CN104103695B - 薄膜晶体管及其制备方法 - Google Patents
薄膜晶体管及其制备方法 Download PDFInfo
- Publication number
- CN104103695B CN104103695B CN201310112449.2A CN201310112449A CN104103695B CN 104103695 B CN104103695 B CN 104103695B CN 201310112449 A CN201310112449 A CN 201310112449A CN 104103695 B CN104103695 B CN 104103695B
- Authority
- CN
- China
- Prior art keywords
- layer
- hsq
- film transistor
- thin film
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
- H10K10/474—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/02134—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising hydrogen silsesquioxane, e.g. HSQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/0231—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to electromagnetic radiation, e.g. UV light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/484—Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
- H10K10/472—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only inorganic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明涉及一种薄膜晶体管,包括:一源极;一漏极;一半导体层,所述漏极和源极间隔设置且分别与所述半导体层电连接;一栅极,该栅极通过一绝缘层与所述半导体层、源极及漏极绝缘设置;其中,进一步包括一过渡层设置于所述半导体层与所述绝缘层之间,所述过渡层为通过固化HSQ形成的硅氧多聚交联体层,所述硅氧多聚交联体层中的硅原子分别与所述半导体层及所述绝缘层中的原子相键合。本发明还提供所述薄膜晶体管的制备方法。
Description
技术领域
本发明涉及一种薄膜晶体管及其制备方法。
背景技术
薄膜晶体管(Thin Film Transistor, TFT)是现代微电子技术中的一种关键性电子元件,目前已经被广泛的应用于平板显示器等领域。薄膜晶体管主要包括栅极、绝缘层、半导体层、源极和漏极。其中,源极和漏极间隔设置并与半导体层电连接,栅极通过绝缘层与半导体层及源极和漏极间隔绝缘设置。所述半导体层位于所述源极和漏极之间的区域形成一沟道区域。薄膜晶体管中的栅极、源极、漏极均由导电材料构成,该导电材料一般为金属或合金。当在栅极上施加一电压时,与栅极通过绝缘层间隔设置的半导体层中的沟道区域会积累载流子,当载流子积累到一定程度,与半导体层电连接的源极漏极之间将导通,从而有电流从源极流向漏极。
在应用中,薄膜晶体管的半导体/绝缘介质的界面状态对于器件性能有较大的影响,比如绝缘介质与半导体的接触紧密程度会影响半导体/绝缘介质的界面接触,而在制备薄膜晶体管的过程中引入的水分子、羟基、氧自由基等杂质会被吸附于半导体或绝缘介质的表面而影响半导体/绝缘介质的界面接触,进而影响半导体的与绝缘介质接触的表面的电子传输,造成薄膜晶体管的电滞回线的迟滞,以及薄膜晶体管的稳定性的降低、开关比和电子迁移率的下降。
发明内容
有鉴于此,确有必要提供一种薄膜晶体管及其制备方法,该薄膜晶体管中半导体/绝缘介质之间接触良好。
一种薄膜晶体管,包括:一源极;一漏极;一半导体层,所述漏极和源极间隔设置且分别与所述半导体层电连接;一栅极,该栅极通过一绝缘层与所述半导体层、源极及漏极绝缘设置;其中,进一步包括一过渡层设置于所述半导体层与所述绝缘层之间,所述过渡层为通过固化HSQ形成的硅氧多聚交联体层,所述硅氧多聚交联体层中的硅原子分别与所述半导体层及所述绝缘层中的原子相键合。
一种薄膜晶体管的制备方法,其包括以下步骤:提供一绝缘基板,在所述绝缘基板的一表面形成一栅极;在所述栅极的表面形成一绝缘层;在绝缘层的表面形成一HSQ凝胶层;在所述HSQ凝胶层的表面形成一半导体层;对所述HSQ凝胶层进行前烘处理得到一HSQ预制层;固化所述HSQ预制层得到一过渡层,所述过渡层为硅氧多聚交联体层,所述硅氧多聚交联体层中的硅原子分别与所述半导体层及所述绝缘层中的原子相键合;以及,在所述半导体层的表面形成相互间隔的一源极及一漏极。
与现有技术相比较,所述薄膜晶体管在绝缘层与半导体层之间设置有一HSQ凝胶层,由于HSQ凝胶层本身为硅水化合物,因而HSQ凝胶层会容易的吸附在在绝缘层与半导体层之间的杂质如水分子、羟基、氧自由基等,并且,通过HSQ凝胶层进行前烘以及固化后形成的硅氧多聚交联体层作为过渡层,所述过渡层中的硅原子分别与所述半导体层及所述绝缘层中的原子相键合,使得半导体层与过渡层紧密的结合而形成良好的界面接触,半导体层的表面的电子传输良好,因而减少了薄膜晶体管的迟滞,大大提高了器件的稳定性,同时提高了器件的开关比及电子迁移率,并降低了功耗。
附图说明
图1是本发明第一实施例薄膜晶体管的结构示意图。
图2是本发明第一实施例所述HSQ的箱状结构单元示意图。
图3是本发明第一实施例所述硅氧多聚交联体的结构式示意图。
图4是本发明第一实施例工作时的薄膜晶体管的结构示意图。
图5是本发明第一实施例薄膜晶体管的制备方法流程图。
图6是本发明第二实施例薄膜晶体管的结构示意图。
主要元件符号说明
薄膜晶体管 | 10,20 |
绝缘基板 | 110 |
半导体层 | 120 |
沟道 | 125 |
源极 | 130 |
漏极 | 140 |
绝缘层 | 150 |
过渡层 | 160 |
栅极 | 170 |
如下具体实施例将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图详细说明本技术方案实施例提供的薄膜晶体管。
请参阅图1,为本发明第一实施例提供的薄膜晶体管10,该薄膜晶体管10为底栅型(又称背栅型)薄膜晶体管,其包括一半导体层120、一源极130、一漏极140、一绝缘层150、一过渡层160及一栅极170。所述源极130与漏极140间隔设置。所述半导体层120与所述源极130及漏极140接触设置。所述栅极170通过所述绝缘层150及过渡层160与所述半导体层120、所述源极130及漏极140绝缘设置。所述过渡层160设置于所述半导体层120与所述绝缘层150之间,并分别与所述半导体层120及所述绝缘层150直接接触。该薄膜晶体管10可形成于一绝缘基板110表面。
具体地,所述栅极170设置于所述绝缘基板110表面。所述绝缘层150覆盖所述栅极170设置,部分绝缘层150设置于绝缘基板110的部分表面。所述过渡层160设置于所述绝缘层150远离所述栅极170的表面。所述半导体层120设置于所述过渡层160远离所述绝缘层150的表面,即该过渡层160设置于半导体层120与绝缘层150之间,该过渡层160的相对两个表面分别与半导体层120及绝缘层150接触。所述源极130及漏极140间隔设置于所述半导体层120表面,并分别与该半导体层120电连接。位于该源极130及漏极140之间的半导体层形成一沟道125。
所述绝缘基板110起支撑作用,该绝缘基板110材料不限,可选择为玻璃、石英、陶瓷、金刚石等硬性材料,或塑料、树脂等柔性材料。本实施例中,所述绝缘基板110的材料为玻璃。所述绝缘基板110用于对薄膜晶体管10提供支撑,且多个薄膜晶体管10可按照预定规律或图形设置于同一绝缘基板110表面,形成TFT面板,或其它TFT半导体器件。
所述半导体层120可为无机类半导体材料,如:碳纳米管、GaN、GaAs、SiN、SiC、CdTe、HgTe、GeSi、InZnO、InGaO、HfZnSnO等,也可以为有机半导体材料,如:二萘嵌苯四羧酸二酸酐(PTCDA)、萘四羧酸二酸酐(NTCDA)等。优选的,所述半导体层120由一个碳纳米管层构成。所述半导体层120的长度为1微米~1毫米,宽度为1微米~1毫米,厚度为0.5纳米~100微米。
所述碳纳米管层包括多个碳纳米管。所述碳纳米管层表现出良好的半导体性。该碳纳米管层可仅由半导体性碳纳米管组成,也可由金属性碳纳米管与半导体性碳纳米管共同组成。具体的,可通过化学分离等手段得到仅包括半导体性碳纳米管的碳纳米管层。或者,可通过化学气相沉积法得到包括金属性碳纳米管与半导体性碳纳米管的碳纳米管层,由于半导体性碳纳米管与金属性碳纳米管的比例为2:1,使该碳纳米管层整体上仍然表现出良好的半导体性。所述碳纳米管为单壁碳纳米管,该碳纳米管层中的碳纳米管的直径小于5纳米,优选地,该碳纳米管的直径小于2纳米。
具体地,所述碳纳米管层为多个单壁碳纳米管通过范德华力连接组成的碳纳米管膜或至少一长的单壁碳纳米管组成。
该碳纳米管层可为由多根长碳纳米管组成的层状结构,至少部分长碳纳米管的两端分别与所述源极130和漏极140电连接。所述多根长碳纳米管表现出良好的半导体性。所述多根长碳纳米管平行于所述绝缘基板表面。所述长碳纳米管是指长度大于5微米的单根碳纳米管,优选的,长度大于10微米。所述多根长碳纳米管的设置方式不限,可平行排列、交叉排列或编制成一碳纳米管层,只要确保至少部分长碳纳米管的两端分别与所述源极130和漏极140电连接即可。优选地,上述多根长碳纳米管均沿所述源极130指向漏极140的方向平行且紧密排列,且所述多根长碳纳米管的两端分别与所述源极130及漏极140电连接。所述长碳纳米管的直径不限。优选地,所述长碳纳米管的直径为0.5纳米~10纳米。所述长碳纳米管之间的设置间距为0~100微米。
该碳纳米管层可由多个无序排列的碳纳米管组成。该碳纳米管层包括多个相互缠绕且各向同性的碳纳米管,所述多个碳纳米管通过范德华力相互吸引、缠绕,形成网络状结构。由于碳纳米管相互缠绕,因此所述碳纳米管层具有很好的韧性,可以弯曲折叠成任意形状而不破裂。该网络状结构包括成大量的微孔结构,该微孔孔径小于50微米。由于该碳纳米管层中包括大量的微孔结构,因此,该碳纳米管层的透光性较好。该碳纳米管层的厚度为0.5纳米~100微米,该碳纳米管层中的碳纳米管的直径小于5纳米,该碳纳米管层中的碳纳米管的长度为100纳米~1毫米。优选地,该碳纳米管的直径小于2纳米,长度为1微米~1毫米。
本实施例中,该碳纳米管层为由多根长碳纳米管平行紧密排列组成的层状结构,该长碳纳米管的直径为5纳米,所述长碳纳米管的长度为30微米。
所述绝缘层150材料可选择为氧化铝、氧化铪、氮化硅、氧化硅等硬性材料或苯并环丁烯(BCB)、聚酯或丙烯酸树脂等柔性材料。该绝缘层150的厚度为0.5纳米~100微米。本实施例中,所述绝缘层150的材料为氧化铝,其厚度为40纳米。
所述过渡层160为将二氧化硅无机类化合物(hydrogen silsesquioxane,HSQ)固化后形成的硅氧多聚交联体层。请参阅图2及图3,所述HSQ为一箱状结构单元,其表达式为(HSiO3/2)2n,其中,n为自然数;所述硅氧多聚交联体为一硅氧网络状化合物,其化学表达式为SixOyHz,其中,x与y满足以下关系式:x:y=1:1~2:1,z的值为0.2~0.3。所述过渡层160的厚度为5纳米-25纳米,优选为10纳米。在固化HSQ形成硅氧多聚交联体层的过程中,由于HSQ箱状结构单元中的Si-H及Si-O键断开,而使得Si原子带有悬挂键,该带有悬挂键的Si原子一部分与O原子相连形成Si-O-Si键,从而形成所述硅氧多聚交联体,而另一部分的带有悬挂键的Si原子分别与所述绝缘层150以及半导体层120中的原子紧密键合,即,形成的硅氧多聚交联体中的Si原子分别与所述绝缘层150以及半导体层120中的原子相键合,因而所述硅氧多聚交联体分别与所述半导体层120及绝缘层150紧密接触。
所述源极130、漏极140及栅极170由导电材料组成。优选地,所述源极130、漏极140及栅极170均为一层导电薄膜。该导电薄膜的厚度为0.5纳米~100微米。该导电薄膜的材料为可以选择为金属、ITO、ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、铯、钯或其任意组合的合金。本实施例中,所述栅极170的材料为金属铝,厚度为5纳米;所述源极130、漏极140的材料为金属铯,所述金属铯与碳纳米管具有较好的润湿效果,厚度为5纳米。
请参见图4,使用时,所述源极130接地,在栅极170上施加一电压Vg,并在漏极140上施加一电压Vds。当栅极170施加一定的电压Vg,在半导体层120的沟道125中产生电场,并在沟道125表面处产生载流子。随着栅极电压Vg的增加,沟道125转变为载流子积累层,当Vg达到源极130和漏极140之间的开启电压时,源极130与漏极140之间的沟道125导通,从而会在源极130和漏极140之间产生电流,电流由源极130通过沟道125流向漏极140,从而使得该薄膜晶体管10处于开启状态。由于半导体层120与绝缘层150之间设置过渡层160,该过渡层160为采用HSQ固化后形成的硅氧多聚交联体层,由于在HSQ固化过程中Si原子的表面带有悬挂键,该带悬挂键的Si原子容易与绝缘介质以及半导体中的原子相键合,使得半导体层120与过渡层160紧密的结合而形成良好的界面接触,半导体层120的表面的电子传输良好,因而减少了薄膜晶体管的迟滞,大大提高了器件的稳定性,同时提高了器件的开关比及电子迁移率,并降低了功耗。
请参阅图5,本发明第一实施例还提供所述薄膜晶体管10的制备方法,该制备方法包括以下步骤:
S1,提供一绝缘基板110,在所述绝缘基板110的一表面形成一栅极170;
S2,在所述栅极170远离绝缘基板110的表面形成一绝缘层150;
S3,在绝缘层150远离所述栅极170的表面形成一HSQ凝胶层;
S4,对所述HSQ凝胶层进行前烘处理得到一HSQ预制层;
S5,在所述HSQ预制层远离所述绝缘层150的表面形成一半导体层120;
S6,固化所述HSQ预制层得到一过渡层160,所述过渡层160为硅氧多聚交联体层,所述硅氧多聚交联体层中的硅原子分别与所述半导体层及所述绝缘层中的原子相键合;以及
S7,在所述半导体层120远离过渡层的表面形成相互间隔的一源极130及漏极140。
在步骤S1中,所述栅极170可通过磁控溅射法、电子束沉积法或原子层沉积法等形成在所述绝缘基板110的表面,也可以通过丝网印刷、刀片刮涂等方法直接涂覆导电浆料于所述绝缘基板110的表面。本实施例中,通过电子束沉积法在所述绝缘基板110的表面沉积金属铝作为所述栅极170。
在步骤S2中,所述绝缘层150通过磁控溅射法、电子束沉积法或原子层沉积法等形成于所述栅极170远离绝缘基板110的表面并覆盖所述栅极170。本实施例中,所述绝缘层150通过原子层沉积法形成,所述绝缘层150为氧化铝层,该绝缘层150的厚度为40纳米。
在步骤S3中,将所述HSQ胶体涂覆于绝缘层150表面的方法不限,可以为旋涂法、喷涂法或刀片刮涂。本实施例中,将所述HSQ胶体通过旋涂法涂覆于所述绝缘层150远离所述栅极170的表面。具体包括以下步骤:首先,制备一HSQ胶体,具体的,首先,将HSQ与溶剂混合得到一HSQ胶体,其中,HSQ与溶剂的体积比为1:15~1:25,所述溶剂可为甲基异丁基酮、丁酮等有机溶剂;其次,将所述HSQ胶体涂覆于所述绝缘层150远离所述栅极170的表面,形成所述HSQ凝胶层。所述HSQ凝胶层的厚度的范围为10纳米~30纳米。所述HSQ凝胶层的厚度与所述HSQ胶体的浓度有较大的关系,比如,将HSQ与溶剂分别以1:15,1:20,或1:25的体积比混合,可分别得到厚度为10纳米、20纳米或30纳米的HSQ凝胶层。本实施例中,将HSQ与甲基异丁基酮以1:20的体积比混合,形成的所述HSQ凝胶层的厚度为20纳米。
在步骤S4中,通过对所述HSQ凝胶层进行前烘处理,使所述HSQ凝胶层中的溶剂挥发并实现预固化,以方便在得到所述HSQ预制层的表面设置所述半导体层120。该前烘处理的温度为80摄氏度-110摄氏度,时间为30秒至3分钟。本实施例中,前烘处理的温度为105摄氏度,前烘处理的时间为2分钟。
在步骤S5中,所述半导体层120可通过磁控溅射法、电子束沉积法或原子层沉积法等形成在所述HSQ预制层的表面。本实施例中,采用多个长碳纳米管作为半导体层,具体地,将多根长碳纳米管平行且无间隙地直接铺设在所述HSQ预制层的表面。由于碳纳米管的比表面积大,该多根长碳纳米管可直接粘附于所述HSQ预制层远离所述绝缘层150的表面。
在步骤S6中,所述固化HSQ预制层的方法不限,可以为高温退火、O2等离子体法或电子束曝光法。本实施例中,通过将HSQ预制层置于500摄氏度下退火30分钟。在固化HSQ预制层过程中,HSQ箱状结构单元中的Si-H及Si-O键断开,而使得Si原子带有悬挂键,该带有悬挂键的Si原子一部分与O原子相连形成Si-O-Si键,从而形成所述硅氧多聚交联体层。而在所述HSQ预制层分别与所述绝缘层150以及半导体层120相接触的表面上,另一部分的带有悬挂键的Si原子会分别与所述绝缘层150以及半导体层120中的原子相键合,从而使得所述硅氧多聚交联体层分别与所述绝缘层150及半导体层120形成紧密的接触。
在步骤S7中,所述源极130及漏极140可通过磁控溅射法、电子束沉积法或原子层沉积法等形成在所述半导体层120的表面,也可以通过丝网印刷、刀片刮涂等方法直接涂覆导电浆料于半导体层120的表面。本实施例中,通过电子束沉积法在所述绝缘基板110的表面沉积金属铯作为所述源极130及漏极140。
本发明所述制备方法在绝缘层150与半导体层120之间设置一HSQ凝胶层,该HSQ凝胶层固化得到的硅氧多聚交联体层可与所述半导体层120紧密的结合,从而提高半导体层120表面的电子迁移性能。该制备方法简单,成本较低、且易于操作以及工业化。
请参阅图6,本发明第二实施例提供一种薄膜晶体管20,该薄膜晶体管20为顶栅型,其包括一半导体层120、一源极130、一漏极140、一过渡层160、一绝缘层150及一栅极170。所述源极130与漏极140间隔设置。所述半导体层120与所述源极130及漏极140接触设置。所述栅极170通过所述过渡层160及绝缘层150与所述半导体层120、所述源极130及漏极140绝缘设置。并且,该薄膜晶体管10形成于一绝缘基板110表面。
本发明第二实施例薄膜晶体管20的结构与第一实施例中的薄膜晶体管10的结构基本相同,其区别在于:所述薄膜晶体管20为顶栅型薄膜晶体管,即,所述半导体层120直接设置于该绝缘基板110表面,所述源极130及漏极140相互间隔设置,并与所述半导体层120电连接。所述过渡层160设置于所述半导体层120远离绝缘基板110的表面,所述绝缘层150设置于该过渡层160远离半导体层120的表面。所述栅极170设置于绝缘层150的表面,并通过该过渡层160及绝缘层150与源极130、漏极140及半导体层120电绝缘。优选地,该栅极170可以对应沟道125设置于所述绝缘层150表面。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。
Claims (11)
1.一种薄膜晶体管,包括:
一源极;
一漏极;
一半导体层,所述漏极和源极间隔设置且分别与所述半导体层电连接;
一栅极,该栅极通过一绝缘层与所述半导体层、源极及漏极绝缘设置;
其特征在于,进一步包括一过渡层设置于所述半导体层与所述绝缘层之间,所述过渡层为通过固化HSQ形成的硅氧多聚交联体层,所述硅氧多聚交联体层中的硅原子分别与所述半导体层及所述绝缘层中的原子相键合。
2.如权利要求1所述的薄膜晶体管,其特征在于,所述过渡层的厚度为5纳米-25纳米。
3.如权利要求1所述的薄膜晶体管,其特征在于,所述半导体层由多个单壁碳纳米管组成。
4.如权利要求1所述的薄膜晶体管,其特征在于,所述半导体层为多个碳纳米管通过范德华力连接组成的碳纳米管膜。
5.如权利要求4所述的薄膜晶体管,其特征在于,所述半导体层为多根碳纳米管平行排列组成,所述源极和漏极分别设置在所述多根碳纳米管的两端。
6.如权利要求5所述的薄膜晶体管,其特征在于,所述碳纳米管的直径为0.5纳米~10纳米,所述碳纳米管的长度大于5微米。
7.如权利要求1所述的薄膜晶体管,其特征在于,所述薄膜晶体管为顶栅型薄膜晶体管或底栅型薄膜晶体管。
8.一种薄膜晶体管的制备方法,其包括以下步骤:
提供一绝缘基板,在所述绝缘基板的一表面形成一栅极;
在所述栅极的表面形成一绝缘层;
在绝缘层的表面形成一HSQ凝胶层;
在所述HSQ凝胶层的表面形成一半导体层;
对所述HSQ凝胶层进行前烘处理得到一HSQ预制层;
固化所述HSQ预制层得到一过渡层,所述过渡层为硅氧多聚交联体层,所述硅氧多聚交联体层中的硅原子分别与所述半导体层及所述绝缘层中的原子相键合;以及
在所述半导体层的表面形成相互间隔的一源极及一漏极。
9.如权利要求8所述的薄膜晶体管的制备方法,其特征在于,所述在绝缘层远离所述栅极的表面设置一HSQ凝胶层具体包括以下步骤:
将HSQ与溶剂以一定的体积比混合得到一HSQ胶体,其中,所述HSQ与溶剂的体积比为1:15~1:25,所述溶剂为甲基异丁基酮或丁酮;
将所述HSQ胶体涂覆于所述绝缘层远离栅极的表面得到一HSQ凝胶层,其中,所述HSQ凝胶层的厚度为10纳米~30纳米。
10.如权利要求8所述的薄膜晶体管的制备方法,其特征在于,所述前烘处理过程的温度为80摄氏度-110摄氏度,时间为30秒至3分钟。
11.如权利要求8所述的薄膜晶体管的制备方法,其特征在于,所述固化过程为将HSQ预制层置于500摄氏度下退火30分钟。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310112449.2A CN104103695B (zh) | 2013-04-02 | 2013-04-02 | 薄膜晶体管及其制备方法 |
TW102114092A TWI585985B (zh) | 2013-04-02 | 2013-04-19 | 薄膜電晶體及其製備方法 |
US14/011,918 US9159938B2 (en) | 2013-04-02 | 2013-08-28 | Thin film transistor |
US14/526,455 US9263685B2 (en) | 2013-04-02 | 2014-10-28 | Thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310112449.2A CN104103695B (zh) | 2013-04-02 | 2013-04-02 | 薄膜晶体管及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104103695A CN104103695A (zh) | 2014-10-15 |
CN104103695B true CN104103695B (zh) | 2017-01-25 |
Family
ID=51619900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310112449.2A Active CN104103695B (zh) | 2013-04-02 | 2013-04-02 | 薄膜晶体管及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US9159938B2 (zh) |
CN (1) | CN104103695B (zh) |
TW (1) | TWI585985B (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105810746B (zh) * | 2014-12-31 | 2019-02-05 | 清华大学 | N型薄膜晶体管 |
TWI578546B (zh) * | 2015-05-28 | 2017-04-11 | 鴻海精密工業股份有限公司 | 薄膜電晶體的製造方法 |
CN105336508A (zh) * | 2015-11-06 | 2016-02-17 | 东华大学 | 一种柔性的透明二硫化钼薄膜电极的制备方法 |
CN107464880B (zh) * | 2016-06-02 | 2020-04-14 | 清华大学 | 有机薄膜晶体管制备方法和制备装置 |
US10665798B2 (en) | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | Carbon nanotube transistor and logic with end-bonded metal contacts |
US10665799B2 (en) * | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | N-type end-bonded metal contacts for carbon nanotube transistors |
WO2018038107A1 (ja) * | 2016-08-23 | 2018-03-01 | 凸版印刷株式会社 | 有機薄膜トランジスタとその製造方法および画像表示装置 |
CN108023016B (zh) * | 2016-10-31 | 2020-07-10 | 清华大学 | 薄膜晶体管的制备方法 |
CN108172625B (zh) * | 2016-12-07 | 2020-09-29 | 清华大学 | 一种逻辑电路 |
CN108172627B (zh) * | 2016-12-07 | 2020-11-06 | 清华大学 | 一种薄膜晶体管及其制备方法 |
CN108172628B (zh) * | 2016-12-07 | 2020-11-06 | 清华大学 | 一种逻辑电路 |
CN108172612B (zh) * | 2016-12-07 | 2020-07-10 | 清华大学 | 一种薄膜晶体管及其制备方法 |
CN108172626B (zh) * | 2016-12-07 | 2020-07-10 | 清华大学 | 一种薄膜晶体管及其制备方法 |
CN108172624B (zh) * | 2016-12-07 | 2020-11-06 | 清华大学 | 一种薄膜晶体管及其制备方法 |
CN108695376B (zh) * | 2017-04-11 | 2019-11-12 | Tcl集团股份有限公司 | 一种薄膜晶体管及其制备方法 |
CN108735820B (zh) * | 2017-04-19 | 2021-03-26 | 中国科学院金属研究所 | 以光刻胶为栅绝缘层的碳纳米管薄膜晶体管及制作和应用 |
CN108933134B (zh) * | 2017-05-24 | 2020-09-25 | 清华大学 | 半导体器件 |
CN115810668A (zh) * | 2021-09-02 | 2023-03-17 | 清华大学 | 薄膜晶体管及采用薄膜晶体管的滤波器 |
CN116243565B (zh) * | 2023-03-16 | 2024-07-23 | 天津大学 | 电子束诱导光刻胶生长的碳质绝缘层及制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6503849B1 (en) * | 1999-12-28 | 2003-01-07 | Sharp Kabushiki Kaisha | Method for forming insulating film |
CN1558447B (zh) * | 2004-01-15 | 2010-04-28 | 友达光电股份有限公司 | 薄膜晶体管的制造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060231908A1 (en) * | 2005-04-13 | 2006-10-19 | Xerox Corporation | Multilayer gate dielectric |
KR100857542B1 (ko) * | 2007-07-19 | 2008-09-08 | 삼성전자주식회사 | 탄소 나노튜브 발광소자 및 그 제조방법 |
CN101997035B (zh) * | 2009-08-14 | 2012-08-29 | 清华大学 | 薄膜晶体管 |
US9099537B2 (en) * | 2009-08-28 | 2015-08-04 | International Business Machines Corporation | Selective nanotube growth inside vias using an ion beam |
-
2013
- 2013-04-02 CN CN201310112449.2A patent/CN104103695B/zh active Active
- 2013-04-19 TW TW102114092A patent/TWI585985B/zh active
- 2013-08-28 US US14/011,918 patent/US9159938B2/en active Active
-
2014
- 2014-10-28 US US14/526,455 patent/US9263685B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6503849B1 (en) * | 1999-12-28 | 2003-01-07 | Sharp Kabushiki Kaisha | Method for forming insulating film |
CN1558447B (zh) * | 2004-01-15 | 2010-04-28 | 友达光电股份有限公司 | 薄膜晶体管的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140291614A1 (en) | 2014-10-02 |
CN104103695A (zh) | 2014-10-15 |
US9263685B2 (en) | 2016-02-16 |
TW201440227A (zh) | 2014-10-16 |
US9159938B2 (en) | 2015-10-13 |
TWI585985B (zh) | 2017-06-01 |
US20150050786A1 (en) | 2015-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104103695B (zh) | 薄膜晶体管及其制备方法 | |
CN104103696B (zh) | 双极性薄膜晶体管 | |
JP5174101B2 (ja) | 薄膜トランジスタ | |
Ryu et al. | CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes | |
CN101582448B (zh) | 薄膜晶体管 | |
CN106219538B (zh) | 高导热、高导电石墨烯/银纳米线复合薄膜的制备方法及薄膜 | |
CN104112777B (zh) | 薄膜晶体管及其制备方法 | |
JP6051960B2 (ja) | 導電性薄膜、導電性薄膜形成用塗布液、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法 | |
CN103972296B (zh) | 薄膜晶体管 | |
TW200425513A (en) | Field effect transistor and manufacturing method thereof | |
JP2009278111A (ja) | 薄膜トランジスタ | |
Pyo et al. | Low-temperature processable inherently photosensitive polyimide as a gate insulator for organic thin-film transistors | |
CN101593699A (zh) | 薄膜晶体管的制备方法 | |
JP5685367B2 (ja) | 薄膜トランジスタ | |
Peng et al. | Controllable p‐to‐n Type Conductance Transition in Top‐Gated Graphene Field Effect Transistor by Interface Trap Engineering | |
CN101582450B (zh) | 薄膜晶体管 | |
CN108172626A (zh) | 一种薄膜晶体管及其制备方法 | |
Choi et al. | Solution‐Processed PTCDI‐C8 Crystalline Wire: Dual Role as Mask and Active Layer for Organic Transistors with Increased Switching Speeds | |
Onojima et al. | Organic field-effect transistors based on single-crystalline active layer and top-gate insulator consistently fabricated by electrostatic spray deposition | |
CN101582451A (zh) | 薄膜晶体管 | |
CN104867980B (zh) | 薄膜晶体管及其阵列 | |
TWI658598B (zh) | N型薄膜電晶體的製備方法 | |
CN105810747A (zh) | N型薄膜晶体管 | |
Bong et al. | Fabrication of Highly Transparent Nanowire Transistors with One-Step-Processed Graphene Gate–Source–Drain Electrodes | |
Nouchi et al. | Water permeation pathways in laminated organic single-crystal devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |