金属插塞的形成工艺更简单,使所形成重掺杂区、金属硅化物层和设置于重掺杂区上方金属插塞的形貌更佳。Moreover, due to the different growth rates of germanium and silicon at different crystal plane positions, the surfaces of the main stress layer 217 and the buffer stress layer 215b are not completely flush, which is not conducive to the subsequent ion implantation process in the heavily doped region, the formation process of metal silicide, and the metal insertion process. Plug formation process. By forming a flat cover layer 219 on the upper surfaces of the stress buffer layer 215b and the main stress layer 217, the subsequent ion implantation process in the heavily doped region, the formation process of metal silicide and metal plugs can be simplified, and the formed heavy The morphology of the doped region, the metal silicide layer and the metal plug disposed above the heavily doped region is better.

在其他实施例中,还可省略形成所述覆盖层219的步骤。In other embodiments, the step of forming the covering layer 219 may also be omitted.

参考图7,去除图6中所述伪侧墙211。Referring to FIG. 7 , the dummy sidewall 211 in FIG. 6 is removed.

本实施例中,去除图6中所述伪侧墙211的方法为湿法刻蚀,其具体刻蚀工艺为本领域技术人员所熟知,在此不再赘述。In this embodiment, the method for removing the dummy sidewall 211 in FIG. 6 is wet etching, and the specific etching process is well known to those skilled in the art, and will not be repeated here.

继续参考图7,在所述半导体衬底201b和部分所述覆盖层219上形成覆盖所述阻挡层209的侧壁和所述偏移间隙壁207a的侧壁的侧墙221a。Continuing to refer to FIG. 7 , sidewalls 221 a covering sidewalls of the barrier layer 209 and sidewalls of the offset spacers 207 a are formed on the semiconductor substrate 201 b and part of the capping layer 219 .

本实施例中,所述侧墙221a的材料为氮化硅,其具体形成工艺为本领域技术人员所熟知,在此不再赘述。In this embodiment, the material of the side wall 221a is silicon nitride, and its specific formation process is well known to those skilled in the art, and will not be repeated here.

在其他实施例中,还可不去除所述伪侧墙211,在所述伪侧墙211的侧壁上直接形成侧墙221a。In other embodiments, the dummy sidewall 211 may not be removed, and the sidewall 221 a is directly formed on the sidewall of the dummy sidewall 211 .

在所述侧墙221a形成之后,以所述阻挡层209和所述侧墙221a为掩模,进行离子注入,在所述主应力层217中形成重掺杂区(未图示)。After the sidewalls 221a are formed, ion implantation is performed using the barrier layer 209 and the sidewalls 221a as a mask to form a heavily doped region (not shown) in the main stress layer 217 .

对于PMOS晶体管,重掺杂区中掺杂离子的导电类型为P型,如硼离子或者二氟化硼离子。For PMOS transistors, the conductivity type of the doped ions in the heavily doped region is P-type, such as boron ions or boron difluoride ions.

参考图8,在所述覆盖层219上形成金属硅化物层223。Referring to FIG. 8 , a metal silicide layer 223 is formed on the capping layer 219 .

所述金属硅化物层223用于降低重掺杂区与后续形成金属插塞相接触处的接触电阻。所述金属硅化物层223的材料可为镍硅化合物。所述金属硅化物层223的形成工艺可为沉积工艺或选择性外延生长工艺。The metal silicide layer 223 is used to reduce the contact resistance at the contact between the heavily doped region and the subsequently formed metal plug. The material of the metal silicide layer 223 may be nickel silicon compound. The formation process of the metal silicide layer 223 may be a deposition process or a selective epitaxial growth process.

本实施例中,所述金属硅化物层223的形成工艺为沉积工艺。In this embodiment, the formation process of the metal silicide layer 223 is a deposition process.

在形成金属硅化物层223之后,还包括:进行退火工艺,以改变金属硅化物层223的结晶类型。After forming the metal silicide layer 223 , it also includes: performing an annealing process to change the crystal type of the metal silicide layer 223 .

继续参考图8,在浅沟槽隔离结构203、金属硅化物层223、阻挡层209和侧墙221a上形成第一层间介质层225a。Continuing to refer to FIG. 8 , a first interlayer dielectric layer 225 a is formed on the shallow trench isolation structure 203 , the metal silicide layer 223 , the barrier layer 209 and the sidewall 221 a.

本实施例中,所述第一层间介质层225a的材料可为氧化硅或氮氧化硅等。形成第一层间介质层225a的方法可为化学气相沉积。In this embodiment, the material of the first interlayer dielectric layer 225a may be silicon oxide or silicon oxynitride. The method of forming the first interlayer dielectric layer 225a may be chemical vapor deposition.

参考图9,对图8中所述第一层间介质层225a、阻挡层209、侧墙221a、第一栅电极205b和偏移间隙壁207a进行化学机械研磨,直至剩余的所述第一层间介质层225b、偏移间隙壁207b、第一栅电极205c和侧墙221b的上表面齐平。Referring to FIG. 9, the first interlayer dielectric layer 225a, the barrier layer 209, the spacer 221a, the first gate electrode 205b and the offset spacer 207a in FIG. 8 are chemically mechanically polished until the remaining first layer Top surfaces of the interlayer 225b, the offset spacer 207b, the first gate electrode 205c, and the spacer 221b are flush.

参考图10,依次去除图9中剩余的所述第一栅电极205c和第一栅介质层205a至暴露出所述半导体衬底201b,以形成第二凹槽(未图示)。Referring to FIG. 10 , the remaining first gate electrode 205 c and first gate dielectric layer 205 a in FIG. 9 are sequentially removed to expose the semiconductor substrate 201 b to form a second groove (not shown).

本实施例中,去除所述第一栅电极205c和第一栅介质层205a的方法可为干法刻蚀,也可为湿法刻蚀,其不限制本发明的保护范围。In this embodiment, the method for removing the first gate electrode 205c and the first gate dielectric layer 205a may be dry etching or wet etching, which does not limit the protection scope of the present invention.

继续参考图10,在所述第二凹槽中形成第二栅极结构227。Continuing to refer to FIG. 10 , a second gate structure 227 is formed in the second groove.

本实施例中,所述第二栅极结构227包括第二栅介质层227a和第二栅电极227b。所述第二栅介质层227a位于第二凹槽底部的半导体衬底201b上;所述第二栅电极227b位于所述第二栅介质层和227a上。所述第二栅极结构227用以控制PMOS晶体管沟道开启。In this embodiment, the second gate structure 227 includes a second gate dielectric layer 227a and a second gate electrode 227b. The second gate dielectric layer 227a is located on the semiconductor substrate 201b at the bottom of the second groove; the second gate electrode 227b is located on the second gate dielectric layer and 227a. The second gate structure 227 is used to control the channel opening of the PMOS transistor.

所述第二栅介质层227a的材料可以是二氧化铪、氧化铪硅、氧化镧、氧化镧铝、氧化锆、氧化锆硅、氧化钽、氧化钛、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、氧化铅钪钽或铌酸铅锌等高k金属氧化物的一种或多种。所述第二栅电极227b的材料可以为Al、Cu、Ag、Au、Pt、Ni、Ti、TiN、TaN、Ta、TaC、TaSiN、W、WN、WSi等金属材料的一种或多种。The material of the second gate dielectric layer 227a can be hafnium dioxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, barium oxide One or more of high-k metal oxides such as strontium titanium, yttrium oxide, aluminum oxide, lead scandium tantalum oxide or lead zinc niobate. The material of the second gate electrode 227b may be one or more of Al, Cu, Ag, Au, Pt, Ni, Ti, TiN, TaN, Ta, TaC, TaSiN, W, WN, WSi and other metal materials.

在另一个实施例中,所述第一栅介质层205a的材料为金属氧化物,所述第一栅电极205b的材料为多晶硅。在进行化学机械研磨之后,还可仅去除所述第一栅电极205c,在第一栅介质层205a上直接形成第二栅电极,由第一栅介质层205a和第二栅电极共同作为所形成PMOS晶体管的栅极结构。In another embodiment, the material of the first gate dielectric layer 205a is metal oxide, and the material of the first gate electrode 205b is polysilicon. After chemical mechanical polishing, only the first gate electrode 205c can be removed, and the second gate electrode can be directly formed on the first gate dielectric layer 205a, which is formed by the first gate dielectric layer 205a and the second gate electrode. Gate structure of a PMOS transistor.

在又一个实施例中,所述第一栅介质层205a的材料为金属氧化物,所述第一栅电极205b的材料为Al、Cu、Ag、Au、Pt、Ni、Ti、TiN、TaN、Ta、TaC、TaSiN、W、WN、WSi等金属材料的一种或多种。在进行化学机械研磨之后,以第一栅介质层205a和剩余的第一栅电极205c共同作为所形成PMOS晶体管的栅极结构。In yet another embodiment, the material of the first gate dielectric layer 205a is metal oxide, and the material of the first gate electrode 205b is Al, Cu, Ag, Au, Pt, Ni, Ti, TiN, TaN, One or more of Ta, TaC, TaSiN, W, WN, WSi and other metal materials. After performing chemical mechanical polishing, the first gate dielectric layer 205 a and the remaining first gate electrode 205 c together serve as the gate structure of the formed PMOS transistor.

在再一个实施例中,所述第一栅介质层205a的材料为氧化硅、氮氧化硅、氮化硅之一或组合,所述第一栅电极205b的材料为多晶硅。在进行化学机械研磨之后,以第一栅介质层205a和剩余的第一栅电极205c共同作为所形成PMOS晶体管的栅极结构。In yet another embodiment, the material of the first gate dielectric layer 205a is one or a combination of silicon oxide, silicon oxynitride, and silicon nitride, and the material of the first gate electrode 205b is polysilicon. After performing chemical mechanical polishing, the first gate dielectric layer 205 a and the remaining first gate electrode 205 c together serve as the gate structure of the formed PMOS transistor.

参考图11,在图10中所述第一层间介质层225b、侧墙221b和和第二栅电极227b上形成第二层间介质层229。Referring to FIG. 11 , a second interlayer dielectric layer 229 is formed on the first interlayer dielectric layer 225 b , sidewalls 221 b and second gate electrode 227 b in FIG. 10 .

所述第二层间介质层229的材料为低k或者超低k材料,形成所述第二层间介质层229的方法可为化学气相沉积工艺。The material of the second interlayer dielectric layer 229 is a low-k or ultra-low-k material, and the method for forming the second interlayer dielectric layer 229 may be a chemical vapor deposition process.

继续参考图11,在金属硅化物层223上方的第一层间介质层225b和第二层间介质层229中形成与所述金属硅化物层223连接的第一金属插塞231,以及在所述第二栅电极227b上方第二层间介质层229中形成与所述第二栅电极227b连接的第二金属插塞233。Continuing to refer to FIG. 11, a first metal plug 231 connected to the metal silicide layer 223 is formed in the first interlayer dielectric layer 225b and the second interlayer dielectric layer 229 above the metal silicide layer 223, and in the A second metal plug 233 connected to the second gate electrode 227b is formed in the second interlayer dielectric layer 229 above the second gate electrode 227b.

所述第一金属插塞231用于使金属硅化物层223下方的重掺杂区与外部电源实现电连接。所述第二金属插塞233用于使所述第二栅电极227b与外部电源实现电连接。The first metal plug 231 is used to electrically connect the heavily doped region under the metal silicide layer 223 with an external power source. The second metal plug 233 is used to electrically connect the second gate electrode 227b to an external power source.

本实施例中,所述第一金属插塞231和第二金属插塞233的材料可为铜,其具体形成工艺为本领域技术人员所熟知,在此不做赘述。In this embodiment, the material of the first metal plug 231 and the second metal plug 233 can be copper, and the specific forming process thereof is well known to those skilled in the art, and will not be repeated here.

本实施例中,形成于第一凹槽213c底部上缓冲应力层215b的厚度与位于所述第一凹槽213c侧壁上缓冲应力层215b的厚度的比值为1:1~0.8。在第一凹槽213a容积相同,第一凹槽213c侧壁上缓冲应力层215b厚度相差不大的情况下,使除缓冲应力层215b外的第一凹槽213c内的容积较大,进而使所形成主应力层217的体积较大,施加于PMOS晶体管沟道区中的压应力更大,所形成的PMOS晶体管的性能更好。In this embodiment, the ratio of the thickness of the buffer stress layer 215b formed on the bottom of the first groove 213c to the thickness of the buffer stress layer 215b on the sidewall of the first groove 213c is 1:1˜0.8. When the volume of the first groove 213a is the same and the thickness of the buffer stress layer 215b on the side wall of the first groove 213c is not much different, the volume in the first groove 213c other than the buffer stress layer 215b is larger, thereby making The volume of the main stress layer 217 formed is larger, the compressive stress applied to the channel region of the PMOS transistor is larger, and the performance of the formed PMOS transistor is better.

第二实施例second embodiment

参考图12,在图3中半导体结构形成之后,对图3中所述缓冲应力材料层215a进行干法刻蚀。干法刻蚀之后形成的缓冲应力层215c如图12所示。Referring to FIG. 12 , after the semiconductor structure in FIG. 3 is formed, dry etching is performed on the buffer stress material layer 215 a in FIG. 3 . The buffer stress layer 215c formed after dry etching is shown in FIG. 12 .

具体的,所述干法刻蚀的温度范围为0℃~1000℃,压强范围为0torr~2000torr,射频电源的功率范围为0W~1000W,射频偏压的范围为30V~2000V,刻蚀气体为HCl、HBr和HF中的一种或任意组合,所述刻蚀气体的流量范围为0sccm~500sccm。此时,干法刻蚀对图3中位于第一凹槽213b底部上缓冲应力材料层215a的刻蚀速率大于对位于第一凹槽213b侧壁上缓冲应力材料层215a的刻蚀速率,使位于图3中第一凹槽213b底部上缓冲应力材料层215a的厚度与位于第一凹槽213b侧壁上缓冲应力材料层215a的厚度逐步接近,直至形成缓冲应力层215c。位于第一凹槽213d底部上缓冲应力层215c的厚度d34与位于第一凹槽213d侧壁上缓冲应力层215c的厚度d14和d24的比值均在1:1~0.8范围内。Specifically, the temperature range of the dry etching is 0°C-1000°C, the pressure range is 0torr-2000torr, the power range of the RF power supply is 0W-1000W, the range of the RF bias voltage is 30V-2000V, and the etching gas is One or any combination of HCl, HBr and HF, the flow rate of the etching gas ranges from 0 sccm to 500 sccm. At this time, the etching rate of the stress buffering material layer 215a on the bottom of the first groove 213b in FIG. The thickness of the stress buffering material layer 215a on the bottom of the first groove 213b in FIG. 3 gradually approaches the thickness of the stress buffering material layer 215a on the sidewall of the first groove 213b until the stress buffering layer 215c is formed. The ratios of the thickness d 34 of the buffer stress layer 215c on the bottom of the first groove 213d to the thicknesses d 14 and d 24 of the buffer stress layer 215c on the sidewall of the first groove 213d are both in the range of 1:1˜0.8.

由于第一凹槽213a底部上缓冲应力材料层的沉积速率大于第一凹槽213a侧壁上缓冲应力材料层的沉积速率,而干法刻蚀对沉积于第一凹槽213a底部上缓冲应力材料层的刻蚀速率大于对沉积于第一凹槽213a侧壁上缓冲应力材料层的刻蚀速率,因此,能够使位于第一凹槽213a底部和侧壁上的缓冲应力材料层的厚度基本均匀增加,直至形成缓冲应力层215c。Since the deposition rate of the stress buffering material layer on the bottom of the first groove 213a is greater than the deposition rate of the stress buffering material layer on the sidewall of the first groove 213a, dry etching has a negative impact on the stress buffering material deposited on the bottom of the first groove 213a. The etch rate of the layer is greater than the etch rate of the buffer stress material layer deposited on the sidewall of the first groove 213a, therefore, the thickness of the buffer stress material layer on the bottom and sidewall of the first groove 213a can be made substantially uniform increase until the buffer stress layer 215c is formed.

又由于刻蚀气体中包含HCl、HBr和HF中的一种或任意组合,此时所形成的锗硅不会生长于材料为氧化硅和氮化硅的结构上,可避免缓冲应力材料层形成于浅沟槽隔离结构203、阻挡层209和伪侧墙211上。And because the etching gas contains one or any combination of HCl, HBr and HF, the silicon germanium formed at this time will not grow on the structure made of silicon oxide and silicon nitride, which can avoid the formation of buffer stress material layer on the shallow trench isolation structure 203 , the barrier layer 209 and the dummy spacer 211 .

由图5和图12可知,通过湿法刻蚀形成的缓冲应力层215b的上表面与(111)和(100)晶面平行,而通过干法刻蚀形成的缓冲应力层215c的上表面更加连续,近似呈圆弧形。It can be seen from Figure 5 and Figure 12 that the upper surface of the buffer stress layer 215b formed by wet etching is parallel to the (111) and (100) crystal planes, while the upper surface of the buffer stress layer 215c formed by dry etching is more Continuous, approximately arc-shaped.

需要说明的是,现有工艺中为了避免所形成的锗硅生长于浅沟槽隔离结构203、阻挡层209和伪侧墙211上,在形成锗硅时,也会向形成锗硅的设备中通入HCl。但是,由于形成锗硅时射频电源的功率为0V,HCI对所形成的锗硅进行各向同性刻蚀,而位于第一凹槽底部锗硅的沉积速率仍大于第一凹槽侧壁上锗硅的沉积速率,位于第一凹槽底部上缓冲应力层的厚度仍远大于第一凹槽侧壁上缓冲应力层的厚度。即使通入HCI也无法改善所形成缓冲应力层的形貌。It should be noted that in the existing process, in order to prevent the silicon germanium formed from growing on the shallow trench isolation structure 203, the barrier layer 209 and the dummy sidewall 211, when silicon germanium is formed, it will also be injected into the silicon germanium forming equipment. HCl was passed through. However, since the power of the RF power supply is 0V when silicon germanium is formed, HCI performs isotropic etching on the formed silicon germanium, and the deposition rate of silicon germanium at the bottom of the first groove is still greater than that of germanium on the sidewall of the first groove. For the deposition rate of silicon, the thickness of the buffer stress layer on the bottom of the first groove is still far greater than the thickness of the buffer stress layer on the sidewall of the first groove. Even HCI can not improve the morphology of the formed stress buffer layer.

还需要说明的是,当采用干法刻蚀对图3中所述缓冲应力材料层215a进行刻蚀,以形成图12中缓冲应力层215c时,在图2中所述第一凹槽213a的底部和侧壁上形成缓冲应力材料层215a、对图3中所述缓冲应力材料层215a进行干法刻蚀或者湿法刻蚀以及在包括缓冲应力层215c的第一凹槽213d内形成主应力层于同一设备中进行,避免所形成的缓冲应力层215c表面与空气接触,避免缓冲应力层215c的表面发生氧化,避免氧化对主应力层的结晶质量造成影响,使缓冲应力层215c与主应力层的结合度较好,利于主应力层中应力转移至PMOS晶体管的沟道区域中,提高了所形成PMOS晶体管的性能。It should also be noted that when dry etching is used to etch the buffer stress material layer 215a in FIG. 3 to form the buffer stress layer 215c in FIG. 12, the first groove 213a in FIG. Form a buffer stress material layer 215a on the bottom and side walls, perform dry etching or wet etching on the buffer stress material layer 215a in FIG. The layers are carried out in the same equipment, avoiding the surface of the formed buffer stress layer 215c from contacting with air, avoiding oxidation on the surface of the buffer stress layer 215c, avoiding the influence of oxidation on the crystallization quality of the main stress layer, and making the buffer stress layer 215c and the main stress layer The combination degree of the layers is good, which is beneficial to transfer the stress in the main stress layer to the channel region of the PMOS transistor, and improves the performance of the formed PMOS transistor.

在其他实施例中,在图2中第一凹槽213a形成之后,可在形成图3中缓冲应力材料层215a的同时,对所形成的缓冲应力材料层215a进行干法刻蚀(即干法非等向原位刻蚀),直至形成缓冲应力层215c。然后,在缓冲应力层215c原位形成主应力层。In other embodiments, after the first groove 213a in FIG. 2 is formed, the stress buffering material layer 215a in FIG. anisotropic in-situ etching) until the buffer stress layer 215c is formed. Then, a main stress layer is formed in-situ on the buffer stress layer 215c.

所述干法刻蚀的温度范围为100℃~1000℃,压强范围为0torr~2000torr,射频电源的功率范围为0W~1000W,射频偏压的范围为30V~2000V,刻蚀气体为HCl、HBr和HF中的一种或任意组合,所述刻蚀气体的流量范围为0sccm~500sccm。The temperature range of the dry etching is 100°C-1000°C, the pressure range is 0torr-2000torr, the power range of the RF power supply is 0W-1000W, the range of the RF bias voltage is 30V-2000V, and the etching gas is HCl, HBr One or any combination of HF and HF, the flow rate of the etching gas ranges from 0 sccm to 500 sccm.

对于形成缓冲应力材料层215a和对所形成的缓冲应力材料层215a进行干法刻蚀同时进行的实施例,在避免缓冲应力层215c表面与空气接触而发生氧化的同时,还减少了转移半导体衬底201b的步骤,简化了形成PMOS晶体管的步骤,节约了形成PMOS晶体管的制作时间和工艺成本。For the embodiment in which the formation of the buffer stress material layer 215a and the dry etching of the formed buffer stress material layer 215a are carried out simultaneously, while avoiding the oxidation of the surface of the buffer stress layer 215c in contact with air, it also reduces the transfer of the semiconductor substrate. The step at the bottom 201b simplifies the steps of forming the PMOS transistor and saves the manufacturing time and process cost of forming the PMOS transistor.

本实施例中,在形成图12中缓冲应力层215c之后,PMOS晶体管的形成工艺请参考第一实施例,在此不再赘述。In this embodiment, after the buffer stress layer 215c in FIG. 12 is formed, please refer to the first embodiment for the formation process of the PMOS transistor, which will not be repeated here.

相应的,本实施例还提供了一种PMOS晶体管,包括:Correspondingly, this embodiment also provides a PMOS transistor, including:

半导体衬底;semiconductor substrate;

位于半导体衬底上的栅极结构;a gate structure on a semiconductor substrate;

位于所述栅极结构两侧的半导体衬底内的主应力层;a main stress layer in the semiconductor substrate located on both sides of the gate structure;

位于所述主应力层和半导体衬底之间的缓冲应力层;a buffer stress layer located between the main stress layer and the semiconductor substrate;

位于所述主应力层下方缓冲应力层的厚度与位于所述主应力层侧壁上缓冲应力层的厚度的比值为1:1~0.8。The ratio of the thickness of the buffer stress layer below the main stress layer to the thickness of the buffer stress layer on the side wall of the main stress layer is 1:1-0.8.

其具体结构可参考上述实施例,在此不再赘述。For its specific structure, reference may be made to the above-mentioned embodiments, and details are not repeated here.

所述主应力层和缓冲应力层的材料为锗硅,所述缓冲应力层中锗所占的原子数百分比大于所述主应力层中锗所占的原子数百分比。The main stress layer and the buffer stress layer are made of silicon germanium, and the atomic percentage of germanium in the buffer stress layer is greater than that of germanium in the main stress layer.

所述主应力层中锗所占的原子数百分比大于30%,所述缓冲应力层中锗所占的原子数百分比大于等于5%且小于等于25%。所述缓冲应力层的厚度范围为3nm~20nm。The atomic percentage of germanium in the main stress layer is greater than 30%, and the atomic percentage of germanium in the buffer stress layer is greater than or equal to 5% and less than or equal to 25%. The buffer stress layer has a thickness ranging from 3nm to 20nm.

所述栅极结构包括栅介质层和栅极,所述栅极位于所述栅介质层上。The gate structure includes a gate dielectric layer and a gate, and the gate is located on the gate dielectric layer.

所述栅介质层的材料可为氧化硅、氮氧化硅、氮化硅之一或组合;相应的,所述栅极的材料为多晶硅。The material of the gate dielectric layer can be one or a combination of silicon oxide, silicon oxynitride, and silicon nitride; correspondingly, the material of the gate is polysilicon.

所述栅介质层的材料还可为金属氧化物;相应的,所述栅极的材料可为Al、Cu、Ag、Au、Pt、Ni、Ti、TiN、TaN、Ta、TaC、TaSiN、W、WN、WSi等金属材料的一种或多种。The material of the gate dielectric layer can also be a metal oxide; correspondingly, the material of the gate can be Al, Cu, Ag, Au, Pt, Ni, Ti, TiN, TaN, Ta, TaC, TaSiN, W , WN, WSi and other metal materials or one or more.

所述主应力层和缓冲应力层上还可形成有覆盖层。所述覆盖层的材料为硅或者锗硅。当所述覆盖层的材料为锗硅时,所述覆盖层中锗所占的原子数百分比小于所述缓冲应力层中锗所占的原子数百分比。所述覆盖层中锗所占的原子数百分比大于0%且小于等于10%。A covering layer may also be formed on the main stress layer and the buffer stress layer. The material of the covering layer is silicon or silicon germanium. When the covering layer is made of silicon germanium, the atomic percentage of germanium in the covering layer is smaller than the atomic percentage of germanium in the buffer stress layer. The atomic percentage of germanium in the covering layer is greater than 0% and less than or equal to 10%.

需要说明的是,所述PMOS晶体管可采用上一实施例中PMOS晶体管的形成方法形成,但本发明不限于此。It should be noted that the PMOS transistor can be formed by using the method for forming the PMOS transistor in the previous embodiment, but the present invention is not limited thereto.

本实施例中,由于位于主应力层下方缓冲应力层的厚度与位于主应力层侧壁上缓冲应力层的厚度的比值为1:1~0.8,使位于缓冲应力层上主应力层的体积更大,施加于PMOS晶体管沟道区中的压应力更大,PMOS晶体管中载流子的迁移率更快,PMOS晶体管的半导体器件的性能也更好。In this embodiment, since the ratio of the thickness of the buffer stress layer below the main stress layer to the thickness of the buffer stress layer on the side wall of the main stress layer is 1:1 to 0.8, the volume of the main stress layer on the buffer stress layer is more Larger, the compressive stress applied to the channel region of the PMOS transistor is greater, the mobility of carriers in the PMOS transistor is faster, and the performance of the semiconductor device of the PMOS transistor is also better.

本实施例还提供了一种包括上述PMOS晶体管的半导体器件及其形成方法。所述半导体器件中的PMOS晶体管可采用上述PMOS晶体管的形成方法形成。This embodiment also provides a semiconductor device including the above-mentioned PMOS transistor and a method for forming the same. The PMOS transistor in the semiconductor device can be formed by using the above-mentioned method for forming a PMOS transistor.

具体的,包括上述PMOS晶体管的半导体器件可为CMOS晶体管。在形成半导体器件中PMOS晶体管的缓冲应力层和主应力层时,可在整个半导体器件区域表面依次形成保护层和光刻胶层,再通过光刻工艺去除PMOS晶体管所在区域上的光刻胶层,剩余位于NMOS晶体管区域的保护层能够在后续工艺中保护所述NMOS区域,以及避免锗硅生长于NMOS晶体管区域上,对后续NMOS晶体管的形成工艺造成影响;然后以剩余的光刻胶层为掩模,对PMOS晶体管所在区域上的保护层进行刻蚀,至形成覆盖PMOS晶体管中阻挡层和偏移间隙壁侧壁的伪侧墙,所述伪侧墙能够在后续工艺中保护所述偏移间隙壁。所述CMOS晶体管中PMOS晶体管的形成工艺可参考上述实施例,所述NMOS晶体管的形成工艺可参考现有技术,在此不再赘述。Specifically, the semiconductor device including the above-mentioned PMOS transistor may be a CMOS transistor. When forming the buffer stress layer and the main stress layer of the PMOS transistor in the semiconductor device, a protective layer and a photoresist layer can be sequentially formed on the surface of the entire semiconductor device area, and then the photoresist layer on the area where the PMOS transistor is located is removed by a photolithography process , the remaining protective layer located in the NMOS transistor region can protect the NMOS region in the subsequent process, and prevent silicon germanium from growing on the NMOS transistor region, which will affect the formation process of the subsequent NMOS transistor; then use the remaining photoresist layer as mask, etch the protective layer on the area where the PMOS transistor is located, to form dummy sidewalls covering the barrier layer and offset spacer sidewalls in the PMOS transistors, and the dummy sidewalls can protect the sidewalls in subsequent processes. Move the gap wall. For the formation process of the PMOS transistor among the CMOS transistors, reference may be made to the foregoing embodiments, and for the formation process of the NMOS transistor, reference may be made to the prior art, which will not be repeated here.

需要说明的是,所述半导体器件并不限于CMOS晶体管,其还可为包括PMOS晶体管的其他半导体器件,本发明对此不做限制。It should be noted that the semiconductor device is not limited to a CMOS transistor, and it may also be other semiconductor devices including a PMOS transistor, which is not limited in the present invention.

由于半导体器件中PMOS晶体管沟道区的应力较大,沟道区中空穴的迁移率高,PMOS晶体管的性能较好,包括PMOS晶体管的半导体器件的性能也较好。Because the stress in the channel region of the PMOS transistor in the semiconductor device is relatively large, and the mobility of holes in the channel region is high, the performance of the PMOS transistor is better, and the performance of the semiconductor device including the PMOS transistor is also better.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (20)

  1. A kind of 1. forming method of PMOS transistor, it is characterised in that including:
    Semiconductor substrate is provided;
    First grid structure is formed on the semiconductor substrate;
    The first groove is formed in the Semiconductor substrate of the first grid structure both sides;
    Buffering stress material layer is formed on the bottom of first groove and side wall, the buffering in the first recess sidewall should The dead-wood bed of material is more than certain thickness, and thickness ratio thickness on side wall of the buffering stress material layer on the first bottom portion of groove is thick to be obtained More, thickness ratio is 3~5:1;
    The buffering stress material layer is performed etching, to form buffering stressor layers, is ensured slow in the first recess sidewall Blow stress layer is more than the certain thickness, and the thickness for making to buffer stressor layers on the first bottom portion of groove reduces, recessed positioned at described first The ratio that thickness of the thickness of stressor layers with buffering stressor layers in first recess sidewall is buffered on trench bottom is 1:1~ 0.8, the certain thickness enables the buffering stressor layers in the first recess sidewall to play inculating crystal layer and stop in principal stress layer The effect that boron Doped ions are spread into channel region;
    Principal stress layer is formed in the first groove including the buffering stressor layers.
  2. 2. the forming method of PMOS transistor as claimed in claim 1, it is characterised in that it is described buffering stressor layers material be Germanium silicon, the atomicity percentage range buffered in stressor layers shared by germanium is 5%~25%.
  3. 3. the forming method of PMOS transistor as claimed in claim 2, it is characterised in that to it is described buffering stress material layer into The method of row etching is dry etching.
  4. 4. the forming method of PMOS transistor as claimed in claim 3, it is characterised in that the temperature range of the dry etching For 0 DEG C~1000 DEG C, pressure range is 0torr~2000torr, and the power bracket of radio-frequency power supply is 0W~1000W, and radio frequency is inclined The scope of pressure is 30V~2000V, one kind or any combination in etching gas HCl, HBr and HF, the stream of the etching gas Amount scope is 0sccm~500sccm.
  5. 5. the forming method of PMOS transistor as claimed in claim 3, it is characterised in that form the buffering stress material Layer, perform etching and formed the principal stress layer to the buffering stress material layer and carried out in same equipment.
  6. 6. the forming method of PMOS transistor as claimed in claim 5, it is characterised in that to it is described buffering stress material layer into Row etching is carried out at the same time with forming the buffering stress material layer.
  7. 7. the forming method of PMOS transistor as claimed in claim 2, it is characterised in that to it is described buffering stress material layer into The method of row etching is wet etching.
  8. 8. the forming method of PMOS transistor as claimed in claim 7, it is characterised in that the solution of the wet etching is nothing Machine alkaline solution, the scope of the inorganic caustic solutions pH value is 8~14.
  9. 9. the forming method of PMOS transistor as claimed in claim 8, it is characterised in that the inorganic caustic solutions include KOH, NaOH and NH4One or any combination in OH.
  10. 10. the forming method of PMOS transistor as claimed in claim 9, it is characterised in that the inorganic caustic solutions are hydrogen Potassium oxide solution, etch rate of the potassium hydroxide solution to buffering stress material layer on (110), (100) and (111) crystal face Than for 1.5~2.5:1:1/500~1/250.
  11. 11. the forming method of PMOS transistor as claimed in claim 7, it is characterised in that the solution of the wet etching is Organic alkaline solution.
  12. 12. the forming method of PMOS transistor as claimed in claim 11, it is characterised in that the organic alkaline solution is four Ammonium hydroxide solution, the tetramethyl ammonium hydroxide solution on (110), (100) and (111) crystal face to buffering stress material The etch rate ratio of layer is 1.5~2:1:1/50~1/30.
  13. 13. the forming method of PMOS transistor as claimed in claim 1, it is characterised in that the thickness of the buffering stressor layers Scope is 3nm~20nm.
  14. 14. the forming method of PMOS transistor as claimed in claim 1, it is characterised in that the material of the principal stress layer is The germanium silicon of boracic, the atomicity percentage in the principal stress layer shared by germanium are more than the atom shared by germanium in the buffering stressor layers Number percentages, the atomicity percentage in the principal stress layer shared by germanium are more than or equal to 30%.
  15. 15. the forming method of PMOS transistor as claimed in claim 1, it is characterised in that including the buffering stressor layers The first groove in formed principal stress layer after, further include:In the buffering stressor layers and the upper surface shape of the principal stress layer Into coating.
  16. 16. the forming method of PMOS transistor as claimed in claim 15, it is characterised in that the material of the coating is germanium Silicon, the atomicity percentage in the coating shared by germanium are less than the atomicity percentage shared by germanium in the buffering stressor layers, Atomicity percentage in the coating shared by germanium is more than 0% and less than or equal to 10%.
  17. 17. the forming method of PMOS transistor as claimed in claim 1, it is characterised in that the first grid structure includes First gate dielectric layer and first gate electrode, form after first grid structure on the semiconductor substrate, and described first Formed before the first groove, further included in the Semiconductor substrate of gate structure both sides:Covering is formed on the semiconductor substrate The offset by gap wall of the side wall of first gate dielectric layer and the side wall of first gate electrode;Formed at the top of the first gate electrode Barrier layer;Using the barrier layer and the offset by gap wall as mask, ion implanting is carried out, is formed in the Semiconductor substrate Lightly doped district;Formed after principal stress layer, further included in the first groove including buffering stressor layers:Formed and cover the offset The side wall of the side wall of clearance wall;Using the barrier layer and the side wall as mask, ion implanting is carried out, in the principal stress layer Form heavily doped region;Metal silicide layer is formed on the heavily doped region;In the metal silicide layer, the side wall and institute State and the first interlayer dielectric layer is formed on barrier layer, and carry out chemical mechanical grinding, until remaining first interlayer dielectric layer Upper surface and the first gate electrode upper surface flush.
  18. 18. a kind of forming method of semiconductor devices, it is characterised in that the semiconductor devices includes PMOS transistor, described PMOS transistor uses the forming method for including the PMOS transistor any one of claim 1 to 17 to be formed.
  19. A kind of 19. PMOS transistor, it is characterised in that including:
    Semiconductor substrate;
    Gate structure in the Semiconductor substrate;
    Principal stress layer in the Semiconductor substrate of the gate structure both sides;
    Buffering stressor layers between the principal stress layer and Semiconductor substrate, the buffering stress in the first recess sidewall Layer is more than certain thickness, and the certain thickness enables the buffering stressor layers in the first recess sidewall to play inculating crystal layer and stop The effect that boron Doped ions are spread into channel region in principal stress layer;
    The thickness of buffering stressor layers on the principal stress layer side wall with buffering stressor layers below the principal stress layer The ratio of thickness is 1:1~0.8.
  20. 20. a kind of semiconductor devices, it is characterised in that including the PMOS transistor described in claim 19.
CN201310231963.8A 2013-06-09 2013-06-09 PMOS transistor and forming method thereof, semiconductor devices and forming method thereof Active CN104241130B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310231963.8A CN104241130B (en) 2013-06-09 2013-06-09 PMOS transistor and forming method thereof, semiconductor devices and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310231963.8A CN104241130B (en) 2013-06-09 2013-06-09 PMOS transistor and forming method thereof, semiconductor devices and forming method thereof

Publications (2)

Publication Number Publication Date
CN104241130A CN104241130A (en) 2014-12-24
CN104241130B true CN104241130B (en) 2018-04-27

Family

ID=52228983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310231963.8A Active CN104241130B (en) 2013-06-09 2013-06-09 PMOS transistor and forming method thereof, semiconductor devices and forming method thereof

Country Status (1)

Country Link
CN (1) CN104241130B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405766B (en) * 2015-10-28 2018-09-04 上海华力微电子有限公司 The method for forming source-drain area epitaxial Germanium silicon uniform profile
CN107994065B (en) * 2016-10-27 2020-06-09 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same
CN109786249A (en) * 2017-11-13 2019-05-21 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and forming method thereof
CN109817713B (en) * 2017-11-22 2022-04-15 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same
CN112992680B (en) * 2019-12-12 2025-04-25 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN113394287B (en) * 2020-03-13 2024-12-20 中芯国际集成电路制造(北京)有限公司 Semiconductor structure and method for forming the same
CN113823561A (en) * 2020-06-18 2021-12-21 上海华力集成电路制造有限公司 Semiconductor device epitaxial process and semiconductor device including epitaxial layer formed by same
CN112053956A (en) * 2020-08-18 2020-12-08 华虹半导体(无锡)有限公司 MOSFET manufacturing method and MOSFET

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578690A (en) * 2006-11-21 2009-11-11 先进微装置公司 Stress enhanced MOS transistor and methods for its fabrication
CN102637728A (en) * 2011-02-14 2012-08-15 台湾积体电路制造股份有限公司 Method of manufacturing strained source/drain structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578690A (en) * 2006-11-21 2009-11-11 先进微装置公司 Stress enhanced MOS transistor and methods for its fabrication
CN102637728A (en) * 2011-02-14 2012-08-15 台湾积体电路制造股份有限公司 Method of manufacturing strained source/drain structures

Also Published As

Publication number Publication date
CN104241130A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
CN104241130B (en) PMOS transistor and forming method thereof, semiconductor devices and forming method thereof
CN103311281B (en) Semiconductor device and method for manufacturing the same
CN105225937B (en) The forming method of semiconductor devices
CN103137488B (en) Semiconductor device and method for manufacturing the same
US20140191301A1 (en) Transistor and fabrication method
CN106158747B (en) Semiconductor structure and forming method thereof
CN102222692B (en) Semiconductor device and method for manufacturing the same
CN103681337B (en) Fin formula field effect transistor and forming method thereof
CN104517901B (en) The forming method of CMOS transistor
CN109148578B (en) Semiconductor structure and method of forming the same
CN106486350B (en) Formation method of semiconductor structure
CN104217954A (en) Formation method of transistors
CN103066122B (en) MOSFET and manufacturing method thereof
CN102315268B (en) Semiconductor device and method for manufacturing the same
CN104681490A (en) Forming method of CMOS (complementary metal-oxide-semiconductor) transistor
CN108206157A (en) Semiconductor structure and forming method thereof
CN102683210B (en) A kind of semiconductor structure and its manufacturing method
CN102655094B (en) Semiconductor structure and manufacturing method thereof
US20250040183A1 (en) Device having extended source/drain contact and method
CN104752348B (en) The forming method of semiconductor devices
CN108122760A (en) Semiconductor structure and forming method thereof
CN203134802U (en) Semiconductor structure
CN102760762B (en) Semiconductor device and method for manufacturing the same
CN112151449A (en) Semiconductor structure and forming method thereof
CN113314606B (en) Semiconductor structure and method for forming semiconductor structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant