CN104124200A - TSV manufacturing method - Google Patents
TSV manufacturing method Download PDFInfo
- Publication number
- CN104124200A CN104124200A CN201310153051.3A CN201310153051A CN104124200A CN 104124200 A CN104124200 A CN 104124200A CN 201310153051 A CN201310153051 A CN 201310153051A CN 104124200 A CN104124200 A CN 104124200A
- Authority
- CN
- China
- Prior art keywords
- vapor deposition
- deposition process
- chemical vapor
- manufacturing
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 101
- 230000008569 process Effects 0.000 claims abstract description 88
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 21
- 238000000151 deposition Methods 0.000 claims abstract description 10
- 230000008021 deposition Effects 0.000 claims abstract description 10
- 230000008859 change Effects 0.000 claims abstract description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 22
- 230000004048 modification Effects 0.000 claims description 19
- 238000012986 modification Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 241000724291 Tobacco streak virus Species 0.000 claims 10
- 238000011066 ex-situ storage Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 abstract description 15
- 239000010703 silicon Substances 0.000 abstract description 15
- 210000002381 plasma Anatomy 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种硅穿孔的制造方法。The invention relates to a method for manufacturing through-silicon holes.
背景技术Background technique
为了节省宝贵的布局空间或是增加内联机的效率,可将多个集成电路(IC)芯片堆栈在一起成为一个IC封装结构。为了达到此目的,可使用一种三维(3D)堆栈封装技术来将复数集成电路芯片封装在一起。此种三维(3D)堆栈封装技术广泛地使用到硅穿孔(TSV)。硅穿孔(TSV)是一种垂直导电通孔,其可以完全贯穿硅晶圆、硅板、任何材料所制成之衬底或芯片。现今,3D集成电路(3DIC)被广用至许多的领域如内存堆栈、影像感测芯片等。In order to save valuable layout space or increase the efficiency of interconnection, multiple integrated circuit (IC) chips can be stacked together to form an IC package structure. To achieve this, a three-dimensional (3D) stack packaging technique may be used to package multiple integrated circuit chips together. This three-dimensional (3D) stack packaging technology is widely used in through-silicon vias (TSVs). Through-silicon via (TSV) is a vertical conductive via that can completely penetrate a silicon wafer, silicon plate, substrate or chip made of any material. Nowadays, 3D integrated circuits (3DICs) are widely used in many fields such as memory stacks, image sensor chips, and so on.
不论单一的晶体管或是单一的内联机,硅穿孔的体积是其一百倍或更大。由于此种尺寸差异,不难想象,被设计用来制造传统集成电路的制造方法可能无法满足硅穿孔的制造需求。因此需要针对硅穿孔来改造传统集成电路的制造方法,以无虞地制造硅穿孔以及传统的集成电路。Whether a single transistor or a single interconnect, TSVs are a hundred times larger or larger. Due to this size difference, it is not difficult to imagine that the manufacturing methods designed to manufacture traditional integrated circuits may not be able to meet the manufacturing needs of TSVs. Therefore, it is necessary to modify the manufacturing method of traditional integrated circuits for TSVs, so as to safely manufacture TSVs and traditional integrated circuits.
发明内容Contents of the invention
本发明涉及一种硅穿孔的制造方法,以及下列步骤。提供一衬底。在该衬底中形成一通孔,此通孔有至少为1μm的直径及至少为5μm的深度。利用第一蚀刻/沈积比来进行第一化学气相沈积处理,以在该通孔的底部与侧壁上以及该衬底的上表面上形成一介电层。利用第二蚀刻/沈积比来进行一形状修正处理,以改变该介电层的轮廓。重复该第一化学气相沈积处理与该形状修正处理至少一次,直到该介电层的厚度达到一预定值。The present invention relates to a method for manufacturing through-silicon holes and the following steps. A substrate is provided. A through hole is formed in the substrate, the through hole having a diameter of at least 1 μm and a depth of at least 5 μm. A first chemical vapor deposition process is performed using a first etch/deposition ratio to form a dielectric layer on the bottom and sidewalls of the via hole and the upper surface of the substrate. A shape modification process is performed using a second etch/deposition ratio to change the profile of the dielectric layer. The first chemical vapor deposition process and the shape modification process are repeated at least once until the thickness of the dielectric layer reaches a predetermined value.
附图说明Description of drawings
图1-6显示了根据本发明一实施例的硅穿孔(TSV)的制造方法。1-6 show a method for manufacturing a through silicon via (TSV) according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将详细地说明本发明的较佳实施例,举凡本中所述的组件、组件子部、结构、材料、配置等皆可不依说明的顺序或所属的实施例而任意搭配成新的实施例,这些实施例当属本发明之范畴。在阅读了本发明后,熟知此项技艺者当能在不脱离本发明之精神和范围内,对上述的组件、组件子部、结构、材料、配置等作些许之更动与润饰,因此本发明之专利保护范围须视本权利要求书所附之权利要求所界定者为准,且这些改动与润饰当落在本发明的权利要求内。The preferred embodiments of the present invention will be described in detail below. For example, all components, component sub-parts, structures, materials, configurations, etc. described herein can be arbitrarily matched into new embodiments without following the order of description or the embodiments to which they belong. , these embodiments should belong to the category of the present invention. After reading the present invention, those who are familiar with this technology should be able to make some changes and modifications to the above-mentioned components, sub-components, structures, materials, configurations, etc. without departing from the spirit and scope of the present invention. The scope of patent protection of the invention shall be defined by the appended claims of the present claims, and these changes and modifications shall fall within the claims of the present invention.
本发明的实施例及图示众多,为了避免混淆,类似的组件系以相同或相似的标号示之。图示意在传达本发明的概念及精神,故图中的所显示的距离、大小、比例、形状、连接关系….等皆为示意而非实况,所有能以相同方式达到相同功能或结果的距离、大小、比例、形状、连接关系….等皆可视为等效物而采用之。There are many embodiments and illustrations of the present invention, in order to avoid confusion, similar components are indicated by the same or similar symbols. The diagrams are intended to convey the concept and spirit of the present invention, so the distances, sizes, proportions, shapes, connections, etc. shown in the diagrams are all schematic rather than actual, and all distances that can achieve the same function or result in the same way , size, proportion, shape, connection relationship, etc. can be regarded as equivalents and adopted.
现在参考图1-6,其显示了根据本发明一实施例之硅穿孔(TSV)的制造方法。在图1中,提供衬底100并从衬底的前侧在衬底100中形成未贯穿整合衬底的通孔150。衬底100可以是硅基或绝缘层上覆硅衬底,或者衬底可包含浅沟渠隔离结构、被动组件如电阻、各种掺杂区、冗余图案及选择性的主动组件(若依循通孔中间制造制程)。通孔150可藉由微影制程与蚀刻所形成。通孔150系用来形成硅穿孔(TSV)。硅穿孔(在完成后)会贯穿衬底100并物理上、电性上连接衬底100的前侧与背侧。硅穿孔(TSV)系用以将操作电压VSS、VDD或操作讯号传递至形成在衬底100上的集成电路(未显示于图中),或者在不同的芯片之间传递讯号及/或电压。相较于寻常的主动组件如晶体管,硅穿孔(TSV)具有微米级的超大尺寸。在一实施例中,硅穿孔具有30μm的直径及100μm的深度。在另一实施例中,硅穿孔具有10μm的直径及30μm的深度。在更另一实施例中,硅穿孔具有至少1μm的直径如6μm及等于或大于5μm的深度如10μm。Referring now to FIGS. 1-6 , a method for fabricating a through silicon via (TSV) according to an embodiment of the present invention is shown. In FIG. 1 , a substrate 100 is provided and a via hole 150 is formed in the substrate 100 from the front side of the substrate without penetrating the integrated substrate. The substrate 100 may be a silicon base or a silicon-on-insulator substrate, or the substrate may include shallow trench isolation structures, passive components such as resistors, various doped regions, redundant patterns, and selective active components (if the general Hole intermediate manufacturing process). The via hole 150 can be formed by lithography and etching. Vias 150 are used to form through-silicon vias (TSVs). TSVs (after completion) penetrate the substrate 100 and physically and electrically connect the front and back sides of the substrate 100 . Through-silicon vias (TSVs) are used to transfer operating voltages VSS, VDD or operating signals to integrated circuits (not shown) formed on the substrate 100 , or to transfer signals and/or voltages between different chips. Compared with common active components such as transistors, through-silicon vias (TSVs) have ultra-large dimensions on the micron scale. In one embodiment, the TSV has a diameter of 30 μm and a depth of 100 μm. In another embodiment, the TSV has a diameter of 10 μm and a depth of 30 μm. In yet another embodiment, the TSV has a diameter of at least 1 μm, such as 6 μm, and a depth equal to or greater than 5 μm, such as 10 μm.
接着参考图2,在通孔150的侧壁与底部以及衬底100的前表面上形成介电层10。可由使用第一蚀刻/沈积比的高密度电浆化学气相沈积(HDPCVD)制程形成介电层10至第一厚度。介电层10可包含常用的介电材料二氧化硅及/或氮化硅。由化学气相沈积制程所形成之膜层的阶梯覆盖度取决于到达角度以及在制程中所使用到之前驱物的表面迁移率。基本上,较大的到达角度会导致较差的阶梯覆盖度,因此得到较差的厚度均匀度及顺形性。由于通孔150的转角(衬底与垂直侧壁之交界处)具有最大的到达角度,故介电层10会在通孔150的转角处形成悬突。Referring next to FIG. 2 , a dielectric layer 10 is formed on the sidewalls and bottoms of the via holes 150 and the front surface of the substrate 100 . Dielectric layer 10 may be formed to a first thickness by a high density plasma chemical vapor deposition (HDPCVD) process using a first etch/deposition ratio. The dielectric layer 10 may include common dielectric materials silicon dioxide and/or silicon nitride. The step coverage of a film formed by a chemical vapor deposition process depends on the angle of arrival and the surface mobility of the precursors used in the process. Basically, a larger angle of arrival results in poorer step coverage and thus poorer thickness uniformity and conformability. Since the corner of the via 150 (the junction of the substrate and the vertical sidewall) has the largest angle of arrival, the dielectric layer 10 forms an overhang at the corner of the via 150 .
接着参考图3,在介电层10上进行一形状修整处理500。此形状修整处理500可以是具有第二蚀刻/沈积比的高密度电浆化学气相沈积(HDPCVD)制程,其中第一蚀刻/沈积比小于第二蚀刻/沈积比。或者,此形状修整处理500可以是一物理溅射制程或蚀刻制程。若此形状修整处理500是一HDPCVD制程时,在此处理后介电层10的厚度会些微地增加,且此制程可与针对图2所述之HDPCVD于相同的处理室中原位进行。若此形状修整处理500是一物理溅射制程或蚀刻制程,则在此处理后介电层10的厚度会些微地减少,且此制程可与针对图2所述之HDPCVD在不同的处理室中进行或两制程以不破真空的方式于相同的主机台架构中进行。值得一提的是,在物理溅射制程或蚀刻制程期间可使用不含氧的物质来产生电浆或离子,使得曝露在电浆或离子中的介电层10的表面受到改质或改变而包含来自电浆或离子中的某些原子。在一实施例中,在物理溅射制程或蚀刻制程期间可使用含氟或含氮物质来产生电浆或离子,则曝露至此些电浆或离子之介电层10的表面会倾向于包含氮或氟原子。例如,含氮物质可选自N2O、NO、N2、NH3、NF3与其任意组合,含氟物质可选自CF4、CHF3、SF6、CH2F2与其任意组合。除了含氮物质及/或含氟物质外,亦可在形状修整处理500期间使用惰性气体如氩与氦来增加物理轰击的效果。在形状修整处理500后,应该能改善或完全消除通孔150之转角处的介电层悬突,因此获得预定的介电层10’的平整轮廓。Referring next to FIG. 3 , a shape modification process 500 is performed on the dielectric layer 10 . The shape modification process 500 may be a high density plasma chemical vapor deposition (HDPCVD) process with a second etch/deposition ratio, wherein the first etch/deposition ratio is less than the second etch/deposition ratio. Alternatively, the shape modification process 500 can be a physical sputtering process or etching process. If the shape modification process 500 is an HDPCVD process, the thickness of the dielectric layer 10 will increase slightly after the process, and the process can be performed in situ in the same chamber as the HDPCVD described with respect to FIG. 2 . If the shape modification process 500 is a physical sputtering process or etching process, the thickness of the dielectric layer 10 will be slightly reduced after this process, and this process can be in a different process chamber than the HDPCVD described with respect to FIG. 2 One or two processes are carried out in the same mainframe structure without breaking the vacuum. It is worth mentioning that during the physical sputtering process or etching process, oxygen-free substances can be used to generate plasma or ions, so that the surface of the dielectric layer 10 exposed to the plasma or ions is modified or changed. Contains certain atoms from plasma or ions. In one embodiment, fluorine- or nitrogen-containing species may be used to generate plasma or ions during the physical sputtering process or etching process, and the surface of the dielectric layer 10 exposed to such plasmas or ions tends to contain nitrogen. or fluorine atoms. For example, the nitrogen-containing substance can be selected from N 2 O, NO, N 2 , NH 3 , NF 3 and any combination thereof, and the fluorine-containing substance can be selected from CF 4 , CHF 3 , SF 6 , CH 2 F 2 and any combination thereof. In addition to nitrogen-containing species and/or fluorine-containing species, inert gases such as argon and helium may also be used during the shape modification process 500 to increase the effect of physical bombardment. After the shape trimming process 500, it should be possible to improve or completely eliminate the overhang of the dielectric layer at the corners of the via 150, thereby obtaining a predetermined flat profile of the dielectric layer 10'.
如果未完全消除悬突,可将针对图2与图3所述的制程(即介电层形成制程及形状修整处理)视为是一个循环而反复进行此循环,直到介电层10’的厚度到达介于至少100nm至数百nm的预定目标值或完全消除悬突为止。藉由反复进行此循环(即介电层形成制程及形状修整处理)数次,所获得的介电层10’在其厚度方向上会有氮或氟的分布界面。相较于通孔150,悬突看似不大,但是在通孔150之转角处的悬突可能会在后续的材料填充制程中引发空洞问题。在硅穿孔(TSV)中的空洞会变成可靠度的弱点进而造成电失效。If the overhang is not completely eliminated, the processes described in FIG. 2 and FIG. 3 (i.e., the dielectric layer formation process and shape modification process) can be regarded as a cycle and this cycle is repeated until the thickness of the dielectric layer 10' Until a predetermined target value of at least 100 nm to hundreds of nm is reached or the overhang is completely eliminated. By repeating this cycle (i.e. the dielectric layer formation process and shape modification process) several times, the obtained dielectric layer 10' has nitrogen or fluorine distribution interfaces in its thickness direction. Compared with the via hole 150, the overhang may seem small, but the overhang at the corner of the via hole 150 may cause a void problem in the subsequent material filling process. Voids in through-silicon vias (TSVs) can become reliability weaknesses and cause electrical failures.
现在参考图4,在介电层10’上形成一阻障/黏着/晶种层并在阻障/黏着/晶种层上形成低电阻率材料填充通孔150。接着,进行一平坦化制程如一或多道的化学机械研磨制程以移除多除的介电层10’、阻障/黏着/晶种层与低电阻率材料,形成全局平坦之表面并形成平坦化的介电层10”、平坦化的阻障/黏着/晶种层20与平坦化的低电阻率材料30。用以形成阻障/黏着/晶种层的制程系类似于用以形成介电层10的制程,但使用物理气相沈积(PVD)制程而非使用化学气相沈积(CVD)制程。即,由下列方式来形成阻障/黏着/晶种层:首先以不使用偏压的第一物理气相沈积制程来形成第一层的阻障/黏着/晶种层;然后使用偏压的第二物理气相沈积制程来移除形成在通孔150的转角处的悬突,在此步骤之后阻障/黏着/晶种层的厚度会稍微增加;及交替地重复第一与第二物理气相沈积制程,直到阻障/黏着/晶种层达到其预定厚度或者完全移除悬突为止。应了解,阻障/黏着/晶种层可包含数种不同的材料。因此,每一种材料可能会需要不同的靶材及独立的物理气相沈积循环(即,形成阻障层所用的第一物理气相沈积制程形成阻障层所用的第二物理气相沈积制程 形成阻障层所用的第一物理气相沈积制程形成阻障层所用的第二物理气相沈积制程 形成阻障层所用的第一物理气相沈积制程;黏着层所用的第一物理气相沈积制程 黏着层所用的第二物理气相沈积制程黏着层所用的第一物理气相沈积制程 黏着层所用的第二物理气相沈积制程黏着层所用的第一物理气相沈积制程;晶种层所用的第一物理气相沈积制程晶种层所用的第二物理气相沈积制程 晶种层所用的第一物理气相沈积制程晶种层所用的第二物理气相沈积制程)。低电阻率材料可藉由化学气相沈积制程、电镀制程或旋涂制程所形成。阻障/黏着/晶种层可包含钽、氮化钽、钛、氮化钛、钨、氮化钨、钼、锰、锰及其任意组合。低电阻率材料可包含钨、铜或铝。在一较佳实施例中,阻障层为氮化钛及/或钛、晶种层为铜且低电阻率材料亦为铜。Referring now to FIG. 4, a barrier/adhesion/seed layer is formed on the dielectric layer 10' and a low resistivity material filled via 150 is formed on the barrier/adhesion/seed layer. Next, perform a planarization process such as one or more chemical mechanical polishing processes to remove excess dielectric layer 10', barrier/adhesion/seed layer and low resistivity material to form a globally flat surface and form a planar A planarized dielectric layer 10", a planarized barrier/adhesion/seed layer 20, and a planarized low-resistivity material 30. The process used to form the barrier/adhesion/seed layer is similar to that used to form the dielectric electrical layer 10, but using a Physical Vapor Deposition (PVD) process rather than a Chemical Vapor Deposition (CVD) process. That is, the barrier/adhesion/seed layer is formed by first using no bias a first physical vapor deposition process to form a first layer of barrier/adhesion/seed layer; and then a biased second physical vapor deposition process to remove the overhang formed at the corner of the via hole 150, The thickness of the barrier/adhesion/seed layer is slightly increased after this step; and the first and second PVD processes are repeated alternately until the barrier/adhesion/seed layer reaches its predetermined thickness or is completely removed It should be understood that the barrier/adhesion/seed layer can consist of several different materials. Therefore, each material may require a different target material and a separate PVD cycle (i.e., to form the barrier First Physical Vapor Deposition Process Used to Form Barrier Layer Second Physical Vapor Deposition Process Used to Form Barrier Layer First Physical Vapor Deposition Process Used to Form Barrier Layer Second Physical Vapor Deposition Process Used to Form Barrier Layer First Physical Vapor Deposition Process for Barrier Layer; First Physical Vapor Deposition Process for Adhesion Layer Second Physical Vapor Deposition Process for Adhesion Layer First Physical Vapor Deposition Process for Adhesion Layer Second Physical Vapor Deposition Process First Physical Vapor Deposition Process for Adhesion Layer; First Physical Vapor Deposition Process for Seed Layer Second Physical Vapor Deposition Process for Seed Layer First Physical Vapor Deposition Process for Seed Layer The second physical vapor deposition process used in the physical vapor deposition process seed layer). The low resistivity material can be formed by chemical vapor deposition process, electroplating process or spin coating process. The barrier/adhesion/seed layer can be Contains tantalum, tantalum nitride, titanium, titanium nitride, tungsten, tungsten nitride, molybdenum, manganese, manganese and any combination thereof. The low resistivity material may comprise tungsten, copper or aluminum. In a preferred embodiment, the resistive The barrier layer is titanium nitride and/or titanium, the seed layer is copper and the low resistivity material is also copper.
现在参考图5,在衬底100、平坦化的介电层10”、平坦化之阻障/黏着/晶种层20与平坦化的低电阻率材料30上形成一装置/内联机层300。装置/内联机层300代表所有选择性的主动组件、内联机介电层与接触栓(若采用通孔前置制程)、金属间介电层及所有嵌于其中的内联机结构。Referring now to FIG. 5 , a device/interconnect layer 300 is formed on the substrate 100 , the planarized dielectric layer 10 ″, the planarized barrier/adhesion/seed layer 20 and the planarized low-resistivity material 30 . Device/interconnect layer 300 represents all optional active components, interconnect dielectric layers and contact plugs (if via front-end processing is used), IMD layers, and all interconnect structures embedded therein.
现在参考图6,进行一背侧打磨/研磨/薄化制程以裸露低电阻率材料及阻障/黏着/晶种层并完成包含介电层10”’、阻障/黏着/晶种层20’与导电材料30’的硅穿孔(TSV)1000。Referring now to FIG. 6, a backside grinding/grinding/thinning process is performed to expose the low resistivity material and barrier/adhesion/seed layer and complete the dielectric layer 10"', barrier/adhesion/seed layer 20. Through-silicon vias (TSVs) 1000 'with conductive material 30 '.
由本发明的方法所制造之硅穿孔1000不会苦于悬突所造成的空洞问题,因此其可靠度可获得改善。The TSV 1000 manufactured by the method of the present invention does not suffer from the void problem caused by the overhang, so its reliability can be improved.
上述实施例仅是为了方便说明而举例,虽遭所属技术领域的技术人员任意进行修改,均不会脱离如权利要求书中所欲保护的范围。The above-mentioned embodiments are only examples for the convenience of description, and even if they are arbitrarily modified by those skilled in the art, they will not depart from the scope of protection as claimed in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310153051.3A CN104124200A (en) | 2013-04-27 | 2013-04-27 | TSV manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310153051.3A CN104124200A (en) | 2013-04-27 | 2013-04-27 | TSV manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104124200A true CN104124200A (en) | 2014-10-29 |
Family
ID=51769566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310153051.3A Pending CN104124200A (en) | 2013-04-27 | 2013-04-27 | TSV manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104124200A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109887879A (en) * | 2017-12-06 | 2019-06-14 | 北京北方华创微电子装备有限公司 | A kind of method and semiconductor processing equipment covering film in hole |
CN115116961A (en) * | 2021-03-19 | 2022-09-27 | 华邦电子股份有限公司 | Dynamic random access memory and method of making the same |
-
2013
- 2013-04-27 CN CN201310153051.3A patent/CN104124200A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109887879A (en) * | 2017-12-06 | 2019-06-14 | 北京北方华创微电子装备有限公司 | A kind of method and semiconductor processing equipment covering film in hole |
CN109887879B (en) * | 2017-12-06 | 2021-12-17 | 北京北方华创微电子装备有限公司 | Method for covering film in hole and semiconductor processing equipment |
CN115116961A (en) * | 2021-03-19 | 2022-09-27 | 华邦电子股份有限公司 | Dynamic random access memory and method of making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8399180B2 (en) | Three dimensional integration with through silicon vias having multiple diameters | |
TWI495071B (en) | Semiconductor with interconnected substrate interconnection | |
TWI503981B (en) | Semiconductor device | |
JP6012763B2 (en) | Incorporating through-substrate vias in the intermediate process layer of an integrated circuit | |
US10636698B2 (en) | Skip via structures | |
JP5682897B2 (en) | Method for forming a via in a portion of a semiconductor wafer including a substrate and via structure formed in a portion of a semiconductor wafer including a substrate | |
US10615072B2 (en) | Structure having isolated deep substrate vias with decreased pitch and increased aspect ratio and related method | |
TWI451544B (en) | Scheme for planarizing through-silicon vias | |
CN105765714B (en) | Through-silicon via structure for improving BEOL dielectric properties and method | |
Diehl et al. | Formation of TSV for the stacking of advanced logic devices utilizing bumpless wafer-on-wafer technology | |
CN103633041B (en) | Semiconductor devices and the method for manufacturing the semiconductor devices | |
CN111564368A (en) | Semiconductor device and manufacturing method thereof | |
CN102468284A (en) | Stacked semiconductor device and manufacturing method thereof | |
US20130140688A1 (en) | Through Silicon Via and Method of Manufacturing the Same | |
CN102683308B (en) | Through silicon via structure and forming method thereof | |
US20140057434A1 (en) | Through silicon via process | |
US9257322B2 (en) | Method for manufacturing through substrate via (TSV), structure and control method of TSV capacitance | |
US8853090B1 (en) | Method for fabricating a through-silicon via | |
TW201351587A (en) | Through-silicon via and fabrication method thereof | |
US9362171B2 (en) | Through via contacts with insulated substrate | |
CN104124200A (en) | TSV manufacturing method | |
TWI716051B (en) | Method of manufacturing semiconductor device | |
Malta et al. | TSV formation overview | |
US9478464B2 (en) | Method for manufacturing through-hole silicon via | |
TW201834178A (en) | Through-silicon via with improved substrate contact for reduced through-silicon via (tsv) capacitance variability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141029 |