CN104022022A - Forming method of multigraph - Google Patents
Forming method of multigraph Download PDFInfo
- Publication number
- CN104022022A CN104022022A CN201310064753.4A CN201310064753A CN104022022A CN 104022022 A CN104022022 A CN 104022022A CN 201310064753 A CN201310064753 A CN 201310064753A CN 104022022 A CN104022022 A CN 104022022A
- Authority
- CN
- China
- Prior art keywords
- sidewall
- hard mask
- layer
- forming
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0338—Process specially adapted to improve the resolution of the mask
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
一种多重图形的形成方法,包括:提供待刻蚀材料层;在所述待刻蚀材料层上形成若干分立的第一硬掩膜层;形成位于所述第一硬掩膜层周围的第一侧墙;形成位于所述第一侧墙周围的第二侧墙,所述第二侧墙与所述第一侧墙的材料不同;重复上述形成第一侧墙和第二侧墙的工艺若干次,在所述第一硬掩膜层周围形成第一侧墙和第二侧墙相间隔的多层侧墙结构;去除所述第一硬掩膜层和所述第二侧墙;以所述第一侧墙为掩膜刻蚀所述待刻蚀材料层,形成目标图形。本发明多重图形的形成方法中,目标图形线宽小,且无需多次硬掩膜转移就可以实现数量可控的目标图形,工艺简单。
A method for forming multiple patterns, comprising: providing a material layer to be etched; forming a plurality of discrete first hard mask layers on the material layer to be etched; forming a first hard mask layer located around the first hard mask layer A side wall; forming a second side wall located around the first side wall, the second side wall is made of a different material from the first side wall; repeating the process of forming the first side wall and the second side wall Several times, forming a multi-layer spacer structure in which first sidewalls and second sidewalls are spaced apart around the first hard mask layer; removing the first hard mask layer and the second sidewall; The first sidewall is used as a mask to etch the material layer to be etched to form a target pattern. In the method for forming multiple patterns of the present invention, the line width of the target pattern is small, and a controllable number of target patterns can be realized without multiple hard mask transfers, and the process is simple.
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种多重图形的形成方法。The invention relates to the technical field of semiconductors, in particular to a method for forming multiple patterns.
背景技术Background technique
随着集成电路设计的最小线宽和间距的不断缩小,当曝光线条的特征尺寸接近于曝光系统的理论分辨极限时,光刻成像就会发生严重的畸变,从而导致光刻图形质量的严重下降。为了减小光学邻近效应的影响,工业界提出了光刻分辨率增强技术。With the continuous shrinking of the minimum line width and spacing of integrated circuit design, when the feature size of the exposure line is close to the theoretical resolution limit of the exposure system, the lithographic imaging will be severely distorted, resulting in a serious decline in the quality of the lithographic pattern. . In order to reduce the influence of the optical proximity effect, the industry has proposed a photolithographic resolution enhancement technology.
其中一种技术为双重曝光(Double Print)技术,其利用多次曝光技术来获得较小线宽,但是双重曝光技术的工艺复杂,成本高,而且还存在多次曝光之间的对准(Alignment)问题。One of the technologies is the double exposure (Double Print) technology, which uses multiple exposure technology to obtain a smaller line width, but the process of the double exposure technology is complicated, the cost is high, and there is alignment between multiple exposures (Alignment )question.
另外一种技术为自对准双重图形(SADP:Self-aligned Double Patterning)技术,其被认为是填补浸入式光刻和极紫外光刻(EUV)之间鸿沟的有力保障。自对准双重图形技术在待刻蚀材料层上形成刻蚀牺牲层,在刻蚀牺牲层的周围形成侧墙,去除所述刻蚀牺牲层后,以所述侧墙为掩膜,刻蚀所述待刻蚀材料层,可以获得特征尺寸小的图形。Another technology is self-aligned double patterning (SADP: Self-aligned Double Patterning) technology, which is considered to be a powerful guarantee to fill the gap between immersion lithography and extreme ultraviolet lithography (EUV). Self-aligned double patterning technology forms an etching sacrificial layer on the material layer to be etched, forms sidewalls around the etching sacrificial layer, and after removing the etching sacrificial layer, uses the sidewalls as a mask to etch The material layer to be etched can obtain patterns with small feature sizes.
图1至图6示出了现有技术的一种基于自对准双重图形技术的自对准四重图形(SAQP:Self-aligned Quadruple Patterning)技术的工艺流程。1 to 6 show a process flow of a self-aligned quadruple patterning (SAQP: Self-aligned Quadruple Patterning) technology based on the self-aligned double patterning technology in the prior art.
请参考图1,提供半导体衬底100,所述半导体衬底100表面具有待刻蚀材料层101;在所述待刻蚀材料层101上形成牺牲层102;在所述牺牲层102上形成若干分立的硬掩膜层103;在所述硬掩膜层103的周围形成第一侧墙104。Please refer to FIG. 1 , a semiconductor substrate 100 is provided, the surface of the semiconductor substrate 100 has a material layer 101 to be etched; a sacrificial layer 102 is formed on the material layer 101 to be etched; A separate hard mask layer 103 ; forming a first spacer 104 around the hard mask layer 103 .
请参考图2,去除所述硬掩膜层103(参考图1)。Referring to FIG. 2 , the hard mask layer 103 (refer to FIG. 1 ) is removed.
请参考图3,以所述第一侧墙104为掩膜刻蚀所述牺牲层102(参考图2),直至暴露出所述待刻蚀材料层101,形成牺牲图形105;去除所述第一侧墙104。Please refer to FIG. 3 , using the first sidewall 104 as a mask to etch the sacrificial layer 102 (refer to FIG. 2 ) until the material layer 101 to be etched is exposed, forming a sacrificial pattern 105; One side wall 104 .
请参考图4,在所述牺牲图形105周围形成第二侧墙106。Referring to FIG. 4 , a second side wall 106 is formed around the sacrificial pattern 105 .
请参考图5,去除所述牺牲图形105(参考图4)。Referring to FIG. 5 , the sacrificial pattern 105 (refer to FIG. 4 ) is removed.
请参考图6,以所述第二侧墙106为掩膜刻蚀所述待刻蚀材料层101(参考图5),形成目标图形107,去除所述第二侧墙106。Referring to FIG. 6 , the material layer 101 to be etched (refer to FIG. 5 ) is etched using the second sidewall 106 as a mask to form a target pattern 107 , and the second sidewall 106 is removed.
上述的自对准四重图形技术,先采用光刻形成硬掩膜层103,再通过两次的侧墙图形转移,刻蚀待刻蚀材料层101,形成四倍于硬掩膜层103数量的目标图形107。但上述的方法形成的目标图形的数量有限,且需要多次的硬掩膜转移,工艺复杂。In the above-mentioned self-aligned quadruple patterning technology, the hard mask layer 103 is first formed by photolithography, and then the material layer 101 to be etched is etched through two times of sidewall pattern transfer to form four times the number of hard mask layers 103 target graphics 107 . However, the number of target patterns formed by the above method is limited, and multiple hard mask transfers are required, resulting in complicated processes.
其他有关多重图形的形成方法还可以参考公开号为US2012/0085733A1的美国专利申请。For other methods of forming multiple patterns, please refer to the US patent application publication number US2012/0085733A1.
发明内容Contents of the invention
本发明解决的问题是现有技术形成小尺寸多重图形的工艺复杂,成本高。The problem solved by the invention is that the process of forming small-sized multiple patterns in the prior art is complicated and costly.
为解决上述问题,本发明提供了一种多重图形的形成方法,包括:提供待刻蚀材料层;在所述待刻蚀材料层上形成若干分立的第一硬掩膜层;形成位于所述第一硬掩膜层周围的第一侧墙;形成位于所述第一侧墙周围的第二侧墙,所述第二侧墙与所述第一侧墙的材料不同;重复上述形成第一侧墙和第二侧墙的工艺若干次,在所述第一硬掩膜层周围形成第一侧墙和第二侧墙相间隔的多层侧墙结构;去除所述第一硬掩膜层和所述第二侧墙;以所述第一侧墙为掩膜刻蚀所述待刻蚀材料层,形成目标图形。In order to solve the above problems, the present invention provides a method for forming multiple patterns, including: providing a material layer to be etched; forming a plurality of discrete first hard mask layers on the material layer to be etched; A first sidewall around the first hard mask layer; forming a second sidewall around the first sidewall, the material of the second sidewall being different from that of the first sidewall; repeating the above to form the first sidewall The process of the sidewall and the second sidewall is performed several times, forming a multi-layer spacer structure in which the first sidewall and the second sidewall are spaced apart around the first hard mask layer; removing the first hard mask layer and the second sidewall; etching the material layer to be etched by using the first sidewall as a mask to form a target pattern.
可选的,所述待刻蚀材料层为半导体层,所述目标图形作为半导体鳍部。Optionally, the material layer to be etched is a semiconductor layer, and the target pattern is used as a semiconductor fin.
可选的,所述多层侧墙结构的最外层为第一侧墙。Optionally, the outermost layer of the multilayer side wall structure is the first side wall.
可选的,重复形成第一侧墙和第二侧墙工艺的次数为1~100。Optionally, the number of times of repeating the process of forming the first sidewall and the second sidewall is 1-100.
可选的,还包括在所述待刻蚀材料层上形成第一硬掩膜层之前,在所述待刻蚀材料层上形成第二硬掩膜层。Optionally, the method further includes forming a second hard mask layer on the material layer to be etched before forming the first hard mask layer on the material layer to be etched.
可选的,形成位于所述第一硬掩膜层周围的第一侧墙的工艺包括:形成覆盖所述第一硬掩膜层的第一侧墙材料层;回刻蚀所述第一侧墙材料层,位于所述第一硬掩膜层周围的第一侧墙材料层构成第一侧墙。Optionally, the process of forming the first sidewall located around the first hard mask layer includes: forming a first sidewall material layer covering the first hard mask layer; etching back the first sidewall The wall material layer, the first side wall material layer located around the first hard mask layer constitutes the first side wall.
可选的,形成所述第一侧墙材料层的工艺为原子层沉积。Optionally, the process of forming the first sidewall material layer is atomic layer deposition.
可选的,回刻蚀所述第一侧墙材料层的工艺为干法刻蚀。Optionally, the process of etching back the first sidewall material layer is dry etching.
可选的,所述第一侧墙的宽度范围为5nm~20nm。Optionally, the width of the first sidewall ranges from 5 nm to 20 nm.
可选的,形成位于所述第一侧墙周围的第二侧墙的工艺包括:形成覆盖所述第一硬掩膜层和所述第一侧墙的第二侧墙材料层;回刻蚀所述第二侧墙材料层,位于所述第一侧墙周围的第二侧墙材料层构成第二侧墙。Optionally, the process of forming the second sidewall located around the first sidewall includes: forming a second sidewall material layer covering the first hard mask layer and the first sidewall; etching back The second side wall material layer, the second side wall material layer located around the first side wall constitutes the second side wall.
可选的,形成所述第二侧墙材料层的工艺为原子层沉积。Optionally, the process of forming the second sidewall material layer is atomic layer deposition.
可选的,回刻蚀所述第二侧墙材料层的工艺为干法刻蚀。Optionally, the process of etching back the second sidewall material layer is dry etching.
可选的,所述第二侧墙的宽度范围为10nm~50nm。Optionally, the width of the second sidewall ranges from 10 nm to 50 nm.
可选的,还包括:在去除所述第一硬掩膜层和所述第二侧墙前,研磨所述第一硬掩膜层、所述第一侧墙和所述第二侧墙,去除部分所述第一硬掩膜层、部分所述第一侧墙和部分所述第二侧墙。Optionally, further comprising: before removing the first hard mask layer and the second sidewall, grinding the first hard mask layer, the first sidewall and the second sidewall, removing part of the first hard mask layer, part of the first sidewall and part of the second sidewall.
可选的,所述第二侧墙与所述第一侧墙的刻蚀选择比大于100:1。Optionally, the etching selectivity ratio of the second sidewall to the first sidewall is greater than 100:1.
可选的,所述第一硬掩膜层的高度范围为20nm~100nm。Optionally, the height of the first hard mask layer ranges from 20 nm to 100 nm.
可选的,所述第二侧墙与所述第一硬掩膜层的材料相同。Optionally, the material of the second sidewall is the same as that of the first hard mask layer.
可选的,去除所述第一硬掩膜层和去除所述第二侧墙的工艺在同一步骤中完成。Optionally, the processes of removing the first hard mask layer and removing the second spacer are completed in the same step.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明实施例的多重图形的形成方法中,在所述待刻蚀材料层上形成若干分立的第一硬掩膜层,在所述第一硬掩膜层周围形成第一侧墙,在所述第一侧墙周围形成第二侧墙,然后重复上述形成第一侧墙和第二侧墙的工艺,以在第一硬掩膜层周围形成第一侧墙和第二侧墙相间隔的多层侧墙结构。去除所述第一硬掩膜层和所述第二侧墙后,所述第一侧墙形成具有间隔的重复图形结构,再以所述第一侧墙为掩膜,刻蚀所述待刻蚀材料层,形成目标图形。本发明多重图形的形成方法中,第一侧墙和第二侧墙的宽度由沉积侧墙材料层的厚度决定,可以获得小线宽的目标图形,降低了光刻难度;另外,通过控制重复形成第一侧墙和第二侧墙的工艺的次数,可以控制后续作为待刻蚀材料层掩膜的第一侧墙的数量,可以获得数量多且可控的目标图形;且与现有技术的多重图形的形成方法相比,无需多次硬掩膜转移,对待刻蚀材料层的一次刻蚀就可以实现多重图形转移,工艺简单,成本低。In the method for forming multiple patterns in the embodiment of the present invention, several discrete first hard mask layers are formed on the material layer to be etched, and first sidewalls are formed around the first hard mask layer, and forming a second sidewall around the first sidewall, and then repeating the above-mentioned process of forming the first sidewall and the second sidewall, so as to form spaced apart first sidewalls and second sidewalls around the first hard mask layer Multi-layer side wall structure. After removing the first hard mask layer and the second sidewall, the first sidewall forms a repeating pattern structure with intervals, and then uses the first sidewall as a mask to etch the to-be-etched Etch the material layer to form the target pattern. In the method for forming multiple patterns of the present invention, the width of the first sidewall and the second sidewall is determined by the thickness of the deposited sidewall material layer, so that a target pattern with a small line width can be obtained, which reduces the difficulty of photolithography; in addition, by controlling repetition The number of processes for forming the first sidewall and the second sidewall can control the number of subsequent first sidewalls used as a mask of the material layer to be etched, and a large number of controllable target patterns can be obtained; and compared with the prior art Compared with the traditional multi-pattern formation method, multiple hard mask transfers are not required, and multiple pattern transfers can be realized by one etching of the material layer to be etched, and the process is simple and the cost is low.
进一步的,本发明实施例的多重图形的形成方法中,所述第一侧墙材料层和所述第二侧墙材料层采用原子层沉积工艺形成,厚度可控性好,薄膜保形性好。刻蚀后所形成的第一侧墙和第二侧墙的侧壁陡直,间距均匀,后续以所述第一侧墙为掩膜刻蚀所述待刻蚀材料层,所获得的目标图形的宽度和间距均匀、形状规则。Further, in the method for forming multiple patterns in the embodiment of the present invention, the first sidewall material layer and the second sidewall material layer are formed by atomic layer deposition process, with good thickness controllability and good shape retention of the film . The sidewalls of the first sidewall and the second sidewall formed after etching are straight and evenly spaced, and the material layer to be etched is subsequently etched using the first sidewall as a mask, and the obtained target pattern The width and spacing are uniform and the shape is regular.
进一步的,本发明实施例的多重图形的形成方法中,采用化学机械抛光工艺研磨所述第一掩膜层、所述第一侧墙和所述第二侧墙,去除所述第一侧墙和第二侧墙顶部不够陡直的部分,后续以所述第一侧墙为掩膜刻蚀待刻蚀材料层所形成目标图形的侧壁陡直。Further, in the method for forming multiple patterns in the embodiment of the present invention, the first mask layer, the first sidewall and the second sidewall are ground by a chemical mechanical polishing process to remove the first sidewall and the portion at the top of the second sidewall that is not steep enough, the sidewall of the target pattern formed by etching the material layer to be etched subsequently using the first sidewall as a mask is steep.
附图说明Description of drawings
图1至图6是现有技术自对准四重图形的形成过程的剖面结构示意图;1 to 6 are schematic cross-sectional structural diagrams of the formation process of self-aligned quadruple patterns in the prior art;
图7至图15是本发明实施例的多重图形的形成过程的剖面结构示意图。7 to 15 are schematic cross-sectional structure diagrams of the forming process of multiple patterns according to the embodiment of the present invention.
具体实施方式Detailed ways
由背景技术可知,现有技术形成小尺寸多重图形的工艺复杂,成本高。It can be seen from the background art that the process of forming small-sized multiple patterns in the prior art is complicated and costly.
本发明的发明人通过研究现有技术多重图形的形成方法,发现现有技术多采用侧墙工艺获得小尺寸图形,为了获得多重图形,需要多次硬掩膜转移。首先在硬掩膜层周围形成第一侧墙,将第一侧墙图形转移到牺牲层形成牺牲图形,再在牺牲图形周围形成第二侧墙,将第二侧墙转移到待刻蚀材料层。由于所述第二侧墙在第一侧墙转移到牺牲层之后形成,造成多次硬掩膜转移,工艺复杂。The inventors of the present invention have studied the formation methods of multiple patterns in the prior art, and found that the prior art mostly uses sidewall technology to obtain small-sized patterns, and multiple hard mask transfers are required to obtain multiple patterns. First form the first sidewall around the hard mask layer, transfer the first sidewall pattern to the sacrificial layer to form a sacrificial pattern, then form the second sidewall around the sacrificial pattern, and transfer the second sidewall to the material layer to be etched . Since the second sidewall is formed after the first sidewall is transferred to the sacrificial layer, multiple transfers of the hard mask are caused and the process is complicated.
基于以上研究,本发明的发明人提出了一种多重图形的形成方法,通过在第一硬掩膜层周围重复形成第一侧墙和第二侧墙,形成第一侧墙和第二侧墙相间隔的多层侧墙结构,去除所述第一硬掩膜层和所述第二侧墙后,以所述第一侧墙为掩膜刻蚀待刻蚀材料层形成目标图形。上述多重图形的形成方法中,第一侧墙和第二侧墙的宽度由沉积侧墙材料层的厚度决定,可以获得小线宽的目标图形,降低了光刻难度;且通过控制重复形成第一侧墙和第二侧墙的工艺的次数,可以控制后续作为待刻蚀材料层掩膜的第一侧墙的数量,可以实现不限数量的多重图形转移,工艺简单。Based on the above studies, the inventors of the present invention proposed a method for forming multiple patterns, by repeatedly forming the first sidewall and the second sidewall around the first hard mask layer, forming the first sidewall and the second sidewall In the spaced-apart multi-layer spacer structure, after the first hard mask layer and the second sidewall are removed, the material layer to be etched is etched using the first sidewall as a mask to form a target pattern. In the above-mentioned method for forming multiple patterns, the width of the first sidewall and the second sidewall is determined by the thickness of the deposited sidewall material layer, and a target pattern with a small line width can be obtained, which reduces the difficulty of photolithography; and the second sidewall is formed repeatedly by controlling The number of processes for one side wall and the second side wall can control the number of subsequent first side walls used as a mask of the material layer to be etched, and an unlimited number of multiple pattern transfers can be realized, and the process is simple.
下面以半导体鳍部的形成过程为例,结合附图详细地描述具体实施例,上述的目的和本发明的优点将更加清楚。Taking the formation process of semiconductor fins as an example, specific embodiments will be described in detail below with reference to the accompanying drawings, so that the above-mentioned purpose and advantages of the present invention will become clearer.
图7至图15是本发明实施例的多重图形的形成过程的结构示意图。FIG. 7 to FIG. 15 are structural schematic diagrams of the process of forming multiple graphics in the embodiment of the present invention.
请参考图7,提供待刻蚀材料层200;在所述待刻蚀材料层200上形成第二硬掩膜层201。Referring to FIG. 7 , a material layer 200 to be etched is provided; a second hard mask layer 201 is formed on the material layer 200 to be etched.
本实施例中,所述待刻蚀材料层200为半导体衬底。所述半导体衬底可以是硅衬底或者绝缘体上硅衬底,所述半导体衬底也可以为锗衬底、锗硅衬底、砷化镓衬底或者绝缘体上锗衬底。本实施例中,通过对半导体衬底刻蚀形成具有较小尺寸的半导体鳍部。In this embodiment, the material layer 200 to be etched is a semiconductor substrate. The semiconductor substrate may be a silicon substrate or a silicon-on-insulator substrate, and the semiconductor substrate may also be a germanium substrate, a silicon-germanium substrate, a gallium arsenide substrate, or a germanium-on-insulator substrate. In this embodiment, semiconductor fins with smaller dimensions are formed by etching the semiconductor substrate.
在其他实施例中,所述待刻蚀材料层也可以为氧化硅层、氮化硅层、多晶硅层、低介电常数材料层、高介电常数材料层、无定形碳层和金属层中的一种或几种。在半导体衬底上形成待刻蚀材料层后,用于形成具有重复结构的多重图形。In other embodiments, the material layer to be etched can also be a silicon oxide layer, a silicon nitride layer, a polysilicon layer, a low dielectric constant material layer, a high dielectric constant material layer, an amorphous carbon layer, and a metal layer. one or more of. After the material layer to be etched is formed on the semiconductor substrate, it is used to form multiple patterns with repeated structures.
在所述待刻蚀材料层200上形成第二硬掩膜层201,所述第二硬掩膜层201用于在后续的工艺中保护所述待刻蚀材料层200表面,减少损伤。所述第二硬掩膜层201的材料可以与后续形成的第一硬掩膜层、第一侧墙材料层和第二侧墙材料层的材料不同,以保证在刻蚀第一硬掩膜层、第一侧墙材料层和第二侧墙材料层的过程中,对所述第二硬掩膜层201的刻蚀速率较小,有利于保护所述待刻蚀材料层200。形成所述第二硬掩膜层201的工艺可以为化学气相沉积或者物理气相沉积工艺,也可以通过对所述待刻蚀材料层200表面进行氧化形成氧化层以构成第二硬掩膜层201。所述第二硬掩膜层201的材料可以为氧化硅、氮化硅、氮氧化硅、碳、氮化钛或者氮化钽。A second hard mask layer 201 is formed on the material layer to be etched 200 , and the second hard mask layer 201 is used to protect the surface of the material layer to be etched 200 in subsequent processes and reduce damage. The material of the second hard mask layer 201 may be different from that of the subsequently formed first hard mask layer, first sidewall material layer and second sidewall material layer, so as to ensure During the process of layering, the first sidewall material layer and the second sidewall material layer, the etching rate of the second hard mask layer 201 is relatively small, which is beneficial to protect the material layer 200 to be etched. The process of forming the second hard mask layer 201 may be a chemical vapor deposition or physical vapor deposition process, or an oxide layer may be formed by oxidizing the surface of the material layer 200 to be etched to form the second hard mask layer 201 . The material of the second hard mask layer 201 may be silicon oxide, silicon nitride, silicon oxynitride, carbon, titanium nitride or tantalum nitride.
请参考图8,在所述第二硬掩膜层201上形成若干分立的第一硬掩膜层202。Referring to FIG. 8 , several discrete first hard mask layers 202 are formed on the second hard mask layer 201 .
具体的,在所述第二硬掩膜层201上采用化学气相沉积、物理气相沉积或者原子层沉积工艺形成第一硬掩膜材料层(未图示);在所述第一硬掩膜材料层上光刻形成图形化的光刻胶层(未图示);以所述图形化的光刻胶层为掩膜刻蚀所述第一硬掩膜材料层,直至暴露出第二硬掩膜层201表面,形成第一硬掩膜层202。其中光刻形成图形化光刻胶层的工艺可以采用紫外光刻、193nm波长光刻或者193nm波长浸没式光刻。所述第一硬掩膜层202的材料可以为氧化硅、氮化硅、氮氧化硅、碳、氮化钛或者氮化钽。本实施例中,所述第一硬掩膜层202的材料为氧化硅,所述第一硬掩膜层202的高度范围为20nm~100nm。Specifically, a first hard mask material layer (not shown) is formed on the second hard mask layer 201 by chemical vapor deposition, physical vapor deposition or atomic layer deposition; Form a patterned photoresist layer (not shown) by photolithography on the layer; use the patterned photoresist layer as a mask to etch the first hard mask material layer until the second hard mask is exposed A first hard mask layer 202 is formed on the surface of the film layer 201 . The process of forming the patterned photoresist layer by photolithography may adopt ultraviolet lithography, 193nm wavelength lithography or 193nm wavelength immersion lithography. The material of the first hard mask layer 202 may be silicon oxide, silicon nitride, silicon oxynitride, carbon, titanium nitride or tantalum nitride. In this embodiment, the material of the first hard mask layer 202 is silicon oxide, and the height of the first hard mask layer 202 ranges from 20 nm to 100 nm.
本实施例中,所述第一硬掩膜层202的形成过程中采用传统紫外光刻,所形成的第一硬掩膜层202尺寸较大,例如可以为5μm~10μm。后续形成的位于所述第一硬掩膜层202两侧的半导体鳍部,可以用于形成不同电路单元。In this embodiment, conventional ultraviolet lithography is used in the formation process of the first hard mask layer 202 , and the formed first hard mask layer 202 has a relatively large size, for example, 5 μm˜10 μm. The subsequently formed semiconductor fins located on both sides of the first hard mask layer 202 can be used to form different circuit units.
请参考图9,形成覆盖所述第一硬掩膜层202的第一侧墙材料层203。Referring to FIG. 9 , a first spacer material layer 203 covering the first hard mask layer 202 is formed.
本实施例中,采用原子层沉积工艺形成第一侧墙材料层203,所述第一侧墙材料层203覆盖所述第一硬掩膜层202的侧壁和顶表面。原子层沉积工艺通过将气相前驱物脉冲交替地通入反应腔室,在沉积基底上化学吸附并反应单层生长形成沉积薄膜,厚度可控性好,薄膜保形性好。因此可以获得较小的第一侧墙材料层203厚度,且保证所述第一侧墙材料层203与所述第一硬掩膜层202的形貌一致。本实施例中,所述第一侧墙材料层203的材料为氮化硅,在原子层沉积过程中,交替提供SiH2Cl2和NH3,在450摄氏度~550摄氏度的温度下成膜形成氮化硅,腔室压力为0.2~0.3托。在其他实施例中,所述第一侧墙材料层203的材料也可以为氧化硅、氮氧化硅、碳、氮化钛或者氮化钽。In this embodiment, the first sidewall material layer 203 is formed by atomic layer deposition process, and the first sidewall material layer 203 covers the sidewall and top surface of the first hard mask layer 202 . The atomic layer deposition process pulses gas-phase precursors into the reaction chamber alternately, chemically adsorbs on the deposition substrate and reacts to form a monolayer growth to form a deposited film with good thickness controllability and good shape retention. Therefore, a smaller thickness of the first sidewall material layer 203 can be obtained, and the shape of the first sidewall material layer 203 is consistent with that of the first hard mask layer 202 . In this embodiment, the material of the first sidewall material layer 203 is silicon nitride, and during the atomic layer deposition process, SiH 2 Cl 2 and NH 3 are provided alternately, and the film is formed at a temperature of 450 degrees Celsius to 550 degrees Celsius For silicon nitride, the chamber pressure is 0.2-0.3 Torr. In other embodiments, the material of the first sidewall material layer 203 may also be silicon oxide, silicon oxynitride, carbon, titanium nitride or tantalum nitride.
在其他实施例中,也可以采用化学气相沉积或者物理气相沉积工艺形成所述第一侧墙材料层。In other embodiments, the first sidewall material layer may also be formed by chemical vapor deposition or physical vapor deposition.
请参考图10,回刻蚀所述第一侧墙材料层203(参考图9),位于所述第一硬掩膜层202周围的第一侧墙材料层203构成第一侧墙204。Referring to FIG. 10 , the first spacer material layer 203 is etched back (refer to FIG. 9 ), and the first spacer material layer 203 located around the first hard mask layer 202 forms a first spacer 204 .
具体的,采用干法刻蚀工艺回刻蚀所述第一侧墙材料层203。本实施例中,采用反应离子刻蚀工艺回刻蚀所述第一侧墙材料层203,由于反应离子刻蚀具有较好的方向性,回刻蚀所述第一侧墙材料层203后,覆盖所述第一硬掩膜层202顶表面和所述第二硬掩膜层201表面的第一侧墙材料层203被去除,位于所述第一硬掩膜层201侧壁表面的第一侧墙材料层203得以保留形成第一侧墙204。Specifically, the first sidewall material layer 203 is etched back by using a dry etching process. In this embodiment, the reactive ion etching process is used to etch back the first sidewall material layer 203. Since the reactive ion etching has better directionality, after the first sidewall material layer 203 is etched back, The first sidewall material layer 203 covering the top surface of the first hard mask layer 202 and the surface of the second hard mask layer 201 is removed, and the first sidewall material layer 203 located on the sidewall surface of the first hard mask layer 201 The sidewall material layer 203 remains to form the first sidewall 204 .
本实施例中,所述第一侧墙材料层203采用原子层沉积工艺形成,厚度可以通过控制沉积参数精确控制。因此,通过回刻蚀所述第一侧墙材料层203所形成的第一侧墙204的宽度也可以精确控制,可以在获得小于传统光学光刻线宽的同时,确保后续所形成的位于所述第一硬掩膜层202周围的多个第一侧墙204的宽度相同。后续以所述第一侧墙204为掩膜,刻蚀所述待刻蚀材料层201所形成的半导体鳍部在具有较小尺寸的同时,其宽度也相同。本实施例中,所述第一侧墙204的宽度范围为5nm~20nm。In this embodiment, the first sidewall material layer 203 is formed by an atomic layer deposition process, and its thickness can be precisely controlled by controlling deposition parameters. Therefore, the width of the first sidewall 204 formed by etching back the first sidewall material layer 203 can also be precisely controlled, which can ensure that the subsequent formation is located at the desired location while obtaining a line width smaller than that of traditional optical lithography. The plurality of first sidewalls 204 around the first hard mask layer 202 have the same width. Subsequently, using the first sidewall 204 as a mask, the semiconductor fins formed by etching the material layer 201 to be etched have a smaller size and the same width. In this embodiment, the width range of the first sidewall 204 is 5 nm˜20 nm.
请参考图11,形成覆盖所述第一掩膜层202和所述第一侧墙204的第二侧墙材料层205。Referring to FIG. 11 , a second spacer material layer 205 covering the first mask layer 202 and the first spacer 204 is formed.
本实施例中,采用原子层沉积工艺形成第二侧墙材料层205,有利于控制第二侧墙材料层205的厚度和形貌。后续通过回刻蚀所述第二侧墙材料层205所形成第二侧墙的侧壁陡直,厚度可控,使最终形成的位于第一硬掩膜层202周围的多层侧墙结构中第一侧墙204之间的间距相同,所形成的目标图形之间的间距相同。所述第二侧墙材料层205的材料可以为氧化硅、氮化硅、氮氧化硅、碳、氮化钛或者氮化钽,所述第二侧墙材料层205与所述第一侧墙材料层203(参考图9)的材料不同,以确保第一侧墙204和后续形成的第二侧墙具有较高的刻蚀选择比。所述第二侧墙材料层205与所述第一硬掩膜层202的材料可以相同或者不同。本实施例中,所述第二侧墙材料层205与所述第一硬掩膜层202的材料相同,均为氧化硅,在后续工艺中,可以在同一工艺步骤中去除,工艺简单。In this embodiment, the second sidewall material layer 205 is formed by using an atomic layer deposition process, which is beneficial to control the thickness and shape of the second sidewall material layer 205 . The sidewall of the second sidewall formed by etching back the second sidewall material layer 205 subsequently has a steep sidewall and a controllable thickness, so that the finally formed multilayer sidewall structure located around the first hard mask layer 202 The distances between the first side walls 204 are the same, and the distances between the formed target patterns are the same. The material of the second sidewall material layer 205 can be silicon oxide, silicon nitride, silicon oxynitride, carbon, titanium nitride or tantalum nitride, and the second sidewall material layer 205 and the first sidewall material layer The materials of the material layer 203 (refer to FIG. 9 ) are different to ensure a higher etching selectivity ratio for the first sidewall 204 and the second sidewall formed subsequently. Materials of the second sidewall material layer 205 and the first hard mask layer 202 may be the same or different. In this embodiment, the material of the second sidewall material layer 205 is the same as that of the first hard mask layer 202 , both are silicon oxide, and can be removed in the same process step in subsequent processes, and the process is simple.
在其他实施例中,也可以采用化学气相沉积或者物理气相沉积工艺形成所述第二侧墙材料层。In other embodiments, the second sidewall material layer may also be formed by chemical vapor deposition or physical vapor deposition.
请参考图12,回刻蚀所述第二侧墙材料层205(参考图11),位于所述第一侧墙204周围的第二侧墙材料层205构成第二侧墙206。Referring to FIG. 12 , the second sidewall material layer 205 is etched back (refer to FIG. 11 ), and the second sidewall material layer 205 located around the first sidewall 204 forms a second sidewall 206 .
具体的,采用干法刻蚀工艺回刻蚀所述第二侧墙材料层205。本实施例中,采用反应离子刻蚀工艺回刻蚀所述第二侧墙材料层205,由于反应离子刻蚀具有较好的方向性,回刻蚀所述第二侧墙材料层205后,覆盖所述第一硬掩膜层202顶表面、所述第一侧墙204顶表面和所述第二硬掩膜层201表面的第二侧墙材料层205被去除,位于所述第一侧墙204侧壁表面的第二侧墙材料层205保留形成第二侧墙206。本实施例中,所述第二侧墙206的宽度范围为10nm~50nm。Specifically, the second sidewall material layer 205 is etched back by using a dry etching process. In this embodiment, the second sidewall material layer 205 is etched back by using a reactive ion etching process. Since the reactive ion etching has better directionality, after the second sidewall material layer 205 is etched back, The second spacer material layer 205 covering the top surface of the first hard mask layer 202, the top surface of the first spacer 204 and the surface of the second hard mask layer 201 is removed, and is located on the first side The second sidewall material layer 205 remains on the sidewall surface of the wall 204 to form the second sidewall 206 . In this embodiment, the width of the second side wall 206 ranges from 10 nm to 50 nm.
由于所述第二侧墙206通过对所述第二侧墙材料层205回刻蚀后形成,而所述第二侧墙材料层205与所述第一侧墙204的材料不同,因此所述第二侧墙206与所述第一侧墙204的材料不同,具有刻蚀选择性。本实施例中,所述第二侧墙206与所述第一侧墙204的刻蚀选择比大于100:1,以确保在后续工艺中去除所述第二侧墙206的过程中,对所述第一侧墙204的损伤较小。Since the second sidewall 206 is formed by etching back the second sidewall material layer 205, and the material of the second sidewall material layer 205 is different from that of the first sidewall 204, so the The material of the second sidewall 206 is different from that of the first sidewall 204 and has etching selectivity. In this embodiment, the etching selectivity ratio of the second sidewall 206 to the first sidewall 204 is greater than 100:1, so as to ensure that the second sidewall 206 is removed in the subsequent process, all The damage to the first side wall 204 is relatively small.
请参考图13,重复上述形成第一侧墙204和第二侧墙206的工艺若干次,在所述第一硬掩膜层202周围形成第一侧墙204和第二侧墙206相间隔的多层侧墙结构。Please refer to FIG. 13 , repeat the process of forming the first sidewall 204 and the second sidewall 206 several times, and form the first sidewall 204 and the second sidewall 206 spaced apart around the first hard mask layer 202. Multi-layer side wall structure.
通过控制重复形成第一侧墙204和第二侧墙206的次数,可以控制后续形成于所述第一硬掩膜层202周围的图形数量。在去除所述第一硬掩膜层202和第二硬掩膜层206后,以多个所述第一硬掩膜层204为掩膜刻蚀所述待刻蚀材料层200,可以实现多重图形转移,工艺简单。需要说明的,上述重复形成第一侧墙204和第二侧墙206的工艺次数不受限制,根据所需形成的多重图形的数量决定,例如,重复次数可以为1~100。By controlling the times of repeatedly forming the first spacer 204 and the second spacer 206 , the number of patterns subsequently formed around the first hard mask layer 202 can be controlled. After removing the first hard mask layer 202 and the second hard mask layer 206, the material layer 200 to be etched is etched by using a plurality of the first hard mask layers 204 as a mask to achieve multiple Graphic transfer, simple process. It should be noted that the number of repeating processes for forming the first sidewall 204 and the second sidewall 206 is not limited and is determined according to the number of multiple patterns to be formed. For example, the number of repetitions may be 1-100.
本实施例中,在重复形成第一侧墙204和第二侧墙206的工艺若干次后,所述多层侧墙结构的最外层为第一侧墙204。由于后续仅第一侧墙204作为刻蚀掩膜,第二侧墙206被去除,因此使第一侧墙204位于所述多层侧墙的最外层可以避免多余的工艺步骤,节省成本。In this embodiment, after repeating the process of forming the first sidewall 204 and the second sidewall 206 several times, the outermost layer of the multilayer sidewall structure is the first sidewall 204 . Since only the first sidewall 204 is used as an etching mask and the second sidewall 206 is removed, making the first sidewall 204 at the outermost layer of the multi-layer sidewall can avoid redundant process steps and save costs.
请参考图14,去除所述第一硬掩膜层202和所述第二侧墙206Please refer to FIG. 14 , remove the first hard mask layer 202 and the second spacer 206
本实施例中,所述第一硬掩膜层202和所述第二侧墙206的材料相同,去除所述第一硬掩膜层202和去除所述第二侧墙206的工艺在同一步骤中完成,工艺简单。去除所述第一硬掩膜层202和所述第二侧墙206的工艺可以为干法刻蚀也可以为湿法刻蚀,在刻蚀过程中,由于所述待刻蚀材料层200表面具有第二硬掩膜层201,减小了对所述待刻蚀材料层200的损伤。In this embodiment, the first hard mask layer 202 and the second sidewall 206 are made of the same material, and the processes of removing the first hard mask layer 202 and the second sidewall 206 are performed in the same step. Finished, the process is simple. The process of removing the first hard mask layer 202 and the second sidewall 206 may be dry etching or wet etching. During the etching process, due to the surface of the material layer 200 to be etched With the second hard mask layer 201 , the damage to the material layer 200 to be etched is reduced.
需要说明的,本实施例中,在去除所述第一硬掩膜层202和所述第二侧墙206前,采用化学机械抛光工艺研磨所述第一硬掩膜层202、所述第一侧墙204和所述第二侧墙206,去除所述第一侧墙204和第二侧墙206顶部不够陡直的部分。后续以侧壁陡直的第一侧墙204为掩膜刻蚀所述待刻蚀材料层200,有利于提高所形成半导体鳍部的形貌,使所述半导体鳍部的侧壁陡直。It should be noted that, in this embodiment, before removing the first hard mask layer 202 and the second sidewall 206, the first hard mask layer 202, the first For the side wall 204 and the second side wall 206 , the part of the top of the first side wall 204 and the second side wall 206 that is not steep enough is removed. Subsequent etching of the to-be-etched material layer 200 by using the first sidewall 204 with a steep sidewall as a mask is beneficial to improving the morphology of the formed semiconductor fin and making the sidewall of the semiconductor fin steep.
在另一实施例中,所述第一硬掩膜层和所述第二侧墙的材料不同,去除所述第一硬掩膜层和去除所述第二侧墙的工艺分开进行。In another embodiment, the first hard mask layer and the second spacer are made of different materials, and the processes of removing the first hard mask layer and removing the second spacer are performed separately.
请参考图15,以所述第一侧墙204(参考图14)为掩膜刻蚀所述待刻蚀材料层200,形成目标图形207。Referring to FIG. 15 , the material layer 200 to be etched is etched using the first sidewall 204 (refer to FIG. 14 ) as a mask to form a target pattern 207 .
本实施例中,所述待刻蚀材料层200表面形成有第二硬掩膜层201(参考图14),因此,采用干法刻蚀,以所述第一侧墙204为掩膜刻蚀所述第二硬掩膜层201和所述待刻蚀材料层200。刻蚀后,去除所述第一侧墙204,剩余第二硬掩膜层201构成第三硬掩膜层208,部分所述待刻蚀材料层200构成目标图形207,所述第三硬掩膜层208位于所述目标图形207顶表面。本实施例中,所述待刻蚀材料层200为半导体衬底,所述目标图形207作为半导体鳍部,通过控制刻蚀所述半导体衬底的深度可以控制所形成半导体鳍部的高度。由于所述第一硬掩膜层204的数量为多个,所形成的目标图形207也为多个,实现了多重图形转移,工艺简单。In this embodiment, the second hard mask layer 201 (refer to FIG. 14 ) is formed on the surface of the material layer 200 to be etched. Therefore, dry etching is used to etch the first sidewall 204 as a mask. The second hard mask layer 201 and the material layer 200 to be etched. After etching, the first sidewall 204 is removed, and the remaining second hard mask layer 201 forms a third hard mask layer 208, and part of the material layer 200 to be etched forms a target pattern 207. The third hard mask layer The film layer 208 is located on the top surface of the target pattern 207 . In this embodiment, the material layer 200 to be etched is a semiconductor substrate, and the target pattern 207 is used as a semiconductor fin, and the height of the formed semiconductor fin can be controlled by controlling the etching depth of the semiconductor substrate. Since there are multiple first hard mask layers 204, multiple target patterns 207 are formed, so multiple pattern transfers are realized and the process is simple.
需要说明的是,在以所述第一侧墙204为掩膜刻蚀所述待刻蚀材料层200形成目标图形207后,由于所述第一侧墙204形成于第一硬掩膜层202(参考图10)周围,所述目标图形207通常为环形结构。因此,可以通过光刻、刻蚀工艺去除部分所述目标图形207,对所述目标图形207进行切割,获得分立的条形的图形结构。It should be noted that, after etching the material layer 200 to be etched to form the target pattern 207 by using the first sidewall 204 as a mask, since the first sidewall 204 is formed on the first hard mask layer 202 (Refer to FIG. 10 ), the target graphic 207 is generally a ring structure. Therefore, part of the target pattern 207 can be removed by photolithography and etching process, and the target pattern 207 can be cut to obtain a discrete bar-shaped pattern structure.
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can utilize the methods and techniques disclosed above to analyze the technical aspects of the present invention without departing from the spirit and scope of the present invention. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the protection of the technical solution of the present invention. scope.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310064753.4A CN104022022A (en) | 2013-02-28 | 2013-02-28 | Forming method of multigraph |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310064753.4A CN104022022A (en) | 2013-02-28 | 2013-02-28 | Forming method of multigraph |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104022022A true CN104022022A (en) | 2014-09-03 |
Family
ID=51438720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310064753.4A Pending CN104022022A (en) | 2013-02-28 | 2013-02-28 | Forming method of multigraph |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104022022A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105448735A (en) * | 2014-09-04 | 2016-03-30 | 中国科学院微电子研究所 | Fin field effect transistor and manufacturing method of fin thereof |
CN105487160A (en) * | 2016-01-15 | 2016-04-13 | 京东方科技集团股份有限公司 | Metal wire grid polarizer, manufacturing method thereof and display device comprising metal wire grid polarizer |
CN106057869A (en) * | 2015-04-15 | 2016-10-26 | 三星电子株式会社 | Semiconductor device and method of fabricating same |
CN106558492A (en) * | 2015-09-25 | 2017-04-05 | 中国科学院微电子研究所 | Fin and manufacturing method of semiconductor device |
CN107403719A (en) * | 2016-05-20 | 2017-11-28 | 中芯国际集成电路制造(天津)有限公司 | The method for forming figure in the semiconductor device |
CN107993925A (en) * | 2017-11-27 | 2018-05-04 | 长江存储科技有限责任公司 | A kind of autoregistration quadruple graph technology |
CN109148273A (en) * | 2017-06-28 | 2019-01-04 | 中芯国际集成电路制造(上海)有限公司 | The production method of semiconductor structure |
CN109216165A (en) * | 2017-07-06 | 2019-01-15 | 中芯国际集成电路制造(天津)有限公司 | The manufacturing method of multiple graphics and semiconductor devices |
CN109216163A (en) * | 2017-06-29 | 2019-01-15 | 中芯国际集成电路制造(上海)有限公司 | The manufacturing method of semiconductor devices |
CN111458975A (en) * | 2020-04-29 | 2020-07-28 | 中国科学院光电技术研究所 | A super-resolution lithography process method for realizing resolution of 10nm and below |
CN111640665A (en) * | 2019-03-01 | 2020-09-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN114420546A (en) * | 2021-12-01 | 2022-04-29 | 致真存储(北京)科技有限公司 | Small-linewidth circular or elliptical device with controllable shape and preparation method thereof |
WO2022235361A1 (en) * | 2021-05-06 | 2022-11-10 | Applied Materials, Inc. | Spacer patterning process with flat top profile |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6638441B2 (en) * | 2002-01-07 | 2003-10-28 | Macronix International Co., Ltd. | Method for pitch reduction |
US6872647B1 (en) * | 2003-05-06 | 2005-03-29 | Advanced Micro Devices, Inc. | Method for forming multiple fins in a semiconductor device |
CN1805124A (en) * | 2005-01-13 | 2006-07-19 | 国际商业机器公司 | Method of manufacture fin field effect transistor |
-
2013
- 2013-02-28 CN CN201310064753.4A patent/CN104022022A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6638441B2 (en) * | 2002-01-07 | 2003-10-28 | Macronix International Co., Ltd. | Method for pitch reduction |
US6872647B1 (en) * | 2003-05-06 | 2005-03-29 | Advanced Micro Devices, Inc. | Method for forming multiple fins in a semiconductor device |
CN1805124A (en) * | 2005-01-13 | 2006-07-19 | 国际商业机器公司 | Method of manufacture fin field effect transistor |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105448735A (en) * | 2014-09-04 | 2016-03-30 | 中国科学院微电子研究所 | Fin field effect transistor and manufacturing method of fin thereof |
CN106057869A (en) * | 2015-04-15 | 2016-10-26 | 三星电子株式会社 | Semiconductor device and method of fabricating same |
CN106558492A (en) * | 2015-09-25 | 2017-04-05 | 中国科学院微电子研究所 | Fin and manufacturing method of semiconductor device |
CN106558492B (en) * | 2015-09-25 | 2019-04-02 | 中国科学院微电子研究所 | Fin and manufacturing method of semiconductor device |
CN105487160A (en) * | 2016-01-15 | 2016-04-13 | 京东方科技集团股份有限公司 | Metal wire grid polarizer, manufacturing method thereof and display device comprising metal wire grid polarizer |
CN107403719A (en) * | 2016-05-20 | 2017-11-28 | 中芯国际集成电路制造(天津)有限公司 | The method for forming figure in the semiconductor device |
CN109148273A (en) * | 2017-06-28 | 2019-01-04 | 中芯国际集成电路制造(上海)有限公司 | The production method of semiconductor structure |
CN109216163A (en) * | 2017-06-29 | 2019-01-15 | 中芯国际集成电路制造(上海)有限公司 | The manufacturing method of semiconductor devices |
CN109216165A (en) * | 2017-07-06 | 2019-01-15 | 中芯国际集成电路制造(天津)有限公司 | The manufacturing method of multiple graphics and semiconductor devices |
CN109216165B (en) * | 2017-07-06 | 2020-11-03 | 中芯国际集成电路制造(天津)有限公司 | Method for manufacturing multiple patterns and semiconductor device |
CN107993925A (en) * | 2017-11-27 | 2018-05-04 | 长江存储科技有限责任公司 | A kind of autoregistration quadruple graph technology |
CN111640665A (en) * | 2019-03-01 | 2020-09-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN111640665B (en) * | 2019-03-01 | 2023-05-26 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN111458975A (en) * | 2020-04-29 | 2020-07-28 | 中国科学院光电技术研究所 | A super-resolution lithography process method for realizing resolution of 10nm and below |
WO2022235361A1 (en) * | 2021-05-06 | 2022-11-10 | Applied Materials, Inc. | Spacer patterning process with flat top profile |
US12211693B2 (en) | 2021-05-06 | 2025-01-28 | Applied Materials, Inc. | Spacer patterning process with flat top profile |
CN114420546A (en) * | 2021-12-01 | 2022-04-29 | 致真存储(北京)科技有限公司 | Small-linewidth circular or elliptical device with controllable shape and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104022022A (en) | Forming method of multigraph | |
CN103839781B (en) | The formation method of semiconductor fine pattern | |
US9105584B2 (en) | Method of manufacturing a semiconductor device | |
US9034762B2 (en) | Triple patterning method | |
US11521856B2 (en) | Semiconductor patterning and resulting structures | |
CN109559978B (en) | Semiconductor structure and forming method thereof | |
CN112864094B (en) | Semiconductor structure and method for forming the same | |
CN102446704B (en) | Dual patterning method | |
CN108574010A (en) | Semiconductor structures and methods of forming them | |
CN101364533A (en) | Method for forming pattern | |
CN108573865B (en) | Semiconductor device and method of forming the same | |
CN114823295A (en) | Method for manufacturing semiconductor device | |
CN114388352A (en) | Semiconductor structure and forming method thereof | |
CN103578920B (en) | Semiconductor device manufacturing method | |
JP6123242B2 (en) | Pattern formation method | |
CN112951718B (en) | Semiconductor structure and forming method thereof | |
CN103824759A (en) | Method for preparing plurality of layers of superfine silicon lines | |
CN111146082B (en) | Preparation method of head-to-head graph | |
CN104347360B (en) | Dual-pattern structure and forming method thereof | |
CN104124143B (en) | The forming method of gate lateral wall layer | |
CN111584431A (en) | Self-aligned quadruple pattern forming method | |
Carlson et al. | Negative and iterated spacer lithography processes for low variability and ultra-dense integration | |
CN104124161B (en) | Forming method of grid side wall layer | |
KR102647990B1 (en) | Patterning semiconductor devices and structures resulting therefrom | |
CN115223850B (en) | Method for forming semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140903 |
|
RJ01 | Rejection of invention patent application after publication |