CN104096313B - A kind of implantable neural electrical stimulation equipment and system - Google Patents
A kind of implantable neural electrical stimulation equipment and system Download PDFInfo
- Publication number
- CN104096313B CN104096313B CN201410270731.8A CN201410270731A CN104096313B CN 104096313 B CN104096313 B CN 104096313B CN 201410270731 A CN201410270731 A CN 201410270731A CN 104096313 B CN104096313 B CN 104096313B
- Authority
- CN
- China
- Prior art keywords
- stimulation
- module
- stimulator
- internal
- stimulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000638 stimulation Effects 0.000 title claims abstract description 104
- 230000001537 neural effect Effects 0.000 title description 2
- 230000004936 stimulating effect Effects 0.000 claims abstract description 58
- 241001465754 Metazoa Species 0.000 claims abstract description 32
- 230000005540 biological transmission Effects 0.000 claims abstract description 19
- 238000004891 communication Methods 0.000 claims abstract description 18
- 210000005036 nerve Anatomy 0.000 claims abstract description 14
- 210000000278 spinal cord Anatomy 0.000 claims abstract description 14
- 238000010171 animal model Methods 0.000 claims abstract description 9
- 239000004642 Polyimide Substances 0.000 claims abstract description 4
- 229920001721 polyimide Polymers 0.000 claims abstract description 4
- 230000003321 amplification Effects 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 15
- 238000000338 in vitro Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 10
- 230000001939 inductive effect Effects 0.000 claims description 9
- 238000002513 implantation Methods 0.000 claims description 8
- 230000007383 nerve stimulation Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 238000001727 in vivo Methods 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 210000001519 tissue Anatomy 0.000 claims description 6
- 210000003195 fascia Anatomy 0.000 claims description 5
- 210000003205 muscle Anatomy 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 238000002847 impedance measurement Methods 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 abstract description 19
- 208000020431 spinal cord injury Diseases 0.000 abstract description 8
- 238000011160 research Methods 0.000 abstract description 7
- 230000036592 analgesia Effects 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 abstract description 6
- 230000007659 motor function Effects 0.000 abstract description 6
- 238000011084 recovery Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 208000012902 Nervous system disease Diseases 0.000 abstract description 3
- 238000002560 therapeutic procedure Methods 0.000 abstract description 3
- 208000025966 Neurological disease Diseases 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 229920001296 polysiloxane Polymers 0.000 abstract description 2
- 208000018737 Parkinson disease Diseases 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 208000016261 weight loss Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 210000000944 nerve tissue Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 208000004404 Intractable Pain Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000007230 neural mechanism Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Electrotherapy Devices (AREA)
Abstract
本发明公开了一种植入式神经电刺激装置,包括个人数字助理(PDA)、体外控制器、体内刺激器和刺激电极。用户使用PDA记录实验动物信息、体内刺激器和刺激电极的工作状态,编程刺激参数并经双向无线射频通信传输至体外控制器;体外控制器与体内刺激器之间利用体内外线圈耦合进行数据和能量的经皮无线传输;体内刺激器采用生物兼容的硅胶材料密封,产生特定参数的刺激脉冲输出至手术植入硬膜外腔的刺激电极,实施脊髓神经电刺激;刺激电极为基于柔性电路板工艺的多触点电极,采用聚酰亚胺对多个镀金电极触点进行绝缘封装。本发明用于镇痛和促进脊髓损伤后运动功能康复的机理研究,也可用于帕金森等神经系统疾病电刺激疗法的动物实验研究。
The invention discloses an implanted nerve electrical stimulation device, which comprises a personal digital assistant (PDA), an external controller, an internal stimulator and a stimulating electrode. The user uses the PDA to record the experimental animal information, the working status of the internal stimulator and the stimulating electrode, program the stimulation parameters and transmit them to the external controller through two-way radio frequency communication; Percutaneous wireless transmission of energy; the internal stimulator is sealed with biocompatible silicone material, and the stimulation pulse with specific parameters is output to the stimulation electrode implanted in the epidural space for electrical stimulation of the spinal cord; the stimulation electrode is based on a flexible circuit board The multi-contact electrode of the technology uses polyimide to insulate and encapsulate multiple gold-plated electrode contacts. The invention is used for mechanism research of analgesia and promotion of motor function recovery after spinal cord injury, and can also be used for animal experiment research of electric stimulation therapy for neurological diseases such as Parkinson's disease.
Description
技术领域technical field
本发明属于植入式神经假体技术领域,更具体地,涉及一种植入式神经电刺激装置与系统。The invention belongs to the technical field of implantable neural prosthesis, and more specifically relates to an implantable electrical nerve stimulation device and system.
背景技术Background technique
硬膜外脊髓电刺激(epiduralspinalcordstimulation,ESCS)是指通过手术将电极植入脊髓硬膜外隙背侧后,电刺激器产生特定参数的刺激脉冲通过电极刺激脊髓组织,达到检测和治疗的目的。自20世纪70年代末以来,ESCS已在慢性顽固性疼痛治疗领域确立了不可低估的重要地位,除镇痛外,还被开发用于神经系统疾病的诊断、抑制震颤和促进运动功能恢复,尤其对于不完全脊髓损伤(incompletespinalcordinjury,ISCI)患者的行走功能恢复与重建有积极的治疗效果,近年成为神经系统与康复工程的研究热点。Epidural spinal cord stimulation (ESCS) refers to implanting electrodes into the dorsal side of the spinal epidural space through surgery, and the electrical stimulator generates stimulation pulses with specific parameters to stimulate the spinal cord tissue through the electrodes to achieve the purpose of detection and treatment. Since the late 1970s, ESCS has established an important position that cannot be underestimated in the field of chronic intractable pain treatment. In addition to analgesia, it has also been developed for the diagnosis of neurological diseases, inhibition of tremors, and promotion of motor function recovery, especially It has a positive therapeutic effect on the recovery and reconstruction of walking function in patients with incomplete spinal cord injury (incomplete spinal cordinjury, ISCI), and has become a research hotspot in nervous system and rehabilitation engineering in recent years.
目前临床应用的植入式神经电刺激器主要由Medtronic、BostonScientific、St.JudeMedical等公司提供,但这些产品主要用于镇痛,其刺激参数调整范围不能满足脊髓损伤后运动功能康复的需求,而且由于ESCS用于镇痛和促进脊髓损伤后运动功能恢复的机理目前尚不明确,迫切需要通过动物实验研究阐明该疗法的神经机制,指导临床应用,但已有的植入式刺激器产品根本不能用于小型实验动物(如大鼠等)的手术植入,同时价格昂贵,不适合动物实验,因此目前用于动物实验的可植入硬膜外脊髓电刺激装置是一空白。Implantable nerve electrical stimulators currently in clinical use are mainly provided by companies such as Medtronic, Boston Scientific, and St. Jude Medical, but these products are mainly used for analgesia, and the adjustment range of stimulation parameters cannot meet the needs of motor function rehabilitation after spinal cord injury. Since the mechanism of ESCS for analgesia and promoting the recovery of motor function after spinal cord injury is still unclear, it is urgent to elucidate the neural mechanism of this therapy through animal experiments and guide clinical application, but the existing implantable stimulator products cannot be used at all. It is used for surgical implantation of small experimental animals (such as rats, etc.), and is expensive and not suitable for animal experiments. Therefore, the implantable epidural spinal cord electrical stimulation device currently used for animal experiments is a blank.
中国发明专利ZL200510116704.6所述的“一种植入式神经电脉冲刺激系统”由植入人体内的脉冲发生器、导线电极、体外程控器、掌上电脑(PDA)、控制磁铁构成。该脉冲发生器由外部磁铁、体外程控器和PDA实现非接触式控制工作状态和调节脉冲参数,产生幅值、频率、脉宽等参数可调的电刺激脉冲,通过刺激电极对靶点区域实现电刺激,从而找到最佳电刺激治疗参数;还可通过PDA和程控器更新内部控制器的软件,从而无需手术也能实现产品软件的更新换代。该刺激装置利用体外发射线圈与体内接收线圈之间的磁耦合经皮传递数据,但其通讯距离短、数据传送率低。该刺激装置植入体内存在电池耗尽需二次手术的问题,而且不是专门针对动物实验设计,不适用于动物实验。The "implantable nerve electrical pulse stimulation system" described in Chinese invention patent ZL200510116704.6 is composed of a pulse generator implanted in the human body, wire electrodes, an external program controller, a handheld computer (PDA), and a control magnet. The pulse generator uses an external magnet, an external program controller and a PDA to realize non-contact control of the working state and adjustment of pulse parameters to generate electric stimulation pulses with adjustable parameters such as amplitude, frequency, and pulse width. Electrical stimulation, so as to find the best electrical stimulation treatment parameters; the software of the internal controller can also be updated through the PDA and the programmer, so that the product software can be updated without surgery. The stimulation device uses the magnetic coupling between the external transmitting coil and the internal receiving coil to transmit data percutaneously, but its communication distance is short and the data transmission rate is low. The implantation of the stimulating device in the body has the problem that the battery is exhausted and requires a second operation, and it is not specially designed for animal experiments, so it is not suitable for animal experiments.
中国发明专利ZL200610025658所述的“植入式可编程神经刺激器”具有无线信息和能量传输功能,包括通信单元、处理控制单元和电极驱动单元,通信单元通过无线射频方式与体外控制器相连,其后连接处理控制部分,处理控制部分后连接电极驱动部分以驱动电极阵列,通信部分对通过无线射频方式传入的能量和信息进行处理,处理控制部分使用FPGA实现对传入信息的解码、信息分配与传送控制、电极驱动电路的控制以及电源的控制,电极驱动部分使用模拟电路产生微电流或电压,并多次级联放大,以满足不同刺激所需的条件,同时还实现电荷累积消除的功能。该刺激器采用体外无线供能方法,专门针对患者设计,主要用于产生人工听觉、视觉,不是针对神经电刺激疗法的动物实验应用,采用钛或钛合金封装刺激器的方法提高了装置成本,不能很好满足动物实验调整多个体内刺激器刺激参数的要求,因此不适用于动物的分组实验。The "implantable programmable neurostimulator" described in Chinese invention patent ZL200610025658 has wireless information and energy transmission functions, including a communication unit, a processing control unit and an electrode drive unit. The communication unit is connected to the external controller through radio frequency. The processing control part is connected to the processing control part, and the electrode driving part is connected to drive the electrode array after the processing control part. The communication part processes the energy and information introduced by radio frequency, and the processing control part uses FPGA to realize the decoding and information distribution of the incoming information. With transmission control, electrode drive circuit control and power supply control, the electrode drive part uses analog circuits to generate micro-current or voltage, and multiple cascaded amplifications to meet the conditions required for different stimuli, and at the same time realize the function of charge accumulation and elimination . The stimulator adopts an in vitro wireless energy supply method and is specially designed for patients. It is mainly used to generate artificial hearing and vision, and is not aimed at the animal experiment application of nerve electrical stimulation therapy. The method of packaging the stimulator with titanium or titanium alloy increases the cost of the device. It cannot well meet the requirements of adjusting the stimulation parameters of multiple in vivo stimulators in animal experiments, so it is not suitable for group experiments of animals.
发明内容Contents of the invention
本发明的目的在于提供一种用于动物实验的全植入式神经电刺激装置,可实施脊髓硬膜外电刺激。本发明还提供了该刺激器的体外控制系统,个人数字助理(PDA,或称掌上电脑)通过体外控制器可控制多只刺激器同时工作。The purpose of the present invention is to provide a fully implanted nerve electrical stimulation device for animal experiments, which can implement spinal epidural electrical stimulation. The invention also provides an external control system of the stimulator. A personal digital assistant (PDA, or palmtop computer) can control multiple stimulators to work simultaneously through the external controller.
本发明公开了一种专门针对动物实验的全植入神经电刺激装置,用于镇痛和促进脊髓损伤后运动功能康复的机理研究,也可用于电刺激治疗帕金森、癫痫等其他神经系统疾病的动物实验研究。The invention discloses a fully implanted nerve electrical stimulation device specially aimed at animal experiments, which is used for mechanism research of analgesia and promotion of motor function recovery after spinal cord injury, and can also be used for electrical stimulation to treat Parkinson's, epilepsy and other nervous system diseases of animal experiments.
为实现上述目的,本发明提供了一种植入式神经电刺激装置,所述装置包括个人数字助理、体外控制器、体内刺激器和刺激电极,其中:To achieve the above object, the present invention provides an implantable electrical nerve stimulation device, which includes a personal digital assistant, an external controller, an internal stimulator and stimulating electrodes, wherein:
所述个人数字助理,用于记录实验动物信息、体内刺激器和刺激电极的工作状态信息,并提供设置刺激参数的人机界面,通过双向无线射频通信与体外控制器连接,将所述刺激参数传输到所述体外控制器,同时接收体外控制器发送来的体内刺激器和刺激电极的工作状态信息并显示;The personal digital assistant is used to record the experimental animal information, the internal stimulator and the working status information of the stimulating electrodes, and provides a man-machine interface for setting the stimulating parameters, and is connected with the external controller through two-way wireless radio frequency communication, and the stimulating parameters transmit to the external controller, and simultaneously receive and display the working status information of the internal stimulator and stimulating electrodes sent by the external controller;
所述体外控制器,用于与体内刺激器之间利用体内线圈和体外线圈的感性耦合,进行刺激参数和能量的经皮无线传输,接收体内刺激器和刺激电极的工作状态信息并通过无线射频通信传送给个人数字助理;The external controller is used for percutaneous wireless transmission of stimulation parameters and energy with the internal stimulator by using the inductive coupling between the internal coil and the external coil, receiving the working status information of the internal stimulator and the stimulating electrode and transmitting the information through radio frequency communication to personal digital assistants;
所述体内刺激器,用于根据所述刺激参数产生刺激脉冲输出至刺激电极,实施脊髓神经电刺激,同时通过测量电极与被刺激靶组织间的接触阻抗,获取刺激器和刺激电极在动物体内的工作状态信息。The in-vivo stimulator is used to generate stimulation pulses according to the stimulation parameters and output them to the stimulation electrodes to implement electrical stimulation of the spinal cord nerves, and at the same time obtain the stimulator and stimulation electrodes in the animal body by measuring the contact impedance between the electrodes and the stimulated target tissue. work status information.
在本发明的一个实施例中,所述体外控制器包括射频信号发生器、E类功率放大模块、能量和数据发射模块、射频收发器、微处理器、数据调制模块以及电池模块,其中:In one embodiment of the present invention, the in vitro controller includes a radio frequency signal generator, a class E power amplification module, an energy and data transmission module, a radio frequency transceiver, a microprocessor, a data modulation module and a battery module, wherein:
所述射频信号发生器与E类功率放大模块相连接,射频信号发生器产生射频载波经E类功率放大模块进行功率放大,E类功率放大模块输出连接至能量和数据发射模块,驱动能量和数据发射模块工作;The radio frequency signal generator is connected with the class E power amplification module, and the radio frequency signal generator generates a radio frequency carrier through the class E power amplification module for power amplification, and the output of the class E power amplification module is connected to the energy and data transmission module to drive energy and data The launch module works;
所述微处理器与射频收发器相连接,接收个人数字助理通过无线射频通信发送的刺激参数,发送体内刺激器通过负载调制模块经皮无线传来的刺激器和刺激电极工作状态信息至个人数字助理;The microprocessor is connected with the radio frequency transceiver, receives the stimulation parameters sent by the personal digital assistant through wireless radio frequency communication, and sends the working state information of the stimulator and the stimulating electrode wirelessly transmitted by the internal stimulator through the load modulation module to the personal digital assistant. assistant;
所述微处理器还与数据调制模块相连接,串行地输出刺激参数至数据调制模块,通过数据调制模块对E类功率放大模块输出至能量和数据发射模块的射频载波进行数据调制;The microprocessor is also connected to the data modulation module, and serially outputs stimulation parameters to the data modulation module, and performs data modulation on the radio frequency carrier output from the class E power amplification module to the energy and data transmission module through the data modulation module;
所述调制的射频信号载波通过体内外线圈的磁耦合传送至体内刺激器,完成能量和数据的经皮无线传输;The modulated radio frequency signal carrier is transmitted to the stimulator in the body through the magnetic coupling of the internal and external coils to complete the percutaneous wireless transmission of energy and data;
所述电池模块,用于对所述射频信号发生器和所述E类功率放大模块供电。The battery module is used to supply power to the radio frequency signal generator and the class E power amplification module.
在本发明的一个实施例中,所述的体内刺激器包括能量和数据接收模块、整流滤波模块、DC/DC变换模块、数据解调模块、微处理器、刺激波形产生模块、阻抗检测模块以及负载调制模块,其中:In one embodiment of the present invention, the internal stimulator includes an energy and data receiving module, a rectification and filtering module, a DC/DC conversion module, a data demodulation module, a microprocessor, a stimulation waveform generation module, an impedance detection module and load modulation module, where:
所述能量和数据接收模块,用于通过体内与体外线圈之间的磁耦合接收从体外控制器传来的能量与数据;The energy and data receiving module is used to receive the energy and data transmitted from the external controller through the magnetic coupling between the internal body and the external coil;
所述能量和数据接收模块,还用于与整流滤波模块连接,并通过整流滤波模块将能量传送给DC/DC变换模块,从而对微处理器和其后的刺激波形产生模块供电;The energy and data receiving module is also used to connect with the rectification and filtering module, and transmit the energy to the DC/DC conversion module through the rectification and filtering module, so as to supply power to the microprocessor and the subsequent stimulation waveform generation module;
所述能量和信息接收模块,还与数据解调模块相连,数据解调模块将能量和信息接收模块接收的数据调制波进行解调,并将解调出来的数据输出至微处理器;The energy and information receiving module is also connected to the data demodulation module, and the data demodulation module demodulates the data modulation wave received by the energy and information receiving module, and outputs the demodulated data to the microprocessor;
所述微处理器与刺激波形产生模块相连,根据所述解调的刺激参数控制刺激波形产生模块输出刺激脉冲至刺激电极;The microprocessor is connected to the stimulation waveform generation module, and controls the stimulation waveform generation module to output stimulation pulses to the stimulation electrodes according to the demodulated stimulation parameters;
所述阻抗检测模块通过在恒定直流电压激励下测量刺激回路电流大小获取刺激电极与被刺激组织之间的接触阻抗,确定刺激器和刺激电极的工作状态;The impedance detection module obtains the contact impedance between the stimulating electrode and the stimulated tissue by measuring the current of the stimulating circuit under constant DC voltage excitation, and determines the working status of the stimulator and the stimulating electrode;
所述负载调制模块与阻抗检测模块相连,用于根据发送数据对应的高低电平接入不同阻抗的负载至体内线圈,通过负载调制效应将体内刺激器和刺激电极的工作状态信息通过体内外线圈的耦合传送至体外控制器。The load modulation module is connected to the impedance detection module, and is used to connect loads of different impedances to the coil in the body according to the high and low levels corresponding to the transmitted data, and pass the working status information of the stimulator and the stimulating electrode in the body through the internal and external coils through the load modulation effect. The coupling is transmitted to the in vitro controller.
在本发明的一个实施例中,所述刺激电极为基于柔性电路板工艺的多触点电极,手术植入动物体内,通过电极两侧小孔采用椎骨棘突或肌肉筋膜固定方式降低电极植入后的移位发生率和失效率。In one embodiment of the present invention, the stimulating electrode is a multi-contact electrode based on the flexible circuit board technology, which is surgically implanted into the animal body, and the electrode implantation is lowered by fixing the vertebral spinous process or muscle fascia through the small holes on both sides of the electrode. The incidence of displacement and failure rate after entry.
在本发明的一个实施例中,所述刺激电极中,采用聚酰亚胺对多个镀金电极触点进行绝缘封装,两侧小孔用于在椎骨棘突或肌肉筋膜上进行电极的手术固定,降低电极手术植入后的移位发生率和失效率。In one embodiment of the present invention, polyimide is used to insulate and encapsulate a plurality of gold-plated electrode contacts in the stimulating electrodes, and the small holes on both sides are used for performing electrode operations on vertebral spinous processes or muscle fascia. Fixed to reduce the incidence of displacement and failure rate after surgical implantation of electrodes.
本发明还提供了一种植入式神经电刺激系统,所述系统包括一个个人数字助理、多个体外控制器、多个体内刺激器和多个刺激电极,其中:The present invention also provides an implantable electrical nerve stimulation system comprising a personal digital assistant, a plurality of external controllers, a plurality of internal stimulators and a plurality of stimulating electrodes, wherein:
所述个人数字助理,用于记录实验动物信息、体内刺激器和刺激电极的工作状态信息,并提供设置刺激参数的人机界面,通过双向无线射频通信连接至体外控制器,并将所述刺激参数传输到所述体外控制器,同时接收体外控制器传来的体内刺激器和刺激电极的工作状态信息并显示;The personal digital assistant is used to record the experimental animal information, the working state information of the internal stimulator and the stimulating electrode, and provide a man-machine interface for setting the stimulation parameters, connect to the external controller through two-way wireless radio frequency communication, and send the stimulation The parameters are transmitted to the external controller, and at the same time, the working status information of the stimulator and stimulating electrodes in the body is received and displayed by the external controller;
所述体外控制器,用于与体内刺激器之间利用体内线圈和体外线圈的感性耦合,进行刺激参数和能量的经皮无线传输,接收体内刺激器和刺激电极的工作状态信息并通过无线射频通信传送给个人数字助理;The external controller is used for percutaneous wireless transmission of stimulation parameters and energy with the internal stimulator by using the inductive coupling between the internal coil and the external coil, receiving the working status information of the internal stimulator and the stimulating electrode and transmitting the information through radio frequency communication to personal digital assistants;
所述体内刺激器,用于根据所述刺激参数产生刺激脉冲输出至手术植入硬膜外腔的刺激电极,实施脊髓神经电刺激;The stimulator in the body is used to generate stimulation pulses according to the stimulation parameters and output them to the stimulation electrodes surgically implanted in the epidural space, so as to implement electrical stimulation of spinal cord nerves;
所述体内刺激器,通过阻抗测量获取刺激器和刺激器电极的工作状态信息,利用体内线圈对体外线圈的负载调制将状态信息经皮无线传送至体外控制器;The in vivo stimulator obtains the working state information of the stimulator and the stimulator electrodes through impedance measurement, and uses the internal coil to modulate the load of the external coil to wirelessly transmit the state information to the external controller;
所述个人数字助理与多个体外控制器构成星形拓扑结构的网络,个人数字助理作为该星形网络的中心节点;The personal digital assistant and a plurality of in vitro controllers form a network of star topology, and the personal digital assistant serves as the central node of the star network;
通过电池供电的包含发射线圈的体外控制器置于动物所穿马夹口袋内,体外发射线圈与植入动物背部皮下刺激器的体内接收线圈准直正对;The external controller containing the transmitting coil powered by the battery is placed in the vest pocket worn by the animal, and the external transmitting coil is aligned with the internal receiving coil of the subcutaneous stimulator implanted in the back of the animal;
用户通过个人数字助理编程刺激参数并发送至多个体外控制器,体外控制器将刺激参数通过体内线圈和体外线圈的耦合经皮无线传送至对应的体内刺激器,控制体内刺激器产生特定参数的刺激脉冲连接至对应的刺激电极;体内刺激器测量获取刺激器和刺激电极的工作状态信息,通过体内线圈对体外线圈的负载调制将状态信息传送至体外控制器。The user programs the stimulation parameters through the personal digital assistant and sends them to multiple external controllers. The external controller transmits the stimulation parameters percutaneously and wirelessly to the corresponding internal stimulator through the coupling of the internal coil and the external coil, and controls the internal stimulator to generate stimulation with specific parameters. The pulses are connected to the corresponding stimulating electrodes; the internal stimulator measures the working status information of the stimulator and the stimulating electrodes, and transmits the status information to the external controller through the load modulation of the internal coil to the external coil.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:Generally speaking, compared with the prior art, the above technical solution conceived by the present invention has the following beneficial effects:
1、采用无线数据传输技术,个人数字助理、体内刺激器与体外控制器均通过无线信号进行通信,并可组成无线网络进行管理,可构建多组刺激器同时工作的控制系统,可由PDA发送控制命令字为多个体外控制器编程刺激参数,并通过体外控制器控制对应体内刺激器工作,提供了分组动物实验方案的实时定制实施;1. Using wireless data transmission technology, personal digital assistants, internal stimulators and external controllers all communicate through wireless signals, and can form a wireless network for management, and can build a control system for multiple groups of stimulators to work at the same time, which can be sent and controlled by PDA The command word programs stimulation parameters for multiple in vitro controllers, and controls the work of corresponding in vivo stimulators through the in vitro controllers, providing real-time customized implementation of grouped animal experimental programs;
2、采用无线能量传递方式对体内刺激器进行经皮供能,实现了数据和能量的同时传输,避免了体外电池供电的经皮导线而引起的感染风险和一次性电池耗尽造成的手术更换风险,为长期动物实验提供了先进手段;2. The wireless energy transfer method is used to provide percutaneous energy to the stimulator in the body, realizing the simultaneous transmission of data and energy, avoiding the infection risk caused by the external battery-powered percutaneous lead and the surgical replacement caused by the exhaustion of the disposable battery risk, providing advanced means for long-term animal experiments;
3、体内刺激电路输出参数灵活可调的刺激脉冲,并产生电荷平衡的双相脉冲波形,消除电荷积累引起的电化学反应;利用阻抗检测及负载调制将刺激器和刺激电极的工作状态信息无线经皮传送至体外控制器,经无线射频通信发送至PDA,为实验人员及时了解实验状态提供便捷手段;采用生物兼容的硅胶材料封装,降低装置成本,特别适合用于动物实验研究;3. The stimulation circuit in the body outputs stimulation pulses with flexible and adjustable parameters, and generates a charge-balanced biphasic pulse waveform to eliminate the electrochemical reaction caused by charge accumulation; use impedance detection and load modulation to wirelessly transmit the working status information of the stimulator and stimulation electrodes It is transmitted percutaneously to the in vitro controller and sent to the PDA via radio frequency communication, providing a convenient means for the experimenters to keep abreast of the experiment status; it is packaged with biocompatible silicone material to reduce the cost of the device, and is especially suitable for animal experiment research;
4、刺激电极为基于柔性电路板工艺的多触点电极,手术植入动物体内,通过电极两侧小孔采用椎骨棘突或肌肉筋膜固定方式降低电极植入后的移位发生率和失效率,电极的成本低,特别适合用于动物实验研究;4. The stimulating electrode is a multi-contact electrode based on the flexible circuit board technology. It is surgically implanted in the animal body, and the vertebral spinous process or muscle fascia is fixed through the small holes on both sides of the electrode to reduce the incidence of displacement and failure of the electrode after implantation. The rate, the cost of the electrode is low, especially suitable for animal experiment research;
5、本发明所述的神经电刺激器可应用于大鼠等小型实验动物对相应脊髓节段实施硬膜外脊髓电刺激,研究ESCS的镇痛机制、ESCS对脊髓损伤部位神经再生的作用以及ESCS对脊髓内中枢模式产生器的作用机制,阐明ESCS镇痛和促进脊髓损伤后运动功能康复的疗效及机理,指导ESCS的临床应用,因此本发明具有较高的科学意义及重要的经济价值。5. The electrical nerve stimulator of the present invention can be applied to small experimental animals such as rats to implement epidural electrical stimulation of the spinal cord to study the analgesic mechanism of ESCS, the effect of ESCS on nerve regeneration at the site of spinal cord injury and The action mechanism of ESCS on the central pattern generator in the spinal cord clarifies the efficacy and mechanism of ESCS in analgesia and promotion of motor function recovery after spinal cord injury, and guides the clinical application of ESCS. Therefore, the present invention has high scientific significance and important economic value.
附图说明Description of drawings
图1为本发明的植入式神经电刺激装置的结构示意图;Fig. 1 is the structural representation of the implantable electrical nerve stimulation device of the present invention;
图2为本发明一实施例中PDA与多个体外控制器射频无线通信所使用的控制命令字;Fig. 2 is the control command word used by PDA and a plurality of in vitro controller radio frequency wireless communication in one embodiment of the present invention;
图3为本发明一实施例中的刺激波形产生示意图;Fig. 3 is a schematic diagram of stimulation waveform generation in an embodiment of the present invention;
图4为本发明一实施例中的硬膜外刺激电极结构图;Fig. 4 is a structural diagram of the epidural stimulating electrode in an embodiment of the present invention;
图5为本发明一实施例中用于分组动物实验的示意图;Fig. 5 is a schematic diagram for grouping animal experiments in an embodiment of the present invention;
图6为本发明一实施例中用于脊髓电刺激和减重训练组合疗法的动物实验研究示意图。Fig. 6 is a schematic diagram of an animal experimental study for the combination therapy of spinal cord electrical stimulation and weight loss training in an embodiment of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
本发明的系统构成如图1所示,包括个人数字助理(PDA)、体外控制器、体内刺激器和刺激电极。用户通过PDA编程刺激参数、记录实验动物信息和体内刺激器的工作状态信息,PDA通过双向无线射频通信与体外控制器相连接,体外控制器利用体内线圈1和体外线圈2之间的感性连接将PDA编程的刺激参数和能量无线传输给体内刺激器,体内刺激器根据刺激参数产生需要的刺激脉冲输出至刺激电极实施神经电刺激,同时体内刺激器通过监测电极状态,利用体内外线圈之间的感性连接将信息反馈回体外控制器,体外控制器通过无线射频方式传送给PDA。The system composition of the present invention is shown in Figure 1, including a personal digital assistant (PDA), an external controller, an internal stimulator and stimulating electrodes. The user programs the stimulation parameters through the PDA, records the experimental animal information and the working status information of the internal stimulator, and the PDA is connected with the external controller through two-way radio frequency communication. The stimulation parameters and energy programmed by the PDA are wirelessly transmitted to the internal stimulator, and the internal stimulator generates the required stimulation pulse output to the stimulating electrode according to the stimulation parameters to perform nerve electrical stimulation. The inductive connection feeds the information back to the external controller, and the external controller transmits it to the PDA through radio frequency.
体外控制器通过发送特定格式的命令控制字(图2)将编程的刺激脉冲参数和选择的工作模式传送至实验动物的体内刺激器,其中校验码用于标识控制命令字,模式选择则包括刺激模式和阻抗检测模式:若为刺激模式,体内刺激器根据接收的控制命令字所对应的刺激脉冲参数产生两路刺激脉冲信号u1和u2(图3),并通过具有TEFLON镀层的多股不锈钢丝焊接到镀金过孔9分别连接至电极触点6和电极触点7(图4),合成负相3在前、正相5在后、正负相之间有一定时间段4间隔的电荷平衡双相刺激波形ustim刺激神经组织,同时消除电荷积累引起的电化学反应,避免损伤生物的神经组织,正、负相波形间的时间间隔使得正相平衡波形不会阻断负相刺激波形引起的动作电位传播;若为阻抗检测模式,体外控制器将接收体内刺激器和刺激电极的工作状态信息并传送至PDA。The in vitro controller transmits the programmed stimulation pulse parameters and selected working mode to the in vivo stimulator of the experimental animal by sending a command control word in a specific format (Figure 2), where the check code is used to identify the control command word, and the mode selection includes Stimulation mode and impedance detection mode: if it is the stimulation mode, the stimulator in the body generates two stimulation pulse signals u 1 and u 2 according to the stimulation pulse parameters corresponding to the received control command word (Fig. Strands of stainless steel wire are welded to gold-plated vias 9 and respectively connected to electrode contacts 6 and 7 (Figure 4), and the composite negative phase 3 is in front, positive phase 5 is behind, and there is a certain period of time 4 intervals between positive and negative phases The charge-balanced biphasic stimulation waveform ustim stimulates nerve tissue while eliminating the electrochemical reaction caused by charge accumulation and avoiding damage to biological nerve tissue. The time interval between the positive and negative phase waveforms makes the positive phase balance waveform not block the negative phase stimulation The action potential propagation caused by the waveform; if it is in the impedance detection mode, the external controller will receive the working status information of the stimulator and stimulating electrodes in the body and send it to the PDA.
刺激电极采用柔性电路板技术制作,如图4所示,利用聚酰亚胺对镀金电极触点6和7进行绝缘封装,将刺激电极手术植入目标组织,通过电极中间部分的两侧小孔8采用椎骨棘突或肌肉筋膜固定方式降低植入后的移位发生率和失效率。The stimulating electrodes are made with flexible circuit board technology, as shown in Figure 4, the gold-plated electrode contacts 6 and 7 are insulated and packaged with polyimide, and the stimulating electrodes are surgically implanted into the target tissue, passing through the small holes on both sides of the middle part of the electrodes 8 Use vertebral spinous process or muscle fascia fixation to reduce the incidence of displacement and failure rate after implantation.
本发明可用于动物分组实验,如图5所示,个人数字助理(PDA)10与多个体外控制器11构成星形拓扑结构的网络,同时个人数字助理10作为该星形网络的中心节点。将电池供电的包含发射线圈1的体外控制器8置于动物所穿马夹口袋13内,发射线圈1与植入动物背部皮下体内刺激器12所包含的接收线圈2准直正对,用户通过个人数字助理10编程刺激参数并发送至多个体外控制器11,体外控制器11将刺激参数通过体内线圈1和体外线圈2的耦合经皮无线传送至体内刺激器12,控制体内刺激器产生特定参数的刺激脉冲连接至刺激电极14。The present invention can be used for animal grouping experiments, as shown in Figure 5, a personal digital assistant (PDA) 10 and a plurality of in vitro controllers 11 form a star topology network, and the personal digital assistant 10 is the central node of the star network. Place the battery-powered in vitro controller 8 containing the transmitting coil 1 in the vest pocket 13 worn by the animal. The transmitting coil 1 is aligned with the receiving coil 2 contained in the subcutaneous in vivo stimulator 12 implanted in the back of the animal. The assistant 10 programs the stimulation parameters and sends them to multiple external controllers 11. The external controllers 11 transmit the stimulation parameters percutaneously and wirelessly to the internal stimulator 12 through the coupling of the internal coil 1 and the external coil 2, and control the internal stimulator to generate stimulation with specific parameters. The pulses are connected to stimulating electrodes 14 .
本发明可用于减重训练和脊髓电刺激组合疗法的动物实验研究,如图6所示,铝片16与跑台18的减重杠杆17相连接,将电池供电的包含发射线圈1的体外控制器11固定于铝片的外侧表面,动物所穿马夹19的背部通过铝片16内侧表面的尼龙搭扣15与铝片16粘牢,同时体外控制器11的发射线圈1与植入动物背部皮下体内刺激器12的接收线圈2准直正对。用户通过个人数字助理10编程刺激参数并发送至体外控制器11,体外控制器11将刺激参数通过体内线圈1和体外线圈2的耦合经皮无线传送至体内刺激器12,控制体内刺激器12产生特定参数的刺激脉冲传送至植入脊髓硬膜外腔的刺激电极14,实施脊髓电刺激。The present invention can be used for the animal experiment research of combination therapy of weight loss training and spinal cord electrical stimulation, as shown in Figure 6, the aluminum sheet 16 is connected with the weight reduction lever 17 of the treadmill 18, and the battery-powered external control system comprising the transmitting coil 1 The device 11 is fixed on the outer surface of the aluminum sheet, and the back of the vest 19 worn by the animal is adhered to the aluminum sheet 16 through the Velcro 15 on the inner surface of the aluminum sheet 16. The receiving coil 2 of the internal body stimulator 12 is collimated and facing directly. The user programs the stimulation parameters through the personal digital assistant 10 and sends them to the external controller 11, and the external controller 11 transmits the stimulation parameters percutaneously and wirelessly to the internal stimulator 12 through the coupling of the internal coil 1 and the external coil 2, and controls the internal stimulator 12 to generate Stimulation pulses with specific parameters are transmitted to the stimulation electrodes 14 implanted in the epidural space of the spinal cord to implement electrical stimulation of the spinal cord.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410270731.8A CN104096313B (en) | 2014-06-17 | 2014-06-17 | A kind of implantable neural electrical stimulation equipment and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410270731.8A CN104096313B (en) | 2014-06-17 | 2014-06-17 | A kind of implantable neural electrical stimulation equipment and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104096313A CN104096313A (en) | 2014-10-15 |
CN104096313B true CN104096313B (en) | 2016-04-20 |
Family
ID=51665099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410270731.8A Active CN104096313B (en) | 2014-06-17 | 2014-06-17 | A kind of implantable neural electrical stimulation equipment and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104096313B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3498334A3 (en) * | 2017-12-12 | 2019-07-24 | Samsung Electronics Co., Ltd. | Medical device apparatus, system, and method |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104587599B (en) * | 2015-01-16 | 2016-10-12 | 江苏科技大学 | The injection nerve stimulator that a kind of micro cell is powered |
CN104874102A (en) * | 2015-04-02 | 2015-09-02 | 中国科学院苏州生物医学工程技术研究所 | Multi-channel wireless closed loop deep brain neural sensing and control system |
DE102015108861A1 (en) * | 2015-06-03 | 2016-12-08 | Cortec Gmbh | Method and apparatus for neurostimulation |
US20180236240A1 (en) * | 2015-08-18 | 2018-08-23 | University Of Louisville Research Foundation, Inc. | Sync pulse detector |
CN105126258B (en) * | 2015-10-10 | 2017-11-03 | 中国科学院苏州生物医学工程技术研究所 | A kind of wireless program-controlled light stimulation device |
CN105311750B (en) * | 2015-11-09 | 2017-09-26 | 杭州承诺医疗科技有限公司 | A kind of sacral nerve stimulation system |
CN105327449B (en) * | 2015-12-01 | 2017-11-17 | 杭州承诺医疗科技有限公司 | A kind of sacral nerve stimulator program control instrument |
CN106075723B (en) * | 2016-06-06 | 2018-12-28 | 清华大学 | A kind of implantation-sticking type electrical stimulation device |
EP4385398A3 (en) * | 2016-11-16 | 2024-07-31 | ONWARD Medical N.V. | An active closed-loop medical system |
CN106821328A (en) * | 2017-03-16 | 2017-06-13 | 中国科学院半导体研究所 | Totally implantable optical modalities |
CN107158562B (en) * | 2017-04-28 | 2020-08-28 | 中国人民解放军第三军医大学第一附属医院 | Special in vivo and vitro electric energy coupling power transmission device for spinal cord electrical stimulation |
DE20168827T1 (en) * | 2017-06-30 | 2021-01-21 | Gtx Medical B.V. | NEUROMODULATION SYSTEM |
CN109806497B (en) * | 2017-11-20 | 2023-04-18 | 李顺裕 | Medical system with artificial intelligence and Internet of things functions |
CN109248376A (en) * | 2018-08-24 | 2019-01-22 | 上海华聆人工耳医疗科技有限公司 | A kind of artificial cochlea's radio frequency data transmission method |
CN109381787B (en) * | 2018-09-10 | 2023-10-31 | 清华大学 | Method and apparatus for detecting cross electric pulse of implanted medical instrument |
CN109091753A (en) * | 2018-11-08 | 2018-12-28 | 常州瑞神安医疗器械有限公司 | A kind of spinal cord stimulation electrode with temperature sense function |
CN109603007A (en) * | 2018-12-07 | 2019-04-12 | 浙江大学 | An implantable electrical stimulation device based on magnetic coupling resonance wireless energy transmission |
CN110064130A (en) * | 2019-04-17 | 2019-07-30 | 上海黎欧生物科技有限公司 | A kind of gall-bladder pacemaker |
CN110327547B (en) * | 2019-07-17 | 2024-05-10 | 杭州承诺医疗科技有限公司 | Deep brain electric stimulation system with multiple channels and multiple stimulation sources |
CN110665117A (en) * | 2019-09-02 | 2020-01-10 | 苏州科量波尔电子科技有限公司 | Implantable rehabilitation device and working method thereof |
CN110801223B (en) * | 2019-09-30 | 2021-09-14 | 昆明理工大学 | Wireless brain deep nerve interface system |
CN110755741A (en) * | 2019-10-18 | 2020-02-07 | 上海力声特医学科技有限公司 | Artificial cochlea |
CN111167012A (en) * | 2020-01-06 | 2020-05-19 | 哈尔滨理工大学 | Implantable neural stimulator system based on radio frequency energy power supply |
EP3866684B1 (en) * | 2020-01-09 | 2022-10-26 | Synergia Medical | Active implantable stimulating device for on-demand stimulation of a vagus nerve |
CN111184946A (en) * | 2020-04-09 | 2020-05-22 | 深圳市中科先见医疗科技有限公司 | Electrode impedance detection circuit and method of implantable device |
CN111420281A (en) * | 2020-05-07 | 2020-07-17 | 博睿康科技(常州)股份有限公司 | brain neuroregulator |
WO2021223702A1 (en) * | 2020-05-07 | 2021-11-11 | 博睿康科技(常州)股份有限公司 | Cranial nerve regulator |
CN111643812A (en) * | 2020-06-17 | 2020-09-11 | 科斗(苏州)脑机科技有限公司 | Wireless stimulation device |
CN112386795B (en) * | 2020-11-18 | 2024-12-31 | 北京大学人民医院 | An implantable neural electrical stimulation system |
CN112426623A (en) * | 2020-12-03 | 2021-03-02 | 浙江诺尔康神经电子科技股份有限公司 | Implanted nerve electrical stimulation asymmetric compensation system and method |
CN113069686A (en) * | 2021-03-05 | 2021-07-06 | 昆明医科大学第一附属医院 | A equipment for spinal cord electricity stimulation |
US20240042218A1 (en) * | 2021-04-16 | 2024-02-08 | Beijing Leading Innovation Medical Valley Co., Ltd | Implantable nerve stimulator system |
WO2024023719A1 (en) * | 2022-07-27 | 2024-02-01 | Multi-Scale Medical Robotics Center Limited | Wirelessly powered electrical stimulation systems and related methods |
CN116271516B (en) * | 2023-03-29 | 2023-11-14 | 中国人民解放军军事科学院军事医学研究院 | A spinal epidural implantation of multimodal patch electrodes |
CN116617564A (en) * | 2023-05-17 | 2023-08-22 | 北京领创医谷科技发展有限责任公司 | Stimulator control method and system |
CN116549849A (en) * | 2023-05-17 | 2023-08-08 | 北京领创医谷科技发展有限责任公司 | Method and system for detecting impedance state of stimulator |
CN116421887A (en) * | 2023-05-17 | 2023-07-14 | 北京领创医谷科技发展有限责任公司 | Soft start control method and system of stimulator |
CN116510179A (en) * | 2023-05-17 | 2023-08-01 | 北京领创医谷科技发展有限责任公司 | Stimulator control method and system based on multi-balance stimulation strategy |
CN118681133A (en) * | 2023-05-31 | 2024-09-24 | 上海杉翎医疗科技有限公司 | Devices for stimulating peripheral nerves |
CN118750779B (en) * | 2024-09-05 | 2025-02-18 | 杭州神络医疗科技有限公司 | Implantable medical device and wireless energy transmission method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5735887A (en) * | 1996-12-10 | 1998-04-07 | Exonix Corporation | Closed-loop, RF-coupled implanted medical device |
CN1597011B (en) * | 2004-07-27 | 2011-06-29 | 天津大学 | external deep brain stimulator |
-
2014
- 2014-06-17 CN CN201410270731.8A patent/CN104096313B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3498334A3 (en) * | 2017-12-12 | 2019-07-24 | Samsung Electronics Co., Ltd. | Medical device apparatus, system, and method |
Also Published As
Publication number | Publication date |
---|---|
CN104096313A (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104096313B (en) | A kind of implantable neural electrical stimulation equipment and system | |
US11679257B2 (en) | Method of treating an overactive bladder condition | |
CN107427683B (en) | For can plant the improvement antenna and application method of nerve stimulator | |
CN105025984B (en) | Devices and methods for connecting implantable devices to wireless energy | |
AU2006261666B2 (en) | Improvements to an implant, system and method using implanted passive conductors for routing electrical current | |
US20050283202A1 (en) | Neuromodulation system | |
CN101357251B (en) | Multichannel nerve electric stimulation transmission device based on micro-coil array | |
US20090326611A1 (en) | Method of Powering Implanted Devices by Direct Transfer of Electrical Energy | |
CN107847731A (en) | Implantable nerve stimulator and application method with the internal electronic equipment without ASIC | |
US9345878B2 (en) | System and method for compensating for shifting of neurostimulation leads in a patient | |
EP2968942A1 (en) | Wireless implantable power receiver system and methods | |
JP2016507335A (en) | Nerve stimulation system with increased flexibility to generate composite pulse trains | |
CN109011141B (en) | Monophasic constant current electrical stimulator for rat brain | |
WO2008080073A2 (en) | Implantable neuromodulation system including wirelessly connected pulse generator and electrode array assembly | |
WO2023061233A1 (en) | Charging control method for external charger, and related apparatus | |
CN215025235U (en) | Spinal cord nerve stimulator | |
CN116672606A (en) | Percutaneous spinal cord electric stimulation device and method | |
JP2024512091A (en) | Systems, implant units, and methods for the treatment of headache and facial pain | |
WO2023014735A1 (en) | Systems and methods for inducing muscle contraction | |
CN202637718U (en) | Wireless electromyography feedback electric stimulator | |
CN110384861B (en) | Injectable piezoelectric transducer, injection device, nerve stimulation system and method | |
Becerra Fajardo | Microcontrolled injectable stimulators based on electronic rectification of high frequency current bursts | |
CN108498945A (en) | Flush type nerve electric stimulation device in a kind of non-transformer body | |
AU2013206581A1 (en) | Improvements to an implant, system and method using implanted passive conductors for routing electrical current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |