[go: up one dir, main page]

CN104143901B - Control circuit of power converter and related control method - Google Patents

Control circuit of power converter and related control method Download PDF

Info

Publication number
CN104143901B
CN104143901B CN201310161735.8A CN201310161735A CN104143901B CN 104143901 B CN104143901 B CN 104143901B CN 201310161735 A CN201310161735 A CN 201310161735A CN 104143901 B CN104143901 B CN 104143901B
Authority
CN
China
Prior art keywords
signal
current
time point
circuit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310161735.8A
Other languages
Chinese (zh)
Other versions
CN104143901A (en
Inventor
林宏霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richtek Technology Corp
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Priority to CN201310161735.8A priority Critical patent/CN104143901B/en
Publication of CN104143901A publication Critical patent/CN104143901A/en
Application granted granted Critical
Publication of CN104143901B publication Critical patent/CN104143901B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The invention provides a control circuit of a power converter and a related control method, wherein one of the control circuits comprises a pulse width modulation signal generating circuit, a power estimation circuit and a current limiting signal generating circuit. The pulse width modulation signal generating circuit is used for generating a pulse width modulation signal according to the current sensing signal and the current limiting signal so as to set the conducting state of a switching circuit of the power converter and supply power to a load. The power estimation circuit is used for generating a power estimation signal to estimate the energy output to the load by the power converter. The current-limiting signal generating circuit generates a current-limiting signal according to the power estimation signal, so that the power conversion circuit can output proper energy to a load. The above embodiment can set the power converter to output sufficient energy to the load, and prevent the power converter from outputting excessive energy to the load to cause damage, so that the load can operate normally.

Description

电源转换器的控制电路及相关的控制方法Control circuit of power converter and related control method

技术领域technical field

本发明有关电源转换器的控制电路,尤指一种能准确地控制最大输出功率的电源转换器的控制电路及相关的控制方法。The present invention relates to a control circuit of a power converter, in particular to a control circuit of a power converter capable of accurately controlling the maximum output power and a related control method.

背景技术Background technique

在电子产品中,电源转换器常被用来将输入电源转换为适当的电压信号或电流信号,以对负载进行供电。为了避免电源转换器的负载因为接收到过大的能量而毁损,电源转换器的控制电路必须准确地估计并调整电源转换器所输出的能量。In electronic products, power converters are often used to convert input power into appropriate voltage signals or current signals to supply power to loads. In order to prevent the load of the power converter from being damaged due to receiving excessive energy, the control circuit of the power converter must accurately estimate and adjust the output energy of the power converter.

在一般电源转换器中,控制电路常采用较简单的机制来估计电源转换器所输出的能量。然而,当控制电路无法准确地估计电源转换器所输出的能量时,电源转换器可能会无法输出足够的能量至负载,而造成负载无法正常的运作。此外,当电源转换器输出过多的能量至负载时,则可能会造成负载的毁损。In general power converters, the control circuit often uses a simpler mechanism to estimate the energy output by the power converter. However, when the control circuit cannot accurately estimate the energy output by the power converter, the power converter may not be able to output enough energy to the load, resulting in abnormal operation of the load. In addition, when the power converter outputs too much energy to the load, it may cause damage to the load.

然而,当电源转换器中的电路元件的阻抗值差异较大时、电源转换器耦接至不同的电压的输入电源、或者当输入电源的电压发生变动等情形时,控制电路常常无法准确的估计电源转换器所输出的能量,使电源转换器可能会无法输出适当的能量至负载,而造成系统运作的问题。However, when the impedance values of the circuit components in the power converter vary greatly, the power converter is coupled to input power sources of different voltages, or when the voltage of the input power source changes, the control circuit often cannot accurately estimate Due to the energy output by the power converter, the power converter may not be able to output proper energy to the load, which may cause problems in system operation.

此外,电源转换器可能会运作于连续电流模式(continuous current mode)或不连续电流模式(discontinuous current mode),在这两种运作模式下,一般电源转换器的控制电路无法采用相同的机制估计电源转换器所输出的能量,而需要采用多套电路架构进行估计,造成控制电路设计上的复杂度以及硬件成本的增加。In addition, the power converter may operate in continuous current mode or discontinuous current mode. In these two operating modes, the control circuit of the general power converter cannot use the same mechanism to estimate the power The output energy of the converter needs to be estimated by using multiple sets of circuit structures, resulting in the complexity of control circuit design and the increase of hardware cost.

发明内容Contents of the invention

有鉴于此,如何控制电路准确地估计及调整电源转换器所输出的能量,实为业界有待解决的问题。In view of this, how to control the circuit to accurately estimate and adjust the output energy of the power converter is a problem to be solved in the industry.

本说明书提供一种电源转换器的控制电路的实施例,用以设置一电源转换器的一开关电路的导通状态,以供电至一负载,该控制电路包含:一限流信号产生电路,设置成产生一限流信号;一脉宽调变信号产生电路,设置成依据一电流感测信号及该限流信号而产生一脉宽调变信号,以设置该电流开关的导通状态;以及一功率估计电路,设置成依据该脉宽调变信号、该电流感测信号及该限流信号而产生一功率估计信号;其中该限流信号产生电路将该功率估计信号与一预设功率信号进行比较,以产生该限流信号;该功率估计电路会依据一第三时间点的该电流感测信号、以及依据一第四时间点的该电流感测信号和一第二时间点的该电流感测信号之间的一差值,而产生该功率估计信号;该第二时间点为该脉宽调变信号维持有效状态到达一预设比例的时间点;该第三时间点晚于该第二时间点一预设延迟时间;该第四时间点为该脉宽调变信号由有效状态转变为无效状态的时间点。This specification provides an embodiment of a control circuit of a power converter, which is used to set the conduction state of a switch circuit of a power converter to supply power to a load. The control circuit includes: a current limiting signal generating circuit, which is set A current limiting signal is generated; a pulse width modulation signal generating circuit is configured to generate a pulse width modulation signal according to a current sensing signal and the current limiting signal, so as to set the conduction state of the current switch; and a A power estimation circuit configured to generate a power estimation signal according to the pulse width modulation signal, the current sensing signal and the current limiting signal; wherein the current limiting signal generation circuit compares the power estimation signal with a preset power signal comparison to generate the current limit signal; the power estimation circuit will be based on the current sensing signal at a third time point, and based on the current sensing signal at a fourth time point and the current sensing signal at a second time point A difference between the measured signals to generate the power estimation signal; the second time point is the time point when the pulse width modulation signal maintains a valid state and reaches a preset ratio; the third time point is later than the second Time point—a preset delay time; the fourth time point is a time point when the PWM signal changes from an active state to an inactive state.

本说明书提供一种电源转换器的控制方法的实施例,用以设置一电源转换器的一开关电路的导通状态,以供电至一负载,该控制方法包含:产生一限流信号;依据一电流感测信号及该限流信号而产生一脉宽调变信号,以设置该电流开关的导通状态;依据该脉宽调变信号、该电流感测信号及该限流信号而产生一功率估计信号;以及将该功率估计信号与一预设功率信号进行比较,以产生该限流信号;其中该功率估计信号是依据一第三时间点的该电流感测信号、以及依据一第四时间点的该电流感测信号和一第二时间点的该电流感测信号之间的一差值而产生;该第二时间点为该脉宽调变信号维持有效状态到达一预设比例的时间点;该第三时间点晚于该第二时间点一预设延迟时间;该第四时间点为该脉宽调变信号由有效状态转变为无效状态的时间点。This specification provides an embodiment of a control method of a power converter, which is used to set the conduction state of a switch circuit of a power converter to supply power to a load. The control method includes: generating a current limiting signal; according to a A pulse width modulation signal is generated by the current sensing signal and the current limiting signal to set the conduction state of the current switch; a power is generated according to the pulse width modulation signal, the current sensing signal and the current limiting signal estimate signal; and compare the power estimate signal with a preset power signal to generate the current limit signal; wherein the power estimate signal is based on the current sensing signal at a third time point, and based on a fourth time point Generated by a difference between the current sensing signal at a point and the current sensing signal at a second time point; the second time point is the time during which the PWM signal maintains an active state to a preset ratio point; the third time point is later than the second time point by a preset delay time; the fourth time point is the time point when the PWM signal changes from an active state to an inactive state.

上述实施例的优点之一是控制电路能够设置电源转换器输出足够的能量至负载,并且避免电源转换器输出过多的能量至负载而造成毁损,使负载能够正常的运作。One of the advantages of the above embodiment is that the control circuit can set the power converter to output enough energy to the load, and avoid damage caused by the power converter outputting too much energy to the load, so that the load can operate normally.

上述实施例的另一优点是控制电路所采用的功率估计信号不会受到电路元件的阻抗值或是输入电源的信号值所影响。因此,当电路元件的阻抗值发生变化、电源转换器耦接至不同的电压的输入电源、或者当输入电源的电压发生变动等情况下,控制电路能然能够准确地估计电源转换器所输出的能量,使电源转换器输出适当的能量至负载。Another advantage of the above-described embodiment is that the power estimation signal used by the control circuit is not affected by the impedance value of the circuit components or the signal value of the input power source. Therefore, when the impedance value of the circuit element changes, the power converter is coupled to the input power of different voltage, or when the voltage of the input power changes, etc., the control circuit can still accurately estimate the output voltage of the power converter. Energy, so that the power converter outputs the appropriate energy to the load.

上述实施例的另一优点是当电源转换器运作于连续电流模式或不连续电流模式时,控制电路皆能够使用相同机制准确地估计电源转换器所输出的能量,并设置电源转换器输出适当的能量至负载。因此,控制电路设计上的复杂度以及硬件成本皆能够大幅地降低。Another advantage of the above embodiment is that when the power converter operates in continuous current mode or discontinuous current mode, the control circuit can use the same mechanism to accurately estimate the output energy of the power converter and set the power converter to output an appropriate energy to load. Therefore, the complexity of the design of the control circuit and the cost of the hardware can be greatly reduced.

本发明的其他优点将藉由以下的说明和附图进行更详细的解说。Other advantages of the present invention will be explained in more detail with the following description and accompanying drawings.

附图说明Description of drawings

此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation to the application.

图1为本发明一实施例的电源转换器简化后的功能方块图Fig. 1 is a simplified functional block diagram of a power converter according to an embodiment of the present invention

图2为图1的控制电路的一实施例简化后的功能方块图。FIG. 2 is a simplified functional block diagram of an embodiment of the control circuit in FIG. 1 .

图3为图2的功率估计电路的一实施例简化后的功能方块。FIG. 3 is a simplified functional block of an embodiment of the power estimation circuit in FIG. 2 .

图4为图1的电源转换器中的数个信号的一实施例简化后的时序图。FIG. 4 is a simplified timing diagram of an embodiment of several signals in the power converter of FIG. 1 .

具体实施方式detailed description

以下将配合相关附图来说明本发明之实施例。在这些附图中,相同的标号表示相同或类似的元件或或方法流程。Embodiments of the present invention will be described below with reference to the accompanying drawings. In these drawings, the same reference numerals represent the same or similar elements or method flows.

图1为本发明一实施例的电源转换器100简化后的功能方块图。电源转换器100包含变压器110、第一开关电路120、电阻130及控制电路140,以依据输入电源191而对负载192进行供电。为使图面简明而易于说明,电源转换器100的其他元件及相关的连接关系并未绘示于图1中。FIG. 1 is a simplified functional block diagram of a power converter 100 according to an embodiment of the present invention. The power converter 100 includes a transformer 110 , a first switch circuit 120 , a resistor 130 and a control circuit 140 for supplying power to a load 192 according to an input power 191 . To make the drawing concise and easy to explain, other components of the power converter 100 and related connections are not shown in FIG. 1 .

在图1的实施例中,变压器110耦接于输入电源191及负载192,开关电路120耦接于变压器110及电阻130,电阻130的一端耦接于预设电位V1(例如,接地端的电位或其他合适的电位)。控制电路140耦接于开关电路120的控制端,而采用脉宽调变信号(pulse widthmodulation signal)PWM来设置开关电路120的导通状态。在本实施例中,开关电路120以晶体管的方式实施,在其他的实施例中,开关电路120也可以采用各种合适的主动元件及/或被动元件的方式实施。In the embodiment of FIG. 1, the transformer 110 is coupled to the input power source 191 and the load 192, the switch circuit 120 is coupled to the transformer 110 and the resistor 130, and one end of the resistor 130 is coupled to a preset potential V1 (for example, the potential of the ground terminal or other suitable potential). The control circuit 140 is coupled to the control terminal of the switch circuit 120 , and uses a pulse width modulation signal (PWM) to set the conduction state of the switch circuit 120 . In this embodiment, the switch circuit 120 is implemented in the form of a transistor. In other embodiments, the switch circuit 120 may also be implemented in the form of various suitable active and/or passive components.

控制电路140耦接于电阻130,能够依据电阻130一端的电流感测信号Vcs而估计电源转换器100输出至负载192的能量,以调整开关电路120的导通状态。The control circuit 140 is coupled to the resistor 130 , and can estimate the energy output from the power converter 100 to the load 192 according to the current sensing signal Vcs at one end of the resistor 130 to adjust the conduction state of the switch circuit 120 .

图2为图1的控制电路140的一实施例简化后的功能方块图。在图2的实施例中,控制电路140包含脉宽调变信号产生电路210、功率估计电路230及限流信号产生电路250。为使图面简明而易于说明,控制电路140的其他元件及相关的连接关系并未绘示于图2中。FIG. 2 is a simplified functional block diagram of an embodiment of the control circuit 140 of FIG. 1 . In the embodiment of FIG. 2 , the control circuit 140 includes a PWM signal generation circuit 210 , a power estimation circuit 230 and a current limit signal generation circuit 250 . In order to make the drawing concise and easy to explain, other components and related connections of the control circuit 140 are not shown in FIG. 2 .

脉宽调变信号产生电路210设置成依据电流感测信号Vcs及限流信号Vcl而产生脉宽调变信号PWM,以使用脉宽调变信号PWM设置开关电路120的导通状态。脉宽调变信号产生电路210会间歇地导通开关电路120,使电源转换器100提供所需的能量至负载192。当电流感测信号Vcs大于限流信号Vcl时,代表电源转换器100已经提供足够的能量至负载192,脉宽调变信号产生电路21设置开关电路120呈现不导通状态,以避免电源转换器100继续提供能量至负载192,而避免造成负载192的毁损。The pulse width modulation signal generation circuit 210 is configured to generate a pulse width modulation signal PWM according to the current sensing signal Vcs and the current limit signal Vcl, so as to use the pulse width modulation signal PWM to set the conduction state of the switch circuit 120 . The PWM signal generation circuit 210 turns on the switch circuit 120 intermittently, so that the power converter 100 provides the required energy to the load 192 . When the current sensing signal Vcs is greater than the current limiting signal Vcl, it means that the power converter 100 has provided enough energy to the load 192, and the pulse width modulation signal generating circuit 21 sets the switch circuit 120 to present a non-conducting state, so as to avoid the power converter 100 continues to provide energy to load 192 without causing damage to load 192 .

在图2的实施例中,脉宽调变信号产生电路210包含有周期信号产生电路211、第一比较电路213及SR闩(SR latch)电路215。周期信号产生电路211设置成产生周期信号Vp,并将周期信号Vp输出至SR闩电路215的S输入端。例如,周期信号产生电路211可以产生脉波、方波、弦波及锯齿波(ramp)等周期信号。比较电路213会依据电流感测信号Vcs及限流信号Vcl而产生重置信号Vreset,并将重置信号Vreset输出至SR闩电路215的R输入端。因此,当周期信号Vp为高电位时,SR闩电路215的Q输出端所提供的脉宽调变信号PWM会对应地被设置为高电位,使开关电路120呈现导通状态。当电流感测信号Vcs大于限流信号Vcl时,比较电路213会将重置信号Vreset设置为高电位,SR闩电路215的Q输出端所提供的脉宽调变信号PWM会对应地被设置为低电位,使开关电路120呈现不导通状态。在其他的实施例中,脉宽调变信号产生电路210也可以采用其他合适的电路架构实施,以提供所需的脉宽调变信号PWM。In the embodiment of FIG. 2 , the PWM signal generation circuit 210 includes a periodic signal generation circuit 211 , a first comparison circuit 213 and an SR latch (SR latch) circuit 215 . The period signal generation circuit 211 is configured to generate the period signal Vp, and output the period signal Vp to the S input terminal of the SR latch circuit 215 . For example, the periodic signal generation circuit 211 can generate periodic signals such as pulse wave, square wave, sinusoidal wave and ramp. The comparison circuit 213 generates a reset signal Vreset according to the current sensing signal Vcs and the current limit signal Vcl, and outputs the reset signal Vreset to the R input terminal of the SR latch circuit 215 . Therefore, when the period signal Vp is at a high potential, the pulse width modulation signal PWM provided by the Q output terminal of the SR latch circuit 215 is correspondingly set at a high potential, so that the switch circuit 120 is in an on state. When the current sensing signal Vcs is greater than the current limiting signal Vcl, the comparison circuit 213 will set the reset signal Vreset to a high potential, and the pulse width modulation signal PWM provided by the Q output terminal of the SR latch circuit 215 will be correspondingly set to A low potential makes the switch circuit 120 in a non-conductive state. In other embodiments, the pulse width modulation signal generation circuit 210 may also be implemented with other suitable circuit structures to provide the required pulse width modulation signal PWM.

功率估计电路230设置成依据电流感测信号Vcs、限流信号Vcl及脉宽调变信号PWM而产生功率估计信号Vspc,以依据功率估计信号Vspc的信号值来估计电源转换器100输出至负载192的能量。The power estimating circuit 230 is configured to generate a power estimating signal Vspc according to the current sensing signal Vcs, the current limiting signal Vcl and the pulse width modulation signal PWM, so as to estimate the output of the power converter 100 to the load 192 according to the signal value of the power estimating signal Vspc energy of.

限流信号产生电路250设置成依据预设功率信号Vspt及功率估计信号Vspc而调整限流信号Vcl的信号值。The current-limit signal generating circuit 250 is configured to adjust the signal value of the current-limit signal Vcl according to the preset power signal Vspt and the power estimation signal Vspc.

在图2的实施例中,限流信号产生电路250包含第二比较电路251、第二开关电路253、电阻255和257。当功率估计信号Vspc小于预设功率信号Vspt时,比较电路251会提供高电位的输出信号以导通开关电路253,开关电路253的输出电流通过电阻255和257,而于电阻255和257之间的节点产生所需的限流信号Vcl。当功率估计信号Vspc大于预设功率信号Vspt时,比较电路251会提供低电位的输出信号,使开关电路253呈现不导通状态。在其他的实施例中,限流信号产生电路250也可以采用其他合适的电路架构实施,以产生所需的限流信号Vcl。因此,可以藉由设置预设功率信号Vspt的信号值,进而产生所需的限流信号Vcl,使脉宽调变信号产生电路210能够依据限流信号Vcl而设置开关电路120的导通状态,使电源转换器100能够输出所需的能量至负载192。In the embodiment of FIG. 2 , the current limiting signal generating circuit 250 includes a second comparison circuit 251 , a second switch circuit 253 , and resistors 255 and 257 . When the power estimation signal Vspc is smaller than the preset power signal Vspt, the comparison circuit 251 will provide a high potential output signal to turn on the switch circuit 253, the output current of the switch circuit 253 passes through the resistors 255 and 257, and is between the resistors 255 and 257 The node produces the required current-limiting signal Vcl. When the estimated power signal Vspc is greater than the preset power signal Vspt, the comparator circuit 251 will provide an output signal with a low potential, so that the switch circuit 253 is in a non-conductive state. In other embodiments, the current-limit signal generating circuit 250 can also be implemented with other suitable circuit structures to generate the required current-limit signal Vcl. Therefore, the required current limiting signal Vcl can be generated by setting the signal value of the preset power signal Vspt, so that the PWM signal generating circuit 210 can set the conduction state of the switch circuit 120 according to the current limiting signal Vcl, The power converter 100 can output the required energy to the load 192 .

在图2的实施例中,开关电路253耦接于第二预设电位V2,例如,电位V2可设置为5伏特或其他合适的电位。电阻257耦接于第三预设电位V3,例如,电位V3可以设置为接地端的电位或其他合适的电位。In the embodiment of FIG. 2 , the switch circuit 253 is coupled to the second preset potential V2 , for example, the potential V2 can be set to 5 volts or other suitable potentials. The resistor 257 is coupled to the third preset potential V3, for example, the potential V3 can be set as the potential of the ground terminal or other suitable potentials.

图3为图2的功率估计电路230的一实施例简化后的功能方块。在图3的实施例中,功率估计电路230包含有锁相回路电路310、延迟电路320、脉波信号产生电路331和332、开关电路335、336和337、电容341、342和343、跨导电路(transconductance circuit)350、比较电路361、362和363、反相电路370、SR闩电路381和382、以及斜坡信号产生电路390。为使图面简明而易于说明,功率估计电路230的其他元件及相关的连接关系并未绘示于图3中。FIG. 3 is a simplified functional block of an embodiment of the power estimation circuit 230 in FIG. 2 . In the embodiment of FIG. 3, the power estimation circuit 230 includes a phase-locked loop circuit 310, a delay circuit 320, pulse signal generation circuits 331 and 332, switch circuits 335, 336 and 337, capacitors 341, 342 and 343, transconductance A transconductance circuit 350 , comparison circuits 361 , 362 and 363 , an inversion circuit 370 , SR latch circuits 381 and 382 , and a ramp signal generation circuit 390 . In order to make the drawing concise and easy to explain, other components and related connections of the power estimation circuit 230 are not shown in FIG. 3 .

锁相回路电路310会依据脉宽调变信号PWM而产生半宽信号PWMh,将半宽信号PWMh维持有效状态(例如,信号以高电平有效表示时为高电位,信号以低电平有效表示时为低电位)的时间设置为脉宽调变信号PWM维持有效状态的时间的一预设比例。例如,在本实施例中,将该预设比例设置为1/2。The phase-locked loop circuit 310 will generate a half-width signal PWMh according to the pulse width modulation signal PWM, and maintain the half-width signal PWMh in an active state (for example, the signal is high when the signal is active at a high level, and the signal is at an active low when it is indicated The time of low potential) is set as a preset ratio of the time that the pulse width modulation signal PWM maintains an active state. For example, in this embodiment, the preset ratio is set to 1/2.

反相电路370将脉宽调变信号PWM进行反相运算,以传送至SR闩电路381的S输入端。比较电路361会将参考信号Vref及电流感测信号Vcs进行比较运算,以传送至SR闩电路381的R输入端。SR闩电路381会于Q输出端提供延迟时间信号Tdelay至延迟电路320。The inversion circuit 370 inverts the pulse width modulation signal PWM to transmit to the S input terminal of the SR latch circuit 381 . The comparison circuit 361 performs a comparison operation on the reference signal Vref and the current sensing signal Vcs to transmit to the R input terminal of the SR latch circuit 381 . The SR latch circuit 381 provides the delay time signal Tdelay to the delay circuit 320 at the Q output terminal.

延迟电路320会依据延迟时间信号Tdelay而对应地延迟半宽信号PWMh,以产生半宽延迟信号PWMhd。半宽信号PWMh与半宽延迟信号PWMh维持有效状态的时间相同,半宽延迟信号PWMh维持有效状态的时间晚于半宽信号PWM维持有效状态的时间。延迟电路320会依据延迟时间信号Tdelay,而对应地将半宽延迟信号PWMh维持有效状态的时间及半宽信号PWM维持有效状态的时间之间的时间差距设置为与延迟时间信号Tdelay呈现比例关系。The delay circuit 320 correspondingly delays the half-width signal PWMh according to the delay time signal Tdelay to generate the half-width delayed signal PWMhd. The half-width signal PWMh and the half-width delayed signal PWMh maintain the same valid state, and the half-width delayed signal PWMh maintains the valid state later than the half-width signal PWM maintains the valid state. According to the delay time signal Tdelay, the delay circuit 320 correspondingly sets the time gap between the time when the half-width delay signal PWMh is in the active state and the time when the half-width signal PWM is in the active state to be proportional to the delay time signal Tdelay.

脉波信号产生电路331和332会依据半宽信号PWMh及半宽延迟信号PWMhd,而分别设置第三开关电路335和第四开关电路336的导通状态,以分别控制电流感测信号Vcs对第一电容341和第二电容342进行充电或放电的时间。The pulse signal generating circuits 331 and 332 respectively set the conduction states of the third switch circuit 335 and the fourth switch circuit 336 according to the half-width signal PWMh and the half-width delay signal PWMhd, so as to respectively control the current sensing signal Vcs on the first switch circuit. The charging or discharging time of the first capacitor 341 and the second capacitor 342 .

跨导电路350会依据电容341两侧的电压值Vtx而对应地产生电流信号Itx,使电流信号Itx与电压值Vtx呈现比例关系。The transconductance circuit 350 generates a current signal Itx correspondingly according to the voltage value Vtx on both sides of the capacitor 341 , so that the current signal Itx and the voltage value Vtx exhibit a proportional relationship.

斜坡信号产生电路390设置为产生斜坡信号Var,比较电路362会将电容342的电压值与斜坡信号Var进行比较运算,并将比较结果输出至SR闩电路382的S输入端。比较电路363会将限流信号Vcl与斜坡信号Var进行比较运算,并将比较结果输出至SR闩电路382的R输入端。SR闩电路382的Q输出端会对应地产生开关控制信号Tdelta,以设置第五开关电路337的导通状态。因此,功率估计电路230能够藉由开关控制信号Tdelta调整电流信号Itx对第三电容343的充电时间,以产生所需的功率估计信号Vspc。The ramp signal generation circuit 390 is configured to generate the ramp signal Var. The comparison circuit 362 compares the voltage value of the capacitor 342 with the ramp signal Var, and outputs the comparison result to the S input terminal of the SR latch circuit 382 . The comparison circuit 363 compares the current-limit signal Vcl with the ramp signal Var, and outputs the comparison result to the R input terminal of the SR latch circuit 382 . The Q output terminal of the SR latch circuit 382 correspondingly generates a switch control signal Tdelta to set the conduction state of the fifth switch circuit 337 . Therefore, the power estimation circuit 230 can adjust the charging time of the third capacitor 343 by the current signal Itx through the switch control signal Tdelta, so as to generate the required power estimation signal Vspc.

在图3的实施例中,电容341、342及343皆耦接于第四预设电位V4(例如,接地端的电位或其他合适的电位)。在其他实施例中,也可以依据不同的设计考虑,而将电容341、342及343分别耦接至相同或不同的电位,并对图3的实施例做对应的修改。In the embodiment of FIG. 3 , the capacitors 341 , 342 and 343 are all coupled to the fourth preset potential V4 (for example, the potential of the ground terminal or other suitable potentials). In other embodiments, the capacitors 341 , 342 and 343 may also be coupled to the same or different potentials according to different design considerations, and the embodiment of FIG. 3 is modified accordingly.

图4为图1的电源转换器100中的数个信号的一实施例简化后的时序图。以下将以图1至图4,进一步说明控制电路140如何估计电源转换器100所输出的功率。在图4的实施例中,时间点T0为脉宽调变信号PWM由无效(inactive)状态转变为有效(active)状态的时间点。第一时间点T1为电流感测信号Vcs对应于脉宽调变信号PWM于时间点T0的变化,而产生对应信号值变化的时间点。第二时间点T2为脉宽调变信号PWM维持有效状态到达一预设比例的时间点。例如,在图4的实施例中,该预设比例被设置为1/2,亦即T2=(T0+T4)/2。第三时间点T3为电流感测信号Vcs对应于脉宽调变信号PWM于时间点T2的变化,而产生对应信号值变化的时间点。第四时间点T4为脉宽调变信号PWM由有效状态转变为无效状态的时间点。第五时间点T5为电流感测信号Vcs对应于脉宽调变信号PWM于时间点T4的变化,而产生对应信号值变化的时间点。FIG. 4 is a simplified timing diagram of an embodiment of several signals in the power converter 100 of FIG. 1 . The following will further illustrate how the control circuit 140 estimates the output power of the power converter 100 with reference to FIGS. 1 to 4 . In the embodiment of FIG. 4 , the time point T0 is the time point when the pulse width modulation signal PWM changes from an inactive state to an active state. The first time point T1 is a time point when the current sensing signal Vcs changes corresponding to the signal value corresponding to the change of the pulse width modulation signal PWM at the time point T0. The second time point T2 is a time point when the pulse width modulation signal PWM maintains an active state and reaches a preset ratio. For example, in the embodiment of FIG. 4 , the preset ratio is set to 1/2, that is, T2=(T0+T4)/2. The third time point T3 is a time point when the current sensing signal Vcs changes corresponding to the signal value corresponding to the change of the pulse width modulation signal PWM at the time point T2. The fourth time point T4 is a time point when the pulse width modulation signal PWM changes from an active state to an inactive state. The fifth time point T5 is a time point when the current sensing signal Vcs changes corresponding to the signal value corresponding to the change of the pulse width modulation signal PWM at the time point T4.

图4的实施例显示控制电路140所产生的脉宽调变信号PWM以及于电阻130的一端所侦测的电流感测信号Vcs。当控制电路140于时间点T0使用脉宽调变信号PWM导通开关电路120时,变压器110及开关电路120需要一段预设延迟时间Td,才能将电流对应地传输至电阻130。因此,第一时间点T1时,控制电路140才会于电阻130侦测到对应的电流感测信号Vcs。The embodiment of FIG. 4 shows the pulse width modulation signal PWM generated by the control circuit 140 and the current sensing signal Vcs detected at one end of the resistor 130 . When the control circuit 140 uses the pulse width modulation signal PWM to turn on the switch circuit 120 at the time point T0, the transformer 110 and the switch circuit 120 need a preset delay time Td to transmit the current to the resistor 130 correspondingly. Therefore, at the first time point T1, the control circuit 140 detects the corresponding current sensing signal Vcs at the resistor 130 .

在本实施例中,负载192位于变压器110的二次侧,而电源转换器100于一次侧所提供的能量与负载于二次侧所接收到的能量成比例关系。在第一时间点T0至第四时间点T4时,电源转换器100于一次侧所提供的能量P=(I(T4)×I(T4)-I(T0)×I(T0))×L/2,其中I(T0)和I(T4)分别为变压器110于时间点T0和T4时于一次侧所提供的电流,L为变压器110的电感值。In this embodiment, the load 192 is located on the secondary side of the transformer 110 , and the energy provided by the power converter 100 on the primary side is proportional to the energy received by the load on the secondary side. From the first time point T0 to the fourth time point T4, the energy P=(I(T4)×I(T4)-I(T0)×I(T0))×L provided by the power converter 100 on the primary side /2, where I(T0) and I(T4) are the currents provided by the transformer 110 at the primary side at time points T0 and T4 respectively, and L is the inductance of the transformer 110 .

对应于变压器110于时间点T0和T4时所提供的电流I(T0)和I(T4),控制电路140会于时间点T1和T5分别接收对应的电流感测信号Vcs(T1)和Vcs(T5)、Vcs(T1)=I(T0)/R、Vcs(T5)=I(T4)/R、T1=T0+Td、T5=T4+Td,其中R为电阻130的电阻值。因此,电源转换器100于一次侧所提供的能量P=(Vcs(T5)×Vcs(T5)-Vcs(T1)×Vcs(T1))×L/(2×R×R)=(Vcs(T5)+Vcs(T1))×(Vcs(T5)–Vcs(T1))×L/(2×R×R)。Corresponding to the currents I(T0) and I(T4) provided by the transformer 110 at time points T0 and T4, the control circuit 140 receives corresponding current sensing signals Vcs(T1) and Vcs( T5), Vcs(T1)=I(T0)/R, Vcs(T5)=I(T4)/R, T1=T0+Td, T5=T4+Td, wherein R is the resistance value of the resistor 130. Therefore, the energy P=(Vcs(T5)×Vcs(T5)-Vcs(T1)×Vcs(T1))×L/(2×R×R)=(Vcs( T5)+Vcs(T1))×(Vcs(T5)–Vcs(T1))×L/(2×R×R).

在图4的实施例中,第二时间点T2=(T0+T4)/2,第三时间点T3=(T1+T5)/2,其中T1=T0+Td、T3=T2+Td、T5=T4+Td。此外,第一时间点T1至第五时间点T5时,电流感测信号Vcs实质上呈现线性的变化。因此,第三时间点T3的电流感测信号Vcs(T3)=(Vcs(T5)+Vcs(T1))/2。此外,Vcs(T5)–Vcs(T1)=2×(Vcs(T5)–Vcs(T3))=2×(Vcs(T4)–Vcs(T2))。电源转换器100于一次侧所提供的能量P=2×Vcs(T3)×2×(Vcs(T4)–Vcs(T2))×L/(2×R×R)=Vcs(T3)×(Vcs(T4)–Vcs(T2))×K,其中K=2×L/(R×R),亦即电源转换器100于一次侧所提供的能量P会与Vcs(T3)的信号值呈现比例关系,并且与(Vcs(T4)-Vcs(T2))的信号值呈现比例关系。In the embodiment of Fig. 4, the second time point T2=(T0+T4)/2, the third time point T3=(T1+T5)/2, wherein T1=T0+Td, T3=T2+Td, T5 =T4+Td. In addition, from the first time point T1 to the fifth time point T5, the current sensing signal Vcs substantially exhibits a linear change. Therefore, the current sensing signal Vcs( T3 )=(Vcs( T5 )+Vcs( T1 ))/2 at the third time point T3 . Furthermore, Vcs(T5)−Vcs(T1)=2×(Vcs(T5)−Vcs(T3))=2×(Vcs(T4)−Vcs(T2)). The energy P=2×Vcs(T3)×2×(Vcs(T4)−Vcs(T2))×L/(2×R×R)=Vcs(T3)×( Vcs(T4)-Vcs(T2))×K, where K=2×L/(R×R), that is, the energy P provided by the power converter 100 on the primary side will be presented with the signal value of Vcs(T3) proportional relationship, and presents a proportional relationship with the signal value of (Vcs(T4)-Vcs(T2)).

因此,功率估计电路230即可依据Vcs(T3)及(Vcs(T4)–Vcs(T2))而准确地产生所需的功率估计信号Vspc。此外,由于Vcs(T5)的信号值不容易准确地量测,本实施例的功率估计电路230不依据(Vcs(T5)–Vcs(T3))的信号值、而依据(Vcs(T4)–Vcs(T2))的信号值产生功率估计信号Vspc,而能避免需要使用较不准确的Vcs(T5)的信号值,以准确地产生所需的功率估计信号Vspc。Therefore, the power estimation circuit 230 can accurately generate the required power estimation signal Vspc according to Vcs( T3 ) and (Vcs( T4 )−Vcs( T2 )). In addition, because the signal value of Vcs(T5) is not easy to measure accurately, the power estimation circuit 230 of this embodiment does not rely on the signal value of (Vcs(T5)−Vcs(T3)), but on the basis of (Vcs(T4)− The signal value of Vcs(T2)) generates the estimated power signal Vspc, avoiding the need to use the less accurate signal value of Vcs(T5) to accurately generate the desired estimated power signal Vspc.

在图3的实施例中,反相电路370、比较电路361、SR闩电路381设置成依据脉宽调变信号PWM、参考信号Vref及电流感测信号Vcs,而产生对应于预设延迟时间Td的延迟时间信号Tdelay。在一实施例中,将参考信号Vref设置为接近0的数值(例如,0.1伏特或其他合适的数值),当脉宽调变信号PWM于时间点S4呈现低电位时,反相电路370会产生高电位的输出信号至SR闩电路381的S输入端,使SR闩电路381的Q输出端呈现高电位。于时间点S5附近时,电流感测信号Vcs小于参考信号Vref,比较电路361会产生高电位的输出信号至SR闩电路381的R输入端,使SR闩电路381的Q输出端呈现低电位。因此,SR闩电路381的Q输出端所输出的延迟时间信号Tdelay会于时间点S4至S5呈现有效状态,而与时间点S4至S5之间的预设延迟时间Td呈现比例关系。In the embodiment of FIG. 3, the inverter circuit 370, the comparison circuit 361, and the SR latch circuit 381 are configured to generate a delay time corresponding to the preset delay time Td according to the pulse width modulation signal PWM, the reference signal Vref, and the current sensing signal Vcs. The delay time signal Tdelay. In one embodiment, the reference signal Vref is set to a value close to 0 (for example, 0.1 volts or other suitable values), and when the pulse width modulation signal PWM presents a low potential at time point S4, the inverter circuit 370 will generate The high potential output signal is sent to the S input terminal of the SR latch circuit 381 , so that the Q output terminal of the SR latch circuit 381 presents a high potential. When the current sensing signal Vcs is smaller than the reference signal Vref near the time point S5, the comparison circuit 361 generates a high potential output signal to the R input terminal of the SR latch circuit 381, so that the Q output terminal of the SR latch circuit 381 exhibits a low potential. Therefore, the delay time signal Tdelay output from the Q output terminal of the SR latch circuit 381 will be in an active state at the time points S4 to S5 , and will be proportional to the preset delay time Td between the time points S4 to S5 .

由于延迟电路320会依据延迟时间信号Tdelay而对应地延迟半宽信号PWMh,以产生半宽延迟信号PWMhd。锁相回路电路310、延迟电路320及脉波信号产生电路331会设置开关电路335于时间点T1(即T0+Td)至T3(即T2+Td)呈现导通状态,使电流感测信号Vcs将电容341充电或放电后,电容341两侧的电压值Vtx的信号值与Vcs(T3)的信号值呈现比例关系。因此,跨导电路350依据电压值Vtx所产生的电流信号Itx即会与Vcs(T3)的信号值呈现比例关系。Since the delay circuit 320 correspondingly delays the half-width signal PWMh according to the delay time signal Tdelay, to generate the half-width delayed signal PWMhd. The phase-locked loop circuit 310, the delay circuit 320 and the pulse signal generating circuit 331 will set the switch circuit 335 to be in a conduction state from the time point T1 (ie T0+Td) to T3 (ie T2+Td), so that the current sensing signal Vcs After the capacitor 341 is charged or discharged, the signal value of the voltage Vtx on both sides of the capacitor 341 is proportional to the signal value of Vcs(T3). Therefore, the current signal Itx generated by the transconductance circuit 350 according to the voltage value Vtx is proportional to the signal value of Vcs(T3).

锁相回路电路310及脉波信号产生电路332会设置开关电路336于时间点T0至T2呈现导通,使电流感测信号Vcs将电容342充电或放电至Vcs(T2)的信号值。此外,0于时间点T4时,电流感测信号Vcs(T4)大于等于限流信号Vcl,脉宽调变信号产生电路21会将脉宽调变信号PWM设置为低电位,因此限流信号Vcl实质上等于Vcs(T4)。The PLL circuit 310 and the pulse signal generating circuit 332 set the switch circuit 336 to be turned on at time points T0 to T2, so that the current sensing signal Vcs charges or discharges the capacitor 342 to the signal value of Vcs(T2). In addition, at the time point T4, the current sensing signal Vcs (T4) is greater than or equal to the current limiting signal Vcl, and the pulse width modulation signal generation circuit 21 will set the pulse width modulation signal PWM to a low potential, so the current limiting signal Vcl It is substantially equal to Vcs(T4).

因此,比较电路362、比较电路363及SR闩电路382会依据Vcs(T2)的信号值、Vcs(T4)的信号值及斜坡信号Var而对应的产生开关控制信号Tdelta,以设置开关电路337的导通状态。比较电路362会将Vcs(T2)的信号值与斜坡信号Var进行比较运算,当斜坡信号Var大于Vcs(T2)的信号值时,比较电路362会产生高电位的输出信号至SR闩电路382的S输入端,使SR闩电路382的Q输出端所产生的开关控制信号Tdelta呈现高电位状态。比较电路363会将Vcs(T4)的信号值与斜坡信号Var进行比较运算,当斜坡信号Var大于Vcs(T4)的信号值时,比较电路363会产生高电位的输出信号至SR闩电路382的R输入端,使SR闩电路382的Q输出端所产生的开关控制信号Tdelta呈现低电位状态。因此,开关控制信号Tdelta呈现有效状态的时间会与(Vcs(T4)-Vcs(T2))的数值呈现比例关系,而能设置开关337的导通时间,使电流信号Itx对电容343的充电时间与(Vcs(T4)-Vcs(T2))呈现比例关系。Therefore, the comparison circuit 362, the comparison circuit 363 and the SR latch circuit 382 will correspondingly generate the switch control signal Tdelta according to the signal value of Vcs(T2), the signal value of Vcs(T4) and the ramp signal Var, so as to set the switch circuit 337 conduction state. The comparison circuit 362 will compare the signal value of Vcs(T2) with the ramp signal Var, and when the ramp signal Var is greater than the signal value of Vcs(T2), the comparison circuit 362 will generate a high potential output signal to the SR latch circuit 382 The S input makes the switch control signal Tdelta generated by the Q output of the SR latch circuit 382 present a high potential state. The comparison circuit 363 will compare the signal value of Vcs(T4) with the ramp signal Var, and when the ramp signal Var is greater than the signal value of Vcs(T4), the comparison circuit 363 will generate a high potential output signal to the SR latch circuit 382 The R input terminal makes the switch control signal Tdelta generated by the Q output terminal of the SR latch circuit 382 present a low potential state. Therefore, the time when the switch control signal Tdelta is in a valid state will be proportional to the value of (Vcs(T4)-Vcs(T2)), and the conduction time of the switch 337 can be set so that the charging time of the current signal Itx to the capacitor 343 It is proportional to (Vcs(T4)-Vcs(T2)).

在图3的实施例中,功率估计信号Vspc的信号值会与电流信号Itx呈现比例关系,而会与第三时间点T3的该电流感测信号Vcs(T3)的信号值呈现比例关系。此外,功率估计信号Vspc的信号值会与电流信号Itx对电容337充电的时间呈现比例关系,而与第四时间T4的电流感测信号Vcs(T4)和第二时间T2的电流感测信号Vcs(T2)之间的差值(Vcs(T4)-Vcs(T2))呈现比例关系。因此,功率估计信号Vspc的信号值能够准确地用于估计电源转换器100于一次侧所提供的能量P,使控制电路140能够精确地设置电源转换器100输出至负载192的能量。In the embodiment of FIG. 3 , the signal value of the power estimation signal Vspc is proportional to the current signal Itx, and is proportional to the signal value of the current sensing signal Vcs(T3) at the third time point T3. In addition, the signal value of the power estimation signal Vspc is proportional to the time when the current signal Itx charges the capacitor 337, and is related to the current sensing signal Vcs(T4) at the fourth time T4 and the current sensing signal Vcs at the second time T2. The difference (Vcs(T4)-Vcs(T2)) between (T2) exhibits a proportional relationship. Therefore, the signal value of the power estimation signal Vspc can be accurately used to estimate the energy P provided by the power converter 100 on the primary side, so that the control circuit 140 can accurately set the energy output from the power converter 100 to the load 192 .

在图3的实施例中,电路区块301包含有锁相回路电路310、延迟电路320、脉波信号产生电路331、开关电路335、电容341、跨导电路350、比较电路361、反相电路370及SR闩电路381,以用于产生与电流感测信号Vcs(T3)呈现比例关系的电流信号Itx。电路区块302包含有脉波信号产生电路332、开关电路336、电容342、比较电路362和363、SR闩电路382、以及斜坡信号产生电路390,而能搭配锁相回路电路310进行运作,以使开关控制信号Tdelta呈现有效状态的时间与(Vcs(T4)–Vcs(T2))呈现比例关系。In the embodiment of FIG. 3 , the circuit block 301 includes a phase-locked loop circuit 310, a delay circuit 320, a pulse signal generation circuit 331, a switch circuit 335, a capacitor 341, a transconductance circuit 350, a comparison circuit 361, and an inverting circuit. 370 and an SR latch circuit 381 for generating a current signal Itx that is proportional to the current sensing signal Vcs(T3). The circuit block 302 includes a pulse signal generation circuit 332, a switch circuit 336, a capacitor 342, comparison circuits 362 and 363, an SR latch circuit 382, and a ramp signal generation circuit 390, and can be operated with the phase-locked loop circuit 310 to The time for the switch control signal Tdelta to be in a valid state is proportional to (Vcs(T4)−Vcs(T2)).

在另一实施例中,也可以藉由适当地修改图3的实施例,而将电流信号Itx设置为与(Vcs(T4)–Vcs(T2))呈现比例关系,并将开关控制信号Tdelta呈现有效状态的时间与Vcs(T3)呈现比例关系,使功率估计信号Vspc的信号值能够准确地用于估计电源转换器100于一次侧所提供的能量P,使控制电路140能够精确地设置电源转换器100输出至负载192的能量。In another embodiment, the current signal Itx can also be set to have a proportional relationship with (Vcs(T4)-Vcs(T2)) by appropriately modifying the embodiment shown in FIG. The effective state time is proportional to Vcs (T3), so that the signal value of the power estimation signal Vspc can be accurately used to estimate the energy P provided by the power converter 100 on the primary side, so that the control circuit 140 can accurately set the power conversion The energy output by the device 100 to the load 192.

在以上的实施例中,电源转换器100运作于连续电流模式,Vcs(T1)的数值不为0。在其他的实施例中,当电源转换器100运作于不连续电流模式,Vcs(T1)的数值为0,依据上述的公式,功率估计信号Vspc的信号值仍旧能够准确地用于估计电源转换器100于一次侧所提供的能量P。因此,控制电路140无论运作在连续电流模式或是不连续电流模式时,皆能够精确地设置电源转换器100输出至负载192的能量。In the above embodiments, the power converter 100 operates in the continuous current mode, and the value of Vcs(T1) is not zero. In other embodiments, when the power converter 100 operates in discontinuous current mode, the value of Vcs(T1) is 0, according to the above formula, the signal value of the power estimation signal Vspc can still be accurately used to estimate the power converter 100 The energy P provided on the primary side. Therefore, no matter whether the control circuit 140 operates in the continuous current mode or the discontinuous current mode, it can precisely set the energy output from the power converter 100 to the load 192 .

在上述的实施例中,各个功能方块皆能够以一个或多个电路元件实现,并且多个功能方块也能够整合于单一的电路元件中。例如,脉宽调变信号产生电路210的周期信号产生电路211也可以设置于控制电路140的外部,开关电路120也可与控制电路120设置于同一集成电路芯片。In the above-mentioned embodiments, each functional block can be realized by one or more circuit elements, and multiple functional blocks can also be integrated into a single circuit element. For example, the periodic signal generating circuit 211 of the PWM signal generating circuit 210 may also be disposed outside the control circuit 140 , and the switch circuit 120 and the control circuit 120 may also be disposed on the same integrated circuit chip.

在上述的实施例中,各个信号及功能方块分别以高电平有效(active high)的方式实施。在其他实施例中,各个信号及功能方块皆能依据不同的设计考虑,而分别以高电平有效或低电平有效(active low)的方式实施。In the above-mentioned embodiments, each signal and functional block are respectively implemented in an active high manner. In other embodiments, each signal and functional block can be implemented in an active-high or active-low manner according to different design considerations.

由前述说明可知,上述的实施例能够藉由电流感测信号而准确的估计电源转换器100于一次侧所提供的能量P,而能够精确地设置电源转换器100输出至负载192的能量。因此,控制电路能够设置电源转换器输出足够的能量至负载,并且避免电源转换器输出过多的能量至负载而造成毁损,使负载能够正常的运作It can be seen from the foregoing description that the above-mentioned embodiment can accurately estimate the energy P provided by the power converter 100 on the primary side through the current sensing signal, and can accurately set the energy output from the power converter 100 to the load 192 . Therefore, the control circuit can set the power converter to output enough energy to the load, and avoid the damage caused by the power converter outputting too much energy to the load, so that the load can operate normally

藉由上述的公式可知,上述实施例所采用的功率估计信号Vspc并不会受到电路元件的阻抗值或是输入电源的信号值所影响。因此,当电路元件的阻抗值发生变化、电源转换器耦接至不同的电压的输入电源、或者当输入电源的电压发生变动等情况下,控制电路能然能够准确地估计电源转换器所输出的能量,使电源转换器输出适当的能量至负载。It can be seen from the above formula that the estimated power signal Vspc used in the above embodiment will not be affected by the impedance value of the circuit element or the signal value of the input power. Therefore, when the impedance value of the circuit element changes, the power converter is coupled to the input power of different voltage, or when the voltage of the input power changes, etc., the control circuit can still accurately estimate the output voltage of the power converter. Energy, so that the power converter outputs the appropriate energy to the load.

此外,无论电源转换器会运作于连续电流模式或不连续电流模式,在这两种运作模式下,控制电路皆能够使用相同机制,而准确地估计电源转换器所输出的能量,并设置电源转换器输出适当的能量至负载。因此,控制电路设计上的复杂度以及硬件成本皆能够大幅地降低。In addition, regardless of whether the power converter operates in continuous current mode or discontinuous current mode, in both modes of operation, the control circuit can use the same mechanism to accurately estimate the output energy of the power converter and set the power conversion The converter outputs appropriate energy to the load. Therefore, the complexity of the design of the control circuit and the cost of the hardware can be greatly reduced.

在说明书及权利要求书中使用了某些词汇来指称特定的元件。本领域内的技术人员,同样的元件可能会用不同的名词来称呼。本说明书及权利要求书并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的基准。在说明书及权利要求书中所提及的「包含」为开放式的用语,应解释成「包含但不限定于」。另外,「耦接」一词在此包含任何直接及间接的连接手段。因此,若文中描述第一元件耦接于第二元件,则代表第一元件可通过电性连接或无线传输、光学传输等信号连接方式而直接地连接于第二元件,或通过其它元件或连接手段间接地电性或信号连接至第二元件。Certain terms are used in the description and claims to refer to particular elements. Those skilled in the art may use different terms for the same element. The specification and claims do not use the difference in name as a way to distinguish components, but use the difference in function of components as a basis for distinction. The "comprising" mentioned in the description and the claims is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" herein includes any direct and indirect means of connection. Therefore, if it is described in the text that the first element is coupled to the second element, it means that the first element can be directly connected to the second element through electrical connection or signal connection means such as wireless transmission or optical transmission, or through other elements or connections. The means is indirectly electrically or signally connected to the second element.

在此所使用的「及/或」的描述方式,包含所列举的其中之一或多个项目的任意组合。另外,除非说明书中特别指明,否则任何单数格的用语都同时包含复数格的涵义。The description of "and/or" used herein includes any combination of one or more of the listed items. In addition, unless otherwise specified in the specification, any singular term also includes plural meanings.

以上所述仅为本申请的实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本申请的权利要求范围之内。The above description is only an embodiment of the present application, and is not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present application shall be included within the scope of the claims of the present application.

Claims (8)

1.一种电源转换器的控制电路,用以设置一电源转换器的一开关电路的导通状态,以供电至一负载,其特征在于,该控制电路包含:1. A control circuit of a power converter, used to set the conduction state of a switch circuit of a power converter to supply power to a load, characterized in that the control circuit comprises: 一限流信号产生电路,设置成产生一限流信号;A current-limiting signal generating circuit, configured to generate a current-limiting signal; 一脉宽调变信号产生电路,设置成依据一电流感测信号及该限流信号而产生一脉宽调变信号,以设置该电流开关的导通状态;以及a pulse width modulation signal generating circuit configured to generate a pulse width modulation signal according to a current sensing signal and the current limiting signal to set the conduction state of the current switch; and 一功率估计电路,设置成依据该脉宽调变信号、该电流感测信号及该限流信号而产生一功率估计信号;a power estimation circuit configured to generate a power estimation signal according to the pulse width modulation signal, the current sensing signal and the current limiting signal; 其中该限流信号产生电路将该功率估计信号与一预设功率信号进行比较,以产生该限流信号;该功率估计电路会依据一第三时间点的该电流感测信号、以及依据一第四时间点的该电流感测信号和一第二时间点的该电流感测信号之间的一差值,而产生该功率估计信号;该第二时间点为该脉宽调变信号维持有效状态到达一预设比例的时间点;该第三时间点晚于该第二时间点一预设延迟时间;该第四时间点为该脉宽调变信号由有效状态转变为无效状态的时间点;Wherein the current limiting signal generating circuit compares the power estimation signal with a preset power signal to generate the current limiting signal; the power estimation circuit will base on the current sensing signal at a third time point and a first A difference between the current sensing signal at four time points and the current sensing signal at a second time point to generate the power estimation signal; the second time point maintains an active state for the PWM signal A time point at which a preset ratio is reached; the third time point is later than the second time point by a preset delay time; the fourth time point is a time point at which the PWM signal changes from an active state to an inactive state; 该功率估计电路会依据该脉宽调变信号及一延迟时间信号,而设置该电流感测信号对一第一电容充电,并依据该第一电容的一电压值而产生一电流信号,使该电流信号与该第三时间点的该电流感测信号呈现比例关系。The power estimation circuit sets the current sensing signal to charge a first capacitor according to the pulse width modulation signal and a delay time signal, and generates a current signal according to a voltage value of the first capacitor, so that the The current signal is proportional to the current sensing signal at the third time point. 2.如权利要求1所述的控制电路,其特征在于,该功率估计电路会依据该脉宽调变信号及该限流信号而产生一开关控制信号,使该开关控制信号维持有效状态的时间与该第四时间点的该电流感测信号和该第二时间点的该电流感测信号之间的该差值呈现比例关系;该开关控制信号用于设置一第五开关电路的导通状态,以设置该电流信号对一第三电容充电而产生该功率估计信号。2. The control circuit according to claim 1, wherein the power estimating circuit generates a switch control signal according to the pulse width modulation signal and the current limiting signal, and the time for which the switch control signal maintains an effective state It is proportional to the difference between the current sensing signal at the fourth time point and the current sensing signal at the second time point; the switch control signal is used to set the conduction state of a fifth switch circuit , to set the current signal to charge a third capacitor to generate the power estimation signal. 3.一种电源转换器的控制电路,用以设置一电源转换器的一开关电路的导通状态,以供电至一负载,其特征在于,该控制电路包含:3. A control circuit of a power converter, used to set the conduction state of a switch circuit of a power converter to supply power to a load, characterized in that the control circuit comprises: 一限流信号产生电路,设置成产生一限流信号;A current-limiting signal generating circuit, configured to generate a current-limiting signal; 一脉宽调变信号产生电路,设置成依据一电流感测信号及该限流信号而产生一脉宽调变信号,以设置该电流开关的导通状态;以及a pulse width modulation signal generating circuit configured to generate a pulse width modulation signal according to a current sensing signal and the current limiting signal to set the conduction state of the current switch; and 一功率估计电路,设置成依据该脉宽调变信号、该电流感测信号及该限流信号而产生一功率估计信号;a power estimation circuit configured to generate a power estimation signal according to the pulse width modulation signal, the current sensing signal and the current limiting signal; 其中该限流信号产生电路将该功率估计信号与一预设功率信号进行比较,以产生该限流信号;该功率估计电路会依据一第三时间点的该电流感测信号、以及依据一第四时间点的该电流感测信号和一第二时间点的该电流感测信号之间的一差值,而产生该功率估计信号;该第二时间点为该脉宽调变信号维持有效状态到达一预设比例的时间点;该第三时间点晚于该第二时间点一预设延迟时间;该第四时间点为该脉宽调变信号由有效状态转变为无效状态的时间点;Wherein the current limiting signal generating circuit compares the power estimation signal with a preset power signal to generate the current limiting signal; the power estimation circuit will base on the current sensing signal at a third time point and a first A difference between the current sensing signal at four time points and the current sensing signal at a second time point to generate the power estimation signal; the second time point maintains an active state for the PWM signal A time point at which a preset ratio is reached; the third time point is later than the second time point by a preset delay time; the fourth time point is a time point at which the PWM signal changes from an active state to an inactive state; 该功率估计电路会依据该脉宽调变信号及该限流信号,而设置该电流感测信号对一第一电容充电,并依据该第一电容的一电压值而产生一电流信号,使该电流信号与该第四时间点的该电流感测信号和该第二时间点的该电流感测信号之间的该差值呈现比例关系。The power estimation circuit sets the current sensing signal to charge a first capacitor according to the pulse width modulation signal and the current limiting signal, and generates a current signal according to a voltage value of the first capacitor, so that the The current signal is proportional to the difference between the current sensing signal at the fourth time point and the current sensing signal at the second time point. 4.如权利要求3所述的控制电路,其特征在于,该功率估计电路会依据该脉宽调变信号及一延迟时间信号而产生一开关控制信号,使该开关控制信号维持有效状态的时间与该第三时间点的该电流感测信号呈现比例关系;该开关控制信号用于设置一第五开关电路的导通状态,以设置该电流信号对一第三电容充电而产生该功率估计信号。4. The control circuit according to claim 3, wherein the power estimating circuit generates a switch control signal according to the pulse width modulation signal and a delay time signal, and the time for which the switch control signal maintains an effective state It has a proportional relationship with the current sensing signal at the third time point; the switch control signal is used to set the conduction state of a fifth switch circuit, so as to set the current signal to charge a third capacitor to generate the power estimation signal . 5.一种电源转换器的控制方法,用以设置一电源转换器的一开关电路的导通状态,以供电至一负载,其特征在于,该控制方法包含:5. A control method of a power converter, used to set the conduction state of a switch circuit of a power converter to supply power to a load, characterized in that the control method comprises: 产生一限流信号;Generate a current limiting signal; 依据一电流感测信号及该限流信号而产生一脉宽调变信号,以设置该电流开关的导通状态;generating a pulse width modulation signal according to a current sensing signal and the current limiting signal to set the conduction state of the current switch; 依据该脉宽调变信号、该电流感测信号及该限流信号而产生一功率估计信号;以及generating a power estimation signal according to the pulse width modulation signal, the current sensing signal and the current limit signal; and 该功率估计信号与一预设功率信号进行比较,以产生该限流信号;comparing the estimated power signal with a preset power signal to generate the current limiting signal; 依据该脉宽调变信号及一延迟时间信号,而设置该电流感测信号对一第一电容充电;以及setting the current sensing signal to charge a first capacitor according to the pulse width modulation signal and a delay time signal; and 依据该第一电容的一电压值而产生一电流信号,使该电流信号与一第三时间点的该电流感测信号呈现比例关系;generating a current signal according to a voltage value of the first capacitor, so that the current signal is proportional to the current sensing signal at a third time point; 其中该功率估计信号是依据该第三时间点的该电流感测信号、以及依据一第四时间点的该电流感测信号和一第二时间点的该电流感测信号之间的一差值而产生;该第二时间点为该脉宽调变信号维持有效状态到达一预设比例的时间点;该第三时间点晚于该第二时间点一预设延迟时间;该第四时间点为该脉宽调变信号由有效状态转变为无效状态的时间点。Wherein the power estimation signal is based on the current sensing signal at the third time point, and based on a difference between the current sensing signal at a fourth time point and the current sensing signal at a second time point and generated; the second time point is the time point when the pulse width modulation signal maintains an effective state and reaches a preset ratio; the third time point is later than the second time point by a preset delay time; the fourth time point is the time point when the PWM signal changes from an active state to an inactive state. 6.如权利要求5所述的控制方法,其特征在于,另包含:6. The control method according to claim 5, further comprising: 依据该脉宽调变信号及该限流信号而产生一开关控制信号,使该开关控制信号维持有效状态的时间与该第四时间点的该电流感测信号和该第二时间点的该电流感测信号之间的该差值呈现比例关系;以及A switch control signal is generated according to the pulse width modulation signal and the current limiting signal, and the time for the switch control signal to maintain an effective state is related to the current sensing signal at the fourth time point and the current at the second time point The difference between the sensing signals is proportional; and 使用该开关控制信号设置一第五开关电路的导通状态,以设置该电流信号对一第三电容充电而产生该功率估计信号。The switch control signal is used to set the conduction state of a fifth switch circuit, so as to set the current signal to charge a third capacitor to generate the power estimation signal. 7.一种电源转换器的控制方法,用以设置一电源转换器的一开关电路的导通状态,以供电至一负载,其特征在于,该控制方法包含:7. A control method for a power converter, used to set the conduction state of a switch circuit of a power converter to supply power to a load, characterized in that the control method comprises: 产生一限流信号;Generate a current limiting signal; 依据一电流感测信号及该限流信号而产生一脉宽调变信号,以设置该电流开关的导通状态;generating a pulse width modulation signal according to a current sensing signal and the current limiting signal to set the conduction state of the current switch; 依据该脉宽调变信号、该电流感测信号及该限流信号而产生一功率估计信号;以及generating a power estimation signal according to the pulse width modulation signal, the current sensing signal and the current limit signal; and 该功率估计信号与一预设功率信号进行比较,以产生该限流信号;comparing the estimated power signal with a preset power signal to generate the current limiting signal; 依据该脉宽调变信号及该限流信号,而设置该电流感测信号对一第一电容充电;以及setting the current sensing signal to charge a first capacitor according to the pulse width modulation signal and the current limiting signal; and 依据该第一电容的一电压值而产生一电流信号,使该电流信号与一第四时间点的该电流感测信号和一第二时间点的该电流感测信号之间的一差值呈现比例关系;A current signal is generated according to a voltage value of the first capacitor, so that a difference between the current signal and the current sensing signal at a fourth time point and the current sensing signal at a second time point appears ratio; 其中该功率估计信号是依据一第三时间点的该电流感测信号、以及依据该第四时间点的该电流感测信号和该第二时间点的该电流感测信号之间的该差值而产生;该第二时间点为该脉宽调变信号维持有效状态到达一预设比例的时间点;该第三时间点晚于该第二时间点一预设延迟时间;该第四时间点为该脉宽调变信号由有效状态转变为无效状态的时间点。Wherein the power estimation signal is based on the current sensing signal at a third time point, and based on the difference between the current sensing signal at the fourth time point and the current sensing signal at the second time point and generated; the second time point is the time point when the pulse width modulation signal maintains an effective state and reaches a preset ratio; the third time point is later than the second time point by a preset delay time; the fourth time point is the time point when the PWM signal changes from an active state to an inactive state. 8.如权利要求7所述的控制方法,其特征在于,另包含:8. The control method according to claim 7, further comprising: 依据该脉宽调变信号及一延迟时间信号而产生一开关控制信号,使该开关控制信号维持有效状态的时间与该第三时间点的该电流感测信号呈现比例关系;以及generating a switch control signal according to the pulse width modulation signal and a delay time signal, so that the time during which the switch control signal maintains an effective state is proportional to the current sensing signal at the third time point; and 使用该开关控制信号用于设置一第五开关电路的导通状态,以设置该电流信号对一第三电容充电而产生该功率估计信号。The switch control signal is used to set the conduction state of a fifth switch circuit, so as to set the current signal to charge a third capacitor to generate the power estimation signal.
CN201310161735.8A 2013-05-06 2013-05-06 Control circuit of power converter and related control method Expired - Fee Related CN104143901B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310161735.8A CN104143901B (en) 2013-05-06 2013-05-06 Control circuit of power converter and related control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310161735.8A CN104143901B (en) 2013-05-06 2013-05-06 Control circuit of power converter and related control method

Publications (2)

Publication Number Publication Date
CN104143901A CN104143901A (en) 2014-11-12
CN104143901B true CN104143901B (en) 2017-03-15

Family

ID=51853005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310161735.8A Expired - Fee Related CN104143901B (en) 2013-05-06 2013-05-06 Control circuit of power converter and related control method

Country Status (1)

Country Link
CN (1) CN104143901B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362584B2 (en) * 2019-02-18 2022-06-14 Texas Instruments Incorporated Adaptive ramp signal generation
CN113889019A (en) * 2021-10-18 2022-01-04 深圳市华星光电半导体显示技术有限公司 Gamma reference voltage generating circuit, gamma voltage generating circuit and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527512A (en) * 2008-07-09 2009-09-09 崇贸科技股份有限公司 Bias current limiting method and apparatus for limiting maximum output power of power converter
CN101675577A (en) * 2007-05-02 2010-03-17 塞瑞斯逻辑公司 Switching power converter with efficient switching control signal period generation
GB2490542A (en) * 2011-05-06 2012-11-07 Texas Instr Cork Ltd Sensing arrangement for estimating the output voltage of an isolated flyback converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675577A (en) * 2007-05-02 2010-03-17 塞瑞斯逻辑公司 Switching power converter with efficient switching control signal period generation
CN101527512A (en) * 2008-07-09 2009-09-09 崇贸科技股份有限公司 Bias current limiting method and apparatus for limiting maximum output power of power converter
GB2490542A (en) * 2011-05-06 2012-11-07 Texas Instr Cork Ltd Sensing arrangement for estimating the output voltage of an isolated flyback converter

Also Published As

Publication number Publication date
CN104143901A (en) 2014-11-12

Similar Documents

Publication Publication Date Title
US10574128B2 (en) Switch control circuit including multipin to set dead time information and/or protection mode
JP6410554B2 (en) Switching converter and its control circuit, AC / DC converter, power adapter and electronic device
TW552769B (en) Circuit arrangement to generate a switch-signal for a current-controlled switching power-supply
CN102957309B (en) frequency jitter control circuit and method of PFM power supply
US20090315530A1 (en) Pulse controlled soft start scheme for buck converter
CN107834822B (en) Controller for switch mode power converter and power converter
US9608521B2 (en) DC/DC converter activation stability control
CN203537351U (en) Oscillator circuit
US9467048B2 (en) Voltage generator
CN104283430A (en) Soft start switching power supply conversion device
WO2019026398A1 (en) Current detection circuit
CN105471284B (en) power conversion device and over-power protection method thereof
EP3036825B1 (en) Power conversion apparatus
CN104143901B (en) Control circuit of power converter and related control method
CN104917375A (en) Dc/dc converter
CN105337513B (en) power conversion device and over-power protection method thereof
CN104702130B (en) Control circuit of power supply conversion circuit
TWI496388B (en) Control circuit for power converter and method thereof
CN108471236B (en) Power supply system with stable loop
JP6288202B2 (en) Improved DC-DC transformer for obtaining constant output voltage
US10840809B2 (en) Switching converter with output current estimator circuit
CN102255480A (en) Power conversion device and pulse width modulation signal control device thereof
US20210050720A1 (en) Operation device and operation system
CN109075716B (en) Clocked power supply unit with electrical isolation
US9647573B2 (en) Low-power power supply

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170315

Termination date: 20190506