CN107354446B - A kind of method that chemical gaseous phase synthesizes ultra-thin carbon nanosheet - Google Patents
A kind of method that chemical gaseous phase synthesizes ultra-thin carbon nanosheet Download PDFInfo
- Publication number
- CN107354446B CN107354446B CN201710529303.6A CN201710529303A CN107354446B CN 107354446 B CN107354446 B CN 107354446B CN 201710529303 A CN201710529303 A CN 201710529303A CN 107354446 B CN107354446 B CN 107354446B
- Authority
- CN
- China
- Prior art keywords
- tube furnace
- ultra
- vacuum tube
- thin carbon
- carbon nanosheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 42
- 239000002135 nanosheet Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000000126 substance Substances 0.000 title claims abstract description 7
- 239000007792 gaseous phase Substances 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 9
- 239000011949 solid catalyst Substances 0.000 claims abstract description 8
- 239000012071 phase Substances 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 25
- 239000007787 solid Substances 0.000 claims description 23
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 18
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 5
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical group [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 3
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims description 3
- 229910052939 potassium sulfate Inorganic materials 0.000 claims description 3
- 235000011151 potassium sulphates Nutrition 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 claims description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 2
- 235000011181 potassium carbonates Nutrition 0.000 claims description 2
- 235000017550 sodium carbonate Nutrition 0.000 claims description 2
- 235000002639 sodium chloride Nutrition 0.000 claims description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 2
- 235000011152 sodium sulphate Nutrition 0.000 claims description 2
- 239000012265 solid product Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004146 energy storage Methods 0.000 abstract description 3
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001415 sodium ion Inorganic materials 0.000 abstract description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 18
- 229910052786 argon Inorganic materials 0.000 description 12
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 229910021389 graphene Inorganic materials 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- YFAGTKDVNDHKEJ-UHFFFAOYSA-N [Si].O[N+]([O-])=O Chemical compound [Si].O[N+]([O-])=O YFAGTKDVNDHKEJ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/01—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种利用化学气相合成技术制备超薄碳纳米片的方法,具体涉及一种使用固体催化剂模板和气相碳源合成超薄碳纳米片的方法,属于碳材料合成领域。The invention relates to a method for preparing ultra-thin carbon nanosheets by using chemical vapor phase synthesis technology, in particular to a method for synthesizing ultrathin carbon nanosheets by using a solid catalyst template and a gas phase carbon source, and belongs to the field of carbon material synthesis.
背景技术Background technique
二维碳材料具有独特的结构和优异的物理化学特性,如较大的比表面积、良好的导电导热以及机械性能,在光电器件、复合材料、生物传感器尤其是储能器件等领域有着巨大的应用前景。目前,二维碳材料制备方法主要包括机械剥离法、化学氧化还原技术以及化学气相沉积技术。机械剥离法尽管能够获得高质量的石墨烯且电学性能优异,但产量低,不适合规模化制备;石墨氧化还原技术虽然可以宏量制备,但所制得的二维材料结构缺陷多、石墨化程度低、机械性能和导电性差,且过程中用到强酸、强氧化剂和还原剂,过程繁琐、污染较大;采用金属如铜箔等作为催化剂模板化学气相沉积制备过程苛刻需转移使用、产率低、不适合宏量生产;而采用金属氧化物作为模板制备二维碳纳米材料,同样需要预先通过系列化学反应制备纳米结构氧化物,再进行二维碳材料合成[垂直石墨烯纳米片组成的多孔分级结构碳微棒及其锂离子电池应用,《材料化学杂志A》,2015年,第3卷,第19800页];采用硅藻土作为模板生长二维碳材料,过程中不仅需要对硅藻土进行硝酸和硫酸的预刻蚀,在高温1000℃生长后还需要使用氢氟酸或强碱除去模板 [三维石墨烯粉体的仿生模板CVD制备:通向高效溶液加工,《自然·通讯》,2016年,第7卷,第13440页],过程复杂,污染大。开发工艺简单、成本低且绿色的二维碳材料制备方法是使其在各领域得以应用的关键。Two-dimensional carbon materials have unique structures and excellent physical and chemical properties, such as large specific surface area, good electrical and thermal conductivity, and mechanical properties. They have huge applications in optoelectronic devices, composite materials, biosensors, and especially energy storage devices. prospect. At present, the preparation methods of two-dimensional carbon materials mainly include mechanical exfoliation, chemical redox technology and chemical vapor deposition technology. Although the mechanical exfoliation method can obtain high-quality graphene and has excellent electrical properties, the yield is low and it is not suitable for large-scale preparation; although the graphite redox technology can be prepared in large quantities, the two-dimensional material produced has many structural defects and graphitization. The degree is low, the mechanical properties and electrical conductivity are poor, and strong acids, strong oxidants and reducing agents are used in the process, the process is cumbersome and the pollution is large; the use of metals such as copper foil as catalyst template chemical vapor deposition preparation process is harsh and needs to be transferred. Low, not suitable for mass production; while using metal oxides as templates to prepare two-dimensional carbon nanomaterials, it is also necessary to prepare nanostructured oxides through a series of chemical reactions in advance, and then synthesize two-dimensional carbon materials [vertical graphene nanosheets Porous hierarchical carbon microrods and their applications in lithium-ion batteries, "Journal of Materials Chemistry A", 2015, Volume 3, Page 19800]; using diatomaceous earth as a template to grow two-dimensional carbon materials, the process requires not only silicon Nitric acid and sulfuric acid are used for pre-etching of algae, and hydrofluoric acid or strong alkali is needed to remove the template after growth at a high temperature of 1000 °C [Bio-template CVD preparation of three-dimensional graphene powder: leading to efficient solution processing, "Nature Communications ", 2016, Volume 7, Page 13440], the process is complicated and the pollution is large. The development of simple, low-cost and green two-dimensional carbon material preparation methods is the key to its application in various fields.
发明内容Contents of the invention
本发明的目的是提供一种无污染、低成本、工艺简单且易于批量制备的二维超薄碳纳米片粉体的制备方法。The purpose of the present invention is to provide a method for preparing a two-dimensional ultra-thin carbon nanosheet powder that is pollution-free, low-cost, simple in process and easy to prepare in batches.
本发明采用固体催化剂模板,气相碳源合成超薄碳纳米片,所得碳纳米片尺寸大、厚度小,能够规模宏量制备。The invention adopts a solid catalyst template and a gas-phase carbon source to synthesize ultra-thin carbon nanosheets, and the obtained carbon nanosheets have large size and small thickness, and can be prepared in a large scale.
一种化学气相合成超薄碳纳米片的方法,其特征在于该方法在真空管式炉中合成超薄碳纳米片,真空管式炉主要由真空系统、供气系统、升温控制系统组成,具体过程为:A method for chemical vapor phase synthesis of ultra-thin carbon nanosheets, characterized in that the method synthesizes ultrathin carbon nanosheets in a vacuum tube furnace, the vacuum tube furnace is mainly composed of a vacuum system, a gas supply system, and a temperature rise control system, and the specific process is as follows: :
1)将固体催化剂模板置于真空管式炉内;1) Place the solid catalyst template in a vacuum tube furnace;
2)将真空管式炉抽真空至200Pa以下,通入惰性气体或氩氢混合气至大气压,升温至合成温度,并通入气相碳源,合成结束后在气氛保护下冷却至室温,得到固体产物;2) Vacuumize the vacuum tube furnace to below 200Pa, feed inert gas or argon-hydrogen mixed gas to atmospheric pressure, heat up to the synthesis temperature, and feed gas phase carbon source, after the synthesis is completed, cool to room temperature under the protection of the atmosphere to obtain a solid product ;
3)将上述固体洗涤、抽滤、干燥得到超薄碳纳米片粉体。3) Washing, suction filtering and drying the above solid to obtain ultra-thin carbon nanosheet powder.
本发明所述的固体催化剂模板为碳酸锂、碳酸钠、碳酸钾、氯化钾、氯化钠、硫酸钠或硫酸钾。The solid catalyst template of the present invention is lithium carbonate, sodium carbonate, potassium carbonate, potassium chloride, sodium chloride, sodium sulfate or potassium sulfate.
本发明所述的气相碳源选自乙炔、乙烯或甲烷。The gas phase carbon source described in the present invention is selected from acetylene, ethylene or methane.
本发明所述的合成温度为600-900℃,合成时间为1-150min。The synthesis temperature of the present invention is 600-900° C., and the synthesis time is 1-150 min.
本发明制备的超薄碳纳米片为二维层状结构,尺寸在5-50μm、厚度为2-30nm。The ultra-thin carbon nano sheet prepared by the invention is a two-dimensional layered structure with a size of 5-50 μm and a thickness of 2-30 nm.
本发明具有如下优点:The present invention has the following advantages:
1)所使用固体催化剂模板价格低廉,不需预处理;1) The solid catalyst template used is cheap and does not require pretreatment;
2)合成温度低,操作简便可控,重复性好;2) The synthesis temperature is low, the operation is simple and controllable, and the repeatability is good;
3)使用去离子水清洗,过程中不使用强酸/强碱,环境友好、无污染。3) Use deionized water for cleaning, no strong acid/alkali is used in the process, which is environmentally friendly and pollution-free.
本发明的效果益处:提供了一种简单规模制备超薄碳纳米片的方法,制备所用原材料丰富、廉价易得、环境友好、重复性好、产品质量稳定可靠;开辟了一种新的二维超薄碳纳米片制备方法,所制备超薄碳纳米片可用于锂离子电池及钠离子电池等能源存储器件。Effects and benefits of the present invention: a method for preparing ultra-thin carbon nanosheets on a simple scale is provided, the raw materials used for the preparation are abundant, cheap and easy to obtain, environmentally friendly, repeatable, and the product quality is stable and reliable; it opens up a new two-dimensional The invention discloses a method for preparing ultrathin carbon nanosheets, and the prepared ultrathin carbon nanosheets can be used in energy storage devices such as lithium ion batteries and sodium ion batteries.
附图说明Description of drawings
图1是本发明实施例4中所得超薄碳纳米片的TEM照片。Figure 1 is a TEM photo of the ultrathin carbon nanosheets obtained in Example 4 of the present invention.
图2是本发明实施例4中所得超薄碳纳米片的Raman图谱。Figure 2 is the Raman spectrum of the ultra-thin carbon nanosheets obtained in Example 4 of the present invention.
具体实施方式Detailed ways
实施例1Example 1
将碳酸钠粉体置于真空管式炉内,抽真空至200Pa以下,通入氩气至大气压、并通入氢气(为氩气体积的20%),将管式炉升温至750℃,通入乙炔(为氢气体积的20%),保温40min,停止通入乙炔,自然冷却至室温后,取出样品,使用去离子水将上述固体样品洗涤、抽滤并在60℃烘干后得到超薄碳纳米片粉体。扫描电镜(SEM)结果显示样品具有较大尺寸。Put the sodium carbonate powder in a vacuum tube furnace, evacuate to below 200Pa, pass in argon to atmospheric pressure, and pass in hydrogen (20% of the volume of argon), raise the temperature of the tube furnace to 750°C, and pass in Acetylene (20% of the volume of hydrogen gas), keep warm for 40min, stop feeding acetylene, cool down to room temperature naturally, take out the sample, wash the above solid sample with deionized water, suction filter and dry at 60°C to obtain ultra-thin carbon Nanosheet powder. Scanning electron microscopy (SEM) results showed that the samples had larger sizes.
实施例2Example 2
将氯化钠粉体置于真空管式炉内,抽真空至200Pa以下,通入氩气至大气压,将管式炉升温至700℃,通入乙炔(为氩气体积的5%),保温40min,停止通入乙炔,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在60℃烘干后得到超薄碳纳米片粉体。Put the sodium chloride powder in a vacuum tube furnace, evacuate to below 200Pa, pass in argon to atmospheric pressure, raise the temperature of the tube furnace to 700°C, pass in acetylene (5% of the volume of argon), and keep it warm for 40min , stop feeding acetylene, and cool down to room temperature naturally, then take out the solid sample. The above solid sample was washed with deionized water, suction filtered and dried at 60°C to obtain ultrathin carbon nanosheet powder.
实施例3Example 3
将碳酸钾粉体置于真空管式炉内,抽真空至200Pa以下,通入氩气至大气压、随后通入氢气(为氩气体积的20%),将管式炉升温至850℃,通入乙炔(为氢气体积的20%),保温40min,停止通入乙炔,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在60℃烘干后得到超薄碳纳米片粉体。Put the potassium carbonate powder in a vacuum tube furnace, evacuate to below 200Pa, pass in argon to atmospheric pressure, and then pass in hydrogen (20% of the volume of argon), raise the temperature of the tube furnace to 850°C, and pass in Acetylene (20% of the hydrogen volume), keep warm for 40min, stop feeding acetylene, cool to room temperature naturally, and take out the solid sample. The above solid sample was washed with deionized water, suction filtered and dried at 60°C to obtain ultrathin carbon nanosheet powder.
实施例4Example 4
称取碳酸钠粉体置于真空管式炉内,抽真空至200Pa以下,通入氩气至大气压、随后通入氢气(为氩气体积的20%),将管式炉升温至800℃,通入乙炔(为氢气体积的20%),保温40min,停止通入乙炔,自然冷却降至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在60℃烘干后得到超薄碳纳米片粉体。图1为透射电镜(TEM)图,结果显示样品厚度较小,通过原子力显微镜测试可知其厚度在4nm,通过拉曼光谱(Raman,图2)测试可知具有一定结晶特性。Weigh the sodium carbonate powder and place it in a vacuum tube furnace, evacuate it to below 200Pa, pass in argon to atmospheric pressure, and then pass in hydrogen (20% of the volume of argon), raise the temperature of the tube furnace to 800°C, pass Add acetylene (20% of the volume of hydrogen gas), keep warm for 40 minutes, stop feeding acetylene, cool down to room temperature naturally, and take out the solid sample. The above solid sample was washed with deionized water, suction filtered and dried at 60°C to obtain ultrathin carbon nanosheet powder. Figure 1 is a transmission electron microscope (TEM) image, and the results show that the thickness of the sample is small. It can be seen that the thickness is 4nm through the atomic force microscope test, and it has certain crystallization characteristics through the Raman spectrum (Raman, Figure 2) test.
实施例5Example 5
将硫酸钾粉体置于真空管式炉内,抽真空至200Pa以下,通入氩气至大气压、随后通入氢气(为氩气体积的20%),将管式炉升温至800℃,通入乙炔(为氢气体积的20%),保温40min,停止通入乙炔,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在80℃烘干后得到超薄碳纳米片粉体,TEM结果显示具有明显的二维片层结构。Put the potassium sulfate powder in a vacuum tube furnace, evacuate to below 200Pa, pass in argon to atmospheric pressure, and then pass in hydrogen (20% of the volume of argon), raise the temperature of the tube furnace to 800°C, and pass in Acetylene (20% of the hydrogen volume), keep warm for 40min, stop feeding acetylene, cool to room temperature naturally, and take out the solid sample. The above solid samples were washed with deionized water, suction filtered and dried at 80°C to obtain ultra-thin carbon nanosheet powders. TEM results showed that they had an obvious two-dimensional sheet structure.
实施例6Example 6
将碳酸钠粉体置于真空管式炉内,抽真空至200Pa以下,通入氩气至大气压、随后通入氢气(为氩气体积的10%),将管式炉升温至650℃,通入乙炔(为氢气体积的5%),保温150min,停止通入乙炔,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在80℃烘干后得到超薄碳纳米片粉体。SEM结果显示样品具有良好的片层结构。Put the sodium carbonate powder in a vacuum tube furnace, evacuate to below 200Pa, pass in argon to atmospheric pressure, and then pass in hydrogen (10% of the volume of argon), raise the temperature of the tube furnace to 650°C, and pass in Acetylene (5% of the hydrogen volume), keep warm for 150min, stop feeding acetylene, cool to room temperature naturally, and take out the solid sample. The above solid sample was washed with deionized water, suction filtered and dried at 80°C to obtain ultrathin carbon nanosheet powder. SEM results showed that the sample had a good lamellar structure.
实施例7Example 7
将碳酸锂粉体置于真空管式炉内,抽真空至200Pa以下,通入氮气至大气压、随后通入氢气(为氮气体积的10%),将管式炉升温至600℃,通入乙炔(为氢气体积的5%),保温10min。随后,停止通入乙炔,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在80℃烘干后得到超薄碳纳米片粉体。扫描电镜(SEM)结果显示样品具有良好的片层结构。Place the lithium carbonate powder in a vacuum tube furnace, evacuate to below 200Pa, feed nitrogen to atmospheric pressure, and then feed hydrogen (10% of the volume of nitrogen), raise the temperature of the tube furnace to 600°C, and feed acetylene ( 5% of the volume of hydrogen), keep warm for 10 minutes. Subsequently, the acetylene was stopped, and after cooling to room temperature naturally, the solid sample was taken out. The above solid sample was washed with deionized water, suction filtered and dried at 80°C to obtain ultrathin carbon nanosheet powder. Scanning electron microscopy (SEM) results showed that the sample had a good lamellar structure.
实施例8Example 8
将碳酸钾粉体置于真空管式炉内,抽真空至200Pa以下,通入氮气至大气压、随后通入氢气(为氮气体积的20%),将管式炉升温至900℃,通入乙炔(为氢气体积的20%),保温2min,停止通入乙炔,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在80℃烘干后得到超薄碳纳米片粉体,TEM结果显示具有明显的超薄二维片层结构。Put the potassium carbonate powder in a vacuum tube furnace, evacuate to below 200Pa, pass nitrogen to atmospheric pressure, and then pass hydrogen (20% of the nitrogen volume), raise the temperature of the tube furnace to 900°C, and pass acetylene ( 20% of the hydrogen volume), keep warm for 2 minutes, stop feeding acetylene, cool to room temperature naturally, and take out the solid sample. The above solid samples were washed with deionized water, suction filtered and dried at 80°C to obtain ultrathin carbon nanosheet powders. TEM results showed that they had an obvious ultrathin two-dimensional sheet structure.
实施例9Example 9
将氯化钾粉体置于真空管式炉内,抽真空至200Pa以下,通入氮气至大气压、随后通入氢气(为氮气体积的20%),将管式炉升温至880℃,通入甲烷(为氢气体积的50%),保温10min,停止通入甲烷,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在80℃烘干后得到超薄碳纳米片粉体,TEM结果显示具有明显的超薄二维片层结构。Put the potassium chloride powder in a vacuum tube furnace, evacuate to below 200Pa, pass nitrogen to atmospheric pressure, and then pass hydrogen (20% of the nitrogen volume), raise the temperature of the tube furnace to 880°C, and pass methane (50% of the hydrogen volume), keep warm for 10 minutes, stop feeding methane, cool to room temperature naturally, and take out the solid sample. The above solid samples were washed with deionized water, suction filtered and dried at 80°C to obtain ultrathin carbon nanosheet powders. TEM results showed that they had an obvious ultrathin two-dimensional sheet structure.
实施例10Example 10
将碳酸钠粉体置于真空管式炉内,抽真空至200Pa以下,通入氮气至大气压、随后通入氢气(为氮气体积的30%),将管式炉升温至880℃,通入乙烯(为氢气体积的20%),保温2min。随后,停止通入乙烯,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在80℃烘干后得到超薄碳纳米片粉体,TEM结果显示具有明显的超薄二维片层结构。Put the sodium carbonate powder in a vacuum tube furnace, evacuate to below 200Pa, feed nitrogen to atmospheric pressure, and then feed hydrogen (30% of the nitrogen volume), raise the temperature of the tube furnace to 880°C, and feed ethylene ( 20% of the hydrogen volume), keep warm for 2 minutes. Subsequently, the feeding of ethylene was stopped, and after natural cooling to room temperature, the solid sample was taken out. The above solid samples were washed with deionized water, suction filtered and dried at 80°C to obtain ultrathin carbon nanosheet powders. TEM results showed that they had an obvious ultrathin two-dimensional sheet structure.
实施例11Example 11
将碳酸钾粉体置于真空管式炉内,抽真空至200Pa以下,通入氮气至大气压,将管式炉升温至880℃,通入乙烯(为氮气体积的10%),保温60min,停止通入乙烯,自然冷却至室温后,取出固体样品。使用去离子水将上述固体样品洗涤、抽滤并在80℃烘干后得到超薄碳纳米片粉体,TEM结果显示具有明显的二维片层结构。Put the potassium carbonate powder in a vacuum tube furnace, evacuate to below 200Pa, feed nitrogen to atmospheric pressure, raise the temperature of the tube furnace to 880°C, feed ethylene (10% of the volume of nitrogen gas), keep it warm for 60 minutes, and stop the ventilation. Add ethylene, cool to room temperature naturally, and take out the solid sample. The above solid samples were washed with deionized water, suction filtered and dried at 80°C to obtain ultra-thin carbon nanosheet powders. TEM results showed that they had an obvious two-dimensional sheet structure.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710529303.6A CN107354446B (en) | 2017-07-01 | 2017-07-01 | A kind of method that chemical gaseous phase synthesizes ultra-thin carbon nanosheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710529303.6A CN107354446B (en) | 2017-07-01 | 2017-07-01 | A kind of method that chemical gaseous phase synthesizes ultra-thin carbon nanosheet |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107354446A CN107354446A (en) | 2017-11-17 |
CN107354446B true CN107354446B (en) | 2019-09-24 |
Family
ID=60273461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710529303.6A Active CN107354446B (en) | 2017-07-01 | 2017-07-01 | A kind of method that chemical gaseous phase synthesizes ultra-thin carbon nanosheet |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107354446B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449440B (en) * | 2018-10-31 | 2021-11-16 | 武汉理工大学 | Microporous ultrathin soft carbon nanosheet and preparation method and application thereof |
CN118125423A (en) * | 2024-03-11 | 2024-06-04 | 哈尔滨工业大学 | Method for growing vertical carbon nano-sheet on surface of graphite film |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102352490A (en) * | 2011-09-23 | 2012-02-15 | 中国科学院微电子研究所 | A kind of preparation method of nitrogen-doped carbon nanotube |
CN102392225A (en) * | 2011-07-22 | 2012-03-28 | 中国科学院上海微系统与信息技术研究所 | Method for preparing graphene nanoribbon on insulating substrate |
CN102534544A (en) * | 2010-12-14 | 2012-07-04 | 财团法人工业技术研究院 | Carbon nanotube composite material and its preparation method |
CN102923725A (en) * | 2012-11-26 | 2013-02-13 | 中国科学院上海硅酸盐研究所 | Ultrathin calcium silicate nanosheet with ultrahigh specific surface area and preparation method thereof |
CN102942178A (en) * | 2012-11-22 | 2013-02-27 | 武汉大学 | Compound base of precious metal nanometer array and single layer graphene and preparation method thereof |
CN106191804A (en) * | 2016-06-06 | 2016-12-07 | 重庆大学 | A kind of preparation method of magnetic graphene nano belt/graphene composite film |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8153240B2 (en) * | 2003-10-03 | 2012-04-10 | College Of William And Mary | Carbon nanostructures and methods of making and using the same |
-
2017
- 2017-07-01 CN CN201710529303.6A patent/CN107354446B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534544A (en) * | 2010-12-14 | 2012-07-04 | 财团法人工业技术研究院 | Carbon nanotube composite material and its preparation method |
CN102392225A (en) * | 2011-07-22 | 2012-03-28 | 中国科学院上海微系统与信息技术研究所 | Method for preparing graphene nanoribbon on insulating substrate |
CN102352490A (en) * | 2011-09-23 | 2012-02-15 | 中国科学院微电子研究所 | A kind of preparation method of nitrogen-doped carbon nanotube |
CN102942178A (en) * | 2012-11-22 | 2013-02-27 | 武汉大学 | Compound base of precious metal nanometer array and single layer graphene and preparation method thereof |
CN102923725A (en) * | 2012-11-26 | 2013-02-13 | 中国科学院上海硅酸盐研究所 | Ultrathin calcium silicate nanosheet with ultrahigh specific surface area and preparation method thereof |
CN106191804A (en) * | 2016-06-06 | 2016-12-07 | 重庆大学 | A kind of preparation method of magnetic graphene nano belt/graphene composite film |
Also Published As
Publication number | Publication date |
---|---|
CN107354446A (en) | 2017-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109956463B (en) | A kind of carbon nanotube and preparation method thereof | |
CN107425180B (en) | Three-dimensional graphene/silicon composite system, preparation method and application thereof | |
CN102586869B (en) | Three-dimensional grapheme tube and preparation method thereof | |
CN104835654B (en) | A three-dimensional nitrogen-doped graphene/molybdenum disulfide composite and its preparation method | |
CN103318871B (en) | Preparation method for synthesizing graphite porous carbon material with activated carbon serving as raw material | |
CN102324503B (en) | Method for preparing cobalt oxide nanosheet and graphene composite lithium battery cathode material through single-mode microwave | |
CN103450682B (en) | A kind of Carbon nanotube/polypyrrolecomposite composite sponge and preparation method thereof | |
CN105514403B (en) | A kind of three-dimensional nucleocapsid MoO2-MoS2Lithium ion battery negative material and preparation method thereof | |
CN102560415A (en) | Three-dimensional graphene/metal line or metal wire composite structure and preparation method thereof | |
CN105347346B (en) | A method of air-assisted preparation of porous nano-silicon | |
CN103553034B (en) | Preparation method three-dimensional porous graphene skeleton | |
Wang et al. | Compounding δ-MnO2 with modified graphene nanosheets for highly stable asymmetric supercapacitors | |
CN104944392B (en) | A kind of method that magnanimity prepares graphite phase carbon nitride nanometer sheet | |
CN107459029A (en) | A kind of nitrogen/metal atom doped hollow polyhedral nano-sized carbon shell material and preparation method | |
CN107857249A (en) | A kind of preparation method of N doping annular hollow carbon nano-material | |
CN104108709A (en) | Porous graphene and preparation method thereof | |
CN104108712B (en) | A kind of boron doped graphene and preparation method thereof | |
CN106976854A (en) | A kind of method for preparing carbon material | |
CN105789628B (en) | A kind of azagraphene and manganese dioxide hybrid aerogel and its preparation method and use | |
CN103979528A (en) | One-step method for preparing hyperelastic carbon nanotube/amorphous carbon composite all-carbon sponge | |
CN107354446B (en) | A kind of method that chemical gaseous phase synthesizes ultra-thin carbon nanosheet | |
CN107539990B (en) | A kind of porous silicon nano material and its preparation method and application | |
CN109449410B (en) | A kind of preparation method of nitrogen and sulfur co-doped sodium tungsten disulfide sodium ion battery anode material | |
CN106430213A (en) | Low-temperature preparation method of rice-hull-based porous silicon material | |
CN111285375A (en) | Silicon nano material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |