CN104058399B - A kind of direct preparation method of high-purity and high-quality graphene - Google Patents
A kind of direct preparation method of high-purity and high-quality graphene Download PDFInfo
- Publication number
- CN104058399B CN104058399B CN201410341304.4A CN201410341304A CN104058399B CN 104058399 B CN104058399 B CN 104058399B CN 201410341304 A CN201410341304 A CN 201410341304A CN 104058399 B CN104058399 B CN 104058399B
- Authority
- CN
- China
- Prior art keywords
- graphene
- acid
- iodo
- washing
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 187
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 168
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 26
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 25
- 239000002904 solvent Substances 0.000 claims abstract description 20
- 238000005406 washing Methods 0.000 claims abstract description 20
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 19
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 19
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 18
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 18
- 239000002253 acid Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 11
- 239000003960 organic solvent Substances 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 239000006227 byproduct Substances 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 33
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 30
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 24
- 239000000725 suspension Substances 0.000 claims description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- 239000004215 Carbon black (E152) Substances 0.000 claims description 17
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 14
- 125000001153 fluoro group Chemical group F* 0.000 claims description 14
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 claims description 14
- 238000010992 reflux Methods 0.000 claims description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- -1 hexabromo (iodo) tetrachloranthracene Chemical compound 0.000 claims description 12
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 11
- 125000002346 iodo group Chemical group I* 0.000 claims description 11
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 10
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 9
- 229910052794 bromium Inorganic materials 0.000 claims description 9
- 229910052740 iodine Inorganic materials 0.000 claims description 9
- 239000011630 iodine Substances 0.000 claims description 9
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 claims description 8
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- 239000012043 crude product Substances 0.000 claims description 7
- 239000011737 fluorine Substances 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 5
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 235000011054 acetic acid Nutrition 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 4
- 235000019253 formic acid Nutrition 0.000 claims description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 4
- 229940071870 hydroiodic acid Drugs 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 235000006408 oxalic acid Nutrition 0.000 claims description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 235000010290 biphenyl Nutrition 0.000 claims description 3
- 239000004305 biphenyl Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- DFQINEQPWLUOEL-UHFFFAOYSA-N 1,2,3,4,5,10-hexabromo-6,7,8,9-tetrachloropyrene Chemical compound BrC=1C(=C2C(=C(C(=C3C(=C(C4=C(C(=C(C1C4=C32)Cl)Cl)Cl)Cl)Br)Br)Br)Br)Br DFQINEQPWLUOEL-UHFFFAOYSA-N 0.000 claims description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 239000007810 chemical reaction solvent Substances 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 claims description 2
- 150000008282 halocarbons Chemical class 0.000 claims description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims 2
- 125000001246 bromo group Chemical group Br* 0.000 claims 2
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 claims 1
- 238000005554 pickling Methods 0.000 claims 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 abstract description 19
- 238000004377 microelectronic Methods 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 229910002804 graphite Inorganic materials 0.000 description 12
- 239000010439 graphite Substances 0.000 description 12
- CAYGQBVSOZLICD-UHFFFAOYSA-N hexabromobenzene Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1Br CAYGQBVSOZLICD-UHFFFAOYSA-N 0.000 description 11
- 230000007935 neutral effect Effects 0.000 description 10
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 9
- 238000004299 exfoliation Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 230000033116 oxidation-reduction process Effects 0.000 description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 238000000967 suction filtration Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000004729 solvothermal method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229950011008 tetrachloroethylene Drugs 0.000 description 4
- OVRRJBSHBOXFQE-UHFFFAOYSA-N 1,1,2,2-tetrabromoethene Chemical group BrC(Br)=C(Br)Br OVRRJBSHBOXFQE-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229960004756 ethanol Drugs 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- QNMKKFHJKJJOMZ-UHFFFAOYSA-N hexaiodobenzene Chemical compound IC1=C(I)C(I)=C(I)C(I)=C1I QNMKKFHJKJJOMZ-UHFFFAOYSA-N 0.000 description 2
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 1
- AQPHBYQUCKHJLT-UHFFFAOYSA-N 1,2,3,4,5-pentabromo-6-(2,3,4,5,6-pentabromophenyl)benzene Chemical group BrC1=C(Br)C(Br)=C(Br)C(Br)=C1C1=C(Br)C(Br)=C(Br)C(Br)=C1Br AQPHBYQUCKHJLT-UHFFFAOYSA-N 0.000 description 1
- CAWIJYVUVPFQRC-UHFFFAOYSA-N 1-bromo-2,3,4,5-tetrachloro-6-(2,3,4,5,6-pentachlorophenyl)benzene Chemical group ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Br CAWIJYVUVPFQRC-UHFFFAOYSA-N 0.000 description 1
- RZTDESRVPFKCBH-UHFFFAOYSA-N 1-methyl-4-(4-methylphenyl)benzene Chemical group C1=CC(C)=CC=C1C1=CC=C(C)C=C1 RZTDESRVPFKCBH-UHFFFAOYSA-N 0.000 description 1
- OTYYBJNSLLBAGE-UHFFFAOYSA-N CN1C(CCC1)=O.[N] Chemical compound CN1C(CCC1)=O.[N] OTYYBJNSLLBAGE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical group ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Chemical class CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- RBNPOMFGQQGHHO-UHFFFAOYSA-N glyceric acid Chemical compound OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pent-2-ene Chemical group CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000007540 photo-reduction reaction Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种高纯度高质量石墨烯的直接制备方法,属于化学合成技术领域。本发明方法以碱金属或碱土金属和多卤代烃为原料,通过在惰性环境下的多卤代烃本体或良性溶剂中进行金属偶联反应直接制得石墨烯,再利用醇、水或酸与剩余活泼碱金属或碱土金属反应制得高质量石墨烯;而后经过有机溶剂洗涤、酸洗、水洗、过滤、干燥等处理程序后制得高纯度石墨烯。本发明方法具有设备简单,操作容易,成本低廉,副产物少、高产率及高纯度等优点,本发明制得的石墨烯作为化学反应原料,导电材料制备、催化剂载体,电池电极材料,物理学,微电子学方面具有广泛应用前景。
The invention discloses a direct preparation method of high-purity and high-quality graphene, which belongs to the technical field of chemical synthesis. The method of the invention takes alkali metals or alkaline earth metals and polyhalogenated hydrocarbons as raw materials, and directly prepares graphene by performing metal coupling reaction in polyhalogenated hydrocarbons or benign solvents in an inert environment, and then uses alcohol, water or acid. High-quality graphene is obtained by reacting with the remaining active alkali metal or alkaline earth metal; and then high-purity graphene is obtained after processing procedures such as organic solvent washing, acid washing, water washing, filtration, and drying. The method of the invention has the advantages of simple equipment, easy operation, low cost, few by-products, high yield and high purity. , has broad application prospects in microelectronics.
Description
技术领域technical field
本发明涉及石墨烯制备方法,属于石墨烯化学合成技术领域。The invention relates to a graphene preparation method, and belongs to the technical field of graphene chemical synthesis.
背景技术Background technique
石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯(Graphene)是近年来广泛研究的一种新型碳材料。Graphene is a new material with a single-layer sheet structure composed of carbon atoms. It is a two -dimensional material with a thickness of only one carbon atom. Graphene is currently the thinnest but also the hardest nanomaterial in the world. It is almost completely transparent and absorbs only 2.3% of light; its thermal conductivity is as high as 5300W/m K, which is higher than that of carbon nanotubes and diamonds. The mobility exceeds 15000cm2/V·s, which is higher than that of carbon nanotubes or silicon crystals, while the resistivity is only about 10 -6 Ω·cm, which is lower than that of copper or silver, making it the material with the smallest resistivity in the world. Because of its extremely low resistivity and extremely fast electron migration, it is expected to be used to develop a new generation of electronic components or transistors that are thinner and conduct electricity faster. Since graphene is essentially a transparent and good conductor, it is also suitable for making transparent touch screens, light panels, and even solar cells. Graphene is a new type of carbon material that has been extensively studied in recent years.
石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂。Graphene has a wide range of applications. According to the ultra-thin and super-strength characteristics of graphene, graphene can be widely used in various fields, such as ultra-light body armor, ultra-thin and ultra-light aircraft materials, etc. According to its excellent electrical conductivity, it also has great application potential in the field of microelectronics. Graphene has the potential to be a substitute for silicon, making ultra-tiny transistors for future supercomputers, where carbon's higher electron mobility could enable future computers to achieve higher speeds. In addition, graphene material is also an excellent modifier. In the field of new energy such as supercapacitors and lithium-ion batteries, due to its high conductivity and high specific surface area, it can be used as an electrode material assistant.
石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100万纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂;第二:石墨烯是世界上导电性最好的材料。Graphene is by far the strongest material in the world. It is estimated that if graphene is used to make a film with a thickness equivalent to the thickness of an ordinary food plastic packaging bag (thickness is about 1 million nanometers), it will be able to withstand about two tons of heavy items. Pressure without breaking; second: Graphene is the most conductive material in the world.
石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂。Graphene has a wide range of applications. According to the ultra-thin and super-strength characteristics of graphene, graphene can be widely used in various fields, such as ultra-light body armor, ultra-thin and ultra-light aircraft materials, etc. According to its excellent electrical conductivity, it also has great application potential in the field of microelectronics. Graphene has the potential to be a replacement for silicon, making ultra-tiny transistors for future supercomputers, where carbon's higher electron mobility could enable future computers to achieve higher speeds. In addition, graphene material is also an excellent modifier. In the field of new energy such as supercapacitors and lithium-ion batteries, due to its high conductivity and high specific surface area, it can be used as an electrode material assistant.
石墨烯的研究热潮也吸引了国内外材料制备研究的兴趣,石墨烯材料的制备方法已报道的有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法、有机合成法和碳纳米管剥离法等。The research boom of graphene has also attracted the interest of material preparation research at home and abroad. The preparation methods of graphene materials have been reported as follows: mechanical exfoliation method, chemical oxidation method, crystal epitaxy growth method, chemical vapor deposition method, organic synthesis method and carbon Nanotube exfoliation, etc.
微机械剥离法micromechanical peeling
2004年,Geim等首次用微机械剥离法,成功地从高定向热裂解石墨上剥离并观测到单层石墨烯。Geim研究组利用这一方法成功制备了准二维石墨烯并观测到其形貌,揭示了石墨烯二维晶体结构存在的原因。微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,只能作为实验室小规模制备。In 2004, Geim et al. used the micromechanical exfoliation method for the first time to successfully exfoliate and observe single-layer graphene from highly oriented thermally cracked graphite. Using this method, Geim's research group successfully prepared quasi-two-dimensional graphene and observed its morphology, revealing the reason for the existence of graphene's two-dimensional crystal structure. The micromechanical exfoliation method can prepare high-quality graphene, but it has the disadvantages of low yield and high cost.
化学气相沉积法chemical vapor deposition
化学气相沉积法(Chemical Vapor Deposition,CVD)首次在规模化制备石墨烯的问题方面有了新的突破(参考化学气相沉积法制备高质量石墨烯)。CVD法是指反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术,麻省理工学院的Kong等、韩国成均馆大学的Hong等和普渡大学的Chen等在利用CVD法制备石墨烯。他们使用的是一种以镍为基片的管状简易沉积炉,通入含碳气体,如:碳氢化合物,它在高温下分解成碳原子沉积在镍的表面,形成石墨烯,通过轻微的化学刻蚀,使石墨烯薄膜和镍片分离得到石墨烯薄膜。这种薄膜在透光率为80%时电导率即可达到1.1×106S/m,成为透明导电薄膜的潜在替代品。用CVD法可以制备出高质量大面积的石墨烯,但是理想的基片材料单晶镍的价格太昂贵,这可能是影响石墨烯工业化生产的重要因素。CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。For the first time, chemical vapor deposition (Chemical Vapor Deposition, CVD) has made a new breakthrough in the problem of large-scale preparation of graphene (refer to the preparation of high-quality graphene by chemical vapor deposition). The CVD method refers to the chemical reaction of reactants under gaseous conditions, and the formation of solid substances deposited on the surface of the heated solid substrate to obtain solid materials. Kong et al., MIT, Hong et al. and Chen et al. of Purdue University using the CVD method to prepare graphene. They used a simple tubular deposition furnace with nickel as the substrate, and passed carbon-containing gas, such as hydrocarbons, which decomposed into carbon atoms and deposited on the surface of nickel at high temperature to form graphene, through slight By chemical etching, the graphene film and the nickel sheet are separated to obtain the graphene film. The conductivity of this film can reach 1.1×10 6 S/m when the light transmittance is 80%, and it becomes a potential substitute for transparent conductive films. High-quality and large-area graphene can be prepared by CVD, but the ideal substrate material, single-crystal nickel, is too expensive, which may be an important factor affecting the industrial production of graphene. The CVD method can meet the requirements of large-scale production of high-quality graphene, but the cost is high and the process is complicated.
氧化还原法redox method
氧化-还原法制备成本低廉且容易实现,成为制备石墨烯的最佳方法,而且可以制备稳定的石墨烯悬浮液,解决了石墨烯不易分散的问题。氧化-还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的最简便的方法,得到广大石墨烯研究者的青睐。Ruoff等发现通过加入化学物质例如二甲肼、对苯二酚、硼氢化钠(NaBH4)和液肼等除去氧化石墨烯的含氧基团,就能得到石墨烯。氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些将导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。The oxidation-reduction method has low preparation cost and is easy to realize, and has become the best method for preparing graphene, and can prepare stable graphene suspension, which solves the problem that graphene is not easy to disperse. The oxidation-reduction method refers to the reaction of natural graphite with strong acids and strong oxidizing substances to form graphite oxide (GO), which is prepared into graphene oxide (single-layer graphite oxide) by ultrasonic dispersion, and a reducing agent is added to remove the oxygen-containing surface of the graphite oxide. groups, such as carboxyl, epoxy, and hydroxyl groups, give graphene. After the oxidation-reduction method was proposed, it became the easiest way to prepare graphene in the laboratory because of its simple and easy process, and was favored by the majority of graphene researchers. Ruoff et al. found that graphene can be obtained by adding chemicals such as dimethylhydrazine, hydroquinone, sodium borohydride (NaBH 4 ) and liquid hydrazine to remove the oxygen-containing groups of graphene oxide. The oxidation-reduction method can prepare stable graphene suspensions, which solves the problem that graphene is difficult to disperse in solvents. The disadvantage of the oxidation-reduction method is that the large-scale preparation is easy to cause waste liquid pollution and the prepared graphene has certain defects, for example, topological defects such as five-membered rings and seven-membered rings or structural defects with -OH groups, which will This leads to the loss of some electrical properties of graphene, which limits the application of graphene.
溶剂剥离法solvent stripping
溶剂剥离法的原理是将少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。在氮甲基吡咯烷酮中石墨烯的产率最高(大约为8%),电导率为6500S/m。研究发现高定向热裂解石墨、热膨胀石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学、多功能复合材料等领域的应用提供了广阔的应用前景。缺点是产率很低。The principle of the solvent exfoliation method is to disperse a small amount of graphite in a solvent to form a low-concentration dispersion liquid, and use the action of ultrasonic waves to destroy the van der Waals force between the graphite layers. At this time, the solvent can be inserted between the graphite layers to exfoliate layer by layer. Graphene. This method does not destroy the structure of graphene like the oxidation-reduction method, and can prepare high-quality graphene. The highest yield of graphene (approximately 8%) was found in nitrogen methylpyrrolidone with a conductivity of 6500 S/m. It is found that highly oriented thermally cracked graphite, thermally expanded graphite and microcrystalline artificial graphite are suitable for the preparation of graphene by solvent exfoliation. The solvent exfoliation method can prepare high-quality graphene, and the entire liquid phase exfoliation process does not introduce any defects on the surface of graphene, which provides a broad application prospect for its applications in microelectronics, multifunctional composite materials and other fields. The disadvantage is that the yield is very low.
溶剂热法solvothermal method
溶剂热法是指在特制的密闭反应器(高压釜)中,采用有机溶剂作为反应介质,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中自身产生高压而进行材料制备的一种有效方法。溶剂热法解决了规模化制备石墨烯的问题,同时也带来了电导率很低的负面影响。为解决由此带来的不足,研究者将溶剂热法和氧化还原法相结合制备出了高质量的石墨烯。Dai等发现溶剂热条件下还原氧化石墨烯制备的石墨烯薄膜电阻小于传统条件下制备石墨烯。溶剂热法因高温高压封闭体系下可制备高质量石墨烯的特点越来越受科学家的关注。The solvothermal method refers to the preparation of materials by heating the reaction system to a critical temperature (or close to the critical temperature) in a special closed reactor (autoclave), using an organic solvent as a reaction medium, and generating high pressure in the reaction system itself. an effective method. The solvothermal method solves the problem of large-scale preparation of graphene, but also brings the negative effect of low electrical conductivity. In order to solve the shortcomings caused by this, the researchers combined the solvothermal method and the redox method to prepare high-quality graphene. Dai et al. found that the resistance of graphene sheets prepared by reducing graphene oxide under solvothermal conditions was lower than that prepared under traditional conditions. The solvothermal method has attracted more and more attention of scientists due to the characteristics of preparing high-quality graphene in a closed system at high temperature and high pressure.
其它方法other methods
石墨烯的制备方法还有高温还原、光照还原、外延晶体生长法、微波法、电弧法、电化学法等。目前,石墨烯的生产方法主要有机械剥离法和热膨胀石墨法。其中,机械剥离法是将昂贵的高度定向热解石墨用胶布反复粘结和剥离,最后转移到基底材料表面上。这个方法效率低、产量小、成本高,只能限于实验室生产。而热膨胀石墨方法步骤复杂,且对石墨烯结构破环大。本文在以上各种方法基础上提出多卤代烃经活泼金属偶联反应结合氧化还原法制备高质量石墨烯的方法,该方法原料丰富、绿色环保,并可以实现规模化生产的新方法。The preparation methods of graphene include high temperature reduction, photoreduction, epitaxial crystal growth method, microwave method, arc method, electrochemical method, etc. At present, the production methods of graphene mainly include mechanical exfoliation method and thermal expansion graphite method. Among them, the mechanical peeling method is to repeatedly bond and peel the expensive highly oriented pyrolytic graphite with adhesive tape, and finally transfer it to the surface of the base material. This method has low efficiency, small yield and high cost, and can only be limited to laboratory production. However, the thermally expanded graphite method has complicated steps and great damage to the graphene structure. Based on the above methods, this paper proposes a method for preparing high-quality graphene by polyhalogenated hydrocarbons through active metal coupling reaction combined with redox method. This method is rich in raw materials, green and environmentally friendly, and can realize a new method for large-scale production.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服现有技术中存在的问题,提供一种方法简单,工艺环保、成本低廉、能够规模化制备高质量石墨烯的方法。The purpose of the present invention is to overcome the problems existing in the prior art, and to provide a method that is simple in method, environmentally friendly in process, low in cost, and capable of large-scale preparation of high-quality graphene.
本发明公开了一种高纯度高质量石墨烯的直接制备方法,属于化学合成技术领域。本发明方法以碱金属或碱土金属和多卤代烃为原料,通过在惰性环境下的多卤代烃本体或良性溶剂中进行金属偶联反应,金属和多卤代烃的摩尔比优选在0.5-30之间;在0-300℃下反应0.1-72小时后制得石墨烯粗品,而后利用水、醇或酸去除剩余碱金属或碱土金属,制备高质量石墨烯,再经过有机溶剂洗涤、酸洗、水洗、过滤、干燥后制得高纯度高质量石墨烯。本发明方法具有方法简单,操作容易,成本低廉,副产物少、高产率及高纯度等优点,本发明的石墨烯作为化学反应原料,导电材料制备、催化剂载体,电池电极材料,物理学,微电子学方面具有广泛应用前景。The invention discloses a direct preparation method of high-purity and high-quality graphene, which belongs to the technical field of chemical synthesis. The method of the present invention uses alkali metals or alkaline earth metals and polyhalogenated hydrocarbons as raw materials, and carries out metal coupling reaction in the polyhalogenated hydrocarbon bulk or benign solvent under an inert environment, and the molar ratio of metal and polyhalogenated hydrocarbons is preferably 0.5. Between -30 and 0.1-72 hours at 0-300°C to obtain crude graphene, and then use water, alcohol or acid to remove remaining alkali metals or alkaline earth metals to prepare high-quality graphene, which is then washed with organic solvents, High-purity and high-quality graphene is obtained after acid washing, water washing, filtration and drying. The method of the invention has the advantages of simple method, easy operation, low cost, few by-products, high yield and high purity, etc. The graphene of the invention is used as a chemical reaction raw material, conductive material preparation, catalyst carrier, battery electrode material, physics, micro It has broad application prospects in electronics.
本发明所述的一种高纯度高质量石墨烯的直接制备方法,特征在于以活泼碱金属或碱土金属和多卤代烃为原料,通过卤代烃的金属偶联反应直接制备高纯度高质量石墨烯,包括以下步骤:The method for directly preparing high-purity and high-quality graphene according to the present invention is characterized in that, using active alkali metal or alkaline earth metal and polyhalogenated hydrocarbons as raw materials, and directly preparing high-purity and high-quality graphene through the metal coupling reaction of halogenated hydrocarbons Graphene, including the following steps:
(1)在惰性气体保护下,将活泼碱金属或碱土金属分散在多卤代烃本体或其良性溶剂中进行偶联反应,或将多卤代烃本体或其溶液滴加或补加入活泼碱金属或碱土金属反应体系中,在0-300℃下的密闭容器中进行偶联反应0.1-72小时后,制得石墨烯粗品的悬浮液;(1) Under the protection of inert gas, the active alkali metal or alkaline earth metal is dispersed in the polyhalogenated hydrocarbon body or its benign solvent to carry out the coupling reaction, or the polyhalogenated hydrocarbon body or its solution is added dropwise or an active base is added. In the metal or alkaline earth metal reaction system, the coupling reaction is carried out in a closed container at 0-300° C. for 0.1-72 hours to obtain a suspension of the crude graphene product;
(2)在上述悬浮液中加入醇、水或酸与剩余活泼碱金属或碱土金属反应制得高质量石墨烯;(2) in above-mentioned suspension, add alcohol, water or acid and react with remaining active alkali metal or alkaline earth metal to obtain high-quality graphene;
(3)将该混合物过滤后,再进行多次有机溶剂洗涤、酸洗、水洗、过滤后干燥,除去悬浮溶液中石墨烯粗品的溶剂和副产物,制得高纯度石墨烯。(3) after this mixture is filtered, carry out repeatedly organic solvent washing, acid washing, water washing, drying after filtration, remove the solvent and by-product of the graphene crude product in the suspension solution, and obtain high-purity graphene.
如权利要求1所述的制备方法,其特征在于,所述多卤代烃为多卤代芳香烃、多卤代稠环烃或其混合物,其特征结构式如图1所示结构中,X基团为F、Cl、Br、I原子、三卤代乙烯基或者五卤代苯基,X基团为同种或不同种卤素原子或基团,所述多卤代烃为:四溴(氟、氯或碘)乙烯、六溴(氟、氯或碘)代-1,3-丁二烯;六溴(氟、氯或碘)苯、三氯三溴(氟或碘)苯;八氯(氟、溴或碘)萘、四氯四溴(氟或碘)萘;十氯(氟、溴或碘)蒽(菲)、六溴(碘)四氯蒽(菲)、六氯四溴蒽(菲);如十氯(氟、溴、碘)芘、六溴四氯芘、四溴六氯芘;全氯(氟、溴、碘)代联苯、全氯(溴、碘)代三联苯、多氯(溴、碘)代苯并蒽(芘)等,最优选为四溴(氯)乙烯、六溴(氯或氟)苯、八溴(氯或氟)萘、十溴(氯或氟)蒽(菲)、十溴(氯或氟)芘、全氯(溴)代联苯中的一种或多种混合物。The preparation method according to
如权利要求1所述的制备方法,其特征在于,所述碱金属或碱土金属选自活泼金属锂、钠、钾、镁、钙、锶、钡、镧中的一种或几种的组合,最优选为锂、钠、钾、镁中的一种或几种组合。The preparation method of
如权利要求1所述的制备方法,其特征在于,所述多卤代烃溶剂选自与原料碱金属或碱土金属及多卤代烃不发生反应的溶剂,为C5-C20烷烃、C1-C16醚类(简单醚或混合醚)、C1-C5烷基取代芳香烃类或缩醛类溶剂等,具体为石蜡油、(甲基、乙基)四氢呋喃、二氧六环、乙(丙、丁、戊、己)醚、甲乙(丙、丁、戊、己)醚、乙丙(丁、戊、己)醚、丙(丁、戊、己)醚、(三缩、二缩、一缩)乙(丙、丁)二醇二甲(乙、丙、丁、苯)醚、苯甲(乙、丙、丁)醚、二苯醚、二甲(乙、丙、丁)苯醚、苄基醚、甘油醚、二十烷、甲(乙、丙、丁)苯、二甲(乙、丙、丁)苯、三甲(乙、丙、丁)苯、联苯、二甲基联苯中的一种或几种的混合物。The preparation method of
如权利要求1所述的制备方法,其特征在于,所述碱金属或碱土金属和多卤代烃之间的摩尔比在0.1-100的范围内,最优选为0.5-30范围。The preparation method of
如权利要求1所述的制备方法,其特征在于,所述多卤代烃本体或其溶液与活泼金属直接混合反应或随着反应的进行滴加或补加多卤代烃本体或其溶液到活泼金属反应液中,或在多卤代烃本体或溶液中加入或补充活泼金属进行偶联反应。The preparation method according to
如权利要求1所述的制备方法,其特征在于所用还原或消除残余碱金属或碱土金属的醇、水或酸为选自甲醇、乙醇、丙醇、异丙醇、正丁醇、乙二醇、丙二醇、甘油、水、盐酸、氢溴酸、氢碘酸、氢氟酸、硫酸、磷酸、硝酸、草酸、甲酸、乙酸中的一种或多种组合物与剩余碱金属或碱土金属反应制得高质量石墨烯。The preparation method according to
如权利要求1所述的制备方法,其特征在于所用有机溶剂洗涤、酸洗、水洗后再过滤和干燥,所用溶剂为石油醚、丙酮、乙醚、乙醇、甲醇、DMAc或DMF中的一种或多种的洗涤剂洗除残余的反应溶剂,洗涤酸为盐酸、氢溴酸、氢碘酸、氢氟酸、硫酸、磷酸、硝酸、草酸、甲酸、乙酸中的一种或多种组合溶液,通过去离子水洗除残余的盐,烘干保存,制得高纯度石墨烯。preparation method as claimed in
如权利要求1所述的制备方法,其特征在于,所述反应在0℃到300℃的范围内的温度下进行,最优选为30℃-180℃;但如果用金属钠偶联四氯乙烯、六氯苯、溴苯或四溴乙烯时,反应温度限定为120℃以下,即不包括120-400℃范围内的金属钠偶联反应。The preparation method of
如权利要求1所述的制备方法,其特征在于所述反应压力范围为0.1-5Mpa,可以在常压或加压反应条件下进行,与反应原料金属及多卤代烃的活性相对应,但当多卤代烃为六氯苯时限定为常压反应。preparation method as claimed in
本发明的石墨烯的制备方法具有以下优点:The preparation method of Graphene of the present invention has the following advantages:
1.该反应可在常压低温条件下进行,设备简单,操作容易,工艺步骤少,易于进行大规模工业化生产;1. The reaction can be carried out under normal pressure and low temperature conditions, the equipment is simple, the operation is easy, the process steps are few, and it is easy to carry out large-scale industrial production;
2.原料成本低廉,副产物少,溶剂可以循环利用的原子经济型的绿色环保合成方法;2. The cost of raw materials is low, the by-products are few, and the solvent can be recycled, which is an atom-economical green synthesis method;
3.反应产率较高,甚至可以达到100%,产品质量高,导电性强;3. The reaction yield is high, even up to 100%, the product quality is high, and the conductivity is strong;
基于上述优点,本发明的石墨烯作为化学反应原料,导电膜制备、催化剂载体,电池电极材料,物理学,微电子学方面具有广泛应用前景。Based on the above advantages, the graphene of the present invention has broad application prospects in the aspects of chemical reaction raw material, conductive film preparation, catalyst carrier, battery electrode material, physics, and microelectronics.
说明书附图说明:Description of drawings in the manual:
图1合成石墨烯的多卤代烃单元结构;Fig. 1 polyhalogenated hydrocarbon unit structure of synthetic graphene;
图2石墨烯的扫描电子显微镜照片;The scanning electron microscope photograph of Fig. 2 graphene;
图3石墨烯的EDS能谱数据;Figure 3 EDS energy spectrum data of graphene;
图4石墨烯的XRD谱数据;The XRD spectrum data of Fig. 4 graphene;
图5石墨烯BET比表面测试(ASAP2010)。Figure 5 Graphene BET specific surface area test (ASAP2010).
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
下述实施例中所用方法如无特别说明均为常规方法,但如需重复本实施例需特别注意爆燃和爆炸危险,普通研究生或技术员工请勿擅自试验,需合成经验丰富的研究人员谨慎实施试验。The methods used in the following examples are conventional methods unless otherwise specified. However, if this example needs to be repeated, special attention should be paid to the danger of deflagration and explosion. Ordinary graduate students or technical staff should not experiment without authorization, and researchers with rich experience in synthesis should be cautious. test.
本实施例制备石墨烯的具体方法包括以下步骤。The specific method for preparing graphene in this embodiment includes the following steps.
实施例1、石墨烯的合成
在干净干燥的反应釜中,加入100mL甲苯,金属钠3.0g,六溴苯6.0克,在氩气保护条件下回流反应8小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用丙酮清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reaction kettle, add 100 mL of toluene, 3.0 g of metallic sodium, and 6.0 g of hexabromobenzene, reflux under argon for 8 hours, stop heating, cool to room temperature to obtain a black graphene suspension, and then add 30 milliliters of absolute ethanol, after stirring and reacting for 2 hours, the obtained graphene crude product was filtered under reduced pressure, washed with acetone for 3 times, washed with
实施例2、石墨烯的合成Embodiment 2, the synthesis of graphene
在干净干燥的反应釜中,加入10mL二甲苯、50mL四氢呋喃,金属钠3.0g,六溴苯6.0克,回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水甲醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用丙酮清洗3遍、水洗3遍、10%硫酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 10 mL of xylene, 50 mL of tetrahydrofuran, 3.0 g of metallic sodium, and 6.0 g of hexabromobenzene. After refluxing for 10 hours, stop heating and cool to room temperature to obtain a black graphene suspension, and then add 30 mL of Anhydrous methanol, after stirring and reacting for 2 hours, the obtained graphene crude product was filtered under reduced pressure, washed with
实施例3、石墨烯的合成
在干净干燥的反应釜中,加入100mL二苯醚,金属钠3.0g,六溴苯5.0克,在110℃反应8小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用丙酮清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reaction kettle, add 100 mL of diphenyl ether, 3.0 g of metallic sodium, and 5.0 g of hexabromobenzene. After reacting at 110 ° C for 8 hours, stop heating and cool to room temperature to obtain a black graphene suspension, and then add 30 mL of Dehydrated ethanol, after stirring and reacting for 2 hours, the obtained graphene crude product was filtered under reduced pressure, washed with acetone for 3 times, washed with water for 3 times, washed with 10% hydrochloric acid for 2 times, washed with water for many times until neutral, and dried in vacuum. Graphene pure product is obtained.
实施例4、石墨烯的合成Embodiment 4, the synthesis of graphene
在干净干燥的反应釜中,加入100mL四氢呋喃,金属钾3.0g,六溴苯4.0克,回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入25毫升甲醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用丙酮清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 100 mL of tetrahydrofuran, 3.0 g of potassium metal, and 4.0 g of hexabromobenzene. After refluxing for 10 hours, stop heating and cool to room temperature to obtain a black graphene suspension, and then add 25 mL of methanol and stir the reaction. After 2 hours, the obtained graphene crude product was filtered under reduced pressure, washed with acetone for 3 times, washed with water for 3 times, washed with 10% hydrochloric acid for 2 times, washed with water for many times until neutral, and vacuum-dried to obtain pure graphene.
实施例5、石墨烯的合成
在干净干燥的反应釜中,加入100mL四氢呋喃,金属钾3.0g,十溴蒽4.0克,回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入50毫升乙醇,搅拌反应2小时后,减压抽滤得到石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reaction kettle, add 100 mL of tetrahydrofuran, 3.0 g of potassium metal, and 4.0 g of decabromanthracene, and after refluxing for 10 hours, stop heating, cool to room temperature to obtain a black graphene suspension, then add 50 mL of ethanol, and stir the reaction After 2 hours, vacuum and suction filtration were used to obtain a crude graphene product, which was washed with ether for 3 times, washed with water for 3 times, washed with 10% hydrochloric acid for 2 times, washed with water for many times until neutral, and vacuum-dried to obtain pure graphene.
实施例6、石墨烯的合成Embodiment 6, the synthesis of graphene
在干净干燥的反应釜中,加入100mL二甲苯,金属钾5.0g,2.0g四溴乙烯、2.0g六溴苯、十溴芘4.0克,回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水甲醇,搅拌反应2小时后,减压抽滤得到石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reaction kettle, add 100 mL of xylene, 5.0 g of potassium metal, 2.0 g of tetrabromoethylene, 2.0 g of hexabromobenzene, and 4.0 g of decabromopyrene. After refluxing for 10 hours, stop heating and cool to room temperature to obtain a black color. The graphene suspension was then added with 30 milliliters of anhydrous methanol, and after stirring and reacting for 2 hours, the thick graphene product was obtained by suction filtration under reduced pressure. washed to neutrality, and vacuum-dried to obtain pure graphene.
实施例7、石墨烯的合成Embodiment 7, the synthesis of graphene
在干净干燥的反应釜中,加入100mL三甲苯,金属钠6.0g,六溴苯5.0克,六氯苯2.0克,十溴蒽4.0克,回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 100 mL of trimethylbenzene, 6.0 g of metallic sodium, 5.0 g of hexabromobenzene, 2.0 g of hexachlorobenzene, and 4.0 g of decabromanthracene. After refluxing for 10 hours, stop heating and cool to room temperature to obtain a black color. The graphene suspension was then added with 30 milliliters of absolute ethanol, and after stirring and reacting for 2 hours, the thick graphene product was obtained by suction filtration under reduced pressure. washed to neutrality, and vacuum-dried to obtain pure graphene.
实施例8、石墨烯的合成Embodiment 8, the synthesis of graphene
在干净干燥的反应釜中,加入100mL二苯醚,金属锂3.0g,六溴苯5.0克、十溴菲4.0克,回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 100 mL of diphenyl ether, 3.0 g of metallic lithium, 5.0 g of hexabromobenzene, and 4.0 g of decabromphenanthrene, and after refluxing for 10 hours, stop heating and cool to room temperature to obtain a black graphene suspension. Then add 30 ml of absolute ethanol, stir and react for 2 hours, filter under reduced pressure to obtain a thick graphene product, wash with
实施例9、石墨烯的合成Embodiment 9, the synthesis of graphene
在干净干燥的反应釜中,加入100mL四氢呋喃,金属钾7.0g,六溴苯5.0克、十溴芘4.0克,回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reaction kettle, add 100 mL of tetrahydrofuran, 7.0 g of potassium metal, 5.0 g of hexabromobenzene, and 4.0 g of decabromopyrene, and after refluxing for 10 hours, stop heating, cool to room temperature to obtain a black graphene suspension, and then add 30 milliliters of absolute ethanol, after stirring and reacting for 2 hours, the obtained graphene thick product was filtered under reduced pressure, washed with ether for 3 times, washed with
实施例10、石墨烯的合成
在干净干燥的反应釜中,加入100mL二氧六环,金属镁6.0g,六溴苯6.0克、十溴蒽4.0克,十溴芘2.0克、回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reaction kettle, add 100 mL of dioxane, 6.0 g of magnesium metal, 6.0 g of hexabromobenzene, 4.0 g of decabromanthracene, 2.0 g of decabrompyrene, and reflux for 10 hours, then stop heating and cool to room temperature Obtain black graphene suspension, then add 30 milliliters of absolute ethanol, stir and react after 2 hours, the graphene thick product obtained by vacuum suction filtration, then wash 3 times with ether, wash 3 times with water, wash 2 times with 10% hydrochloric acid, Then wash with water for several times until neutral, and vacuum dry to obtain pure graphene.
实施例11、石墨烯的合成Embodiment 11, the synthesis of graphene
在干净干燥的反应釜中,加入100mL二缩乙二醇二甲醚,四溴乙烯4.0g,金属钾6.0g,六溴苯6.0克、十溴蒽4.0克,十溴芘2.0克、回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 100 mL of ethylene glycol dimethyl ether, 4.0 g of tetrabromoethylene, 6.0 g of potassium metal, 6.0 g of hexabromobenzene, 4.0 g of decabromanthracene, and 2.0 g of decabromypyrene, and the reaction was carried out under reflux. After 10 hours, stop heating, cool to room temperature to obtain black graphene suspension, then add 30 milliliters of absolute ethanol, stir and react for 2 hours, filter the obtained thick graphene product under reduced pressure, wash with
实施例12、石墨烯的合成Embodiment 12, the synthesis of graphene
在干净干燥的反应釜中,加入100mL二苯醚、四氯乙烯2.0g,金属钾6.0g,六碘苯6.0克、十溴蒽3.0克,十溴芘1.0克、回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 100 mL of diphenyl ether, 2.0 g of tetrachloroethylene, 6.0 g of potassium metal, 6.0 g of hexaiodobenzene, 3.0 g of decabromanthracene, and 1.0 g of decabromopyrene, and the reaction was stopped after refluxing for 10 hours. Heating, cooling to room temperature to obtain black graphene suspension, then adding 30 milliliters of absolute ethanol, stirring and reacting for 2 hours, the obtained graphene thick product by suction filtration under reduced pressure, then washed 3 times with ether, washed 3 times with water, 10% Washed with hydrochloric acid twice, washed with water for several times until neutral, and dried in vacuum to obtain pure graphene.
实施例13、石墨烯的合成Embodiment 13, the synthesis of graphene
在干净干燥的反应釜中,加入100mL二苯醚、四氯乙烯2.0g,金属钾6.0g,六溴苯6.0克、十溴蒽3.0克,十溴联苯1.0克、回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 100 mL of diphenyl ether, 2.0 g of tetrachloroethylene, 6.0 g of potassium metal, 6.0 g of hexabromobenzene, 3.0 g of decabromanthracene, 1.0 g of decabromodiphenyl, and reflux for 10 hours. Stop heating, cool to room temperature to obtain black graphene suspension, then add 30 milliliters of dehydrated alcohol, stir and react for 2 hours, filter the obtained thick graphene product under reduced pressure, wash with
实施例14、石墨烯的合成Embodiment 14, the synthesis of graphene
在干净干燥的反应釜中,加入100mL二苯醚、金属钾8.0g,四氯化碳2.0g,四氯乙烯2.0g,六碘苯6.0克、十溴蒽3.0克,全溴代三联苯1.0克、回流反应10小时后,停止加热,冷却到室温得到黑色石墨烯悬浮液,而后加入30毫升无水乙醇,搅拌反应2小时后,减压抽滤得到的石墨烯粗产品,再用乙醚清洗3遍、水洗3遍、10%盐酸洗2遍,再用水多次洗涤至中性,真空干燥得到石墨烯纯品。In a clean and dry reactor, add 100 mL of diphenyl ether, 8.0 g of potassium metal, 2.0 g of carbon tetrachloride, 2.0 g of tetrachloroethylene, 6.0 g of hexaiodobenzene, 3.0 g of decabromoanthracene, and 1.0 g of perbromoterphenyl. gram, after 10 hours of reflux reaction, stop heating, be cooled to room temperature to obtain black graphene suspension, then add 30 milliliters of absolute ethanol, after stirring reaction for 2 hours, the thick graphene product obtained by vacuum suction filtration, then clean with
用下述方法对实施例1所制备的石墨烯晶粒进行检测。The graphene crystal grains prepared in Example 1 were detected by the following method.
1.石墨烯晶粒扫描电子显微镜(SEM)和X射线能谱仪表征检测1. Graphene grain scanning electron microscope (SEM) and X-ray energy spectrometer characterization
对实施例1制备的石墨烯晶粒进行扫描电子显微镜(SEM)表征检测,方法为:取少量石墨烯黑色粉末,在无水乙醇中超声分散,然后取1-2滴滴到样品台上晾干喷金,然后扫描电子显微镜观察所制备的石墨烯晶粒结构,如图2所示,同时测试了其EDAX数据,如图3所示:图2的石墨烯晶粒的扫描电子显微镜照片中可以看出,用本发明方法制备的石墨烯晶粒结构,尺寸可达微米级以下;图3为其能谱数据,可以看出该石墨烯晶粒主要由元素C和残余卤素组成,碳原子含量为90.26%,残卤原子含量为3.97%。The graphene grains prepared in Example 1 were characterized by scanning electron microscopy (SEM), and the method was as follows: take a small amount of graphene black powder, ultrasonically disperse it in absolute ethanol, and then drop 1-2 drops on the sample table to dry. Dry spray gold, and then observe the prepared graphene grain structure by scanning electron microscope, as shown in Figure 2, and test its EDAX data at the same time, as shown in Figure 3: In the scanning electron microscope photo of the graphene grain in Figure 2 It can be seen that the graphene grain structure prepared by the method of the present invention has a size up to below the micron level; Fig. 3 is its energy spectrum data, it can be seen that the graphene grain is mainly composed of element C and residual halogen, and carbon atoms The content is 90.26%, and the residual halogen atom content is 3.97%.
2.石墨烯晶粒XRD表征检测2. XRD characterization of graphene grains
对实施例1制备的石墨烯进行石墨烯晶粒XRD表征检测,如图4所示,从石墨烯晶粒的XRD图谱中可以看出2θ在15-35之间的石墨烯的特征吸收峰。The graphene prepared in Example 1 was characterized by XRD of graphene grains. As shown in FIG. 4 , the characteristic absorption peaks of graphene with 2θ between 15 and 35 can be seen from the XRD pattern of graphene grains.
3.BET比表面测试3.BET specific surface test
釆用N2做为吸附气体,对实施例1制备的石墨烯晶粒进行BET比表面测试(ASAP2010)。如图5所示,制得的石墨烯晶粒的BET比表面为1.37m2/g,总孔容为0.013mL/g,平均孔径为32.9nm。Using N as the adsorption gas, the graphene grains prepared in Example 1 were subjected to a BET specific surface area test (ASAP2010). As shown in FIG. 5 , the BET specific surface of the prepared graphene grains was 1.37 m 2 /g, the total pore volume was 0.013 mL/g, and the average pore diameter was 32.9 nm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410341304.4A CN104058399B (en) | 2014-07-17 | 2014-07-17 | A kind of direct preparation method of high-purity and high-quality graphene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410341304.4A CN104058399B (en) | 2014-07-17 | 2014-07-17 | A kind of direct preparation method of high-purity and high-quality graphene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104058399A CN104058399A (en) | 2014-09-24 |
CN104058399B true CN104058399B (en) | 2020-12-18 |
Family
ID=51546380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410341304.4A Active CN104058399B (en) | 2014-07-17 | 2014-07-17 | A kind of direct preparation method of high-purity and high-quality graphene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104058399B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106517156B (en) * | 2016-11-03 | 2021-02-09 | 长沙理工大学 | Preparation method of lithium iron phosphate/graphene composite material |
CN108569690B (en) * | 2017-03-10 | 2020-01-07 | 厦门稀土材料研究所 | A method for removing radioactive elements in nuclear power effluent wastewater by utilizing functionalized graphene materials |
CN108622882B (en) * | 2017-03-18 | 2022-02-18 | 深圳格林德能源集团有限公司 | Liquid-phase codeposition preparation method of graphene |
CN109231196B (en) * | 2018-11-21 | 2021-04-27 | 中国科学院兰州化学物理研究所 | Method for preparing graphene oxide based on nonpolar organic solvent transfer purification technology |
CN110422839B (en) * | 2019-08-07 | 2021-03-16 | 清华大学 | A kind of synthetic method of graphene |
JP6865489B1 (en) * | 2020-10-20 | 2021-04-28 | 株式会社エス・ディー・エス バイオテック | Method for producing dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid |
CN115650222A (en) * | 2022-11-04 | 2023-01-31 | 中星(广州)纳米材料有限公司 | Method for applying organic acid in graphene preparation process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101462719A (en) * | 2009-01-16 | 2009-06-24 | 北京大学 | Preparation of graphene |
CN101941695A (en) * | 2010-09-09 | 2011-01-12 | 北京化工大学 | Method for synthesizing graphene |
CN102320597A (en) * | 2011-07-15 | 2012-01-18 | 天津大学 | A kind of preparation method of graphene |
CN102408107A (en) * | 2010-09-26 | 2012-04-11 | 中国科学院上海硅酸盐研究所 | Method for preparing high-quality graphene |
-
2014
- 2014-07-17 CN CN201410341304.4A patent/CN104058399B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101462719A (en) * | 2009-01-16 | 2009-06-24 | 北京大学 | Preparation of graphene |
CN101941695A (en) * | 2010-09-09 | 2011-01-12 | 北京化工大学 | Method for synthesizing graphene |
CN102408107A (en) * | 2010-09-26 | 2012-04-11 | 中国科学院上海硅酸盐研究所 | Method for preparing high-quality graphene |
CN102320597A (en) * | 2011-07-15 | 2012-01-18 | 天津大学 | A kind of preparation method of graphene |
Non-Patent Citations (1)
Title |
---|
Low-temperature rapid synthesis of high-quality pristine or boron-doped graphenevia Wurtz-type reductive coupling reaction;Xujie Lu,et al.;《Journal of Materials Chemistry》;20110616;第21卷;第10685–10689页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104058399A (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104058399B (en) | A kind of direct preparation method of high-purity and high-quality graphene | |
WO2017084561A1 (en) | Preparation method for large-size graphene oxide or graphene | |
CN103219066B (en) | Flexible conductive film that two-dimensional graphene is compound with one-dimensional nano line and preparation method thereof | |
CN102502593B (en) | Preparation method of grapheme or doped graphene or graphene complex | |
CN102586869B (en) | Three-dimensional grapheme tube and preparation method thereof | |
CN103935994B (en) | A kind of self-supporting reduced graphene oxide paper and preparation method thereof | |
CN106115675B (en) | A kind of method for preparing mesoporous graphene | |
CN104174422B (en) | High nitrogen doped Graphene and fullerene selenizing molybdenum hollow ball nano composite material and preparation method thereof | |
CN103570003B (en) | A kind of method of macroscopic preparation of graphene and two-dimentional boron nitride crystal material | |
CN105518183A (en) | Production of graphene and graphane | |
CN103390509B (en) | A kind of electrode material for super capacitor and preparation method thereof | |
CN102408107A (en) | Method for preparing high-quality graphene | |
CN107572511A (en) | A kind of method of green large-scale production graphene | |
CN107098344A (en) | A kind of preparation method of two-dimensional layer MXene materials | |
CN108285139A (en) | A kind of preparation method and application of nitrogen-doped graphene carbon material | |
CN107324319B (en) | A kind of large sheet graphene and preparation method thereof | |
CN112573510B (en) | A kind of graphene slurry and its preparation method and application | |
CN106477560A (en) | A kind of preparation method of Graphene | |
CN105826083B (en) | A kind of preparation of graphene-based electrode material and the construction method of capacitor | |
WO2020114196A1 (en) | Mxene material, preparation method therefor and application thereof | |
CN107098398A (en) | A kind of FeS2The preparation method of nano wire | |
CN107354446B (en) | A kind of method that chemical gaseous phase synthesizes ultra-thin carbon nanosheet | |
CN114368745B (en) | Graphene oxide, preparation methods and applications | |
CN114620716B (en) | Fluorinated graphene and preparation method and application thereof | |
CN117303365A (en) | With CF 3 SO 3- MXene material as surface group and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |