CN104009043B - Pixel structure and manufacturing method thereof - Google Patents
Pixel structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN104009043B CN104009043B CN201410209616.XA CN201410209616A CN104009043B CN 104009043 B CN104009043 B CN 104009043B CN 201410209616 A CN201410209616 A CN 201410209616A CN 104009043 B CN104009043 B CN 104009043B
- Authority
- CN
- China
- Prior art keywords
- layer
- electrode
- connection electrode
- patterned
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title description 11
- 239000004065 semiconductor Substances 0.000 claims abstract description 71
- 239000010409 thin film Substances 0.000 claims abstract description 52
- 239000010410 layer Substances 0.000 claims description 325
- 239000003990 capacitor Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 35
- 239000011241 protective layer Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 13
- 238000009413 insulation Methods 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims 12
- 230000005611 electricity Effects 0.000 claims 4
- 230000004888 barrier function Effects 0.000 claims 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 28
- 230000000873 masking effect Effects 0.000 description 25
- 239000010408 film Substances 0.000 description 22
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 15
- 229910052750 molybdenum Inorganic materials 0.000 description 15
- 239000011733 molybdenum Substances 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 239000004020 conductor Substances 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 7
- 239000011810 insulating material Substances 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 229920005591 polysilicon Polymers 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- -1 ITO) Chemical compound 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910001195 gallium oxide Inorganic materials 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
Abstract
本发明公开了一种像素结构,包括一薄膜晶体管元件。薄膜晶体管元件包括一氧化物半导体层、一栅极绝缘层、一栅极、一第一连接电极、一第二连接电极、一介电层、一源极与一漏极。氧化物半导体层具有一通道区,以及一第一接触区与一第二接触区分别位于通道区的两相对侧。第一连接电极覆盖第一接触区的上表面,且第二连接电极覆盖第二接触区的上表面,其中第一连接电极与第二连接电极未与栅极绝缘层在垂直投影方向上重叠。源极经由第一连接电极与氧化物半导体层的第一接触区电性连接,而漏极经由第二连接电极与氧化物半导体层的第二接触区电性连接。
The invention discloses a pixel structure, which includes a thin film transistor element. The thin film transistor element includes an oxide semiconductor layer, a gate insulating layer, a gate electrode, a first connection electrode, a second connection electrode, a dielectric layer, a source electrode and a drain electrode. The oxide semiconductor layer has a channel region, and a first contact region and a second contact region are respectively located on two opposite sides of the channel region. The first connection electrode covers the upper surface of the first contact area, and the second connection electrode covers the upper surface of the second contact area, wherein the first connection electrode and the second connection electrode do not overlap with the gate insulating layer in a vertical projection direction. The source electrode is electrically connected to the first contact region of the oxide semiconductor layer through the first connection electrode, and the drain electrode is electrically connected to the second contact region of the oxide semiconductor layer through the second connection electrode.
Description
技术领域technical field
本发明是关于一种像素结构及其制作方法,尤指一种利用连接电极连接源极/漏极与氧化物半导体层的像素结构及其制作方法。The present invention relates to a pixel structure and a manufacturing method thereof, in particular to a pixel structure and a manufacturing method thereof using connecting electrodes to connect source/drain electrodes to an oxide semiconductor layer.
背景技术Background technique
薄膜晶体管(thin film transistor,TFT)元件是一种广泛应用于显示面板的半导体元件,例如应用在液晶显示面板(liquid crystal display panel,LCD panel)、有机发光二极管显示器(organic light emitting diode display panel,OLED displaypanel)及电子纸(electronic paper,E-paper)等显示面板。薄膜晶体管元件的电子迁移率(mobility)直接影响到薄膜晶体管元件的切换速度,因此对于显示画面质量有很大的影响。A thin film transistor (thin film transistor, TFT) element is a semiconductor element widely used in display panels, such as liquid crystal display panels (liquid crystal display panels, LCD panels), organic light emitting diode displays (organic light emitting diode display panels, OLED display panel) and electronic paper (electronic paper, E-paper) and other display panels. The electron mobility (mobility) of the thin film transistor element directly affects the switching speed of the thin film transistor element, and thus has a great influence on the quality of the display image.
目前显示面板的薄膜晶体管元件根据使用的半导体层材料的不同,主要可以区分成非晶硅薄膜晶体管(amorphous silicon TFT,a-Si TFT)元件、多晶硅薄膜晶体管(polysilicon TFT)元件以及氧化物半导体薄膜晶体管(oxide semiconductor TFT)元件。非晶硅薄膜晶体管元件受限于使用非晶硅半导体材料,因此其电子迁移率较低(目前非晶硅薄膜晶体管元件的电子迁移率约在1cm2/Vs以内),故无法满足目前可见的未来更高规格显示器的需求。多晶硅薄膜晶体管受惠于其多晶硅材料的特性,于电子迁移率上有大幅的改善(多晶硅薄膜晶体管的电子迁移率最佳约可达100cm2/Vs)。然而多晶硅薄膜晶体管元件的工艺复杂(相对地成本提升),且于大尺寸面板应用时会有结晶程度均匀性不佳的问题存在,故目前多晶硅薄膜晶体管元件仍以小尺寸面板应用为主。氧化物半导体薄膜晶体管元件则是应用近年来新崛起的氧化物半导体材料,此类材料一般为非晶相(amorphous)晶格结构,没有应用于大尺寸面板上均匀性不佳的问题,且可利用多种方式成膜,例如溅镀(sputter)、旋涂(spin-on)以及印刷(printing)等方式,因此在工艺上较非晶硅薄膜晶体管元件更有工艺简化的弹性。氧化物半导体薄膜晶体管元件的电子迁移率一般可较非晶硅薄膜晶体管高10倍以上(氧化物半导体薄膜晶体管的电子迁移率大体上介于10cm2/Vs到50cm2/Vs之间),此程度已可满足目前可见的未来高规格显示面板的需求。At present, the thin film transistor elements of the display panel can be mainly divided into amorphous silicon thin film transistor (a-Si TFT) elements, polysilicon thin film transistor (polysilicon TFT) elements and oxide semiconductor thin film elements according to the different semiconductor layer materials used. Transistor (oxide semiconductor TFT) components. Amorphous silicon thin-film transistors are limited by the use of amorphous silicon semiconductor materials, so their electron mobility is low (currently, the electron mobility of amorphous silicon thin-film transistors is within 1cm2/Vs), so they cannot meet the needs of the currently visible future. Demand for higher specification displays. Benefiting from the properties of polysilicon material, polysilicon thin film transistors have greatly improved electron mobility (the best electron mobility of polysilicon thin film transistors can reach about 100 cm2/Vs). However, the process of polysilicon thin film transistors is complicated (the cost is relatively increased), and there is a problem of poor crystallinity uniformity when applied to large-sized panels. Therefore, polysilicon thin film transistors are still mainly used in small-sized panels. Oxide semiconductor thin film transistor elements are oxide semiconductor materials that have emerged in recent years. These materials generally have an amorphous lattice structure, which does not have the problem of poor uniformity when applied to large-scale panels, and can Various methods are used to form films, such as sputtering, spin-on, and printing, so the process is more flexible than amorphous silicon thin film transistors. The electron mobility of an oxide semiconductor thin film transistor device can generally be more than 10 times higher than that of an amorphous silicon thin film transistor (the electron mobility of an oxide semiconductor thin film transistor is generally between 10cm2/Vs and 50cm2/Vs), and this level has It can meet the needs of the currently visible future high-specification display panels.
然而,在氧化物半导体薄膜晶体管元件中,源极/漏极与氧化物半导体层间的接触阻抗若过大,将使得薄膜晶体管元件的效能降低且无法有效发挥其高电子迁移率的特性,故有必要降低氧化物半导体层与源极电极/漏极电极间的接触阻抗,以使得氧化物半导体薄膜晶体管元件展现高电子迁移率的特性。However, in an oxide semiconductor thin film transistor device, if the contact resistance between the source/drain and the oxide semiconductor layer is too large, the performance of the thin film transistor device will be reduced and its high electron mobility cannot be effectively utilized. It is necessary to reduce the contact resistance between the oxide semiconductor layer and the source electrode/drain electrode so that the oxide semiconductor thin film transistor device exhibits high electron mobility characteristics.
发明内容Contents of the invention
本发明的目的之一在于提供一种像素结构及其制作方法,以提升像素结构的薄膜晶体管元件的元件特性。One of the objectives of the present invention is to provide a pixel structure and a manufacturing method thereof, so as to improve the device characteristics of the thin film transistor element of the pixel structure.
本发明的一实施例提供一种像素结构,包括一基板、一薄膜晶体管元件、一第一保护层以及一第一像素电极。薄膜晶体管元件设置于基板上,且薄膜晶体管元件包括一氧化物半导体层、一栅极绝缘层、一栅极、一第一连接电极、一第二连接电极、一介电层、一源极与一漏极。氧化物半导体层设置于基板上,且氧化物半导体层具有一通道区,以及一第一接触区与一第二接触区分别位于通道区的两相对侧。栅极绝缘层设置于氧化物半导体层上,且栅极绝缘层覆盖通道区的一上表面并暴露出第一接触区的一上表面以及第二接触区的一上表面。栅极设置于栅极绝缘层上。第一连接电极与第二连接电极分别设置于栅极绝缘层的两侧,第一连接电极覆盖第一接触区的上表面并与第一接触区的上表面接触,且第二连接电极覆盖第二接触区的上表面并与第二接触区的上表面接触,其中第一连接电极与第二连接电极未与栅极绝缘层在一垂直投影方向上重叠。介电层设置于栅极、第一连接电极与第二连接电极上,其中介电层具有一第一接触洞至少部分暴露出第一连接电极的一上表面,以及一第二接触洞至少部分暴露出第二连接电极的一上表面。源极与漏极设置于介电层上,其中源极经由第一接触洞与第一连接电极电性连接,且漏极经由第二接触洞与第二连接电极电性连接。第一保护层设置于介电层上,其中第一保护层具有一第三接触洞,至少部分暴露出漏极。第一像素电极设置于第一保护层上,其中第一像素电极经由第三接触洞与薄膜晶体管元件的漏极电性连接。An embodiment of the present invention provides a pixel structure, including a substrate, a thin film transistor element, a first protection layer and a first pixel electrode. The thin film transistor element is arranged on the substrate, and the thin film transistor element includes an oxide semiconductor layer, a gate insulating layer, a gate, a first connection electrode, a second connection electrode, a dielectric layer, a source and a drain. The oxide semiconductor layer is disposed on the substrate, and the oxide semiconductor layer has a channel area, and a first contact area and a second contact area are respectively located at two opposite sides of the channel area. The gate insulating layer is disposed on the oxide semiconductor layer, and the gate insulating layer covers an upper surface of the channel region and exposes an upper surface of the first contact region and an upper surface of the second contact region. The gate is disposed on the gate insulating layer. The first connection electrode and the second connection electrode are respectively arranged on both sides of the gate insulating layer, the first connection electrode covers the upper surface of the first contact region and is in contact with the upper surface of the first contact region, and the second connection electrode covers the first contact region. The upper surface of the second contact region is in contact with the upper surface of the second contact region, wherein the first connection electrode and the second connection electrode do not overlap with the gate insulation layer in a vertical projection direction. The dielectric layer is disposed on the grid, the first connection electrode and the second connection electrode, wherein the dielectric layer has a first contact hole at least partially exposing an upper surface of the first connection electrode, and a second contact hole at least partly An upper surface of the second connecting electrode is exposed. The source and the drain are disposed on the dielectric layer, wherein the source is electrically connected to the first connection electrode through the first contact hole, and the drain is electrically connected to the second connection electrode through the second contact hole. The first protection layer is disposed on the dielectric layer, wherein the first protection layer has a third contact hole at least partially exposing the drain. The first pixel electrode is disposed on the first protective layer, wherein the first pixel electrode is electrically connected to the drain of the thin film transistor element through the third contact hole.
本发明的另一实施例提供一种制作像素结构的方法,包括下列步骤。提供一基板,并于基板上形成一图案化氧化物半导体层,其中图案化氧化物半导体层包括一氧化物半导体层,且氧化物半导体层具有一通道区,以及一第一接触区与一第二接触区分别位于通道区的两相对侧。于基板与图案化氧化物半导体层上依序形成一绝缘层以及一第一导电层。于第一导电层上形成一图案化遮蔽层,其中图案化遮蔽层部分覆盖第一导电层。去除图案化遮蔽层所暴露出的第一导电层以形成一第一图案化导电层,以及去除图案化遮蔽层所暴露出的绝缘层以形成一图案化绝缘层,其中图案化绝缘层包括一栅极绝缘层,栅极绝缘层覆盖通道区的一上表面并暴露出第一接触区的一上表面以及第二接触区的一上表面,以及第一图案化导电层包括一栅极位于栅极绝缘层上。于图案化遮蔽层所暴露出的基板上、氧化物半导体层的第一接触区的上表面上以及第二接触区的上表面上形成一第二导电层。进行一掀离工艺,同时移除图案化遮蔽层以及位于图案化遮蔽层上的第二导电层以形成一第二图案化导电层,其中第二图案化导电层包括一第一连接电极与一第二连接电极,以自行对准方式分别形成于第一接触区的上表面上以及第二接触区的上表面上,且第一连接电极与第二连接电极未与栅极绝缘层在一垂直投影方向上重叠。于栅极、第一连接电极与第二连接电极上形成一介电层,其中介电层具有一第一接触洞至少部分暴露出第一连接电极的一上表面,以及一第二接触洞至少部分暴露出第二连接电极的一上表面。于介电层上形成一第三图案化导电层,其中第三图案化导电层包括一源极与一漏极,源极经由第一接触洞与第一连接电极电性连接,且漏极经由第二接触洞与第二连接电极电性连接。于介电层上形成一第一保护层,其中第一保护层具有一第三接触洞,至少部分暴露出漏极。于第一保护层上形成一第一像素电极。Another embodiment of the present invention provides a method for fabricating a pixel structure, including the following steps. A substrate is provided, and a patterned oxide semiconductor layer is formed on the substrate, wherein the patterned oxide semiconductor layer includes an oxide semiconductor layer, and the oxide semiconductor layer has a channel region, a first contact region and a first contact region. The two contact areas are respectively located on two opposite sides of the channel area. An insulating layer and a first conductive layer are sequentially formed on the substrate and the patterned oxide semiconductor layer. A patterned masking layer is formed on the first conductive layer, wherein the patterned masking layer partially covers the first conductive layer. removing the first conductive layer exposed by the patterned masking layer to form a first patterned conductive layer, and removing the exposed insulating layer of the patterned masking layer to form a patterned insulating layer, wherein the patterned insulating layer includes a The gate insulating layer, the gate insulating layer covers an upper surface of the channel region and exposes an upper surface of the first contact region and an upper surface of the second contact region, and the first patterned conductive layer includes a gate located at the gate pole insulating layer. A second conductive layer is formed on the substrate exposed by the patterned masking layer, the upper surface of the first contact region and the upper surface of the second contact region of the oxide semiconductor layer. performing a lift-off process, simultaneously removing the patterned masking layer and the second conductive layer on the patterned masking layer to form a second patterned conductive layer, wherein the second patterned conductive layer includes a first connection electrode and a The second connection electrode is formed on the upper surface of the first contact region and the upper surface of the second contact region in a self-aligned manner, and the first connection electrode and the second connection electrode are not perpendicular to the gate insulating layer. overlapping in the projection direction. A dielectric layer is formed on the grid, the first connection electrode and the second connection electrode, wherein the dielectric layer has a first contact hole at least partially exposing an upper surface of the first connection electrode, and a second contact hole at least An upper surface of the second connecting electrode is partially exposed. A third patterned conductive layer is formed on the dielectric layer, wherein the third patterned conductive layer includes a source and a drain, the source is electrically connected to the first connection electrode through the first contact hole, and the drain is electrically connected to the first connection electrode through the first contact hole. The second contact hole is electrically connected with the second connection electrode. A first protective layer is formed on the dielectric layer, wherein the first protective layer has a third contact hole at least partially exposing the drain. A first pixel electrode is formed on the first protection layer.
附图说明Description of drawings
图1至图8绘示了本发明的第一实施例的制作像素结构的方法的示意图;1 to 8 are schematic diagrams illustrating a method for manufacturing a pixel structure according to a first embodiment of the present invention;
图9与图10绘示了本发明的第二实施例的制作像素结构的示意图;FIG. 9 and FIG. 10 are schematic diagrams illustrating the fabrication of a pixel structure according to a second embodiment of the present invention;
图11绘示了本发明的一对照实施例的像素结构的示意图;FIG. 11 illustrates a schematic diagram of a pixel structure of a comparative embodiment of the present invention;
图12绘示了本发明的对照实施例的像素结构的薄膜晶体管元件的栅极电压VG与漏极电流ID的关系图;FIG. 12 is a graph showing the relationship between the gate voltage VG and the drain current ID of the thin film transistor element of the pixel structure of the comparative embodiment of the present invention;
图13绘示了本发明的像素结构的薄膜晶体管元件的栅极电压VG与漏极电流ID的关系图;FIG. 13 is a graph showing the relationship between the gate voltage VG and the drain current ID of the thin film transistor element of the pixel structure of the present invention;
附图标识说明:Explanation of the accompanying drawings:
10 基板10 Substrate
10S 开关元件区10S Switching element area
10C 储存电容区10C storage capacitor area
10P 像素区10P pixel area
12 缓冲层12 buffer layer
14 图案化氧化物半导体层14 Patterned oxide semiconductor layer
14S 氧化物半导体层14S oxide semiconductor layer
14C 通道区14C channel area
141 第一接触区141 First Contact Zone
142 第二接触区142 Second contact zone
14B 储存电容下电极14B Lower electrode of storage capacitor
16 绝缘层16 insulation
161 第一绝缘薄膜161 First insulating film
162 第二绝缘薄膜162 Second insulating film
18 第一导电层18 First conductive layer
20 图案化遮蔽层20 patterned masking layer
201 第一遮蔽层201 The first shielding layer
202 第二遮蔽层202 second shielding layer
22 第一图案化导电层22 The first patterned conductive layer
24 图案化绝缘层24 Patterned insulating layer
GI 栅极绝缘层GI gate insulating layer
CD 电容介电层CD Capacitor Dielectric Layer
14X 上表面14X upper surface
14Y 上表面14Y upper surface
14Z 上表面14Z upper surface
G 栅极G grid
22T 储存电容上电极22T storage capacitor upper electrode
Cst 储存电容元件Cst storage capacitor element
26 第二导电层26 Second conductive layer
28 第二图案化导电层28 Second patterned conductive layer
281 第一连接电极281 First connection electrode
282 第二连接电极282 Second connecting electrode
Z 垂直投影方向Z vertical projection direction
283 导电图案283 conductive patterns
30 介电层30 dielectric layer
TH1 第一接触洞TH1 first contact hole
TH2 第二接触洞TH2 second contact hole
32 第三图案化导电层32 The third patterned conductive layer
S 源极S source
D 漏极D drain
TFT 薄膜晶体管元件TFT Thin Film Transistor Components
34 第一保护层34 First layer of protection
TH3 第三接触洞TH3 third contact hole
36 第一像素电极36 First pixel electrode
50 像素结构50 pixel structure
38 第二保护层38 Second protective layer
38A 开口38A opening
40 显示介质层40 Show media layer
42 第二像素电极42 Second pixel electrode
44 显示元件44 display elements
60 像素结构60 pixel structure
70 像素结构70 pixel structure
A 曲线A curve
A’ 曲线A' curve
B 曲线B-curve
B’ 曲线B' curve
C 曲线C curve
C’ 曲线C' curve
D 曲线D curve
D’ 曲线D' curve
E 曲线E-curve
E’ 曲线E' curve
具体实施方式detailed description
为使熟悉本发明所属技术领域的一般技术人员能更进一步了解本发明,下文特列举本发明的较佳实施例,并配合所附图式,详细说明本发明的构成内容及所欲达成的功效。In order to enable those who are familiar with the technical field of the present invention to further understand the present invention, the preferred embodiments of the present invention are listed below, together with the accompanying drawings, to describe in detail the composition of the present invention and the desired effects .
请参考图1至图8。图1至图8绘示了本发明的第一实施例的制作像素结构的方法的示意图。如图1所示,首先提供一基板10。基板10可为透明基板,且其可为硬质基板或可挠式基板例如玻璃基板、石英基板或塑料基板,但不以此为限。基板10可具有一开关元件区10S、一储存电容区10C以及一像素区10P。接着,可选择性地于基板10上形成一缓冲层12。缓冲层12可具有绝缘特性,且其材料可为无机绝缘材料例如氧化硅、氮化硅或氮氧化硅,但不以此为限,缓冲层12的材料亦可为有机绝缘材料。此外,缓冲层12可为单层结构或复合层结构。随后,于基板10上形成一图案化氧化物半导体层14,若缓冲层12存在,则图案化氧化物半导体层14形成于缓冲层12上。图案化氧化物半导体层14的材料可包括例如氧化铟镓锌(indium gallium zinc oxide,IGZO)、氧化铟镓(indium gallium oxide,IGO)、氧化铟锌(indium zinc oxide,IZO)、氧化铟锡(indium tin oxide,ITO)、氧化锌(zinc oxide,ZnO)、氧化铟(indium oxide,InO)、(indium tin zinc oxide,ITZO)、氧化镓(galliumoxide,GaO)或其它合适的氧化物半导体材料。图案化氧化物半导体层14可具有非晶相(amorphous)结构,且其可利用例如溅镀、旋涂、印刷或其它适合的方式形成。图案化氧化物半导体层14包括一氧化物半导体层14S,设置于开关元件区10S内,其中氧化物半导体层14S具有一通道区14C,以及一第一接触区141与一第二接触区142分别位于通道区14C的两相对侧。在本实施例中,通道区14C、第一接触区141以及第二接触区142位于同一平面上,且通道区14C的两端分别与第一接触区141以及第二接触区142在结构上连接,亦即通道区14C、第一接触区141以及第二接触区142三者分别为氧化物半导体层14S的一部分。此外,图案化氧化物半导体层14更可包括一储存电容下电极14B,设置于基板10的储存电容区10C内。Please refer to Figure 1 to Figure 8. 1 to 8 are schematic diagrams illustrating a method for fabricating a pixel structure according to a first embodiment of the present invention. As shown in FIG. 1 , a substrate 10 is provided first. The substrate 10 can be a transparent substrate, and it can be a rigid substrate or a flexible substrate such as a glass substrate, a quartz substrate or a plastic substrate, but not limited thereto. The substrate 10 may have a switch element region 10S, a storage capacitor region 10C and a pixel region 10P. Next, a buffer layer 12 can be optionally formed on the substrate 10 . The buffer layer 12 may have insulating properties, and its material may be an inorganic insulating material such as silicon oxide, silicon nitride or silicon oxynitride, but not limited thereto, and the material of the buffer layer 12 may also be an organic insulating material. In addition, the buffer layer 12 can be a single layer structure or a composite layer structure. Subsequently, a patterned oxide semiconductor layer 14 is formed on the substrate 10 , and if the buffer layer 12 exists, the patterned oxide semiconductor layer 14 is formed on the buffer layer 12 . The material of the patterned oxide semiconductor layer 14 may include, for example, indium gallium zinc oxide (IGZO), indium gallium oxide (IGO), indium zinc oxide (IZO), indium tin oxide (indium tin oxide, ITO), zinc oxide (zinc oxide, ZnO), indium oxide (indium oxide, InO), (indium tin zinc oxide, ITZO), gallium oxide (gallium oxide, GaO) or other suitable oxide semiconductor materials . The patterned oxide semiconductor layer 14 may have an amorphous structure, and it may be formed by, for example, sputtering, spin coating, printing or other suitable methods. The patterned oxide semiconductor layer 14 includes an oxide semiconductor layer 14S disposed in the switching element region 10S, wherein the oxide semiconductor layer 14S has a channel region 14C, and a first contact region 141 and a second contact region 142 respectively Located on two opposite sides of the channel area 14C. In this embodiment, the channel region 14C, the first contact region 141 and the second contact region 142 are located on the same plane, and both ends of the channel region 14C are structurally connected to the first contact region 141 and the second contact region 142 respectively. , that is, the channel region 14C, the first contact region 141 and the second contact region 142 are respectively part of the oxide semiconductor layer 14S. In addition, the patterned oxide semiconductor layer 14 may further include a storage capacitor bottom electrode 14B disposed in the storage capacitor region 10C of the substrate 10 .
如图2所示,接着于基板10与图案化氧化物半导体层14上依序形成一绝缘层16以及一第一导电层18。绝缘层16的材料可为无机绝缘材料例如氧化硅、氮化硅或氮氧化硅,但不以此为限。在本实施例中,绝缘层16可为一复合层绝缘层,其可包括一第一绝缘薄膜161与一第二绝缘薄膜162,其中第一绝缘薄膜161形成于图案化氧化物半导体层14上,而第二绝缘薄膜162则形成于第一绝缘薄膜161上。第一绝缘薄膜161与第二绝缘薄膜162可以由相同材料构成,其中第一绝缘薄膜161可利用低温工艺形成,藉此可避免图案化氧化物半导体层14被高温破坏,而第二绝缘薄膜162可利用高温工艺形成,藉此可具有较佳的绝缘特性及结构强度。在一变化实施例中,绝缘层16亦可为一单层绝缘层。此外,第一导电层18的材料可包括透明导电材料,例如:金属氧化物导电材料(例如氧化铟锡)、不透明导电材料,例如:金属例如铝、钛/铝/钛、钼、钼/铝/钼、上述金属组成的合金或其它适合的金属或合金,但不以此为限。第一导电层18可为单层结构或复合层结构。As shown in FIG. 2 , an insulating layer 16 and a first conductive layer 18 are sequentially formed on the substrate 10 and the patterned oxide semiconductor layer 14 . The material of the insulating layer 16 can be an inorganic insulating material such as silicon oxide, silicon nitride or silicon oxynitride, but not limited thereto. In this embodiment, the insulating layer 16 can be a composite insulating layer, which can include a first insulating film 161 and a second insulating film 162, wherein the first insulating film 161 is formed on the patterned oxide semiconductor layer 14 , and the second insulating film 162 is formed on the first insulating film 161 . The first insulating film 161 and the second insulating film 162 can be made of the same material, wherein the first insulating film 161 can be formed by a low-temperature process, thereby preventing the patterned oxide semiconductor layer 14 from being damaged by high temperature, and the second insulating film 162 It can be formed by using a high temperature process, thereby having better insulation properties and structural strength. In a variant embodiment, the insulating layer 16 can also be a single insulating layer. In addition, the material of the first conductive layer 18 may include transparent conductive materials, such as: metal oxide conductive materials (such as indium tin oxide), opaque conductive materials, such as: metals such as aluminum, titanium/aluminum/titanium, molybdenum, molybdenum/aluminum /Molybdenum, alloys of the above metals or other suitable metals or alloys, but not limited thereto. The first conductive layer 18 can be a single layer structure or a composite layer structure.
如3图所示,接着于第一导电层18上形成一图案化遮蔽层20,部分覆盖第一导电层18。图案化遮蔽层20可为例如一光阻层,其可利用曝光暨显影工艺加以图案化,但不以此为限。图案化遮蔽层20可包括一第一遮蔽层201与一第二遮蔽层202,其中第一遮蔽层201位于基板10的开关元件区10S内并覆盖了对应于图案化氧化物半导体层14的通道区14C上方的第一导电层18,而第二遮蔽层202位于基板10的储存电容区10C内并覆盖了对应于储存电容下电极14B上方的第一导电层18。在本实施例中,第一遮蔽层201的尺寸实质上等于图案化氧化物半导体层14的通道区14C的尺寸,而第二遮蔽层202的尺寸略小于储存电容下电极14B的尺寸,但不以此为限。例如在一变化实施例中,第二遮蔽层202的尺寸可等于储存电容下电极14B的尺寸。随后,去除图案化遮蔽层20所暴露出的第一导电层18以形成一第一图案化导电层22,以及去除图案化遮蔽层20所暴露出的绝缘层16以形成一图案化绝缘层24。图案化绝缘层24包括一栅极绝缘层GI以及一电容介电层CD,其中栅极绝缘层GI位于开关元件区10S内,且覆盖通道区14C的上表面14X并暴露出第一接触区141的上表面14Y以及第二接触区142的上表面14Z;电容介电层CD位于储存电容区10C内并部分覆盖储存电容下电极14B。在本实施例中,栅极绝缘层GI与电容介电层CD均分别由第一绝缘薄膜161与第二绝缘薄膜162所堆栈而成,但不以此为限。第一图案化导电层22包括一栅极G以及一储存电容上电极22T,其中栅极G位于开关元件区10S内并位于栅极绝缘层GI上;储存电容上电极22T位于储存电容区10C内并位于储存电容下电极14B上。储存电容下电极14B、储存电容上电极22T及夹设于储存电容下电极14B与储存电容上电极22T之间的电容介电层CD构成一储存电容元件Cst。此外,第一图案化导电层22更可包括一栅极线(图未示)与栅极G电性连接,或其它必要的导线例如共通线(图未示)。在本实施例中,去除图案化遮蔽层20所暴露出的第一导电层18以形成第一图案化导电层22与去除图案化遮蔽层20所暴露出的绝缘层16以形成图案化绝缘层24的步骤利用图案化遮蔽层20作为蚀刻屏蔽并利用蚀刻工艺加以实现。例如,蚀刻工艺可选用非等向蚀刻工艺例如干蚀刻工艺,因此栅极G的图案与栅极绝缘层GI的图案实质上会相等,也就是说,栅极G的侧壁与栅极绝缘层GI的侧壁实质上会切齐,但不以此为限。As shown in FIG. 3 , a patterned masking layer 20 is then formed on the first conductive layer 18 to partially cover the first conductive layer 18 . The patterned masking layer 20 can be, for example, a photoresist layer, which can be patterned by an exposure and development process, but is not limited thereto. The patterned shielding layer 20 may include a first shielding layer 201 and a second shielding layer 202, wherein the first shielding layer 201 is located in the switching element region 10S of the substrate 10 and covers the channel corresponding to the patterned oxide semiconductor layer 14 The first conductive layer 18 above the area 14C, and the second shielding layer 202 is located in the storage capacitor area 10C of the substrate 10 and covers the first conductive layer 18 corresponding to the upper electrode 14B of the storage capacitor. In this embodiment, the size of the first shielding layer 201 is substantially equal to the size of the channel region 14C of the patterned oxide semiconductor layer 14, and the size of the second shielding layer 202 is slightly smaller than the size of the lower electrode 14B of the storage capacitor, but not This is the limit. For example, in a variant embodiment, the size of the second shielding layer 202 may be equal to the size of the lower electrode 14B of the storage capacitor. Subsequently, the first conductive layer 18 exposed by the patterned masking layer 20 is removed to form a first patterned conductive layer 22 , and the insulating layer 16 exposed by the patterned masking layer 20 is removed to form a patterned insulating layer 24 . The patterned insulating layer 24 includes a gate insulating layer GI and a capacitor dielectric layer CD, wherein the gate insulating layer GI is located in the switching element region 10S, and covers the upper surface 14X of the channel region 14C and exposes the first contact region 141 The upper surface 14Y of the second contact region 142 and the upper surface 14Z of the second contact region 142; the capacitor dielectric layer CD is located in the storage capacitor region 10C and partially covers the storage capacitor lower electrode 14B. In this embodiment, the gate insulating layer GI and the capacitor dielectric layer CD are formed by stacking the first insulating film 161 and the second insulating film 162 respectively, but it is not limited thereto. The first patterned conductive layer 22 includes a gate G and a storage capacitor upper electrode 22T, wherein the gate G is located in the switching element region 10S and on the gate insulating layer GI; the storage capacitor upper electrode 22T is located in the storage capacitor region 10C And located on the lower electrode 14B of the storage capacitor. The storage capacitor bottom electrode 14B, the storage capacitor top electrode 22T and the capacitor dielectric layer CD sandwiched between the storage capacitor bottom electrode 14B and the storage capacitor top electrode 22T form a storage capacitor element Cst. In addition, the first patterned conductive layer 22 may further include a gate line (not shown) electrically connected to the gate G, or other necessary wires such as common lines (not shown). In this embodiment, the first conductive layer 18 exposed by the patterned masking layer 20 is removed to form the first patterned conductive layer 22 and the insulating layer 16 exposed by the patterned masking layer 20 is removed to form a patterned insulating layer. Step 24 utilizes the patterned masking layer 20 as an etching mask and implements an etching process. For example, the etching process can be an anisotropic etching process such as a dry etching process, so the pattern of the gate G and the pattern of the gate insulating layer GI will be substantially equal, that is, the sidewall of the gate G and the gate insulating layer The sidewalls of the GI will be substantially flush, but not limited to.
如4图所示,随后于图案化遮蔽层20所暴露出的基板10上、氧化物半导体层14的第一接触区141的上表面14Y上以及第二接触区142的上表面14Z上形成一第二导电层26。也就是说,第一遮蔽层201所暴露出的氧化物半导体层14的第一接触区141的上表面14Y上以及第二接触区142的上表面14Z上、第二遮蔽层202所暴露出的储存电容下电极14B的一部分的上表面上,以及基板10(或是缓冲层12)上会形成第二导电层26。第二导电层26的材料可包括透明导电材料,例如:金属氧化物导电材料(例如氧化铟锡)、不透明导电材料,例如:金属例如铝、钛/铝/钛、钼、钼/铝/钼、上述金属组成的合金或其它适合的金属或合金,但不以此为限。第二导电层26可为单层结构或复合层结构。第二导电层26的厚度可视材料不同加以调整。举例而言,若第二导电层26的材料选用金属例如钼,则其厚度实质上可介于50埃(angstrom)与200埃之间,但不以此为限;若第二导电层26的材料选用透明导电材料,例如氧化铟锡,则其厚度可较金属为厚,例如大于200埃,但不以此为限。As shown in FIG. 4, a mask is subsequently formed on the substrate 10 exposed by the patterned masking layer 20, on the upper surface 14Y of the first contact region 141 of the oxide semiconductor layer 14, and on the upper surface 14Z of the second contact region 142. The second conductive layer 26 . That is to say, on the upper surface 14Y of the first contact region 141 exposed by the first masking layer 201 and on the upper surface 14Z of the second contact region 142 , the area exposed by the second masking layer 202 The second conductive layer 26 is formed on a part of the upper surface of the lower electrode 14B of the storage capacitor and on the substrate 10 (or the buffer layer 12 ). The material of the second conductive layer 26 may include transparent conductive materials, such as: metal oxide conductive materials (such as indium tin oxide), opaque conductive materials, such as: metals such as aluminum, titanium/aluminum/titanium, molybdenum, molybdenum/aluminum/molybdenum , alloys of the above metals or other suitable metals or alloys, but not limited thereto. The second conductive layer 26 can be a single layer structure or a composite layer structure. The thickness of the second conductive layer 26 can be adjusted according to different materials. For example, if the material of the second conductive layer 26 is metal such as molybdenum, its thickness can be substantially between 50 angstrom (angstrom) and 200 angstrom, but not limited thereto; if the second conductive layer 26 The material is transparent conductive material, such as indium tin oxide, and its thickness can be thicker than that of metal, such as greater than 200 angstroms, but not limited thereto.
如图5所示,接着进行一掀离(lift-off)工艺,同时移除图案化遮蔽层20以及位于图案化遮蔽层20上的第二导电层26以形成一第二图案化导电层28。第二图案化导电层28包括一第一连接电极281与一第二连接电极282,以自行对准(self-align)方式分别形成于第一接触区141的上表面14Y上以及第二接触区142的上表面14Z上,且第一连接电极281与第二连接电极282未与栅极绝缘层GI在垂直投影方向Z上重叠。精确地说,第一连接电极281的侧壁与第二连接电极282的侧壁实质上可分别与栅极绝缘层GI的侧壁切齐并分别完全覆盖第一接触区141的上表面14Y上以及第二接触区142的上表面14Z。此外,第二图案化导电层28另包括一导电图案283,设置于电容介电层CD的至少一侧(例如两侧并)并部分覆盖储存电容下电极14B,藉此可减少储存电容下电极14B的电阻。当第二导电层26的材料选用金属氧化物例如氧化铟锡时,则第一连接电极281与第二连接电极282为金属氧化物导电电极例如氧化铟物电极;当第二导电层26的材料选用金属或合金时,则第一连接电极281与第二连接电极282为金属电极例如铝电极、钛/铝/钛电极、钼电极或钼/铝/钼电极。由上述可知,由于第一连接电极281与第二连接电极282利用掀离(lift-off)工艺同时移除图案化遮蔽层20以及位于图案化遮蔽层20上的第二导电层26所形成,而图案化遮蔽层20本身也具有定义栅极G与栅极绝缘层GI的图案与位置的作用,因此,本实施例的作法具有自行对准的效果,亦即栅极G与栅极绝缘层GI以及第一连接电极281与第二连接电极282的相对位置是固定的,并可以确保第一连接电极281会完全覆盖第一接触区141的上表面14Y,第二连接电极282会完全覆盖第二接触区142的上表面14Z,且第一连接电极281与第二连接电极282不会与栅极绝缘层GI或门极G在垂直投影方向Z上重叠。As shown in FIG. 5 , a lift-off process is then performed to simultaneously remove the patterned masking layer 20 and the second conductive layer 26 on the patterned masking layer 20 to form a second patterned conductive layer 28 . The second patterned conductive layer 28 includes a first connection electrode 281 and a second connection electrode 282, which are respectively formed on the upper surface 14Y of the first contact region 141 and the second contact region in a self-aligned manner. 142 on the upper surface 14Z, and the first connection electrode 281 and the second connection electrode 282 do not overlap with the gate insulating layer GI in the vertical projection direction Z. To be precise, the sidewalls of the first connection electrode 281 and the sidewalls of the second connection electrode 282 can be substantially aligned with the sidewalls of the gate insulating layer GI respectively and completely cover the upper surface 14Y of the first contact region 141 respectively. and the upper surface 14Z of the second contact region 142 . In addition, the second patterned conductive layer 28 further includes a conductive pattern 283, which is disposed on at least one side (for example, both sides) of the capacitor dielectric layer CD and partially covers the lower electrode 14B of the storage capacitor, thereby reducing the number of lower electrodes of the storage capacitor. 14B resistor. When the material of the second conductive layer 26 is metal oxide such as indium tin oxide, the first connection electrode 281 and the second connection electrode 282 are metal oxide conductive electrodes such as indium oxide electrodes; when the material of the second conductive layer 26 When metal or alloy is selected, the first connection electrode 281 and the second connection electrode 282 are metal electrodes such as aluminum electrodes, titanium/aluminum/titanium electrodes, molybdenum electrodes or molybdenum/aluminum/molybdenum electrodes. It can be known from the above that since the first connection electrode 281 and the second connection electrode 282 are formed by removing the patterned masking layer 20 and the second conductive layer 26 on the patterned masking layer 20 simultaneously by using a lift-off process, The patterned masking layer 20 itself also has the function of defining the pattern and position of the gate G and the gate insulating layer GI. Therefore, the practice of this embodiment has the effect of self-alignment, that is, the gate G and the gate insulating layer GI and the relative positions of the first connection electrode 281 and the second connection electrode 282 are fixed, and it can be ensured that the first connection electrode 281 will completely cover the upper surface 14Y of the first contact region 141, and the second connection electrode 282 will completely cover the second connection electrode 282. The upper surface 14Z of the two contact regions 142 , and the first connecting electrode 281 and the second connecting electrode 282 do not overlap with the gate insulating layer GI or the gate G in the vertical projection direction Z.
如图6所示,保留第一连接电极281、第二连接电极282与导电图案283的后,并移除第二图案化导电层28的其它不需要部分,例如位于基板10或缓冲层12上的第二图案化导电层28。随后,于栅极G、第一连接电极281与第二连接电极282上形成一介电层30,并于介电层30中形成一第一接触洞TH1至少部分暴露出第一连接电极281的上表面281S,以及一第二接触洞TH2至少部分暴露出第二连接电极282的上表面282S。介电层30可具有一平坦化表面,以利后续膜层的形成。介电层30的材料可为有机介电材料或无机介电材料,且介电层30可为单层结构或复合层结构。As shown in FIG. 6 , the first connection electrode 281 , the second connection electrode 282 and the conductive pattern 283 are retained, and other unnecessary parts of the second patterned conductive layer 28 , such as on the substrate 10 or the buffer layer 12 , are removed. The second patterned conductive layer 28. Subsequently, a dielectric layer 30 is formed on the gate G, the first connection electrode 281 and the second connection electrode 282, and a first contact hole TH1 is formed in the dielectric layer 30 to at least partially expose the first connection electrode 281. The upper surface 281S and a second contact hole TH2 at least partially expose the upper surface 282S of the second connection electrode 282 . The dielectric layer 30 may have a planarized surface to facilitate the formation of subsequent film layers. The material of the dielectric layer 30 can be an organic dielectric material or an inorganic dielectric material, and the dielectric layer 30 can be a single-layer structure or a composite layer structure.
如图7所示,随后于介电层30上形成一第三图案化导电层32。第三图案化导电层30包括一源极S与一漏极D,其中源极S经由第一接触洞TH1与第一连接电极281接触并电性连接,且漏极D经由第二接触洞TH2与第二连接电极282接触并电性连接,以制作出本实施例的薄膜晶体管元件TFT。第三图案化导电层32的材料可包括透明导电材料,例如:金属氧化物导电材料(例如氧化铟锡)、不透明导电材料,例如:金属例如铝、钛/铝/钛、钼、钼/铝/钼、上述金属组成的合金或其它适合的金属或合金,但不以此为限。此外,第三图案化导电层32可为单层结构或复合层结构。此外,第三图案化导电层32更可包括数据线(图未示)与源极S电性连接,或其它必要的导线。随后于介电层30上形成一第一保护层34,其中第一保护层34具有一第三接触洞TH3,至少部分暴露出漏极D。第一保护层34可具有一平坦化表面,以利后续膜层的形成。第一保护层34的材料可为有机绝缘材料或无机绝缘材料,且第一保护层34可为单层结构或复合层结构。As shown in FIG. 7 , a third patterned conductive layer 32 is then formed on the dielectric layer 30 . The third patterned conductive layer 30 includes a source S and a drain D, wherein the source S contacts and is electrically connected to the first connection electrode 281 through the first contact hole TH1, and the drain D passes through the second contact hole TH2 Contact and electrically connect with the second connection electrode 282 to manufacture the thin film transistor element TFT of this embodiment. The material of the third patterned conductive layer 32 may include transparent conductive materials, such as: metal oxide conductive materials (such as indium tin oxide), opaque conductive materials, such as: metals such as aluminum, titanium/aluminum/titanium, molybdenum, molybdenum/aluminum /Molybdenum, alloys of the above metals or other suitable metals or alloys, but not limited thereto. In addition, the third patterned conductive layer 32 can be a single layer structure or a composite layer structure. In addition, the third patterned conductive layer 32 may further include a data line (not shown) electrically connected to the source S, or other necessary wires. Then a first protection layer 34 is formed on the dielectric layer 30 , wherein the first protection layer 34 has a third contact hole TH3 at least partially exposing the drain D. The first passivation layer 34 may have a planarized surface to facilitate the formation of subsequent film layers. The material of the first protective layer 34 can be an organic insulating material or an inorganic insulating material, and the first protective layer 34 can be a single-layer structure or a composite layer structure.
如图8所示,于第一保护层34上形成一第一像素电极36以形成本实施例的像素结构50,其中第一像素电极36位于像素区10P内并延伸至开关元件区10S内而经由第三接触洞TH3与薄膜晶体管元件TFT的漏极D接触并电性连接。在本实施例中,像素结构50应用于有机电激发光显示面板,因此更可进一步包括下列步骤。于第一保护层34上形成一第二保护层38,其中第二保护层38具有一开口38A,位于像素区10P内并至少部分暴露出第一像素电极36。第二保护层38的材料可为有机绝缘材料或无机绝缘材料,且第二保护层38可为单层结构或复合层结构。的后,于第二保护层38的开口38A内形成一显示介质层40,其中显示介质层40为一有机电激发光层。最后,于显示介质层40上形成一第二像素电极42。第一像素电极36与第二像素电极42可分别作为例如阳极与阴极,并与显示介质层40形成显示元件44,其中显示元件44为有机电激发光元件例如有机发光二极管元件。第一像素电极36与第二像素电极42的其中一者为穿透电极,而另一者可为反射电极或穿透电极。例如,若显示元件44是上发光型显示元件,则第一像素电极36为反射电极,而第二像素电极42为穿透电极;若显示元件44是底发光型显示元件,则第一像素电极36为穿透电极,而第二像素电极42为反射电极;若显示元件44是双面发光型显示元件,则第一像素电极36与第二像素电极42可均为穿透电极。此外,第一像素电极36与第二像素电极42之间另可视需要选择性地形成电洞注入层、电洞传输层、电子注入层与电子传输层等膜层。As shown in FIG. 8 , a first pixel electrode 36 is formed on the first protection layer 34 to form the pixel structure 50 of this embodiment, wherein the first pixel electrode 36 is located in the pixel region 10P and extends into the switching element region 10S to It is in contact with and electrically connected to the drain D of the thin film transistor element TFT through the third contact hole TH3. In the present embodiment, the pixel structure 50 is applied to an organic electroluminescent display panel, and therefore may further include the following steps. A second passivation layer 38 is formed on the first passivation layer 34 , wherein the second passivation layer 38 has an opening 38A located in the pixel region 10P and at least partially exposing the first pixel electrode 36 . The material of the second protective layer 38 can be an organic insulating material or an inorganic insulating material, and the second protective layer 38 can be a single-layer structure or a composite layer structure. After that, a display medium layer 40 is formed in the opening 38A of the second protection layer 38 , wherein the display medium layer 40 is an organic electroluminescence layer. Finally, a second pixel electrode 42 is formed on the display medium layer 40 . The first pixel electrode 36 and the second pixel electrode 42 can serve as an anode and a cathode respectively, and together with the display medium layer 40 form a display element 44 , wherein the display element 44 is an organic electroluminescence element such as an organic light emitting diode element. One of the first pixel electrode 36 and the second pixel electrode 42 is a penetrating electrode, while the other can be a reflective electrode or a penetrating electrode. For example, if the display element 44 is a top-emitting display element, the first pixel electrode 36 is a reflective electrode, and the second pixel electrode 42 is a penetrating electrode; if the display element 44 is a bottom-emission display element, the first pixel electrode 36 is a penetrating electrode, and the second pixel electrode 42 is a reflective electrode; if the display element 44 is a double-sided light emitting display element, the first pixel electrode 36 and the second pixel electrode 42 can both be penetrating electrodes. In addition, film layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer can be selectively formed between the first pixel electrode 36 and the second pixel electrode 42 as required.
本实施例的像素结构50并不限定于应用在有机电激发光显示面板上而可应用于其它各式自发光型或非自发光型显示面板上,例如液晶显示面板、电泳显示面板、电湿润显示面板或其它各式适合的显示面板上。若像素结构50欲应用在其它类型的显示面板上,则可选择其它对应的固态或液态膜层例如液晶层、电泳层或亲水/疏水混合液体。其中,当显示介质层40为非发光型材料或其它自发光型材料时,第二保护层38与第二像素电极42的其中至少一者,可选择性不设置。The pixel structure 50 of this embodiment is not limited to be applied to organic electroluminescent display panels but can be applied to other types of self-luminous or non-self-luminous display panels, such as liquid crystal display panels, electrophoretic display panels, electrowetting display panel or other suitable display panels. If the pixel structure 50 is to be applied to other types of display panels, other corresponding solid or liquid film layers such as liquid crystal layer, electrophoretic layer or hydrophilic/hydrophobic mixed liquid can be selected. Wherein, when the display medium layer 40 is a non-luminous material or other self-luminous material, at least one of the second protective layer 38 and the second pixel electrode 42 may be selectively not provided.
本发明的像素结构及其制作方法并不以上述实施例为限。下文将依序介绍本发明的其它较佳实施例的像素结构及其制作方法,且为了便于比较各实施例的相异处并简化说明,在下文的各实施例中使用相同的符号标注相同的元件,且主要针对各实施例的相异处进行说明,而不再对重复部分进行赘述。The pixel structure and its manufacturing method of the present invention are not limited to the above-mentioned embodiments. The following will introduce the pixel structure and the manufacturing method of other preferred embodiments of the present invention in sequence, and in order to facilitate the comparison of the differences between the various embodiments and simplify the description, the same symbols are used in the following embodiments to mark the same Components, and mainly describe the differences between the embodiments, and will not repeat the repeated parts.
请参考图9与图10。图9与图10绘示了本发明的第二实施例的制作像素结构的示意图。不同于第一实施例,在本实施例中,栅极G的侧壁内缩于栅极绝缘层GI的侧壁。请接续图2后参考图9,如图9所示,在本实施例中,形成第一图案化导电层22与形成图案化绝缘层24的步骤利用图案化遮蔽层20作为蚀刻屏蔽并利用等向性蚀刻工艺例如湿蚀刻工艺加以实现。因此尽管栅极G的图案与栅极绝缘层GI两者均是使用图案化遮蔽层20作为蚀刻屏蔽,但栅极G的图案与栅极绝缘层GI的图案会有所不同。也就是说,由于栅极G位于栅极绝缘层GI的上,故栅极G的蚀刻时间较栅极绝缘层GI的蚀刻时间为长,因此栅极G的一部分侧壁会在蚀刻栅极绝缘层GI的继续被蚀刻掉,而在蚀刻的后栅极G的侧壁会内缩于栅极绝缘层GI的侧壁。同理,储存电容上电极22T的侧壁也会内缩于电容介电层CD的侧壁。接着依序进行第4图至图8所揭示的步骤,即可形成本实施例的像素结构60,如图10所示。值得说明的是,由于第一连接电极281与第二连接电极282利用掀离工艺同时移除图案化遮蔽层20以及位于图案化遮蔽层20上的第二导电层26所形成,因此栅极G的内缩侧壁可以更有效地确保在掀举工艺后栅极G与第一连接电极281/第二连接电极282之间不会产生短路。Please refer to Figure 9 and Figure 10. FIG. 9 and FIG. 10 are schematic diagrams illustrating the fabrication of the pixel structure according to the second embodiment of the present invention. Different from the first embodiment, in this embodiment, the sidewall of the gate G is retracted from the sidewall of the gate insulating layer GI. Please refer to FIG. 9 following FIG. 2. As shown in FIG. 9, in this embodiment, the steps of forming the first patterned conductive layer 22 and forming the patterned insulating layer 24 use the patterned masking layer 20 as an etching mask and use etc. A tropic etching process such as a wet etching process is implemented. Therefore, although both the pattern of the gate G and the gate insulating layer GI use the patterned masking layer 20 as an etching mask, the pattern of the gate G and the pattern of the gate insulating layer GI are different. That is to say, since the gate G is located on the gate insulating layer GI, the etching time of the gate G is longer than that of the gate insulating layer GI, so a part of the sidewall of the gate G will be etched on the gate insulating layer GI. The layer GI is etched away continuously, and the sidewall of the gate G shrinks back into the sidewall of the gate insulating layer GI after etching. Similarly, the sidewalls of the upper electrode 22T of the storage capacitor are also retracted into the sidewalls of the capacitor dielectric layer CD. Then, the steps disclosed in FIG. 4 to FIG. 8 are performed sequentially to form the pixel structure 60 of this embodiment, as shown in FIG. 10 . It is worth noting that since the first connection electrode 281 and the second connection electrode 282 are formed by simultaneously removing the patterned shielding layer 20 and the second conductive layer 26 on the patterned shielding layer 20 through a lift-off process, the gate G The retracted sidewalls can more effectively ensure that there will be no short circuit between the gate G and the first connecting electrode 281 /second connecting electrode 282 after the lifting process.
本发明的制作像素结构的方法具有下列优点:The method for making the pixel structure of the present invention has the following advantages:
1.源极S与漏极D分别经由第一连接电极281与第二连接电极282与图案化氧化物半导体层14的第一接触区141与第二接触区142接触,因此可选用与图案化氧化物半导体层14具有较佳接触的材料,以减少阻值,进而增加薄膜晶体管元件TFT的电子迁移率。1. The source S and the drain D are respectively in contact with the first contact region 141 and the second contact region 142 of the patterned oxide semiconductor layer 14 through the first connection electrode 281 and the second connection electrode 282, so it can be selected and patterned. The oxide semiconductor layer 14 has a better contact material to reduce the resistance value, thereby increasing the electron mobility of the thin film transistor device TFT.
2.由于第一连接电极281与第二连接电极282是利用掀举工艺形成,故具有自行对准效果而不会产生对位误差,且源极S与漏极D分别经由第一连接电极281与第二连接电极282与图案化氧化物半导体层14的第一接触区141与第二接触区142接触,因此即使第一接触洞TH1与第二接触洞TH2产生工艺偏移,亦不会因为源极S/漏极D与图案化氧化物半导体层14的第一接触区141与第二接触区142的接触位置的不对称而影响元件特性。2. Since the first connection electrode 281 and the second connection electrode 282 are formed by lifting process, they have self-alignment effect without generating alignment error, and the source S and drain D are respectively connected through the first connection electrode 281 The first contact region 141 and the second contact region 142 are in contact with the second connection electrode 282 and the patterned oxide semiconductor layer 14, so even if the first contact hole TH1 and the second contact hole TH2 produce a process shift, it will not be caused by The asymmetry of the contact position between the source S/drain D and the first contact region 141 and the second contact region 142 of the patterned oxide semiconductor layer 14 affects device characteristics.
3.由于第一接触洞TH1与第二接触洞TH2是暴露第一连接电极281与第二连接电极282,而不是暴露图案化氧化物半导体层14,因此图案化氧化物半导体层14不会在蚀刻介电层30的过程中受到损伤,且介电层30的材料选择上不会受限于其与图案化氧化物半导体层14的蚀刻选择比而具有较大的弹性。3. Since the first contact hole TH1 and the second contact hole TH2 expose the first connecting electrode 281 and the second connecting electrode 282 instead of exposing the patterned oxide semiconductor layer 14, the patterned oxide semiconductor layer 14 will not The dielectric layer 30 is damaged during the etching process, and the material selection of the dielectric layer 30 is not limited by the etching selection ratio of the dielectric layer 30 to the patterned oxide semiconductor layer 14 and thus has great flexibility.
4.本发明的制作方法使用三层图案化导电层(包括第一图案化导电层22、第二图案化导电层28与第三图案化导电层32)的作法相较于习知制作方法使用两层图案化导电层的作法具有较大的设计弹性。4. The manufacturing method of the present invention uses a three-layer patterned conductive layer (comprising the first patterned conductive layer 22, the second patterned conductive layer 28 and the third patterned conductive layer 32) compared to the conventional method. The method of two patterned conductive layers has greater design flexibility.
请参考图11。图11绘示了本发明的一对照实施例的像素结构的示意图。如图11所示,在本对照实施例的像素结构70中,第一接触洞TH1与第二接触洞TH2直接暴露出图案化氧化物半导体层14,而源极S与漏极D分别经由第一接触洞TH1与第二接触洞TH2和第一接触区141与第二接触区142直接接触。本对照实施例的像素结构70具有下列缺点:Please refer to Figure 11. FIG. 11 is a schematic diagram of a pixel structure of a comparative embodiment of the present invention. As shown in FIG. 11 , in the pixel structure 70 of this comparative embodiment, the first contact hole TH1 and the second contact hole TH2 directly expose the patterned oxide semiconductor layer 14, and the source S and the drain D respectively pass through the second A contact hole TH1 is in direct contact with the second contact hole TH2 and the first contact region 141 is in direct contact with the second contact region 142 . The pixel structure 70 of this comparative embodiment has the following disadvantages:
1.源极S/漏极D是直接与图案化氧化物半导体层14接触,因此源极S/漏极D与图案化氧化物半导体层14的接触较差。1. The source S/drain D are in direct contact with the patterned oxide semiconductor layer 14 , so the source S/drain D are in poor contact with the patterned oxide semiconductor layer 14 .
2.在蚀刻介电层30以形成第一接触洞TH1与第二接触洞TH2时,无法使用干蚀刻,否则会造成图案化氧化物半导体层14的损伤,且在使用湿蚀刻的情况下也对介电层30在材料上的选择造成限制,例如无法使用利用氢氟酸蚀刻的材料。2. When etching the dielectric layer 30 to form the first contact hole TH1 and the second contact hole TH2, dry etching cannot be used, otherwise it will cause damage to the patterned oxide semiconductor layer 14, and wet etching is also used The choice of materials for the dielectric layer 30 is limited, for example, materials etched by hydrofluoric acid cannot be used.
3.当第一接触洞TH1与第二接触洞TH2的位置因为工艺偏差而有所偏移时,源极S/漏极D相对应栅极G会形成不对称结构,对于薄膜晶体管元件的元件特性影响很。3. When the positions of the first contact hole TH1 and the second contact hole TH2 are shifted due to process deviation, the source S/drain D will form an asymmetric structure corresponding to the gate G. For thin film transistor components Characteristics are very influential.
请再参考图12与图13。图12绘示了本发明的对照实施例的像素结构的薄膜晶体管元件的栅极电压VG与漏极电流ID的关系图,图13绘示了本发明的像素结构的薄膜晶体管元件的栅极电压VG与漏极电流ID的关系图。图12显示了对照实施例的三个相同尺寸的薄膜晶体管元件的样本的栅极电压VG与漏极电流ID的关系,其中曲线A为样本1在漏极电压VD=0.1V所量测的结果,曲线A’为样本1在漏极电压VD=10V所量测的结果,曲线B为样本2在漏极电压VD=0.1V所量测的结果,曲线B’为样本2在漏极电压VD=10V所量测的结果,曲线C为样本3在漏极电压VD=0.1V所量测的结果,曲线C’为样本3在漏极电压VD=10V所量测的结果。如图12所示,由曲线A-C可以明显的看出,即使在相同的漏极电压VD=0.1V下,样本1-3的薄膜晶体管元件的栅极电压VG与漏极电流ID的关系具有明显的差异。同样地,由曲线A’-C’可以明显的看出,即使在相同的漏极电压VD=10V下,样本1-3的薄膜晶体管元件的栅极电压VG与漏极电流ID的关系也具有明显的差异。另外,样本1-3的薄膜晶体管元件的临界电压(threshold voltage)也具有明显的差异。因此,由图12的量测结果可以证实对照实施例的的薄膜晶体管元件在没有设置连接电极的状况下,其元件均匀性与元件特性均不佳。图13显示了本实施例的两个薄膜晶体管元件的样本的栅极电压VG与漏极电流ID的关系,其中样本4使用膜厚=50埃(angstrom)的钼作为连接电极,而样本5使用膜厚=100埃的钼作为连接电极,曲线D为样本4在漏极电压VD=0.1V所量测的结果,曲线D’为样本4在漏极电压VD=5V所量测的结果,曲线E为样本5在漏极电压VD=0.1V所量测的结果,曲线E’为样本5在漏极电压VD=5V所量测的结果。如图13所示,在不同的漏极电压(VD)下(例如VD=5V或VD=0.1V),样本4-5的薄膜晶体管元件的临界电压(threshold voltage)几乎一致,证实了本实施例的薄膜晶体管元件具有良好的元件均匀性与元件特性。此外,由于样本5的连接电极的膜厚大于样本4的连接电极的膜厚,因此样本5的连接电极的电阻低于样本4的连接电极的电阻,而由图13也可以看出在相同的栅极电压VG与漏极电压VD下,样本5(曲线E或曲线E’)的漏极电流ID的明显地高于样本4(曲线E或曲线E’)的漏极电流ID。证实了连接电极的设置可以改变薄膜晶体管元件的元件特性,且连接电极的电阻愈小,漏极电流ID愈大。值得说明的是,在选择连接电极的膜厚时,除了其对薄膜晶体管元件的漏极电流ID的影响的外,应一并考虑第二导电层在掀离工艺中是否容易被移除。Please refer to FIG. 12 and FIG. 13 again. Fig. 12 shows the relationship between the gate voltage VG and the drain current ID of the thin film transistor element of the pixel structure of the comparative embodiment of the present invention, and Fig. 13 shows the gate voltage of the thin film transistor element of the pixel structure of the present invention VG vs. drain current ID plot. Figure 12 shows the relationship between gate voltage VG and drain current ID of three samples of thin film transistor elements of the same size in the comparative embodiment, wherein curve A is the result measured at drain voltage VD=0.1V of sample 1 , Curve A' is the result of sample 1 measured at drain voltage VD=10V, curve B is the result of sample 2 measured at drain voltage VD=0.1V, curve B' is sample 2 at drain voltage VD = 10V, the curve C is the measurement result of sample 3 at drain voltage VD=0.1V, and the curve C' is the measurement result of sample 3 at drain voltage VD=10V. As shown in Figure 12, it can be clearly seen from the curves A-C that even at the same drain voltage VD=0.1V, the relationship between the gate voltage VG and the drain current ID of the thin film transistor elements of samples 1-3 has obvious difference. Similarly, it can be clearly seen from the curve A'-C' that even at the same drain voltage VD=10V, the relationship between the gate voltage VG and the drain current ID of the thin film transistor elements of samples 1-3 has the same significant difference. In addition, the threshold voltage (threshold voltage) of the thin film transistor devices of samples 1-3 also has obvious difference. Therefore, it can be confirmed from the measurement results in FIG. 12 that the thin film transistor device of the comparative example has poor device uniformity and device characteristics when no connecting electrodes are provided. Fig. 13 shows the relationship between the gate voltage VG and the drain current ID of samples of two thin film transistor elements of this embodiment, wherein sample 4 uses molybdenum with a film thickness=50 angstrom (angstrom) as the connecting electrode, and sample 5 uses Molybdenum with a film thickness of 100 angstroms is used as the connecting electrode. Curve D is the result measured at drain voltage VD=0.1V for sample 4. Curve D' is the result measured at drain voltage VD=5V for sample 4. Curve E is the measurement result of sample 5 at the drain voltage VD=0.1V, and the curve E' is the measurement result of sample 5 at the drain voltage VD=5V. As shown in Figure 13, under different drain voltages (VD) (such as VD=5V or VD=0.1V), the threshold voltages (threshold voltage) of the thin film transistor elements of samples 4-5 are almost the same, confirming the implementation The thin film transistor device of the example has good device uniformity and device characteristics. In addition, since the film thickness of the connection electrode of sample 5 is greater than that of sample 4, the resistance of the connection electrode of sample 5 is lower than that of sample 4, and it can also be seen from FIG. 13 that in the same Under the gate voltage VG and the drain voltage VD, the drain current ID of sample 5 (curve E or curve E′) is significantly higher than that of sample 4 (curve E or curve E′). It has been proved that the setting of the connection electrode can change the device characteristics of the thin film transistor element, and the smaller the resistance of the connection electrode is, the larger the drain current ID is. It is worth noting that when selecting the film thickness of the connecting electrode, in addition to its influence on the drain current ID of the thin film transistor device, whether the second conductive layer is easy to be removed during the lift-off process should also be considered.
综上所述,本发明的像素结构利用连接电极连接源极/漏极与氧化物半导体层,可以有效避免源极/漏极直接与氧化物半导体层接触的缺点,有效提升薄膜晶体管元件的元件特性。In summary, the pixel structure of the present invention utilizes the connection electrode to connect the source/drain to the oxide semiconductor layer, which can effectively avoid the disadvantage that the source/drain is directly in contact with the oxide semiconductor layer, and effectively improve the performance of the thin film transistor device. characteristic.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103111556A TWI569421B (en) | 2014-03-27 | 2014-03-27 | Pixel structure and method of making the same |
TW103111556 | 2014-03-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104009043A CN104009043A (en) | 2014-08-27 |
CN104009043B true CN104009043B (en) | 2017-05-10 |
Family
ID=51369636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410209616.XA Active CN104009043B (en) | 2014-03-27 | 2014-05-19 | Pixel structure and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104009043B (en) |
TW (1) | TWI569421B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102304725B1 (en) * | 2014-10-16 | 2021-09-27 | 삼성디스플레이 주식회사 | Thin film transistor array substrate, method of manufacturing thereof and organic light-emitting display including the same |
TWI572020B (en) * | 2016-01-19 | 2017-02-21 | 友達光電股份有限公司 | Array substrate and manufacturing method thereof |
TWI629797B (en) * | 2017-05-09 | 2018-07-11 | 友達光電股份有限公司 | Thin film transistor and its photoelectric device |
US10930631B2 (en) | 2017-11-03 | 2021-02-23 | Shih-Hsien Tseng | Display apparatus, pixel array and manufacturing method thereof |
TWI688802B (en) | 2017-11-03 | 2020-03-21 | 曾世憲 | Pixel array and manufacturing method thereof |
CN111937161A (en) * | 2018-04-04 | 2020-11-13 | 株式会社半导体能源研究所 | Semiconductor device and method of manufacturing the same |
TW202133133A (en) * | 2019-12-17 | 2021-09-01 | 曾世憲 | Display apparatus, pixel array and manufacturing method thereof |
KR102675926B1 (en) * | 2020-06-30 | 2024-06-17 | 엘지디스플레이 주식회사 | Display apparatus |
US20240040836A1 (en) * | 2020-12-08 | 2024-02-01 | Sharp Kabushiki Kaisha | Display device and method for manufacturing same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103296034A (en) * | 2013-05-28 | 2013-09-11 | 京东方科技集团股份有限公司 | Array substrate, production method thereof and display device |
CN103295909A (en) * | 2012-02-28 | 2013-09-11 | 索尼公司 | Transistor, method of manufacturing the transistor, semiconductor unit, method of manufacturing the semiconductor unit, and display |
CN103346093A (en) * | 2013-06-13 | 2013-10-09 | 北京大学深圳研究生院 | Top grid self-alignment thin-film transistor with source/drain areas raised and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI483344B (en) * | 2011-11-28 | 2015-05-01 | Au Optronics Corp | Array substrate and manufacturing method thereof |
-
2014
- 2014-03-27 TW TW103111556A patent/TWI569421B/en active
- 2014-05-19 CN CN201410209616.XA patent/CN104009043B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103295909A (en) * | 2012-02-28 | 2013-09-11 | 索尼公司 | Transistor, method of manufacturing the transistor, semiconductor unit, method of manufacturing the semiconductor unit, and display |
CN103296034A (en) * | 2013-05-28 | 2013-09-11 | 京东方科技集团股份有限公司 | Array substrate, production method thereof and display device |
CN103346093A (en) * | 2013-06-13 | 2013-10-09 | 北京大学深圳研究生院 | Top grid self-alignment thin-film transistor with source/drain areas raised and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201537730A (en) | 2015-10-01 |
TWI569421B (en) | 2017-02-01 |
CN104009043A (en) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104009043B (en) | Pixel structure and manufacturing method thereof | |
TWI535034B (en) | Pixel structure and its making method | |
CN104362125B (en) | Array base palte and preparation method thereof, display device | |
US10367073B2 (en) | Thin film transistor (TFT) with structured gate insulator | |
TWI683164B (en) | Display backboard and manufacturing method thereof, display panel and display device | |
US9082792B2 (en) | Complementary metal oxide semiconductor transistor and fabricating method thereof | |
JP5697737B2 (en) | Thin film transistor array substrate and manufacturing method thereof | |
US8895979B2 (en) | Vertical thin-film transistor structure of display panel and method of fabricating the same | |
US9991295B2 (en) | Array substrate manufactured by reduced times of patterning processes manufacturing method thereof and display apparatus | |
CN104638017B (en) | Thin film transistor (TFT), dot structure and preparation method thereof, array base palte, display device | |
US10566351B2 (en) | Display device and method for manufacturing the same | |
TWI519879B (en) | Display panel and display device including the same | |
KR20150063177A (en) | Thin film transistor array substrate and method for fabricating the same | |
CN111415995B (en) | Display panel, manufacturing method thereof and display device | |
TWI548100B (en) | Thin film transistor, display panel and method of manufacturing same | |
WO2020154876A1 (en) | Thin-film transistor and manufacturing method therefor, array substrate and display apparatus | |
KR20170080047A (en) | Display device including oxide thin film transistor and method for manufacturing the same | |
US10205029B2 (en) | Thin film transistor, manufacturing method thereof, and display device | |
CN104157609B (en) | The preparation method and its structure of TFT substrate | |
CN107039500A (en) | Thin film transistor of display panel | |
US9373683B2 (en) | Thin film transistor | |
KR20110097121A (en) | Array board | |
CN104157611A (en) | Manufacture method of oxide semiconductor TFT substrate, and structure of the oxide semiconductor TFT substrate | |
TWI802478B (en) | Active component substrate | |
KR102142477B1 (en) | Array substrate and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |